1
|
Mu X, Zhang Z, Liu Q, Ma J, Qin Y, Lang H, Zhang Y, Zhang N, Guo Q, Zhang P, Li D, Zhang R, Ji Q, Jiang A, Wang Y, Pan S, Liu X, Liu X, Sun J, Liu Y, Chen H, Zheng L, Meng L, Lu H, Zhang H, Zhai Y, Li Q, Liu J, Yang H, Wang J, Hu X, Xu X, Liu S, Zheng H. Single-nucleus and spatial transcriptomics identify brain landscape of gene regulatory networks associated with behavioral maturation in honeybees. Nat Commun 2025; 16:3343. [PMID: 40199930 PMCID: PMC11978848 DOI: 10.1038/s41467-025-58614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Animal behavior is linked to the gene regulatory network (GRN) coordinating gene expression in the brain. Eusocial honeybees, with their natural behavioral plasticity, provide an excellent model for exploring the connection between brain activity and behavior. Using single-nucleus RNA sequencing and spatial transcriptomics, we analyze the expression patterns of brain cells associated with the behavioral maturation from nursing to foraging. Integrating spatial and cellular data uncovered cell-type and spatial heterogeneity in GRN organization. Interestingly, the stripe regulon is explicitly activated in foragers' small Keyon cells, which are implicated in spatial learning and navigation. When worker age is controlled in artificial colonies, stripe and its key targets remained highly expressed in the KC regions of bees performing foraging tasks. These findings suggest that specific GRNs coordinate individual brain cell activity during behavioral transitions, shedding light on GRN-driven brain heterogeneity and its role in the division of labor of social life.
Collapse
Affiliation(s)
- Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zijing Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qun Liu
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Jie Ma
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Yating Qin
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | - Qunfei Guo
- BGI Research-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Zhang
- BGI Research-Shenzhen, Shenzhen, China
| | - Denghui Li
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Ruihua Zhang
- BGI Research-Qingdao, BGI, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qianyue Ji
- BGI Research-Qingdao, BGI, Qingdao, China
| | | | - Yang Wang
- BGI Research-Shenzhen, Shenzhen, China
| | | | - Xiawei Liu
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Xuemei Liu
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Jiahui Sun
- BGI Research-Qingdao, BGI, Qingdao, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liang Meng
- BGI Research-Qingdao, BGI, Qingdao, China
| | | | - He Zhang
- BGI Research-Shenzhen, Shenzhen, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiye Li
- BGI Research-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jian Wang
- BGI Research-Shenzhen, Shenzhen, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xun Xu
- BGI Research-Shenzhen, Shenzhen, China.
| | | | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Fahmy MI, Elrayess RA, Althobaiti MM, Arab HH, Rashad A. Chicoric acid alleviates rotenone-induced motor dysfunction in mice: Targeting PI3K/AKT/caspase-3-associated apoptosis and neuroinflammation. Arch Pharm (Weinheim) 2025; 358:e2400935. [PMID: 40123433 DOI: 10.1002/ardp.202400935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
Parkinson's disease (PD) is an idiopathic disease characterized by loss of the dopaminergic neurons with inflammatory and apoptotic responses. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) axis plays a critical role in promoting neuronal survival. Chicoric acid (CA) is an antioxidant compound that can cross the blood-brain barrier. It has been shown to activate PI3K/AKT and mitigate neuroinflammatory and oxidative damage. Our work aims to examine the neuroprotective effects of CA against rotenone-induced PD by targeting the PI3K/AKT pathway. Forty male mice were assigned to four groups: (1) control, (2) CA (35 mg/kg/day; p.o.) for 12 days, (3) rotenone (1.5 mg/kg/2 days, i.p.) for 21 days, and (4) combined CA and rotenone administration. The findings revealed that CA improved behavior and histopathological outcomes. These neuroprotective effects were mediated by activating the striatal PI3K/AKT pathway and lowering caspase-3 levels. Moreover, CA exerted prominent anti-inflammatory actions by lowering interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB). A significant increase in antioxidant defenses was evidenced by elevated levels of reduced glutathione (GSH) and superoxide dismutase (SOD) antioxidant mediators. In conclusion, CA showed promising neuroprotective effects in rotenone-induced PD by activating the PI3K/AKT pathway and inhibiting apoptosis and inflammation.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical sciences and drug manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ranwa A Elrayess
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amira Rashad
- Department of Pharmaceutics, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
3
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
4
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Caveolae with serotonin and NMDA receptors as promising targets for the treatment of Alzheimer's disease. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:96-110. [PMID: 39583750 PMCID: PMC11579522 DOI: 10.62347/mtwv3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease is the most general type of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained more elusive. Consequently, research direction should be for finding effective neuroprotective agents. It has been suggested oxidative stress, mitochondrial injury, and inflammation level might lead to brain cell death in many neurological disorders. Therefore, several autophagy-targeted bioactive compounds may be promising candidate therapeutics for the prevention of brain cell damage. Interestingly, some risk genes to Alzheimer's disease are expressed within brain cells, which may be linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis and/or caveolae formation, suggesting that caveolae may be a fruitful therapeutic target to improve cognitive impairments. This review would highlight the latest advances in therapeutic technologies to improve the treatment of Alzheimer's disease. In particular, a paradigm that serotonin and N-methyl-d-aspartate (NMDA) receptors agonist/antagonist within caveolae structure might possibly improve the cognitive impairment. Consequently, cellular membrane biophysics should improve our understanding of the pathology of the cognitive dysfunction associated with Alzheimer's disease. Here, this research direction for the purpose of therapy may open the potential to move a clinical care toward disease-modifying treatment strategies with certain benefits for patients.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
5
|
Nakashima M, Suga N, Yoshikawa S, Matsuda S. Caveolae with GLP-1 and NMDA Receptors as Crossfire Points for the Innovative Treatment of Cognitive Dysfunction Associated with Neurodegenerative Diseases. Molecules 2024; 29:3922. [PMID: 39203005 PMCID: PMC11357136 DOI: 10.3390/molecules29163922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Some neurodegenerative diseases may be characterized by continuing behavioral and cognitive dysfunction that encompasses memory loss and/or apathy. Alzheimer's disease is the most typical type of such neurodegenerative diseases that are characterized by deficits of cognition and alterations of behavior. Despite the huge efforts against Alzheimer's disease, there has yet been no successful treatment for this disease. Interestingly, several possible risk genes for cognitive dysfunction are frequently expressed within brain cells, which may also be linked to cholesterol metabolism, lipid transport, exosomes, and/or caveolae formation, suggesting that caveolae may be a therapeutic target for cognitive dysfunctions. Interestingly, the modulation of autophagy/mitophagy with the alteration of glucagon-like peptide-1 (GLP-1) and N-methyl-d-aspartate (NMDA) receptor signaling may offer a novel approach to preventing and alleviating cognitive dysfunction. A paradigm showing that both GLP-1 and NMDA receptors at caveolae sites may be promising and crucial targets for the treatment of cognitive dysfunctions has been presented here, which may also be able to modify the progression of Alzheimer's disease. This research direction may create the potential to move clinical care toward disease-modifying treatment strategies with maximal benefits for patients without detrimental adverse events for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan (N.S.)
