1
|
Wang S, Liu J, Liu Y, Tian C. Application of rhizobium inoculation in regulating heavy metals in legumes: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173923. [PMID: 38880144 DOI: 10.1016/j.scitotenv.2024.173923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbiao Liu
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163317, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| |
Collapse
|
2
|
Tang Y, Wang C, Holm PE, Hansen HCB, Brandt KK. Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132067. [PMID: 37478594 DOI: 10.1016/j.jhazmat.2023.132067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Trace element polluted soils pose risks to human and environmental health. Biochar can decrease trace element bioavailability in soils, but their resulting ability to reduce soil toxicity may vary significantly depending on feedstocks used, pyrolysis conditions, and the target pollutants. Chromated copper arsenate (CCA) polluted sites are common, but only very few types of biochar have been tested for these sites. Hence, we tested fourteen well-characterized biochar materials for their ability to bind Cu and reduce toxicity in a CCA polluted soil in a 56-day experiment. Biochar (1%, wt/wt) increased plant (wheat, Triticum aestivum L.) shoot and root growth by 6-58% and 0-73%, reduced soil toxicity to Arthrobacter globiformis by 7-55%, decreased bioavailable Cu (Pseudomonas fluorescens bioreporter) by 5-65%, and decreased free Cu2+ ion activities by 27-89%. The A. globiformis solid-contact test constituted a sensitive ecotoxicological endpoint and deserves further attention for assessment of soil quality. Oil seed rape straw biochar generally performed better than other tested biochar materials. Biochar performance was positively correlated with its high cation exchange capacity, multiple surface functional groups, and high nitrogen and phosphorus content. Our results pave the way for future selection of feedstocks for creation of modified biochar materials with optimal performance in CCA polluted soil.
Collapse
Affiliation(s)
- Yinqi Tang
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Chen Wang
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Peter E Holm
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Hans Chr Bruun Hansen
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Kristian K Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Majhi K, Let M, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Copper removal capability and genomic insight into the lifestyle of copper mine inhabiting Micrococcus yunnanensis GKSM13. ENVIRONMENTAL RESEARCH 2023; 223:115431. [PMID: 36754109 DOI: 10.1016/j.envres.2023.115431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution in mining areas is a serious environmental concern. The exploration of mine-inhabiting microbes, especially bacteria may use as an effective alternative for the remediation of mining hazards. A highly copper-tolerant strain GKSM13 was isolated from the soil of the Singhbhum copper mining area and characterized for significant copper (Cu) removal potential and tolerance to other heavy metals. The punctate, yellow-colored, coccoid strain GKSM13 was able to tolerate 500 mg L-1 Cu2+. Whole-genome sequencing identified strain GKSM13 as Micrococcus yunnanensis, which has a 2.44 Mb genome with 2176 protein-coding genes. The presence of putative Cu homeostasis genes and other heavy metal transporters/response regulators or transcription factors may responsible for multi-metal resistance. The maximum Cu2+ removal of 89.2% was achieved at a pH of 7.5, a temperature of 35.5 °C, and an initial Cu2+ ion concentration of 31.5 mg L-1. Alteration of the cell surface, deposition of Cu2+ in the bacterial cell, and the involvement of hydroxyl, carboxyl amide, and amine groups in Cu2+ removal were observed using microscopic and spectroscopic analysis. This study is the first to reveal a molecular-based approach for the multi-metal tolerance and copper homeostasis mechanism of M. yunnanensis GKSM13.
Collapse
Affiliation(s)
- Krishnendu Majhi
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India; Department of Botany, Ananda Chandra College, Jalpaiguri, 735101, India
| | - Moitri Let
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
4
|
Li Y, Lin H, Gao P, Yang N, Xu R, Sun X, Li B, Xu F, Wang X, Song B, Sun W. Synergistic Impacts of Arsenic and Antimony Co-contamination on Diazotrophic Communities. MICROBIAL ECOLOGY 2022; 84:44-58. [PMID: 34398256 DOI: 10.1007/s00248-021-01824-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) shortage poses a great challenge to the implementation of in situ bioremediation practices in mining-contaminated sites. Diazotrophs can fix atmospheric N2 into a bioavailable form to plants and microorganisms inhabiting adverse habitats. Increasing numbers of studies mainly focused on the diazotrophic communities in the agroecosystems, while those communities in mining areas are still not well understood. This study compared the variations of diazotrophic communities in composition and interactions in the mining areas with different extents of arsenic (As) and antimony (Sb) contamination. As and Sb co-contamination increased alpha diversities and the abundance of nifH encoding the dinitrogenase reductase, while inhibited the diazotrophic interactions and substantially changed the composition of communities. Based on the multiple lines of evidence (e.g., the enrichment analysis of diazotrophs, microbe-microbe network, and random forest regression), six diazotrophs (e.g., Sinorhizobium, Dechloromonas, Trichormus, Herbaspirillum, Desmonostoc, and Klebsiella) were identified as keystone taxa. Environment-microbe network and random forest prediction demonstrated that these keystone taxa were highly correlated with the As and Sb contamination fractions. All these results imply that the above-mentioned diazotrophs may be resistant to metal(loid)s.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Xiaoyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
- School of Environment, Henan Normal University, Xinxiang, China.
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
| |
Collapse
|
5
|
Duan C, Mei Y, Wang Q, Wang Y, Li Q, Hong M, Hu S, Li S, Fang L. Rhizobium Inoculation Enhances the Resistance of Alfalfa and Microbial Characteristics in Copper-Contaminated Soil. Front Microbiol 2022; 12:781831. [PMID: 35095795 PMCID: PMC8791600 DOI: 10.3389/fmicb.2021.781831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/17/2021] [Indexed: 01/30/2023] Open
Abstract
Some studies have reported the importance of rhizobium in mitigating heavy metal toxicity, however, the regulatory mechanism of the alfalfa-rhizobium symbiosis to resist copper (Cu) stress in the plant-soil system through biochemical reactions is still unclear. This study assessed the effects of rhizobium (Sinorhizobium meliloti CCNWSX0020) inoculation on the growth of alfalfa and soil microbial characteristics under Cu-stress. Further, we determined the regulatory mechanism of rhizobium inoculation to alleviate Cu-stress in alfalfa through plant-soil system. The results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition in alfalfa by increasing the chlorophyll content, height, and biomass, in addition to nitrogen and phosphorus contents. Furthermore, rhizobium application alleviated Cu-induced phytotoxicity by increasing the antioxidant enzyme activities and soluble protein content in tissues, and inhibiting the lipid peroxidation levels (i.e., malondialdehyde content). In addition, rhizobium inoculation improved soil nutrient cycling, which increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass, plant antioxidant enzymes, and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiotic system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yuhan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Maojun Hong
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Sheng Hu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China.,Chinese Academy of Sciences (CAS), Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| |
Collapse
|
6
|
Rodríguez-Esperón MC, Eastman G, Sandes L, Garabato F, Eastman I, Iriarte A, Fabiano E, Sotelo-Silveira JR, Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512. Environ Microbiol 2021; 24:240-264. [PMID: 34811861 DOI: 10.1111/1462-2920.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Cupriavidus necator UYPR2.512 is a rhizobial strain that belongs to the Beta-subclass of proteobacteria, able to establish successful symbiosis with Mimosoid legumes. The initial steps of rhizobium-legumes symbioses involve the reciprocal recognition by chemical signals, being luteolin one of the molecules involved. However, there is a lack of information on the effect of luteolin in beta-rhizobia. In this work, we used long-read sequencing to complete the genome of UYPR2.512 providing evidence for the existence of four closed circular replicons. We used an RNA-Seq approach to analyse the response of UYPR2.512 to luteolin. One hundred and forty-five genes were differentially expressed, with similar numbers of downregulated and upregulated genes. Most repressed genes were mapped to the main chromosome, while the upregulated genes were overrepresented among pCne512e, containing the symbiotic genes. Induced genes included the nod operon and genes implicated in exopolysaccharides and flagellar biosynthesis. We identified many genes involved in iron, copper and other heavy metals metabolism. Among repressed genes, we identified genes involved in basal carbon and nitrogen metabolism. Our results suggest that in response to luteolin, C. necator strain UYPR2.512 reshapes its metabolism in order to be prepared for the forthcoming symbiotic interaction.
