1
|
Ángeles R, Carvalho J, Hernández-Martínez I, Morales-Ibarría M, Fradinho JC, Reis MAM, Lebrero R. Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology. N Biotechnol 2025; 85:84-102. [PMID: 39788285 DOI: 10.1016/j.nbt.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects. This review first provides an overview of current advances in photosynthetic pigment synthesis and the latest strategies to increase pigment content in cyanobacteria, microalgae, and APB. It then delves into the pigment production process, covering biosynthetic pathways, critical environmental parameters, and extraction methods. Finally, the potential marketability of photosynthetic pigments together with current limitations are discussed.
Collapse
Affiliation(s)
- Roxana Ángeles
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal.
| | - João Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Ingrid Hernández-Martínez
- Doctorate in Natural Sciences and Engineering, Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Marcia Morales-Ibarría
- Department of Processes and Technology. Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Joana C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain.
| |
Collapse
|
2
|
Djoundi AR, Morançais M, Mossion A, Ragueneau E, Rabesaotra V, Farasoa HR, Ramanandraibe VV, Dumay J. Seasonal Variation in the Biochemical Composition and Fatty Acid Profiles of the Red Alga Halymenia durvillei from Ngazidja (Comoros). Molecules 2025; 30:1232. [PMID: 40142008 PMCID: PMC11946709 DOI: 10.3390/molecules30061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The study of Comorian red alga Halymenia durvillei showed a significant biochemical composition with high ash and polysaccharide content and the presence of n-3 and n-6 essential fatty acid molecules. Seasonal monitoring showed a real change in biochemical composition depending on the harvesting period. On an annual average basis, the algae contained 35.59 ± 2.55% dw ashes, 0.7 ± 0.19% dw soluble proteins, 0.27 ± 0.02% dw total lipids, and 35.09 ± 6.14% dw polysaccharides. The pigment composition was 130 µg/g dw R-phycoerythrin, 1.49 µg/g dw chlorophyll a, and 0.09 µg/g dw carotenoids. The most abundant fatty acid identified was palmitic acid (C16:0), which accounted for almost 43.33% of total fatty acids. Oleic acid (C18:1n-9) was the most abundant unsaturated fatty acid, at 11.58%. Linoleic acid (C18:2n-6) was reported to be the most abundant polyunsaturated fatty acid in Halymenia durvillei. The fatty acid profile was also characterized by arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3).
Collapse
Affiliation(s)
- Ahmed Radjabou Djoundi
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Michèle Morançais
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Aurélie Mossion
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Emilie Ragueneau
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Vony Rabesaotra
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Helga Rim Farasoa
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Vestalys Voahangy Ramanandraibe
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Justine Dumay
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| |
Collapse
|
3
|
Dewan A, Sridhar K, Yadav M, Bishnoi S, Ambawat S, Nagaraja SK, Sharma M. Recent trends in edible algae functional proteins: Production, bio-functional properties, and sustainable food packaging applications. Food Chem 2025; 463:141483. [PMID: 39369604 DOI: 10.1016/j.foodchem.2024.141483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.
Collapse
Affiliation(s)
- Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Monika Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sonam Bishnoi
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Shobhit Ambawat
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
4
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
5
|
Sandybayeva SK, Kossalbayev BD, Zayadan BK, Kopecký J, Kakimova AB, Bolatkhan K, Allakhverdiev SI. Isolation, Identification and Pigment Analysis of Novel Cyanobacterial Strains from Thermal Springs. PLANTS (BASEL, SWITZERLAND) 2024; 13:2951. [PMID: 39519869 PMCID: PMC11547633 DOI: 10.3390/plants13212951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacterial pigments have attracted considerable attention in industry due to their bioactive potential and natural origin. In the present study, the growth dynamics and pigment composition, in terms of chlorophyll a, total carotenoids and phycobiliprotein content, of four cyanobacterial strains isolated from thermal springs, namely Oscillatoria subbrevis CZS 2201, Phormidium ambiguum CZS 2205, Nostoc calcicola TSZ 2203, and Synechococcus sp. CZS 2204, were investigated. The analysis revealed that the maximum quantity of chlorophyll a and total carotenoids was observed in Oscillatoria subbrevis CZS 2201 (26.49 and 3.44 µg mL-1), followed by Phormidium ambiguum CZS 2205 (18.64 and 2.32 µg mL-1), whereas a minimum amount was detected in Synechococcus sp. CZS 2204 (12.13 and 1.24 µg mL-1), respectively. In addition, Oscillatoria subbrevis CZS 2201 showed higher quantity of phycobiliproteins, especially C-phycocyanin (45.81 mg g-1), C-phycoerythrin (64.17 mg g-1) and C-allophycocyanin (27.45 mg g-1). Moreover, carotenoid derivatives of Oscillatoria subbrevis CZS 2201 were also identified, among which β-carotene was the dominant form (1.94 µg mL-1), while the accumulation of zeaxanthin and myxoxanthophyll was relatively high (0.53 and 0.41 µg mL-1, respectively) compared with echinenone and cryptoxanthin (0.34 and 0.23 µg mL-1, respectively). The study revealed that Oscillatoria subbrevis CZS 2201 was a potent producer of secondary carotenoids, including myxoxanthophyll.