| |
Collapse
|
6
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2023; 38:671-680. [PMID: 37858892 DOI: 10.1016/j.nrleng.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Rafts are protein-lipid structural nanodomains involved in efficient signal transduction and the modulation of physiological processes of the cell plasma membrane. Raft disruption in the nervous system has been associated with a wide range of disorders. DEVELOPMENT We review the concept of rafts, the nervous system processes in which they are involved, and their role in diseases such as Parkinson's disease, Alzheimer disease, and Huntington disease. CONCLUSIONS Based on the available evidence, preservation and/or reconstitution of rafts is a promising treatment strategy for a wide range of neurological disorders.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
8
|
Li T, Tao X, Sun R, Han C, Li X, Zhu Z, Li W, Huang P, Gong W. Cognitive-exercise dual-task intervention ameliorates cognitive decline in natural aging rats via inhibiting the promotion of LncRNA NEAT1/miR-124-3p on caveolin-1-PI3K/Akt/GSK3β Pathway. Brain Res Bull 2023; 202:110761. [PMID: 37714275 DOI: 10.1016/j.brainresbull.2023.110761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Aging-related cognitive impairment (ARCI) is rapidly becoming a healthcare priority. However, there is currently no excellent cure for it. Cognitive-exercise dual-task intervention (CEDI) is a promising method to improve ARCI, while the underlying mechanisms remain unclear. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in the onset, development, and rehabilitation of ARCI. This study aimed to investigate the effects of CEDI and the role of regulation of the lncRNA NEAT1/miR-124-3p on the caveolin-1-PI3K/Akt/GSK3β pathway in CEDI improving cognitive function. Forty 18-month-old natural aging rats were randomly assigned to four groups: exercise training group, cognitive training group, CEDI group, and aging control group, and underwent 12 weeks of intervention. A novel object recognition test was performed to determine the cognitive function, and the hippocampus was separated three days after the behavioral tests for further molecular detection. In an in vitro study, the mouse hippocampal neuronal cell line HT22 was cultured. MiR-124-3p and lncRNA NEAT1 were over-expressed or down-expressed, respectively. The expressions of related proteins, lncRNA, and miRNA were examined by WB and/or qRT-PCR. The results showed that compared with the aging control group, the CEDI group had a higher discrimination index, and significantly decreased the expressions of lncRNA NEAT1, and the protein expressions of caveolin-1 and p-GSK3β, while significantly increased the expressions of miR-124-3p, and the protein expressions of p-PI3K and p-Akt. Inhibition of the lncRNA NEAT1 could significantly increase the protein expressions of p-PI3K and p-Akt in HT22 cells. Upregulation of miR-124-3p decreased the protein expressions of caveolin-1 and p-GSK3β, and increased the protein expressions of p-PI3K and p-Akt significantly. Inhibition of miR-124-3p had the opposite effects. Our study demonstrated that CEDI improved cognitive function in aging rats better than a single intervention. The mechanisms of cognitive improvement could be related to the regulation of the lncRNA NEAT1/miR-124-3p on the caveolin-1-PI3K/Akt/GSK3β pathway.
Collapse
Affiliation(s)
- Tiancong Li
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Conglin Han
- Rehabilitation Medicine Academy, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoling Li
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ziman Zhu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Wenshan Li
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Weijun Gong
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China; Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Yang JX, Zhao WN, Jiang YY, Ma Y, Chen DD, Lin ZH, Yin MB, Ren KP. Caveolin-1 is essential for the increased release of glutamate in the anterior cingulate cortex in neuropathic pain mice. J Neuropathol Exp Neurol 2023; 82:806-813. [PMID: 37478479 DOI: 10.1093/jnen/nlad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
Neuropathic pain has a complex pathogenesis. Here, we examined the role of caveolin-1 (Cav-1) in the anterior cingulate cortex (ACC) in a chronic constriction injury (CCI) mouse model for the enhancement of presynaptic glutamate release in chronic neuropathic pain. Cav-1 was localized in glutamatergic neurons and showed higher expression in the ACC of CCI versus sham mice. Moreover, the release of glutamate from the ACC of the CCI mice was greater than that of the sham mice. Inhibition of Cav-1 by siRNAs greatly reduced the release of glutamate of ACC, while its overexpression (induced by injecting Lenti-Cav-1) reversed this process. The chemogenetics method was then used to activate or inhibit glutamatergic neurons in the ACC area. After 21 days of injection of AAV-hM3Dq in the sham mice, the release of glutamate was increased, the paw withdrawal latency was shortened, and expression of Cav-1 in the ACC was upregulated after intraperitoneal injection of 2 mg/kg clozapine N-oxide. Injection of AAV-hM4Di in the ACC of CCI mice led to the opposite effects. Furthermore, decreasing Cav-1 in the ACC in sham mice injected with rAAV-hM3DGq did not increase glutamate release. These findings suggest that Cav-1 in the ACC is essential for enhancing glutamate release in neuropathic pain.
Collapse
Affiliation(s)
- Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yan-Yu Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Dan-Dan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Hua Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Meng-Bing Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kun-Peng Ren
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Shetti AU, Ramakrishnan A, Romanova L, Li W, Vo K, Volety I, Ratnayake I, Stephen T, Minshall RD, Cologna SM, Lazarov O. Reduced endothelial caveolin-1 underlies deficits in brain insulin signalling in type 2 diabetes. Brain 2023; 146:3014-3028. [PMID: 36731883 PMCID: PMC10316766 DOI: 10.1093/brain/awad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes exhibit severe impairments in insulin signalling in the brain and are five times more likely to develop Alzheimer's disease. However, what leads to these impairments is not fully understood. Here, we show reduced expression of endothelial cell caveolin-1 (Cav-1) in the db/db (Leprdb) mouse model of type 2 diabetes. This reduction correlated with alterations in insulin receptor expression and signalling in brain microvessels as well as brain parenchyma. These findings were recapitulated in the brains of endothelial cell-specific Cav-1 knock-out (Tie2Cre; Cav-1fl/fl) mice. Lack of Cav-1 in endothelial cells led to reduced response to insulin as well as reduced insulin uptake. Furthermore, we observed that Cav-1 was necessary for the stabilization of insulin receptors in lipid rafts. Interactome analysis revealed that insulin receptor interacts with Cav-1 and caveolae-associated proteins, insulin-degrading enzyme and the tight junction protein Zonula Occludence-1 in brain endothelial cells. Restoration of Cav-1 in Cav-1 knock-out brain endothelial cells rescued insulin receptor expression and localization. Overall, these results suggest that Cav-1 regulates insulin signalling and uptake by brain endothelial cells by modulating IR-α and IR-β localization and function in lipid rafts. Furthermore, depletion of endothelial cell-specific Cav-1 and the resulting impairment in insulin transport leads to alteration in insulin signalling in the brain parenchyma of type 2 diabetics.
Collapse
Affiliation(s)
- Aashutosh U Shetti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Abhirami Ramakrishnan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Liudmila Romanova
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Wenping Li
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Khanh Vo
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ipsita Volety
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ishara Ratnayake
- Electron Microscopy Core, Research Resource Center, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Terilyn Stephen
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Department of Pharmacology and Regenerative Medicine, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Xu Y, Chen B, Yi J, Tian F, Liu Y, Ouyang Y, Yuan C, Liu B. Buyang Huanwu Decoction alleviates cerebral ischemic injury through modulating caveolin-1-mediated mitochondrial quality control. Front Pharmacol 2023; 14:1137609. [PMID: 37234709 PMCID: PMC10206009 DOI: 10.3389/fphar.2023.1137609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Mitochondrial quality control (MQC) is an important mechanism of neural repair after cerebral ischemia (CI). Recent studies have shown that caveolin-1 (Cav-1) is an important signaling molecule in the process of CI injury, but its mechanism of regulating MQC after CI is still unclear. Buyang Huanwu Decoction (BHD) is a classic traditional Chinese medicine formula that is often used to treat CI. Unfortunately, its mechanism of action is still obscure. Methods: In this study, we tested the hypothesis that BHD can regulate MQC through Cav-1 and exert an anti-cerebral ischemia injury effect. We used Cav-1 knockout mice and their homologous wild-type mice, replicated middle cerebral artery occlusion (MCAO) model and BHD intervention. Neurobehavioral scores and pathological detection were used to evaluate neurological function and neuron damage, transmission electron microscopy and enzymology detection of mitochondrial damage. Finally, western blot and RT-qPCR expression of MQC-related molecules were tested. Results: After CI, mice showed neurologic impairment, neuronal damage, and significant destruction of mitochondrial morphology and function, and MQC was imbalanced. Cav-1 deletion aggravated the damage to neurological function, neurons, mitochondrial morphology and mitochondrial function after CI, aggravated the imbalance of mitochondrial dynamics, and inhibited mitophagy and biosynthesis. BHD can maintain MQC homeostasis after CI through Cav-1 and improve CI injury. Discussion: Cav-1 can affect CI injury by regulating MQC, and this mechanism may be another target of BHD for anti-cerebral ischemia injury.