Collapse
Affiliation(s)
- M C Rodríguez-Esperón
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - G Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - L Sandes
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - F Garabato
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - I Eastman
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - E Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - J R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - R Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
7
|
Ye L, Yang P, Zeng Y, Li C, Jian N, Wang R, Huang S, Yang R, Wei L, Zhao H, Zheng Q, Gao H, Liu J. Rhizobium symbiosis modulates the accumulation of arsenic in Medicago truncatula via nitrogen and NRT3.1-like genes regulated by ABA and linalool. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125611. [PMID: 33725554 DOI: 10.1016/j.jhazmat.2021.125611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination is a worldwide problem and threatens human health. Here, we found that Rhizobium symbiosis can improve the tolerance to arsenate [As(V)], and a wild type R. meliloti Rm5038 symbiosis can significantly decrease the accumulation of As in Medicago truncatula shoots. The As content in plants could be decreased by nitrogen and the mutation of nitrate transporter NRT3.1. The expression of M. truncatula NRT3.1-like gene NRT3.1L1 could reverse the As(V)-tolerance phenotype of the Arabidopsis nrt3.1 mutant. Rm5038 symbiosis significantly increased the level of nitrogen in the shoot and reduced the expression of NRT3.1Ls in plants afflicted by As(V). The genetic analyses of aba2-1, pyr1/pyl1/2/4/5/8, and abi1-2/abi2-2/hab1-1/pp2ca-1 mutants revealed that abscisic acid (ABA) signaling regulates the tolerance of plants to As(V). ABA and linalool could promote the expression of NRT3.1Ls, however, their root biosynthesis was inhibited by ammonium, the first form of nitrogen fixed by Rhizobium symbiosis. Moreover, ABA and linalool may also control As and nitrate accumulation in Rhizobium symbionts via signaling pathways other than ammonia and NRT3.1Ls. Thus, Rhizobium symbiosis modulates the accumulation of As in plants via nitrogen and NRT3.1Ls regulated by ABA and linalool, which provides novel approaches to reduce As accumulation in legume crops.
Collapse
Affiliation(s)
- Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yinwei Zeng
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ni Jian
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ruihua Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Siyuan Huang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Long Wei
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Haiyan Zhao
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingsong Zheng
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jinlong Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
8
|
Sahoo RK, Rani V, Tuteja N. Azotobacter vinelandii helps to combat chromium stress in rice by maintaining antioxidant machinery. 3 Biotech 2021; 11:275. [PMID: 34040924 DOI: 10.1007/s13205-021-02835-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
Chromium (Cr) causes toxic effects in plants by generating reactive oxygen species (ROS) which create oxidative environment. Azotobacter vinelandii helps in growth and development of many crops; however, its role in Cr stress tolerance in rice has not been explored. Here, we report the new function of Azotobacter vinelandii strain SRI Az3 (Accession number JQ796077) in providing Cr stress tolerance in Oryza sativa (var. IR64). The efficiency of the strain was checked under different concentrations (50, 100, 150, 200 and 250 µM) of Cr stress and it was observed that it provides stress tolerance to rice plant up to 200 µM concentration. Different agronomic growth parameters were found to be better in this strain of Azotobacter vinelandii-inoculated rice plants as compared to un-inoculated one. The agronomic growth and photosynthetic characteristics such as net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci) were also found to be significantly increased with increasing concentration of Azotobacter vinelandii inoculation. The activities of antioxidant enzymes were significantly higher (35%) in rice plants inoculated with Azotobacter vinelandii as compared with un-inoculated rice plant. All these positive effects of Azotobacter vinelandii help rice to survive from the toxic effect of Cr.
Collapse
|
9
|
Kintl A, Huňady I, Vymyslický T, Ondrisková V, Hammerschmiedt T, Brtnický M, Elbl J. Effect of Seed Coating and PEG-Induced Drought on the Germination Capacity of Five Clover Crops. PLANTS 2021; 10:plants10040724. [PMID: 33917847 PMCID: PMC8068302 DOI: 10.3390/plants10040724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022]
Abstract
The effect of coating the seed of clover crops by water absorbing seed process (WASP) technology pelletization on its germination capacity was studied in conditions of diverse drought intensities simulated by different concentrations of polyethylenglycol (PEG) 8000 solution. Drought resistance was monitored in the seed of five fodder clover species: Anthyllis vulneraria L., Medicago lupulina L., Trifolium repens L., Melilotus albus Medik. and Onobrychis viciifolia Scop. In the seed of given plant species, germination capacity was determined along with the share of dead and hard seeds. Although the coating significantly (p < 0.05) affected the drought resistance of seeds, the germination capacity increased only in conditions of milder drought (simulation with PEG: 0.1–0.3 mol). With the increasing intensity of drought induced by higher PEG concentrations (0.4–0.7 mol) the number of germinable seeds demonstrably decreased and the number of dead seeds increased in the coated seed as compared with the uncoated seed. The coated seed can be appropriate for use in M. lupulina, M. albus and T. repens, while the uncoated seed can be used in A. vulneraria and O. viciifolia.
Collapse
Affiliation(s)
- Antonín Kintl
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Igor Huňady
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Tomáš Vymyslický
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Vladěna Ondrisková
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (T.H.); (M.B.)
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (T.H.); (M.B.)
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, 62100 Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jakub Elbl
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: ; Tel.: +420-725-295-999
| |
Collapse
|
10
|
Fang L, Ju W, Yang C, Jin X, Liu D, Li M, Yu J, Zhao W, Zhang C. Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114744. [PMID: 32806415 DOI: 10.1016/j.envpol.2020.114744] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 05/24/2023]
Abstract
Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H2S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H2S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.
Collapse
Affiliation(s)
- Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China
| | - Wenliang Ju
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congli Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Xiaolian Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Dongdong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Mengdi Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Jialuo Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
11
|
Cubo MT, Alías-Villegas C, Balsanelli E, Mesa D, de Souza E, Espuny MR. Diversity of Sinorhizobium (Ensifer) meliloti Bacteriophages in the Rhizosphere of Medicago marina: Myoviruses, Filamentous and N4-Like Podovirus. Front Microbiol 2020; 11:22. [PMID: 32038600 PMCID: PMC6992544 DOI: 10.3389/fmicb.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 02/02/2023] Open
Abstract
Using different Sinorhizobium meliloti strains as hosts, we isolated eight new virulent phages from the rhizosphere of the coastal legume Medicago marina. Half of the isolated phages showed a very narrow host range while the other half exhibited a wider host range within the strains tested. Electron microscopy studies showed that phages M_ort18, M_sf1.2, and M_sf3.33 belonged to the Myoviridae family with feature long, contractile tails and icosaedral head. Phages I_sf3.21 and I_sf3.10T appeared to have filamentous shape and produced turbid plaques, which is a characteristic of phages from the Inoviridae family. Phage P_ort11 is a member of the Podoviridae, with an icosahedral head and a short tail and was selected for further characterization and genome sequencing. P_ort11 contained linear, double-stranded DNA with a length of 75239 bp and 103 putative open reading frames. BLASTP analysis revealed strong similarities to Escherichia phage N4 and other N4-like phages. This is the first report of filamentous and N4-like phages that infect S. meliloti.
Collapse
Affiliation(s)
- María Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Cynthia Alías-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Dany Mesa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emanuel de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - María Rosario Espuny
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Shen G, Ju W, Liu Y, Guo X, Zhao W, Fang L. Impact of Urea Addition and Rhizobium Inoculation on Plant Resistance in Metal Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1955. [PMID: 31159445 PMCID: PMC6603927 DOI: 10.3390/ijerph16111955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Legume-rhizobium symbiosis has been heavily investigated for their potential to enhance plant metal resistance in contaminated soil. However, the extent to which plant resistance is associated with the nitrogen (N) supply in symbiont is still uncertain. This study investigates the effect of urea or/and rhizobium (Sinorhizobium meliloti) application on the growth of Medicago sativa and resistance in metals contaminated soil (mainly with Cu). The results show that Cu uptake in plant shoots increased by 41.7%, 69%, and 89.3% with urea treatment, rhizobium inoculation, and their combined treatment, respectively, compared to the control group level. In plant roots, the corresponding values were 1.9-, 1.7-, and 1.5-fold higher than the control group values, respectively. Statistical analysis identified that N content was the dominant variable contributing to Cu uptake in plants. Additionally, a negative correlation was observed between plant oxidative stress and N content, indicating that N plays a key role in plant resistance. Oxidative damage decreased after rhizobium inoculation as the activities of antioxidant enzymes (catalase and superoxide dismutase in roots and peroxidase in plant shoots) were stimulated, enhancing plant resistance and promoting plant growth. Our results suggest that individual rhizobium inoculation, without urea treatment, is the most recommended approach for effective phytoremediation of contaminated land.
Collapse
Affiliation(s)
- Guoting Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Wenliang Ju
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuqing Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Xiaobin Guo
- Agriculture Production and Research Division, Department of Fisheries and Land Resources, Government of Newfoundland and Labrador, Corner Brook, NL A2H 6J8, Canada.
| | - Wei Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Jian L, Bai X, Zhang H, Song X, Li Z. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. PeerJ 2019; 7:e6875. [PMID: 31119081 PMCID: PMC6510217 DOI: 10.7717/peerj.6875] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
The Legume-Rhizobium symbiosis has been proposed as a promising technique for the phytoremediation of contaminated soils due to its beneficial activity in symbiotic nitrogen fixation. However, numerous studies have shown that excessive heavy metals reduce the efficiency of symbiotic nodulation with Rhizobium and inhibit plant growth. In this study, we aimed to evaluate the synergistic effects of IAA-producing bacteria and Rhizobium on Medicago lupulina growth under Cu and Zn stress. Pot experiments showed that 400 mg kg-1 Cu2 + and Zn2 + greatly inhibited plant growth, but dual inoculation of Medicago lupulina with Sinorhizobium meliloti CCNWSX0020 and Agrobacterium tumefaciens CCNWGS0286 significantly increased the number of nodules and plant biomass by enhancing antioxidant activities. Under double stress of 400 mg kg-1 Cu2 + and Zn2 +, the nodule number and nitrogenase activities of dual-inoculated plants were 48.5% and 154.4% higher, respectively, than those of plants inoculated with Sinorhizobium meliloti. The root and above-ground portion lengths of the dual-inoculated plants were 32.6% and 14.1% greater, respectively, than those of the control, while the root and above-ground portion dry weights were 34.3% and 32.2% greater, respectively, than those of the control. Compared with S. meliloti and A. tumefaciens single inoculation, coinoculation increased total Cu uptake by 39.1% and 47.5% and increased total Zn uptake by 35.4% and 44.2%, respectively, under double metal stress conditions. Therefore, coinoculation with Sinorhizobium meliloti and Agrobacterium tumefaciens enhances metal phytoextraction by increasing plant growth and antioxidant activities under Cu/Zn stress, which provides a new approach for bioremediation in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Liru Jian
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Bai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiuyong Song
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhefei Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Chen J, Liu YQ, Yan XW, Wei GH, Zhang JH, Fang LC. Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:312-323. [PMID: 30005404 DOI: 10.1016/j.ecoenv.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 07/01/2018] [Indexed: 05/13/2023]
Abstract
Despite numerous reports that legume-rhizobium symbiosis alleviates Cu stress in plants, the possible roles of legume-rhizobium symbiosis and the regulatory mechanisms in counteracting Cu toxicity remain unclear. Here, Sinorhizobium meliloti CCNWSX0020 was used for analyzing the effects of rhizobium inoculation on plant growth in Medicago sativa seedlings under Cu stress. Our results showed that rhizobium inoculation alleviated Cu-induced growth inhibition, and increased nitrogen concentration in M. sativa seedlings. Moreover, the total amount of Cu uptake in inoculated plants was significantly increased compared with non-inoculated plants, and the increase in the roots was much higher than that in the shoots, thus decreasing the transfer coefficient and promoting Cu phytostabilization. Cu stress induced lipid peroxidation and reactive oxygen species production, but rhizobium inoculation reduced these components' accumulation through altering antioxidant enzyme activities and regulating ascorbate-glutathione cycles. Furthermore, legume-rhizobium symbiosis regulated the gene expression involved in antioxidant responses, phytochelatin (PC) biosynthesis, and metallothionein biosynthesis in M. sativa seedlings under Cu stress. Our results demonstrate that rhizobium inoculation enhanced Cu tolerance by affecting Cu uptake, regulating antioxidant enzyme activities and the ascorbate-glutathione cycle, and influencing PC biosynthesis-related gene expression in M. sativa. The results provide an efficient strategy for phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yu-Qing Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiao-Wu Yan
- School of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ge-Hong Wei
- School of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jian-Hua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong; Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Lin-Chuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
15
|
Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Arch Microbiol 2018; 201:107-121. [PMID: 30276423 DOI: 10.1007/s00203-018-1581-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.