Collapse
Affiliation(s)
- Yaqian Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Bowei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fengming Tian
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yingfei Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yin Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chunyun Yuan
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Adey BN, Cooper-Knock J, Al Khleifat A, Fogh I, van Damme P, Corcia P, Couratier P, Hardiman O, McLaughlin R, Gotkine M, Drory V, Silani V, Ticozzi N, Veldink JH, van den Berg LH, de Carvalho M, Pinto S, Mora Pardina JS, Povedano Panades M, Andersen PM, Weber M, Başak NA, Shaw CE, Shaw PJ, Morrison KE, Landers JE, Glass JD, Vourc’h P, Dobson RJB, Breen G, Al-Chalabi A, Jones AR, Iacoangeli A. Large-scale analyses of CAV1 and CAV2 suggest their expression is higher in post-mortem ALS brain tissue and affects survival. Front Cell Neurosci 2023; 17:1112405. [PMID: 36937187 PMCID: PMC10017967 DOI: 10.3389/fncel.2023.1112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts. Methods: Using large ALS whole-genome sequencing and post-mortem RNA sequencing datasets (5,987 and 365 tissue samples, respectively), and iPSC-derived motor neurons from 55 individuals, we investigated the role of CAV1/2 expression and enhancer variants in the ALS phenotype. Results: We report a differential expression analysis between ALS cases and controls for CAV1 and CAV2 genes across various post-mortem brain tissues and three independent datasets. CAV1 and CAV2 expression was consistently higher in ALS patients compared to controls, with significant results across the primary motor cortex, lateral motor cortex, and cerebellum. We also identify increased survival among carriers of CAV1/2 enhancer mutations compared to non-carriers within Project MinE and slower progression as measured by the ALSFRS. Carriers showed a median increase in survival of 345 days. Discussion: These results add to an increasing body of evidence linking CAV1 and CAV2 genes to ALS. We propose that carriers of CAV1/2 enhancer mutations may be conceptualised as an ALS subtype who present a less severe ALS phenotype with a longer survival duration and slower progression. Upregulation of CAV1/2 genes in ALS cases may indicate a causal pathway or a compensatory mechanism. Given prior research supporting the beneficial role of CAV1/2 expression in ALS patients, we consider a compensatory mechanism to better fit the available evidence, although further investigation into the biological pathways associated with CAV1/2 is needed to support this conclusion.
Collapse
Affiliation(s)
- Brett N. Adey
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Philip van Damme
- Department of Neurosciences, KU Leuven-University of Leuven, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Corcia
- UMR 1253, Université de Tours, Inserm, Tours, France
- Centre de référence sur la SLA, CHU de Tours, Tours, France
| | - Philippe Couratier
- Centre de référence sur la SLA, CHRU de Limoges, Limoges, France
- UMR 1094, Université de Limoges, Inserm, Limoges, France
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Russell McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Marc Gotkine
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Vivian Drory
- Department of Neurology, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Mónica Povedano Panades
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, St. Gallen, Switzerland
| | - Nazli A. Başak
- Koc University School of Medicine, Translational Medicine Research Center, NDAL, Istanbul, Turkey
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Karen E. Morrison
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonathan D. Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick Vourc’h
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Service de Biochimie et Biologie molécularie, CHU de Tours, Tours, France
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, NHS Foundation Trust, London, United Kingdom
| | - Gerome Breen
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Luo L, Yang L, Zhang K, Zhou SM, Wang Y, Yang LK, Feng B, Liu SB, Wu YM, Zhao MG, Yang Q. Caveolin-1-Mediated Cholesterol Accumulation Contributes to Exaggerated mGluR-Dependent Long-Term Depression and Impaired Cognition in Fmr1 Knockout Mice. Mol Neurobiol 2023; 60:3379-3395. [PMID: 36854997 PMCID: PMC10122623 DOI: 10.1007/s12035-023-03269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited mental retardation diseases and is caused by the loss of fragile X mental retardation protein (FMRP) expression. The metabotropic glutamate receptor (mGluR) theory of FXS states that enhanced mGluR-dependent long-term depression (LTD) due to FMRP loss is involved in aberrant synaptic plasticity and autistic-like behaviors, but little is known about the underlying molecular mechanism. Here, we found that only hippocampal mGluR-LTD was exaggerated in adolescent Fmr1 KO mice, while N-methyl-D-aspartate receptor (NMDAR)-LTD was intact in mice of all ages. This development-dependent alteration was related to the differential expression of caveolin-1 (Cav1), which is essential for caveolae formation. Knockdown of Cav1 restored the enhanced mGluR-LTD in Fmr1 KO mice. Moreover, hippocampal Cav1 expression in Fmr1 KO mice induced excessive endocytosis of the α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluA2. This process relied on mGluR1/5 activation rather than NMDAR. Interference with Cav1 expression reversed these changes. Furthermore, massive cholesterol accumulation contributed to redundant caveolae formation, which provided the platform for mGluR-triggered Cav1 coupling to GluA2. Importantly, injection of the cholesterol scavenger methyl-β-cyclodextrin (Mβ-CD) recovered AMPA receptor trafficking and markedly alleviated hyperactivity, hippocampus-dependent fear memory, and spatial memory defects in Fmr1 KO mice. Together, our findings elucidate the important role of Cav1 in mediating mGluR-LTD enhancement and further inducing AMPA receptor endocytosis and suggest that cholesterol depletion by Mβ-CD during caveolae formation may be a novel and safe strategy to treat FXS.
Collapse
Affiliation(s)
- Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Kun Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shi-Meng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, Fourth Military Medical University, No.986 Hospital, Xi'an, 710054, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, Department of Pharmacy, School of Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710054, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
14
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Wang S, Ichinomiya T, Savchenko P, Wang D, Sawada A, Li X, Duong T, Li W, Bonds JA, Kim EJ, Miyanohara A, Roth DM, Patel HH, Patel PM, Tadokoro T, Marsala M, Head BP. Subpial delivery of adeno-associated virus 9-synapsin-caveolin-1 ( AAV9-SynCav1) preserves motor neuron and neuromuscular junction morphology, motor function, delays disease onset, and extends survival in hSOD1 G93A mice. Theranostics 2022; 12:5389-5403. [PMID: 35910808 PMCID: PMC9330519 DOI: 10.7150/thno.72614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Elevating neuroprotective proteins using adeno-associated virus (AAV)-mediated gene delivery shows great promise in combating devastating neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is one such disease resulting from loss of upper and lower motor neurons (MNs) with 90-95% of cases sporadic (SALS) in nature. Due to the unknown etiology of SALS, interventions that afford neuronal protection and preservation are urgently needed. Caveolin-1 (Cav-1), a membrane/lipid rafts (MLRs) scaffolding and neuroprotective protein, and MLR-associated signaling components are decreased in degenerating neurons in postmortem human brains. We previously showed that, when crossing our SynCav1 transgenic mouse (TG) with the mutant human superoxide dismutase 1 (hSOD1G93A) mouse model of ALS, the double transgenic mouse (SynCav1 TG/hSOD1G93A) exhibited better motor function and longer survival. The objective of the current study was to test whether neuron-targeted Cav-1 upregulation in the spinal cord using AAV9-SynCav1 could improve motor function and extend longevity in mutant humanized mouse and rat (hSOD1G93A) models of familial (F)ALS. Methods: Motor function was assessed by voluntary running wheel (RW) in mice and forelimb grip strength (GS) and motor evoked potentials (MEP) in rats. Immunofluorescence (IF) microscopy for choline acetyltransferase (ChAT) was used to assess MN morphology. Neuromuscular junctions (NMJs) were measured by bungarotoxin-a (Btx-a) and synaptophysin IF. Body weight (BW) was measured weekly, and the survival curve was determined by Kaplan-Meier analysis. Results: Following subpial gene delivery to the lumbar spinal cord, male and female hSOD1G93A mice treated with SynCav1 exhibited delayed disease onset, greater running-wheel performance, preserved spinal alpha-motor neuron morphology and NMJ integrity, and 10% increased longevity, independent of affecting expression of the mutant hSOD1G93A protein. Cervical subpial SynCav1 delivery to hSOD1G93A rats preserved forelimb GS and MEPs in the brachial and gastrocnemius muscles. Conclusion: In summary, subpial delivery of SynCav1 protects and preserves spinal motor neurons, and extends longevity in a familial mouse model of ALS without reducing the toxic monogenic component. Furthermore, subpial SynCav1 delivery preserved neuromuscular function in a rat model of FALS. The latter findings strongly indicate the therapeutic applicability of SynCav1 to treat ALS attributed to monogenic (FALS) and potentially in sporadic cases (i.e., SALS).