Collapse
|
16
|
Kang X, Yu X, Zhang Y, Cui Y, Tu W, Wang Q, Li Y, Hu L, Gu Y, Zhao K, Xiang Q, Chen Q, Ma M, Zou L, Zhang X, Kang J. Inoculation of Sinorhizobium saheli YH1 Leads to Reduced Metal Uptake for Leucaena leucocephala Grown in Mine Tailings and Metal-Polluted Soils. Front Microbiol 2018; 9:1853. [PMID: 30210458 PMCID: PMC6119820 DOI: 10.3389/fmicb.2018.01853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022] Open
Abstract
Metalliferous mine tailings have a negative impact on the soil environment near mining areas and render cultivable lands infertile. Phytoremediation involving the synergism of legume and rhizobia provides a useful technique in tackling this issue with cost-effective, environmentally friendly, and easy-to-use features under adverse soil conditions. Leucaena leucocephala has been found to build symbiotic relationships with native rhizobia in the iron-vanadium-titanium oxide (V-Ti magnetite) mine tailing soil. Rhizobia YH1, isolated from the root nodules of L. leucocephala, was classified as Sinorhizobium saheli according to similarity and phylogenetic analyses of 16S rRNA, housekeeping and nitrogen fixation genes. Besides nitrogen fixation, S. saheli YH1 also showed capabilities to produce indole-acetic acid (IAA) (166.77 ± 2.03 mg l−1) and solubilize phosphate (104.41 ± 7.48 mg l−1). Pot culture experiments showed that strain YH1 increased the biomass, plant height and root length of L. leucocephala by 67.2, 39.5 and 27.2% respectively. There was also an average increase in plant N (10.0%), P (112.2%) and K (25.0%) contents compared to inoculation-free control. The inoculation of YH1 not only reduced the uptake of all metals by L. leucocephala in the mine tailings, but also resulted in decreased uptake of Cd by up to 79.9% and Mn by up to 67.6% for plants grown in soils contaminated with Cd/Mn. It was concluded that S. saheli YH1 possessed multiple beneficial effects on L. leucocephala grown in metalliferous soils. Our findings highlight the role of S. saheli YH1 in improving plant health of L. leucocephala by reducing metal uptake by plants grown in heavy metal-polluted soils. We also suggest the idea of using L. leucocephala-S. saheli association for phytoremediation and revegetation of V-Ti mine tailings and soils polluted with Cd or Mn.
Collapse
Affiliation(s)
- Xia Kang
- College of Resources, Sichuan Agricultural University, Chengdu, China.,Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, China
| | - Qiongyao Wang
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, China
| | - Yanmei Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lanfang Hu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jinsan Kang
- Sichuan Earthquake Administration, Chengdu, China
| |
Collapse
|
17
|
Wu K, Luo J, Li J, An Q, Yang X, Liang Y, Li T. Endophytic bacterium Buttiauxella sp. SaSR13 improves plant growth and cadmium accumulation of hyperaccumulator Sedum alfredii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21844-21854. [PMID: 29796886 DOI: 10.1007/s11356-018-2322-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Inoculation with endophytic bacterium has been considered as a prospective application to improve the efficiency of phytoextraction. In this study, the effect of Buttiauxella sp. SaSR13 (SaSR13), a novel endophytic bacterium isolated from the root of hyperaccumulator Sedum alfredii, on plant growth and cadmium (Cd) accumulation in S. alfredii was investigated. Laser scanning confocal microscopic (LSCM) images showed that SaSR13 was mainly colonized in the root elongation and mature zones. The inoculation with SaSR13 to Cd-treated plants significantly enhanced plant growth (by 39 and 42% for shoot and root biomass, respectively), chlorophyll contents (by 38%), and Cd concentration in the shoot and root (by 32 and 22%, respectively). SaSR13 stimulated the development of roots (increased root length, surface area, and root tips number) due to an increase in the indole-3-acid (IAA) concentrations and a decrease in the concentrations of superoxide anion (O2.-) in plants grown under Cd stress. Furthermore, inoculation with SaSR13 enhanced the release of root exudates, especially malic acid and oxalic acid, which might have facilitated the uptake of Cd by S. alfredii. It is suggested that inoculation with endophytic bacterium SaSR13 is a promising bioaugmentation method to enhance the Cd phytoextraction efficiency by S. alfredii.
Collapse
Affiliation(s)
- Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianli An
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, Ghosh P, Wattam AR, Azevedo V. Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Sci Rep 2018; 8:11187. [PMID: 30046123 PMCID: PMC6060162 DOI: 10.1038/s41598-018-29521-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
The mangrove ecosystem harbors a complex microbial community that plays crucial role in biogeochemical cycles. In this study, we analyzed mangrove sediments from India using de novo whole metagenome next generation sequencing (NGS) and compared their taxonomic and functional community structures to mangrove metagenomics samples from Brazil and Saudi Arabia. The most abundant phyla in the mangroves of all three countries was Proteobacteria, followed by Firmicutes and Bacteroidetes. A total of 1,942 genes were found to be common across all the mangrove sediments from each of the three countries. The mangrove resistome consistently showed high resistance to fluoroquinolone and acriflavine. A comparative study of the mangrove resistome with other ecosystems shows a higher frequency of heavy metal resistance in mangrove and terrestrial samples. Ocean samples had a higher abundance of drug resistance genes with fluoroquinolone and methicillin resistance genes being as high as 28.178% ± 3.619 and 10.776% ± 1.823. Genes involved in cobalt-zinc-cadmium resistance were higher in the mangrove (23.495% ± 4.701) and terrestrial (27.479% ± 4.605) ecosystems. Our comparative analysis of samples collected from a variety of habitats shows that genes involved in resistance to both heavy metals and antibiotics are ubiquitous, irrespective of the ecosystem examined.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India.,Division of Bioinformatics and Computational Genomics, NITTE University Center for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Vaz
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science Virginia Commonwealth University, Virginia, 23284, USA
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech University, Blacksburg, Virginia, 24061, USA
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Li Z, Song X, Wang J, Bai X, Gao E, Wei G. Nickel and cobalt resistance properties of Sinorhizobium meliloti isolated from Medicago lupulina growing in gold mine tailing. PeerJ 2018; 6:e5202. [PMID: 30018859 PMCID: PMC6044271 DOI: 10.7717/peerj.5202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed multiple heavy metal resistance and growth promotion of M. lupulina. In our previous work, the expression level of dmeR and dmeF genes were induced by Cu2+ through comparative transcriptome approach. Based on protein analysis, the dmeF encoded for a protein which showed a 37% similarity to the cation transporter DmeF of Cupriavidus metallidurans, whereas dmeR encoded transcriptional regulator which was highly homologous with DmeR belonging to RcnR/CsoR family metal-responsive transcriptional regulator. In addition to copper, quantitative real-time PCR analysis showed that dmeR and dmeF were also induced by nickel and cobalt. To investigate the functions of dmeR and dmeF in S. meliloti CCNWSX0020, the dmeR and dmeF deletion mutants were constructed. The dmeF mutant was more sensitive to Co2 + and Ni2 + than the wild type strain. Pot experiments were carried out to determine whether the growth of M. lupulina was affected when the dmeF gene was knocked out in the presence of nickel or cobalt. Results indicated that the nodule number of the host plant inoculated with the dmeF deletion mutant was significantly less than the S. meliloti CCNWSX0020 wild-type in the presence of Co2 + or Ni2 +. However, when standardized by nodule fresh weight, the nitrogenase activities of nodules infected by the dmeF deletion mutant was similar to nitrogenase activity of the wild type nodule.
Collapse
Affiliation(s)
- Zhefei Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Xiuyong Song
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Juanjuan Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Xiaoli Bai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Engting Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Gehong Wei
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China.,Northwest A and F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Jebara M. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 2018; 58:579-589. [DOI: 10.1002/jobm.201700626] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Souhir Abdelkrim
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
- National Agronomic Institute of Tunisia; University of Carthage; Tunis Tunisia
| | - Salwa H. Jebara
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Omar Saadani
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Manel Chiboub
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Ghassen Abid
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Moez Jebara
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| |
Collapse
|
21
|
Igiehon NO, Babalola OO. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040574. [PMID: 29570619 PMCID: PMC5923616 DOI: 10.3390/ijerph15040574] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023]
Abstract
Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study.
Collapse
Affiliation(s)
- Nicholas Ozede Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| |
Collapse
|
22
|
Chiboub M, Jebara SH, Saadani O, Fatnassi IC, Abdelkerim S, Jebara M. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. JOURNAL OF PLANT RESEARCH 2018; 131:99-110. [PMID: 28808815 DOI: 10.1007/s10265-017-0971-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.
Collapse
Affiliation(s)
- Manel Chiboub
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia.
| | - Omar Saadani
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Imen Challougui Fatnassi
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Souhir Abdelkerim
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| |
Collapse
|
23
|
Li X, Li D, Yan Z, Ao Y. Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv 2018; 8:30902-30911. [PMID: 35548749 PMCID: PMC9085637 DOI: 10.1039/c8ra06270f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 11/21/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) not only promote growth and heavy metal uptake by plants but are promising biosorbents for heavy metals remediation. However, there exist arguments over whether extracellular adsorption (biosorption) or intracellular accumulation (bioaccumulation) play dominant roles in Cd(ii) adsorption. Therefore, three cadmium-resistant PGPR, Cupriavidus necator GX_5, Sphingomonas sp. GX_15, and Curtobacterium sp. GX_31 were used to study bioaccumulation and biosorption mechanisms under different initial Cd(ii) concentrations, using batch adsorption experiments, desorption experiments, scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) spectroscopy, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. In this study, with the increase of the initial Cd(ii) concentrations, the removal efficiency of strains decreased and the adsorption capacity improved. The highest Cd(ii) removal efficiency values were 25.05%, 53.88%, and 86.06% for GX_5, GX_15, and GX_31 with 20 mg l−1 of Cd(ii), while the maximum adsorption capacity values were 7.97, 17.13, and 26.43 mg g−1 of GX_5, GX_15, and GX_31 with 100 mg l−1 of Cd(ii). Meanwhile, the removal efficiency and adsorption capacity could be ordered as GX_31 > GX_15 > GX_5. The dominant adsorption mechanism for GX_5 was bioaccumulation (50.66–60.38%), while the dominant mechanisms for GX_15 and GX_31 were biosorptions (60.29–64.89% and 75.93–79.45%, respectively). The bioaccumulation and biosorption mechanisms were verified by SEM-EDX, TEM and FTIR spectroscopy. These investigations could provide a more comprehensive understanding of metal-bacteria sorption reactions as well as practical application in remediation of heavy metals. Plant growth-promoting rhizobacteria (PGPR) not only promote growth and heavy metal uptake by plants but are promising biosorbents for heavy metals remediation.![]()
Collapse
Affiliation(s)
- Xingjie Li
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Dongbo Li
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhenning Yan
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yansong Ao
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
24
|
Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Appl Environ Microbiol 2017; 83:AEM.01244-17. [PMID: 28778889 DOI: 10.1128/aem.01244-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/26/2017] [Indexed: 01/16/2023] Open
Abstract
The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (ΔcueO) and three mutants that were both Cu and Zn sensitive (ΔyedYZ, ΔcusA-like, and ΔfixH-like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the ΔcueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the ΔyedYZ and ΔfixH-like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the ΔcusA-like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis.IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils.
Collapse
|
25
|
Cidre I, Pulido RP, Burgos MJG, Gálvez A, Lucas R. Copper and Zinc Tolerance in Bacteria Isolated from Fresh Produce. J Food Prot 2017; 80:969-975. [PMID: 28467185 DOI: 10.4315/0362-028x.jfp-16-513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The continued agricultural exposure of bacteria to metals such as copper and zinc may result in an increased copper tolerance through the food chain. The aim of this study was to determine the Cu and Zn tolerance of bacteria from fresh produce (cucumber, zucchini, green pepper, tomato, lettuce, vegetable salad, broccoli, cabbage, carrot, green onion, onion, and mango). Isolates (506 aerobic mesophiles) from 12 different food produce products were tested for growth in a range of Cu and Zn concentrations. Selected isolates were identified using 16S rDNA sequencing, and the presence of metal resistance genes was studied using PCR amplification. More than 50% of the isolates had MICs for copper sulfate greater than 16 mM, and more than 40% had MICs greater than 4 mM for zinc chloride. Isolates with high levels of tolerance to Cu and Zn were detected in all the produce products investigated. A selection of 51 isolates with high MICs for both Cu and Zn were identified as belonging to the genera Pseudomonas (28), Enterobacter (7), Serratia (4), Leclercia (1), Bacillus (10), and Paenibacillus (1). A study of the genetic determinants of resistance in the selected gram-negative isolates revealed a high incidence of genes from the pco multicopper oxidase cluster, from the sil cluster involved in Cu and silver resistance, and from the chromate resistance gene chrB. A high percentage carried both pco and sil. The results suggest that Cu and Zn tolerance, as well as metal resistance genes, is widespread in bacteria from fresh produce.