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Taiga Ichinomiya
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
- Department of Anesthesiology, Nagasaki University Hospital, Nagasaki, Japan
| | - Paul Savchenko
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Dongsheng Wang
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Atsushi Sawada
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Xiaojing Li
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Tiffany Duong
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Wenxi Li
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jacqueline A. Bonds
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Eun Jung Kim
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Atsushi Miyanohara
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - David M. Roth
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Hemal H. Patel
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Piyush M. Patel
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Takahiro Tadokoro
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
- Department of Anesthesiology, University of the Ryukyus, Okinawa, Japan
| | - Martin Marsala
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Brian P. Head
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Wang S, Ichinomiya T, Terada Y, Wang D, Patel HH, Head BP. Synapsin-Promoted Caveolin-1 Overexpression Maintains Mitochondrial Morphology and Function in PSAPP Alzheimer's Disease Mice. Cells 2021; 10:2487. [PMID: 34572135 PMCID: PMC8467690 DOI: 10.3390/cells10092487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the Alzheimer's Disease (AD) pathology. Disrupted mitochondrial dynamics (i.e., fusion/fission balance), which are essential for normal mitochondria structure and function, are documented in AD. Caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein regulates metabolic pathways in several different cell types such as hepatocytes and cancer cells. Previously, we have shown decreased expression of Cav-1 in the hippocampus of 9-month (m) old PSAPP mice, while hippocampal overexpression of neuron-targeted Cav-1 using the synapsin promoter (i.e., SynCav1) preserved cognitive function, neuronal morphology, and synaptic ultrastructure in 9 and 12 m PSAPP mice. Considering the central role of energy production in maintaining normal neuronal and synaptic function and survival, the present study reveals that PSAPP mice exhibit disrupted mitochondrial distribution, morphometry, and respiration. In contrast, SynCav1 mitigates mitochondrial damage and loss and enhances mitochondrial respiration. Furthermore, by examining mitochondrial dynamics, we found that PSAPP mice showed a significant increase in the phosphorylation of mitochondrial dynamin-related GTPase protein (DRP1), resulting in excessive mitochondria fragmentation and dysfunction. In contrast, hippocampal delivery of SynCav1 significantly decreased p-DRP1 and augmented the level of the mitochondrial fusion protein, mitofusin1 (Mfn1) in PSAPP mice, a molecular event, which may mechanistically explain for the preserved balance of mitochondria fission/fusion and metabolic resilience in 12 m PSAPP-SynCav1 mice. Our data demonstrate the critical role for Cav-1 in maintaining normal mitochondrial morphology and function through affecting mitochondrial dynamics and explain a molecular and cellular mechanism underlying the previously reported neuroprotective and cognitive preservation induced by SynCav1 in PSAPP mouse model of AD.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; (S.W.); (T.I.); (Y.T.); (D.W.)
- Department of Anesthesia, University of California San Diego, San Diego, CA 92093, USA
| | - Taiga Ichinomiya
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; (S.W.); (T.I.); (Y.T.); (D.W.)
- Department of Anesthesia, University of California San Diego, San Diego, CA 92093, USA
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 8528501, Japan
| | - Yuki Terada
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; (S.W.); (T.I.); (Y.T.); (D.W.)
- Department of Anesthesia, University of California San Diego, San Diego, CA 92093, USA
- Department of Anesthesiology, Nara Medical University, Kashihara 6348521, Japan
| | - Dongsheng Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; (S.W.); (T.I.); (Y.T.); (D.W.)
- Department of Anesthesia, University of California San Diego, San Diego, CA 92093, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; (S.W.); (T.I.); (Y.T.); (D.W.)
- Department of Anesthesia, University of California San Diego, San Diego, CA 92093, USA
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; (S.W.); (T.I.); (Y.T.); (D.W.)
- Department of Anesthesia, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
17
|
Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior. Int J Mol Sci 2021; 22:ijms22158219. [PMID: 34360984 PMCID: PMC8348638 DOI: 10.3390/ijms22158219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose–response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.
Collapse
|
18
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
19
|
Shin EY, Soung NK, Schwartz MA, Kim EG. Altered endocytosis in cellular senescence. Ageing Res Rev 2021; 68:101332. [PMID: 33753287 PMCID: PMC8131247 DOI: 10.1016/j.arr.2021.101332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence occurs in response to diverse stresses (e.g., telomere shortening, DNA damage, oxidative stress, oncogene activation). A growing body of evidence indicates that alterations in multiple components of endocytic pathways contribute to cellular senescence. Clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME) represent major types of endocytosis that are implicated in senescence. More recent research has also identified a chromatin modifier and tumor suppressor that contributes to the induction of senescence via altered endocytosis. Here, molecular regulators of aberrant endocytosis-induced senescence are reviewed and discussed in the context of their capacity to serve as senescence-inducing stressors or modifiers.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea
| | - Nak-Kyun Soung
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, 28116, South Korea
| | - Martin Alexander Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, And Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06511, USA; Wellcome Trust Centre for Cell-matrix Research, University of Manchester, Manchester, UK.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea.
| |
Collapse
|
20
|
Wang S, Leem JS, Podvin S, Hook V, Kleschevnikov N, Savchenko P, Dhanani M, Zhou K, Kelly IC, Zhang T, Miyanohara A, Nguyen P, Kleschevnikov A, Wagner SL, Trojanowski JQ, Roth DM, Patel HH, Patel PM, Head BP. Synapsin-caveolin-1 gene therapy preserves neuronal and synaptic morphology and prevents neurodegeneration in a mouse model of AD. Mol Ther Methods Clin Dev 2021; 21:434-450. [PMID: 33981778 PMCID: PMC8065227 DOI: 10.1016/j.omtm.2021.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration and cognitive dysfunction in the elderly. Identifying molecular signals that mitigate and reverse neurodegeneration in AD may be exploited therapeutically. Transgenic AD mice (PSAPP) exhibit learning and memory deficits at 9 and 11 months, respectively, with associated decreased expression of caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein necessary for synaptic and neuroplasticity. Neuronal-targeted gene therapy using synapsin-Cav-1 cDNA (SynCav1) was delivered to the hippocampus of PSAPP mice at 3 months using adeno-associated virus serotype 9 (AAV9). Bilateral SynCav1 gene therapy was able to preserve MLRs profile, learning and memory, hippocampal dendritic arbor, synaptic ultrastructure, and axonal myelin content in 9- and 11-month PSAPP mice, independent of reducing toxic amyloid deposits and astrogliosis. Our data indicate that SynCav1 gene therapy may be an option for AD and potentially in other forms of neurodegeneration of unknown etiology.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Joseph S. Leem
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natalia Kleschevnikov
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Paul Savchenko
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Mehul Dhanani
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Kimberly Zhou
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Isabella C. Kelly
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Tong Zhang
- Campus Microscopy & Imaging Facility (CMIF)/Microscopy Shared Resource (MSR), The Ohio State University, OH, USA
| | - Atsushi Miyanohara
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Phuong Nguyen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Steve L. Wagner
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | - David M. Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Piyush M. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
21
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2021; 38:S0213-4853(21)00024-4. [PMID: 33726969 DOI: 10.1016/j.nrl.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Rafts are function-structural cell membrane nano-domains. They contribute to explain the efficiency of signal transduction at the low physiological membrane concentrations of the signaling partners by their clustering inside specialized signaling domains. DEVELOPMENT In this article, we review the current model of the membrane rafts and their physio-pathological relevance in the nervous system, including their role in Parkinson, Alzheimer, and Huntington diseases. CONCLUSIONS Rafts disruption/dysfunction has been shown to relate diverse neurological diseases. Therefore, it has been suggested that preservation of membrane rafts may represent a strategy to prevent or delay neuronal dysfunctions in several diseases.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
22
|
Zhang L, Zhou Q, Zhou CL. RTA-408 protects against propofol-induced cognitive impairment in neonatal mice via the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation. Brain Behav 2021; 11:e01918. [PMID: 33295701 PMCID: PMC7821557 DOI: 10.1002/brb3.1918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To explore the effect of RTA-408 on the propofol-induced cognitive impairment of neonatal mice via regulating Nrf2 and NF-κB p65 nuclear translocation. METHODS C57BL/6 neonatal mice were randomized into intralipid, propofol, vehicle + propofol, and RTA-408 + propofol groups. The learning and memory ability was inspected by Morries water maze (MWM) test. TUNEL staining was performed to examine the apoptosis of neurons in hippocampus. The gene and protein expressions in hippocampus were detected by immunohistochemistry, qRT-PCR, or Western blotting. The activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were tested by the corresponding kits. RESULTS Propofol prolonged escape latency of mice, decreased the times of crossing the platform, and shortened the time of staying in the target quadrant, while RTA-408 treatment improved the above-mentioned situation. Besides, Nrf2 protein in hippocampus of mice induced by propofol was decreased with the increased NF-κB p65 nuclear translocation, which was reversed by RTA-408. Meanwhile, RTA-408 decreased the apoptosis of neurons accompanying with the down-regulation of Caspase-3 and the up-regulations of neuronal-specific nuclear protein (NeuN), microtubule-associated protein 2 (Map2), Ca2+ /Calmodulin-dependent Protein Kinase II (CaMKII), and parvalbumin (PV) immunostaining in hippocampus. Besides, propofol-induced high levels of proinflammatory cytokines and antioxidase activities in hippocampus were reduced by RTA-408. CONCLUSION RTA-408 improved propofol-induced cognitive impairment in neonatal mice via enhancing survival of neurons, reducing the apoptosis of hippocampal neurons, mitigating the inflammation and oxidative stress, which may be correlated with the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Qian Zhou
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Chun-Li Zhou
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
23
|
Han C, Wang YJ, Wang YC, Guan X, Wang L, Shen LM, Zou W, Liu J. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells. Neural Regen Res 2021; 16:714-720. [PMID: 33063733 PMCID: PMC8067921 DOI: 10.4103/1673-5374.295342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that caveolin-1 is involved in regulating the differentiation of mesenchymal stem cells. However, its role in the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons remains unclear. The aim of this study was to investigate whether caveolin-1 regulates the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons. We also examined whether the expression of caveolin-1 could be modulated by RNA interference technology to promote the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons. The differentiation of human adipose mesenchymal stem cells into dopaminergic neurons was evaluated morphologically and by examining expression of the markers tyrosine hydroxylase, Lmx1a and Nurr1. The analyses revealed that during the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons, the expression of caveolin-1 is decreased. Notably, the downregulation of caveolin-1 promoted the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons, and it increased the expression of tyrosine hydroxylase, Lmx1a and Nurr1. Together, our findings suggest that caveolin-1 plays a negative regulatory role in the differentiation of dopaminergic-like neurons from stem cells, and it may therefore be a potential molecular target for strategies for regulating the differentiation of these cells. This study was approved by the Medical Ethics Committee of the First Affiliated Hospital of Dalian Medical University of China (approval No. PJ-KS-KY-2020-54) on March 7, 2017.