Collapse
Affiliation(s)
- Ismael Cidre
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Edif. B3, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Edif. B3, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Maria José Grande Burgos
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Edif. B3, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Edif. B3, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Rosario Lucas
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Edif. B3, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
26
|
Abstract
Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| | | |
Collapse
|
27
|
Liang J, Zhang M, Lu M, Li Z, Shen X, Chou M, Wei G. Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance. Sci Rep 2016; 6:35155. [PMID: 27725778 PMCID: PMC5057107 DOI: 10.1038/srep35155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Random mutagenesis in a symbiotic nitrogen-fixing Bradyrhizobium liaoningense CCNWSX0360 (Bln0360) using Tn5 identified five copper (Cu) resistance-related genes. They were functionally sorted into three groups: transmembrane transport (cueA and tolC); oxidation (copA); and protection of the membrane barrier (lptE and ctpA). The gene cueA, together with the upstream csoR (Cu-sensitive operon repressor), constituted a csoR-cueA divergon which plays a crucial role in Cu homeostasis. Deletion of cueA decreased the Cu tolerance of cells, and complementation of this mutant restored comparable Cu resistance to that of the wild-type. Transcriptional and fusion expression analysis demonstrated that csoR-cueA divergon was up-regulated by both the monovalent Cu+ and divalent Zn2+/Cd2+, and negatively regulated by transcriptional repressor CsoR, via a bidirectional promoter. Deletion of csoR renders the cell hyper-resistant to Cu, Zn and Cd. Although predicted to encode a Cu transporting P-type ATPase (CueA), cueA also conferred resistance to zinc and cadmium; two putative N-MBDs (N-terminal metal binding domains) of CueA were required for the Cu/Zn/Cd tolerance. Moreover, cueA is needed for nodulation competitiveness of B. liaoningense in Cu rich conditions. Together, the results demonstrated a crucial role for the csoR-cueA divergon as a component of the multiple-metal resistance machinery in B. liaoningense.
Collapse
Affiliation(s)
- Jianqiang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhe Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingmei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Kong Z, Deng Z, Glick BR, Wei G, Chou M. A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1235-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Chiboub M, Saadani O, Fatnassi IC, Abdelkrim S, Abid G, Jebara M, Jebara SH. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. C R Biol 2016; 339:391-8. [PMID: 27498183 DOI: 10.1016/j.crvi.2016.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 11/28/2022]
Abstract
The inoculation of plants with plant-growth-promoting rhizobacteria has become a priority in the phytoremediation of heavy-metal-contaminated soils. A total of 82 bacteria were isolated from Sulla coronaria root nodules cultivated on four soil samples differently contaminated by heavy metals. The phenotypic characterization of these isolates demonstrated an increased tolerance to cadmium reaching 4.1mM, and to other metals, including Zn, Cu and Ni. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) analysis showed a large diversity represented by genera related to Agrobacterium sp., R. leguminosarum, Sinorhizobium sp., Pseudomonas sp., and Rhizobium sp. Their symbiotic effectiveness was evaluated by nodulation tests. Taking into consideration efficiency and cadmium tolerance, four isolates were chosen; their 16SrRNA gene sequence showed that they belonged to Pseudomonas sp. and the Rhizobium sullae. The selected consortium of soil bacteria had the ability to produce plant-growth-promoting substances such as indole acetic acid and siderophore. The intracellular Cd accumulation was enhanced by increasing the time of incubation of the four soil bacteria cultivated in a medium supplemented with 0.1mM Cd. The existence of a cadmium-resistant gene was confirmed by PCR. These results suggested that Sulla coronaria in symbiosis with the consortium of plant-growth-promoting rhizobacteria (PGPR) could be useful in the phytoremediation of cadmium-contaminated soils.
Collapse
Affiliation(s)
- Manel Chiboub
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Omar Saadani
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Imen Challougui Fatnassi
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Souhir Abdelkrim
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Ghassen Abid
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Laboratoire des légumineuses, centre de biotechnologie Borj Cedria, university Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia.
| |
Collapse
|
30
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
31
|
Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:263-269. [PMID: 27151677 DOI: 10.1016/j.ecoenv.2016.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
PGPBs-legumes associations represent an alternative procedure for phytostabilisation of heavy metals polluted soils mainly generated by industrial and agricultural practices. In this study we evaluated the capacity of Vicia faba, Lens culinaris and Sulla coronaria, inoculated in situ by specific heavy metals resistant inocula, for the phytostabilisation of copper, lead and cadmium respectively. The experimentation was performed in mine tailings of northern Tunisia. Results proved that inoculation enhanced roots and shoots biomass production of faba bean by 14% and 12%, respectively, and significantly improved pods yield by 91%. In lentil, the inoculation ameliorated shoot biomass up to 27%. The highest nitrogen fixation was recorded by Sulla coronaria. The three symbioses accumulated heavy metals essentially in roots, and poorly in shoots. In addition, cadmium accumulation in roots of inoculated sulla was enhanced by 39%. Furthermore, inoculations decreased heavy metals availability in the soil up to -10% of Cu and -47% of Pb respectively in roots of faba bean and lentil. Our results suggested a positive effect of co-inoculation of legumes by appropriate heavy metals resistant PGPBs for the phytostabilisation of mine tailings. Elsewhere, the enhancement in the antioxidant enzymes activities demonstrated the role of the three inocula to alleviate the heavy metals induced stress.
Collapse
Affiliation(s)
- Omar Saadani
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia.
| | - Imen Challougui Fatnassi
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Manel Chiboub
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Souhir Abdelkrim
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Fathi Barhoumi
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Moez Jebara
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| |
Collapse
|
32
|
Lu M, Li Z, Liang J, Wei Y, Rensing C, Wei G. Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020. Sci Rep 2016; 6:29355. [PMID: 27378600 PMCID: PMC4932525 DOI: 10.1038/srep29355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
The Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown. We used five P1B-ATPases deletions by designating as ∆copA1b, ∆fixI1, ∆copA3, ∆zntA and ∆nia, respectively to investigate the role of P1B-ATPases in heavy metal resistance of S. meliloti. The ∆copA1b and ∆zntA mutants were sensitive to zinc (Zn), cadmium (Cd) and lead (Pb) in different degree, whereas the other mutants had no significant influence on the metal resistance. Moreover, the expression of zntA was induced by Zn, Cd and Pb whereas copA1b was induced by copper (Cu) and silver (Ag). This two deletions could led to the increased intracellular concentrations of Zn, Pb and Cd, but not of Cu. Complementation of ∆copA1b and ∆zntA mutants showed a restoration of tolerance to Zn, Cd and Pb to a certain extent. Taken together, the results suggest an important role of copA1b and zntA in Zn homeostasis and Cd and Pb detoxification in S. meliloti CCNWSX0020.
Collapse
Affiliation(s)
- Mingmei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Jianqiang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Yibing Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| |
Collapse
|
33
|
Besaury L, Pawlak B, Quillet L. Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4013-4023. [PMID: 25009094 DOI: 10.1007/s11356-014-3254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance and expression of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed along a gradient of copper concentration in microcosms prepared from Seine estuary mudflat sediment. We demonstrated that the abundance of copA and cusA genes decreased with the increase of copper concentration and that cusA gene was up to ten times higher than the copA gene. Only the copA gene was expressed in both oxic and anoxic conditions. The abundance and activity of the microbial community remained constant whatever the concentrations of copper along the gradient. The molecular phylogeny of the two copper-resistance genes was studied and revealed that the increase of copper increased the diversity of copA and cusA gene sequences.
Collapse
Affiliation(s)
- Ludovic Besaury
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Bâtiment IRESE B, 2ème étage, UFR des Sciences, Université de Rouen, 76821, Mont Saint Aignan, France.
| | - Barbara Pawlak
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Bâtiment IRESE B, 2ème étage, UFR des Sciences, Université de Rouen, 76821, Mont Saint Aignan, France
| | - Laurent Quillet
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Bâtiment IRESE B, 2ème étage, UFR des Sciences, Université de Rouen, 76821, Mont Saint Aignan, France
| |
Collapse
|
34
|
Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12479-12489. [PMID: 25903186 DOI: 10.1007/s11356-015-4530-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.
Collapse
Affiliation(s)
- Zhaoyu Kong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | |
Collapse
|
35
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
36
|
Wang F, Yao J, Liu H, Liu R, Chen H, Yi Z, Yu Q, Ma L, Xing B. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:137-145. [PMID: 25802063 DOI: 10.1016/j.jhazmat.2015.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/24/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Environmental impacts of carbon nanotubes (CNTs) arise both from the characteristics of CNTs as well as from their sorbed contaminants from aquatic environments. In this work, we employed pristine, carboxyl-, hydroxyl- and amino-functionalized multi-walled CNTs and pristine single-walled CNTs to quantify and compare their impacts on aquatic microbial communities in the absence and presence of Cu or Cr. Aliquots of samples were set up to 10 and 40 days for culture-dependent analyses, namely, quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis. Results revealed that the presence of CNTs or the mixture of CNTs and metals transiently affected microbial communities, and toxicity of CNTs was enhanced with the addition of metals. Meanwhile, functionalized CNTs exhibited stronger toxicity. The major impacts were observed after 10 days of exposure, but the microbial community could recover at 40 days to some extent. Though microbial communities recovered, total microbial numbers continued to decrease with contact time. Analysis of sequence cloned 16S rDNA indicated that Bacillus sp. and Acidithiobacillus sp. were the dominant taxa. Overall, CNTs would have more serious risk to an ecosystem in the presence of metals.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Jun Yao
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China.
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, 128 Linghu South Road, Anqing 246011, PR China
| | - Ruiping Liu
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huilun Chen
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Zhengji Yi
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Qian Yu
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Lan Ma
- School of Civil & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA.
| |
Collapse
|
37
|
Lodeiro AR. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp]. Rev Argent Microbiol 2015; 47:261-73. [PMID: 26364183 DOI: 10.1016/j.ram.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022] Open
Abstract
With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots.
Collapse
Affiliation(s)
- Aníbal R Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Facultad de Ciencias Exactas, UNLP y CCT-La Plata CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 2015; 338:241-54. [DOI: 10.1016/j.crvi.2015.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 11/28/2022]
|
39
|
Characterization and structure prediction of partial length protein sequences of pcoA, pcoR and chrB genes from heavy metal resistant bacteria from the Klip River, South Africa. Int J Mol Sci 2015; 16:7352-74. [PMID: 25837632 PMCID: PMC4425021 DOI: 10.3390/ijms16047352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
The Klip River has suffered from severe anthropogenic effects from industrial activities such as mining. Long-term exposure to heavy metal pollution has led to the development of heavy metal resistant strains of Pseudomonas sp. KR23, Lysinibacillus sp. KR25, and E. coli KR29. The objectives of this study were to characterize the genetics of copper and chromate resistance of the isolates. Copper and chromate resistance determinants were cloned and sequenced. Open reading frames (ORFs) related to the genes CopA and CopR were identified in E. coli KR29, PcoA in Lysinibacillus sp. KR25 and none related to chromate resistance were detected. The 3D-models predicted by I-TASSER disclose that the PcoA proteins consist of β-sheets, which form a part of the cupredoxin domain of the CopA copper resistance family of genes. The model for PcoR_29 revealed the presence of a helix turn helix; this forms part of a DNA binding protein, which is part of a heavy metal transcriptional regulator. The bacterial strains were cured using ethidium bromide. The genes encoding for heavy metal resistance and antibiotic resistance were found to be located on the chromosome for both Pseudomonas sp. (KR23) and E. coli (KR29). For Lysinibacillus (KR25) the heavy metal resistance determinants are suspected to be located on a mobile genetic element, which was not detected using gel electrophoresis.
Collapse
|
40
|
El Aafi N, Saidi N, Maltouf AF, Perez-Palacios P, Dary M, Brhada F, Pajuelo E. Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4500-4512. [PMID: 25315928 DOI: 10.1007/s11356-014-3596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
The aim of this work was using the legume plant Anthyllis vulneraria L. (ecotype metallicolous) as a trap plant, in order to isolate metal-tolerant rhizobial strains from metal-contaminated soils from Morocco, with pollution indexes spanning three orders of magnitude. As bioindicator, soil bacterial density was inversely correlated to the pollution index. Forty-three bulk soil bacteria and sixty two bacteria from nodules were isolated. The resistance of bacteria from nodules to heavy metals was four to ten times higher than that of bulk soil bacteria, reaching high maximum tolerable concentrations for Cd (2 mM), Cu (2 mM), Pb (7 mM), and Zn (3 mM). Besides, some strains show multiple metal-tolerant abilities and great metal biosorption onto the bacterial surface. Amplification and restriction analysis of ribosomal 16S rDNA (ARDRA) and 16S ribosomal DNA (rDNA) sequencing were used to assess biodiversity and phylogenetic position among bacteria present in nodules. Our results suggest that a great diversity of non-rhizobial bacteria (alpha- and gamma-proteobacteria) colonize nodules of Anthyllis plants in contaminated soils. Taking together, our results evidence that, in polluted soils, rhizobia can be displaced by non-rhizobial (and hence, non-fixing) strains from nodules. Thus, the selection of metal-resistant rhizobia is a key step for using A. vulneraria symbioses for in situ phytoremediation.