Collapse
Affiliation(s)
- Chao Han
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ya-Jun Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Li-Ming Shen
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
24
|
Cooper-Knock J, Zhang S, Kenna KP, Moll T, Franklin JP, Allen S, Nezhad HG, Iacoangeli A, Yacovzada NY, Eitan C, Hornstein E, Elhaik E, Celadova P, Bose D, Farhan S, Fishilevich S, Lancet D, Morrison KE, Shaw CE, Al-Chalabi A, Veldink JH, Kirby J, Snyder MP, Shaw PJ. Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. Cell Rep 2020; 33:108456. [PMID: 33264630 PMCID: PMC7710676 DOI: 10.1016/j.celrep.2020.108456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes in vivo. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Additional enrichment of ALS-associated mutations within CAV1 exons positions CAV1 as an ALS risk gene. We propose CAV1/CAV2 overexpression as a personalized medicine target for ALS.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| | - Sai Zhang
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - John P Franklin
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Samantha Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Helia Ghahremani Nezhad
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nancy Y Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elhaik
- Department of Biology, Lund University, Lund, Sweden
| | - Petra Celadova
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Daniel Bose
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Sali Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
25
|
Caveolin 1 is required for axonal outgrowth of motor neurons and affects Xenopus neuromuscular development. Sci Rep 2020; 10:16446. [PMID: 33020520 PMCID: PMC7536398 DOI: 10.1038/s41598-020-73429-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolins are essential structural proteins driving the formation of caveolae, specialized invaginations of the plasma membrane. Loss of Caveolin-1 (Cav1) function in mice causes distinct neurological phenotypes leading to impaired motor control, however, the underlying developmental mechanisms are largely unknown. In this study we find that loss-of-function of Xenopus Cav1 results in a striking swimming defect characterized by paralysis of the morphants. High-resolution imaging of muscle cells revealed aberrant sarcomeric structures with disorganized actin fibers. As cav1 is expressed in motor neurons, but not in muscle cells, the muscular abnormalities are likely a consequence of neuronal defects. Indeed, targeting cav1 Morpholino oligonucleotides to neural tissue, but not muscle tissue, disrupts axonal outgrowth of motor neurons and causes swimming defects. Furthermore, inhibition of voltage-gated sodium channels mimicked the Cav1 loss-of-function phenotype. In addition, analyzing axonal morphology we detect that Cav1 loss-of-function causes excessive filopodia and lamellipodia formation. Using rescue experiments, we show that the Cav1 Y14 phosphorylation site is essential and identify a role of RhoA, Rac1, and Cdc42 signaling in this process. Taken together, these results suggest a previously unrecognized function of Cav1 in muscle development by supporting axonal outgrowth of motor neurons.
Collapse
|
26
|
Yang W, Geng C, Yang Z, Xu B, Shi W, Yang Y, Tian Y. Deciphering the roles of caveolin in neurodegenerative diseases: The good, the bad and the importance of context. Ageing Res Rev 2020; 62:101116. [PMID: 32554058 DOI: 10.1016/j.arr.2020.101116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDDs), which contribute to progressive and irreversible impairments of both the structure and function of the nervous system, pose a substantial socioeconomic burden on society. Mitochondrial dysfunction, oxidative stress, membrane damage, DNA damage, and abnormal protein degradation pathways play pivotal roles in the etiology of NDDs. Recently, growing evidence has demonstrated that caveolins are important in the pathology of NDDs due to their cellular functions in signal transduction, endocytosis, transcytosis, cholesterol transport, and lipid homeostasis. Given the significance of caveolins, here we review the literature to clarify their molecular mechanisms and roles in NDDs. We first briefly introduce the general background on caveolins. Next, we focus on the various important functions of caveolins in the brain. Finally, we emphasize recent progress regarding caveolins, especially Cav-1, which exert both benefit and unfavorable effects in NDDs such as AD and PD. Collectively, the data presented here should advance the investigation of caveolins for the future development of innovative strategies for the treatment of NDDs.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chenhui Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Wenzhen Shi
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Ye Tian
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| |
Collapse
|
27
|
Caveolin-1 regulates medium spiny neuron structural and functional plasticity. Psychopharmacology (Berl) 2020; 237:2673-2684. [PMID: 32488350 PMCID: PMC7502476 DOI: 10.1007/s00213-020-05564-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Caveolin-1 (CAV1) is a structural protein critical for spatial organization of neuronal signaling molecules. Whether CAV1 is required for long-lasting neuronal plasticity remains unknown. OBJECTIVE AND METHODS We sought to examine the effects of CAV1 knockout (KO) on functional plasticity and hypothesized that CAV1 deficiency would impact drug-induced long-term plasticity in the nucleus accumbens (NAc). We first examined cell morphology of NAc medium spiny neurons in a striatal/cortical co-culture system before moving in vivo to study effects of CAV1 KO on cocaine-induced plasticity. Whole-cell patch-clamp recordings were performed to determine effects of chronic cocaine (15 mg/kg) on medium spiny neuron excitability. To test for deficits in behavioral plasticity, we examined the effect of CAV1 KO on locomotor sensitization. RESULTS Disruption of CAV1 expression leads to baseline differences in medium spiny neuron (MSN) structural morphology, such that MSNs derived from CAV1 KO animals have increased dendritic arborization when cultured with cortical neurons. The effect was dependent on phospholipase C and cell-type intrinsic loss of CAV1. Slice recordings of nucleus accumbens shell MSNs revealed that CAV1 deficiency produces a loss of neuronal plasticity. Specifically, cocaine-induced firing rate depression was absent in CAV1 KO animals, whereas baseline electrophysiological properties were similar. This was reflected by a loss of cocaine-mediated behavioral sensitization in CAV1 KO animals, with unaffected baseline locomotor responsiveness. CONCLUSIONS This study highlights a critical role for nucleus accumbens CAV1 in plasticity related to the administration of drugs of abuse.
Collapse
|
28
|
Igarashi M, Honda A, Kawasaki A, Nozumi M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front Mol Neurosci 2020; 13:150. [PMID: 32922262 PMCID: PMC7456915 DOI: 10.3389/fnmol.2020.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal polarization and growth are developmental processes that occur during neuronal cell differentiation. The molecular signaling mechanisms involved in these events in in vivo mammalian brain remain unclear. Also, cellular events of the neuronal polarization process within a given neuron are thought to be constituted of many independent intracellular signal transduction pathways (the "tug-of-war" model). However, in vivo results suggest that such pathways should be cooperative with one another among a given group of neurons in a region of the brain. Lipid rafts, specific membrane domains with low fluidity, are candidates for the hotspots of such intracellular signaling. Among the signals reported to be involved in polarization, a number are thought to be present or translocated to the lipid rafts in response to extracellular signals. As part of our analysis, we discuss how such novel molecular mechanisms are combined for effective regulation of neuronal polarization and growth, focusing on the significance of the lipid rafts, including results based on recently introduced methods.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
29
|
Sviridov D, Mukhamedova N, Miller YI. Lipid rafts as a therapeutic target. J Lipid Res 2020; 61:687-695. [PMID: 32205411 PMCID: PMC7193956 DOI: 10.1194/jlr.tr120000658] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid rafts regulate the initiation of cellular metabolic and signaling pathways by organizing the pathway components in ordered microdomains on the cell surface. Cellular responses regulated by lipid rafts range from physiological to pathological, and the success of a therapeutic approach targeting "pathological" lipid rafts depends on the ability of a remedial agent to recognize them and disrupt pathological lipid rafts without affecting normal raft-dependent cellular functions. In this article, concluding the Thematic Review Series on Biology of Lipid Rafts, we review current experimental therapies targeting pathological lipid rafts, including examples of inflammarafts and clusters of apoptotic signaling molecule-enriched rafts. The corrective approaches include regulation of cholesterol and sphingolipid metabolism and membrane trafficking by using HDL and its mimetics, LXR agonists, ABCA1 overexpression, and cyclodextrins, as well as a more targeted intervention with apoA-I binding protein. Among others, we highlight the design of antagonists that target inflammatory receptors only in their activated form of homo- or heterodimers, when receptor dimerization occurs in pathological lipid rafts. Other therapies aim to promote raft-dependent physiological functions, such as augmenting caveolae-dependent tissue repair. The overview of this highly dynamic field will provide readers with a view on the emerging concept of targeting lipid rafts as a therapeutic strategy.jlr;61/5/687/F1F1f1.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Yury I. Miller
- Department of Medicine,University of California, San Diego, La Jolla, CA
| |
Collapse
|
30
|
Kreisler AD, Terranova MJ, Somkuwar SS, Purohit DC, Wang S, Head BP, Mandyam CD. In vivo reduction of striatal D1R by RNA interference alters expression of D1R signaling-related proteins and enhances methamphetamine addiction in male rats. Brain Struct Funct 2020; 225:1073-1088. [PMID: 32246242 DOI: 10.1007/s00429-020-02059-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
This study sought to determine if reducing dopamine D1 receptor (D1R) expression in the dorsal striatum (DS) via RNA-interference alters methamphetamine self-administration. A lentiviral construct containing a short hairpin RNA (shRNA) was used to knock down D1R expression (D1RshRNA). D1RshRNA in male rats increased responding for methamphetamine (i.v.) under a fixed-ratio schedule in an extended access paradigm, compared to D1R-intact rats. D1RshRNA also produced a vertical shift in a dose-response paradigm and enhanced responding for methamphetamine in a progressive-ratio schedule, generating a drug-vulnerable phenotype. D1RshRNA did not alter responding for sucrose (oral) under a fixed-ratio schedule compared to D1R-intact rats. Western blotting confirmed reduced D1R expression in methamphetamine and sucrose D1RshRNA rats. D1RshRNA reduced the expression of PSD-95 and MAPK-1 and increased the expression of dopamine transporter (DAT) in the DS from methamphetamine, but not sucrose rats. Sucrose density gradient fractionation was performed in behavior-naïve controls, D1RshRNA- and D1R-intact rats to determine the subcellular localization of D1Rs, DAT and D1R signaling proteins. D1Rs, DAT, MAPK-1 and PSD-95 predominantly localized to heavy fractions, and the membrane/lipid raft protein caveolin-1 (Cav-1) and flotillin-1 were distributed equally between buoyant and heavy fractions in controls. Methamphetamine increased localization of PSD-95, Cav-1, and flotillin-1 in D1RshRNA and D1R-intact rats to buoyant fractions. Our studies indicate that reduced D1R expression in the DS increases vulnerability to methamphetamine addiction-like behavior, and this is accompanied by striatal alterations in the expression of DAT and D1R signaling proteins and is independent of the subcellular localization of these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Shanshan Wang
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA
| | - Brian P Head
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA.
| |
Collapse
|
31
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
32
|
Wang S, Head BP. Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Curr Vasc Pharmacol 2020; 17:41-49. [PMID: 29412114 DOI: 10.2174/1570161116666180206112215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease and associated cerebral stroke are a global epidemic attributed to genetic and epigenetic factors, such as diet, life style and an increasingly sedentary existence due to technological advances in both the developing and developed world. There are approximately 5.9 million stroke-related deaths worldwide annually. Current epidemiological data indicate that nearly 16.9 million people worldwide suffer a new or recurrent stroke yearly. In 2014 alone, 2.4% of adults in the United States (US) were estimated to experience stroke, which is the leading cause of adult disability and the fifth leading cause of death in the US There are 2 main types of stroke: Hemorrhagic (HS) and ischemic stroke (IS), with IS occurring more frequently. HS is caused by intra-cerebral hemorrhage mainly due to high blood pressure, while IS is caused by either embolic or thrombotic stroke. Both result in motor impairments, numbness or abnormal sensations, cognitive deficits, and mood disorders (e.g. depression). This review focuses on the 1) pathophysiology of stroke (neuronal cell loss, defective blood brain barrier, microglia activation, and inflammation), 2) the role of the membrane protein caveolin- 1 (Cav-1) in normal brain physiology and stroke-induced changes, and, 3) we briefly discussed the potential therapeutic role of Cav-1 in recovery following stroke.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
33
|
Cultured hippocampal neurons of dystrophic mdx mice respond differently from those of wild type mice to an acute treatment with corticosterone. Exp Cell Res 2020; 386:111715. [PMID: 31711918 DOI: 10.1016/j.yexcr.2019.111715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Duchenne muscular dystrophy is a lethal genetic disease characterised by progressive degeneration of skeletal muscles induced by deficiency of dystrophin, a cytoskeletal protein expressed in myocytes and in certain neuron populations. The severity of the neurological disorder varies in humans and animal models owing to dysfunction in numerous brain areas, including the hippocampus. Cyclic treatments with high-dose glucocorticoids remain a major pharmacological approach for treating the disease; however, elevated systemic levels of either stress-induced or exogenously administered anti-inflammatory molecules dramatically affect hippocampal activity. In this study, we analysed and compared the response of hippocampal neurons isolated from wild-type and dystrophic mdx mice to acute administration of corticosterone in vitro, without the influence of other glucocorticoid-regulated processes. Our results showed that in neurons of mdx mice, both the genomic and intracellular signalling-mediated responses to corticosterone were affected compared to those in wild-type animals, evoking the characteristic response to detrimental chronic glucocorticoid exposure. Responsiveness to glucocorticoids is, therefore, another function of hippocampal neurons possibly affected by deficiency of Dp427 since embryonic development. Knowing the pivotal role of hippocampus in stress hormone signalling, attention should be paid to the effects that prolonged glucocorticoid treatments may have on this and other brain areas of DMD patients.