Collapse
Affiliation(s)
- N El Aafi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohamed V at Agdal, Rabat, Morocco,
| | | | | | | | | | | | | |
Collapse
|
41
|
Jebara SH, Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Jebara M. Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2537-45. [PMID: 25185494 DOI: 10.1007/s11356-014-3510-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/24/2014] [Indexed: 05/08/2023]
Abstract
Phytoremediation comprises a set of plant and microbe-based technologies for remediation of soil heavy metal contamination. In this work, four Pb-resistant bacteria (Agrobacterium tumefaciens, Rahnella aquatilis, and two Pseudomonas sp.) were selected among a collection of isolates from root nodule of Lens culinaris. They had a high degree of bioaccumulation ability in nutrient medium containing 2 mM Pb, and the maximum Pb accumulation of whole cell was found after 48-h incubation. These Pb-resistant bacteria synthesized plant growth promoting substances such as indole acetic acid and siderophore. The presence of the Pb resistance genes (pbrA) in these bacteria has been confirmed by PCR. L. culinaris cultivated in two experimental soils with different levels of contamination showed that Pb contamination affected plant growth; therefore, it's co-inoculation with the consortium of Pb-resistant bacteria improved plant biomass. The present study demonstrated that lentil accumulated Pb primarily in their roots and poorly in their shoots; in addition, it's co-inoculation in moderately Pb-contaminated soil induced a reduction in Pb accumulation in roots and shoots by 22 and 80 %, respectively. Whereas in highly Pb-contaminated soil, we registered a diminution in concentration of Pb in shoots (66 %) and an augmentation in roots (21 %). The contamination of soil by Pb caused an oxidative stress in lentil plant, inducing modulation in antioxidant enzymes activities, essentially in superoxide dismutase (SOD) and peroxidase (GPOX) activities which were more pronounced in lentil cultivated in highly Pb-contaminated soil, in addition, co-inoculation enhanced these activities, suggesting the protective role of enzymatic antioxidant against Pb-induced plant stress.Thus, the present study demonstrated that co-inoculation of lentil with A. tumefaciens, R. aquatilis, and Pseudomonas sp. formed a symbiotic system useful for phytostabilization of highly and moderately Pb-contaminated soils.
Collapse
Affiliation(s)
- Salwa Harzalli Jebara
- Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisie,
| | | | | | | | | | | |
Collapse
|
42
|
Ghnaya T, Mnassri M, Ghabriche R, Wali M, Poschenrieder C, Lutts S, Abdelly C. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. FRONTIERS IN PLANT SCIENCE 2015; 6:863. [PMID: 26528320 PMCID: PMC4604267 DOI: 10.3389/fpls.2015.00863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/29/2015] [Indexed: 05/13/2023]
Abstract
Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg(-1) soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg(-1) in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant(-1) in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils.
Collapse
Affiliation(s)
- Tahar Ghnaya
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj CedriaHammam Lif, Tunisia
- *Correspondence: Tahar Ghnaya
| | - Majda Mnassri
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj CedriaHammam Lif, Tunisia
| | - Rim Ghabriche
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj CedriaHammam Lif, Tunisia
| | - Mariem Wali
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj CedriaHammam Lif, Tunisia
| | - Charlotte Poschenrieder
- Departamento de Fisiologia Vegetal, Facultad de Ciencias, Universidad Autonoma de BarcelonaBarcelona, Spain
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute – Agronomy, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Chedly Abdelly
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj CedriaHammam Lif, Tunisia
| |
Collapse
|
43
|
Keedy J, Prymak E, Macken N, Pourhashem G, Spatari S, Mullen CA, Boateng AA. Exergy Based Assessment of the Production and Conversion of Switchgrass, Equine Waste, and Forest Residue to Bio-Oil Using Fast Pyrolysis. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5035682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph Keedy
- Swarthmore College, 500 College
Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Eugene Prymak
- Swarthmore College, 500 College
Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Nelson Macken
- Swarthmore College, 500 College
Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Ghasideh Pourhashem
- Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United States
| | - Sabrina Spatari
- Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United States
| | - Charles A. Mullen
- Eastern
Regional Research Center, Agricultural Research Service, United States Department of Agriculture, , 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| | - Akwasi A. Boateng
- Eastern
Regional Research Center, Agricultural Research Service, United States Department of Agriculture, , 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
44
|
Molecular characterization of a novel temperate sinorhizobium bacteriophage, ФLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol 2014; 88:13111-24. [PMID: 25187538 DOI: 10.1128/jvi.01875-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of mimicking the host regulatory mechanisms by viruses is quite common in bacteriophages.
Collapse
|
45
|
Jebara SH, Abdelkerim S, Fatnassi IC, Chiboub M, Saadani O, Jebara M. Identification of effective Pb resistant bacteria isolated fromLens culinarisgrowing in lead contaminated soils. J Basic Microbiol 2014; 55:346-53. [DOI: 10.1002/jobm.201300874] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/02/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Salwa Harzalli Jebara
- University Tunis El Manar, Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses; Hammam Lif Tunisie
| | - Souhir Abdelkerim
- University Tunis El Manar, Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses; Hammam Lif Tunisie
| | - Imen Challougui Fatnassi
- University Tunis El Manar, Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses; Hammam Lif Tunisie
| | - Manel Chiboub
- University Tunis El Manar, Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses; Hammam Lif Tunisie
| | - Omar Saadani
- University Tunis El Manar, Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses; Hammam Lif Tunisie
| | - Moez Jebara
- University Tunis El Manar, Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses; Hammam Lif Tunisie
| |
Collapse
|
46
|
Hao X, Mohamad OA, Xie P, Rensing C, Wei G. Removal of Zinc from Aqueous Solution by Metal Resistant Symbiotic BacteriumMesorhizobium amorphae. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.843195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
47
|
Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl Environ Microbiol 2014; 80:1961-71. [PMID: 24441157 DOI: 10.1128/aem.03381-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper-sensitive mutants significantly decreased in the presence of CuSO4.
Collapse
|
48
|
Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:179-202. [PMID: 24912209 DOI: 10.1080/15226514.2013.773273] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals.
Collapse
|
49
|
Hou W, Ma Z, Sun L, Han M, Lu J, Li Z, Mohamad OA, Wei G. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:614-20. [PMID: 24041771 DOI: 10.1016/j.jhazmat.2013.06.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/24/2013] [Accepted: 06/18/2013] [Indexed: 05/24/2023]
Abstract
The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.
Collapse
Affiliation(s)
- Wenjie Hou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Z, Lu M, Wei G. An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020. World J Microbiol Biotechnol 2013; 29:1655-60. [PMID: 23526229 DOI: 10.1007/s11274-013-1328-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/18/2013] [Indexed: 12/12/2022]
Abstract
The main aim of this work was to study molecular characterization of a DNA fragment conferring resistance to Cu(II) in Sinorhizobium meliloti CCNWSX0020. The strain CCNWSX0020, resistant to 1.4 mmol l(-1) Cu(II) in tryptone-yeast extract medium was isolated from Medicago lupulina growing in mine tailings of Fengxian County, China. The availability of the complete genome sequence of S. meliloti CCNWSX0020 provides an opportunity for investigating genes that play significant roles in Cu(II) resistance. A copper resistance gene, with a length of 1,445 bp, encoding 481 amino acids, designated omp, was identified by cDNA-amplified fragment length polymorphism from S. meliloti CCNWSX0020. The expression of omp gene strongly increased in the presence of Cu(II). The omp-defective mutants display sensitivities to Cu(II) compared with their wild types. The Cu(II)-sensitive phenotype of the mutant was complemented by a 1.5-kb DNA fragment containing omp gene. BLAST analysis revealed that this gene encoded a hypothetical outer membrane protein with 75 % similarity to outer membrane efflux protein in Rhizobium leguminosarum bv. viciae 3841. These studies suggested that the omp product was involved in the Cu(II) tolerance of S. meliloti CCNWSX0020.
Collapse
Affiliation(s)
- Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | | | | |
Collapse
|