Collapse
|
34
|
Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 2019; 28:3255-3266. [PMID: 28981594 DOI: 10.1093/cercor/bhx196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Larisa V Lysenko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Wang S, Zhang Z, Almenar-Queralt A, Leem J, DerMardirossian C, Roth DM, Patel PM, Patel HH, Head BP. Caveolin-1 Phosphorylation Is Essential for Axonal Growth of Human Neurons Derived From iPSCs. Front Cell Neurosci 2019; 13:324. [PMID: 31379509 PMCID: PMC6650578 DOI: 10.3389/fncel.2019.00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023] Open
Abstract
Proper axonal growth and guidance is essential for neuron differentiation and development. Abnormal neuronal development due to genetic or epigenetic influences can contribute to neurological and mental disorders such as Down syndrome, Rett syndrome, and autism. Identification of the molecular targets that promote proper neuronal growth and differentiation may restore structural and functional neuroplasticity, thus improving functional performance in neurodevelopmental disorders. Using differentiated human neuronal progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs), the present study demonstrates that during early stage differentiation of human NPCs, neuron-targeted overexpression constitutively active Rac1 (Rac1CA) and constitutively active Cdc42 (Cdc42CA) enhance expression of P-Cav-1, T-Cav-1, and P-cofilin and increases axonal growth. Similarly, neuron-targeted over-expression of Cav-1 (termed SynCav1) increases axonal development by increasing both axon length and volume. Moreover, inhibition of Cav-1(Y14A) phosphorylation blunts Rac1/Cdc42-mediated both axonal growth and differentiation of human NPCs and SynCav1(Y14A)-treated NPCs exhibited blunted axonal growth. These results suggest that: (1) SynCav1-mediated dendritic and axonal growth in human NPCs is dependent upon P-Cav-1, (2) P-Cav-1 is necessary for proper axonal growth during early stages of neuronal differentiation, and (3) Rac1/Cdc42CA-mediated neuronal growth is in part dependent upon P-Cav-1. In conclusion, Cav-1 phosphorylation is essential for human neuronal axonal growth during early stages of neuronal differentiation.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Zheng Zhang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Joseph Leem
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Celine DerMardirossian
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA, United States.,Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Sawada A, Wang S, Jian M, Leem J, Wackerbarth J, Egawa J, Schilling JM, Platoshyn O, Zemljic-Harpf A, Roth DM, Patel HH, Patel PM, Marsala M, Head BP. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1 G93A mice. FASEB J 2019; 33:7545-7554. [PMID: 30894019 DOI: 10.1096/fj.201802652rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interventions that preserve motor neurons or restore functional motor neuroplasticity may extend longevity in amyotrophic lateral sclerosis (ALS). Delivery of neurotrophins may potentially revive degenerating motor neurons, yet this approach is dependent on the proper subcellular localization of neurotrophin receptor (NTR) to plasmalemmal signaling microdomains, termed membrane/lipid rafts (MLRs). We previously showed that overexpression of synapsin-driven caveolin-1 (Cav-1) (SynCav1) increases MLR localization of NTR [e.g., receptor tyrosine kinase B (TrkB)], promotes hippocampal synaptic and neuroplasticity, and significantly improves learning and memory in aged mice. The present study crossed a SynCav1 transgene-positive (SynCav1+) mouse with the mutant human superoxide dismutase glycine to alanine point mutation at amino acid 93 (hSOD1G93A) mouse model of ALS. When compared with hSOD1G93A, hSOD1G93A/SynCav1+ mice exhibited greater body weight and longer survival as well as better motor function. Microscopic analyses of hSOD1G93A/SynCav1+ spinal cords revealed preserved spinal cord α-motor neurons and preserved mitochondrial morphology. Moreover, hSOD1G93A/SynCav1+ spinal cords contained more MLRs (cholera toxin subunit B positive) and MLR-associated TrkB and Cav-1 protein expression. These findings demonstrate that SynCav1 delays disease progression in a mouse model of ALS, potentially by preserving or restoring NTR expression and localization to MLRs.-Sawada, A., Wang, S., Jian, M., Leem, J., Wackerbarth, J., Egawa, J., Schilling, J. M., Platoshyn, O., Zemljic-Harpf, A., Roth, D. M., Patel, H. H., Patel, P. M., Marsala, M., Head, B. P. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1G93A mice.
Collapse
Affiliation(s)
- Atsushi Sawada
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Sapporo Medical University, Sapporo, Japan
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Minyu Jian
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Joseph Leem
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jesse Wackerbarth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Nara Medical University, Kashihara, Japan; and
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Martin Marsala
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
37
|
Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp Neurol 2019; 313:60-78. [DOI: 10.1016/j.expneurol.2018.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
|
38
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
39
|
Schilling JM, Head BP, Patel HH. Caveolins as Regulators of Stress Adaptation. Mol Pharmacol 2018; 93:277-285. [PMID: 29358220 PMCID: PMC5820539 DOI: 10.1124/mol.117.111237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Caveolins have been recognized over the past few decades as key regulators of cell physiology. They are ubiquitously expressed and regulate a number of processes that ultimately impact efficiency of cellular processes. Though not critical to life, they are central to stress adaptation in a number of organs. The following review will focus specifically on the role of caveolin in stress adaptation in the heart, brain, and eye, three organs that are susceptible to acute and chronic stress and that show as well declining function with age. In addition, we consider some novel molecular mechanisms that may account for this stress adaptation and also offer potential to drive the future of caveolin research.
Collapse
Affiliation(s)
- Jan M Schilling
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Brian P Head
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Hemal H Patel
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| |
Collapse
|
40
|
Pearn ML, Schilling JM, Jian M, Egawa J, Wu C, Mandyam CD, Fannon-Pavlich MJ, Nguyen U, Bertoglio J, Kodama M, Mahata SK, DerMardirossian C, Lemkuil BP, Han R, Mobley WC, Patel HH, Patel PM, Head BP. Inhibition of RhoA reduces propofol-mediated growth cone collapse, axonal transport impairment, loss of synaptic connectivity, and behavioural deficits. Br J Anaesth 2018; 120:745-760. [PMID: 29576115 PMCID: PMC6200100 DOI: 10.1016/j.bja.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Exposure of the developing brain to propofol results in cognitive deficits. Recent data suggest that inhibition of neuronal apoptosis does not prevent cognitive defects, suggesting mechanisms other than neuronal apoptosis play a role in anaesthetic neurotoxicity. Proper neuronal growth during development is dependent upon growth cone morphology and axonal transport. Propofol modulates actin dynamics in developing neurones, causes RhoA-dependent depolymerisation of actin, and reduces dendritic spines and synapses. We hypothesised that RhoA inhibition prevents synaptic loss and subsequent cognitive deficits. The present study tested whether RhoA inhibition with the botulinum toxin C3 (TAT-C3) prevents propofol-induced synapse and neurite loss, and preserves cognitive function. METHODS RhoA activation, growth cone morphology, and axonal transport were measured in neonatal rat neurones (5-7 days in vitro) exposed to propofol. Synapse counts (electron microscopy), dendritic arborisation (Golgi-Cox), and network connectivity were measured in mice (age 28 days) previously exposed to propofol at postnatal day 5-7. Memory was assessed in adult mice (age 3 months) previously exposed to propofol at postnatal day 5-7. RESULTS Propofol increased RhoA activation, collapsed growth cones, and impaired retrograde axonal transport of quantum dot-labelled brain-derived neurotrophic factor, all of which were prevented with TAT-C3. Adult mice previously treated with propofol had decreased numbers of total hippocampal synapses and presynaptic vesicles, reduced hippocampal dendritic arborisation, and infrapyramidal mossy fibres. These mice also exhibited decreased hippocampal-dependent contextual fear memory recall. All anatomical and behavioural changes were prevented with TAT-C3 pre-treatment. CONCLUSION Inhibition of RhoA prevents propofol-mediated hippocampal neurotoxicity and associated cognitive deficits.
Collapse
Affiliation(s)
- M L Pearn
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - J M Schilling
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - M Jian
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - J Egawa
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - C Wu
- Department of Neurosciences, UCSD, San Diego, CA, USA
| | - C D Mandyam
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - M J Fannon-Pavlich
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - U Nguyen
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - J Bertoglio
- INSERM U749, Institut Gustave Roussy, Universite Paris-sud, Paris, France
| | - M Kodama
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA; Department of Anesthesiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - S K Mahata
- Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA
| | - C DerMardirossian
- Department of Immunology and Microbial Sciences, TSRI, La Jolla, CA, USA; Department of Cell and Molecular Biology, TSRI, La Jolla, CA, USA
| | - B P Lemkuil
- Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - R Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - W C Mobley
- Department of Neurosciences, UCSD, San Diego, CA, USA
| | - H H Patel
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - P M Patel
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - B P Head
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
| |
Collapse
|
41
|
Cui W, Ren Y, Wang S, Zeng M, Han S, Li J, Han R. The role of caveolin-1 in morphine-induced structural plasticity in primary cultured mouse cerebral cortical neurons. Neurosci Lett 2018; 665:38-42. [DOI: 10.1016/j.neulet.2017.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
|
42
|
Chronic N-acetylcysteine treatment alleviates acute lipopolysaccharide-induced working memory deficit through upregulating caveolin-1 and synaptophysin in mice. Psychopharmacology (Berl) 2018; 235:179-191. [PMID: 29058042 DOI: 10.1007/s00213-017-4762-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/27/2017] [Indexed: 12/30/2022]
Abstract
RATIONALE Working memory (WM) is a dynamic encoding process and an active representation of information over a short time. The ability to guide forthcoming behavior would be disrupted if WM was impaired by various factors including inflammation, stress, free radicals, and disease states such as schizophrenia. However, the mechanism underlying acute working memory impairment remains to be defined. OBJECTIVES In this study, we tested the hypothesis that decreased caveolin-1 (Cav-1) and synaptophysin (SYP) accounted for the WM impairment challenged with acute intraperitoneally lipopolysaccharide (LPS), which mimicked neuroinflammation. Delayed alternation T-maze task (DAT) was used to assess working memory of adult male C57BL/6 mice, and western blot and immunostaining were used to detect protein expression and distribution in medial prefrontal cortex (mPFC) and hippocampus. RESULTS Our results showed that LPS dose-dependently induced working memory deficit accompanied by the decrease of Cav-1 and SYP in mPFC but not hippocampus. In addition, LPS significantly decreased protein level of Cav-1 and SYP in neurons by activating microglia cells. More important, 2-week N-acetylcysteine (NAC) treatment dose-dependently inhibited LPS-induced working memory deficit by improving the ability to use Lose-shift but not Win-shift strategy and significantly inhibited LPS-induced downregulation of Cav-1 and SYP in mPFC. CONCLUSIONS Taken together, our findings demonstrate that chronic NAC treatment alleviates acute LPS-induced working memory deficit through upregulating Cav-1 and SYP in mice.
Collapse
|
43
|
Wu J, Zhou SL, Pi LH, Shi XJ, Ma LR, Chen Z, Qu ML, Li X, Nie SD, Liao DF, Pei JJ, Wang S. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction. Oncotarget 2017; 8:40843-40856. [PMID: 28489581 PMCID: PMC5522306 DOI: 10.18632/oncotarget.17257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022] Open
Abstract
The abnormally hyperphosphorylated tau is thought to be implicated in diabetes-associated cognitive deficits. The role of mammalian target of rapamycin (mTOR) / S6 kinase (S6K) signalling in the formation of tau hyperphosphorylation has been previously studied. Caveolin-1 (Cav-1), the essential structure protein of caveolae, promotes neuronal survival and growth, and inhibits glucose metabolism. In this study, we aimed to investigate the role of Cav-1 in the formation of tau hyperphosphorylation under chronic hyperglycemic condition (HGC). Diabetic rats were induced by streptozotocin (STZ). Primary hippocampal neurons with or without molecular intervention such as the transient over-expression or knock-down were subjected to HGC. The obtained experimental samples were analyzed by real time quantitative RT-PCR, Western blot, immunofluorescence or immunohistochemisty. We found: 1) that a chronic HGC directly decreases Cav-1 expression, increases tau phosphorylation and activates mTOR/S6K signalling in the brain neurons of diabetic rats, 2) that overexpression of Cav-1 attenuates tau hyperphosphorylation induced by chronic HGC in primary hippocampal neurons, whereas down-regulation of Cav-1 using Cav-1 siRNA dramatically worsens tau hyperphosphorylation via mTOR/S6K signalling pathway, and 3) that the down-regulation of Cav-1 induced by HGC is independent of mTOR signalling. Our results suggest that tau hyperphosphorylation and the sustained over-activated mTOR signalling under hyperglycemia may be due to the suppression of Cav-1. Therefore, Cav-1 is a potential therapeutic target for diabetes-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jing Wu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Lei Zhou
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Lin-Hua Pi
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Xia-Jie Shi
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Ran Ma
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Zi Chen
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Min-Li Qu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Sheng-Dan Nie
- Institute of Clinical Medicine, People's Hospital of Hunan Province, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jin-Jing Pei
- KI-Alzheimer's Disease Research Center, Karolinska Institutet, Novum, Stockholm, Sweden
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Xicheng, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shan Wang
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Duckworth JL, Head BP. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cell Mol Neurobiol 2017; 37:571-585. [PMID: 27383839 PMCID: PMC11482200 DOI: 10.1007/s10571-016-0400-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.
Collapse
Affiliation(s)
- Matthew L Pearn
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Ingrid R Niesman
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92037, USA
| | - Junji Egawa
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Atsushi Sawada
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92037, USA
| | - Sameer B Shah
- UCSD Departments of Orthopaedic Surgery and Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Josh L Duckworth
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brian P Head
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA.
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
45
|
Egawa J, Schilling JM, Cui W, Posadas E, Sawada A, Alas B, Zemljic-Harpf AE, Fannon-Pavlich MJ, Mandyam CD, Roth DM, Patel HH, Patel PM, Head BP. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB J 2017; 31:3403-3411. [PMID: 28450301 DOI: 10.1096/fj.201601288rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/07/2017] [Indexed: 11/11/2022]
Abstract
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Anesthesiology, Nara Medical University, Kashihara, Japan
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Weihua Cui
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Edmund Posadas
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Atsushi Sawada
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Basheer Alas
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alice E Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA; .,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Kassan A, Egawa J, Zhang Z, Almenar-Queralt A, Nguyen QM, Lajevardi Y, Kim K, Posadas E, Jeste DV, Roth DM, Patel PM, Patel HH, Head BP. Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J Neurophysiol 2017; 117:436-444. [PMID: 27832597 PMCID: PMC5253400 DOI: 10.1152/jn.00481.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder manifested in early adulthood. Disrupted-in-schizophrenia-1 (DISC1) is a susceptible gene for schizophrenia (Hodgkinson et al. 2004; Millar et al. 2000; St Clair et al. 1990) implicated in neuronal development, brain maturation, and neuroplasticity (Brandon and Sawa 2011; Chubb et al. 2008). Therefore, DISC1 is a promising candidate gene for schizophrenia, but the molecular mechanisms underlying its role in the pathogenesis of the disease are still poorly understood. Interestingly, caveolin-1 (Cav-1), a cholesterol binding and scaffolding protein, regulates neuronal signal transduction and promotes neuroplasticity. In this study we examined the role of Cav-1 in mediating DISC1 expression in neurons in vitro and the hippocampus in vivo. Overexpressing Cav-1 specifically in neurons using a neuron-specific synapsin promoter (SynCav1) increased expression of DISC1 and proteins involved in synaptic plasticity (PSD95, synaptobrevin, synaptophysin, neurexin, and syntaxin 1). Similarly, SynCav1-transfected differentiated human neurons derived from induced pluripotent stem cells (hiPSCs) exhibited increased expression of DISC1 and markers of synaptic plasticity. Conversely, hippocampi from Cav-1 knockout (KO) exhibited decreased expression of DISC1 and proteins involved in synaptic plasticity. Finally, SynCav1 delivery to the hippocampus of Cav-1 KO mice and Cav-1 KO neurons in culture restored expression of DISC1 and markers of synaptic plasticity. Furthermore, we found that Cav-1 coimmunoprecipitated with DISC1 in brain tissue. These findings suggest an important role by which neuron-targeted Cav-1 regulates DISC1 neurobiology with implications for synaptic plasticity. Therefore, SynCav1 might be a potential therapeutic target for restoring neuronal function in schizophrenia. NEW & NOTEWORTHY The present study is the first to demonstrate that caveolin-1 can regulate DISC1 expression in neuronal models. Furthermore, the findings are consistent across three separate neuronal models that include rodent neurons (in vitro and in vivo) and human differentiated neurons derived from induced pluripotent stem cells. These findings justify further investigation regarding the modulatory role by caveolin on synaptic function and as a potential therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - Junji Egawa
- VA San Diego Healthcare System, San Diego, California
| | - Zheng Zhang
- VA San Diego Healthcare System, San Diego, California
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California; and
| | | | | | - Kaitlyn Kim
- VA San Diego Healthcare System, San Diego, California
| | | | - Dilip V Jeste
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - David M Roth
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Piyush M Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Brian P Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California;
- VA San Diego Healthcare System, San Diego, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
47
|
Gu X, Reagan AM, McClellan ME, Elliott MH. Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 2016; 56:84-106. [PMID: 27664379 DOI: 10.1016/j.preteyeres.2016.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function.
Collapse
Affiliation(s)
- Xiaowu Gu
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alaina M Reagan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
48
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
49
|
Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function. Neuroscience 2016; 328:147-56. [PMID: 27138644 DOI: 10.1016/j.neuroscience.2016.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction.
Collapse
|
50
|
Ray S, Kassan A, Busija AR, Rangamani P, Patel HH. The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 2015; 310:C181-92. [PMID: 26771520 DOI: 10.1152/ajpcell.00087.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Adam Kassan
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Anna R Busija
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|