Collapse
Affiliation(s)
- Sandugash K. Sandybayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Satpaev 22, Almaty 050043, Kazakhstan;
| | - Bekzhan D. Kossalbayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Satpaev 22, Almaty 050043, Kazakhstan;
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, Tianjin 300308, China
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Bolatkhan K. Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237—Opatovický mlýn, 37981 Třebon, Czech Republic;
| | - Ardak B. Kakimova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Satpaev 22, Almaty 050043, Kazakhstan;
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia;
| |
Collapse
|
6
|
Sun Z, Zhang S, Zheng T, He C, Xu J, Lin D, Zhang L. Nanoplastics inhibit carbon fixation in algae: The effect of aging. Heliyon 2024; 10:e29814. [PMID: 38681555 PMCID: PMC11053220 DOI: 10.1016/j.heliyon.2024.e29814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Despite the considerable efforts devoted to the toxicological assessment of nanoplastics, the effect of UV-irradiation induced aging, a realistic environmental process, on the toxicity of nanoplastics toward microalgae and its underlying mechanisms remain largely unknown. Herein, this study comparatively investigated the toxicities of polystyrene nanoplastics (nano-PS) and the UV-aged nano-PS on the eukaryotic alga Chlorella vulgaris, focusing on evaluating their inhibitory effects on carbon fixation. Exposure to environmentally relevant concentrations (0.1-10 mg/L) of nano-PS caused severe damage to chloroplast, inhibited the photosynthetic efficiency and electron transport, and suppressed the activities of carbon fixation related enzymes. Multi-omics results revealed that nano-PS interfered with energy supply by disrupting light reactions and TCA cycle and hindered the Calvin cycle, thereby inhibiting the photosynthetic carbon fixation of algae. The above alterations partially recovered after a recovery period. The aged nano-PS were less toxic than the pristine ones as evidenced by the mitigated inhibitory effect on algal growth and carbon fixation. The aging process introduced oxygen-containing functional groups on the surface of nano-PS, increased the hydrophilicity of nano-PS, limited their attachment on algal cells, and thus reduced the toxicity. The findings of this work highlight the potential threat of nanoplastics to the global carbon cycle.
Collapse
Affiliation(s)
- Ziyi Sun
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Caijiao He
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Lim YA, Ilankoon IMSK, Khong NMH, Priyawardana SD, Ooi KR, Chong MN, Foo SC. Biochemical trade-offs and opportunities of commercialized microalgae cultivation under increasing carbon dioxide. BIORESOURCE TECHNOLOGY 2024; 393:129898. [PMID: 37890731 DOI: 10.1016/j.biortech.2023.129898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Microalgae's exceptional photosynthetic prowess, CO2 adaptation, and high-value bioproduct accumulation make them prime candidates for microorganism-based biorefineries. However, most microalgae research emphasizes downstream processes and applications rather than fundamental biomass and biochemical balances and kinetic under the influence of greenhouse gases such as CO2. Therefore, three distinctly different microalgae species were cultivated under 0% to 20% CO2 treatments to examine their biochemical responses, biomass production and metabolite accumulations. Using a machine learning approach, it was found that Chlorella sorokiniana showed a positive relationship between biomass and chl a, chl b, carotenoids, and carbohydrates under increasing CO2 treatments, while Chlamydomonas angulosa too displayed positive relationships between biomass and all studied biochemical contents, with minimal trade-offs. Meanwhile, Nostoc sp. exhibited a negative correlation between biomass and lipid contents under increasing CO2 treatment. The study showed the potential of Chlorella, Chlamydomonas and Nostoc for commercialization in biorefineries and carbon capture systems where their trade-offs were identified for different CO2 treatments and could be prioritized based on commercial objectives. This study highlighted the importance of understanding trade-offs between biomass production and biochemical yields for informed decision-making in microalgae cultivation, in the direction of mass carbon capture for climate change mitigation.
Collapse
Affiliation(s)
- Yi An Lim
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Nicholas M H Khong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Sajeewa Dilshan Priyawardana
- Department of Electrical & Computer Systems Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Khi Rern Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Su Chern Foo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
8
|
Nowruzi B, Ahmadi M, Bouaïcha N, Khajerahimi AE, Anvar SAA. Studying the impact of phycoerythrin on antioxidant and antimicrobial activity of the fresh rainbow trout fillets. Sci Rep 2024; 14:2470. [PMID: 38291237 PMCID: PMC10827737 DOI: 10.1038/s41598-024-52985-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Marine cyanobacteria present a significant potential source of new bioactive compounds with vast structural diversity and relevant antimicrobial and antioxidant activities. Phycobiliproteins (PBPs) like phycocyanin (PC), phycoerythrin (PE), and water-soluble cyanobacterial photosynthetic pigments, have exhibited strong pharmacological activities and been used as natural food additives. In this study, phycoerythrin (PE) isolated from a marine strain of cyanobacterium Nostoc sp. Ft salt, was applied for the first time as a natural antimicrobial as well as an antioxidant to increase the shelf life of fresh rainbow trout i.e., (Oncorhynchus mykiss) fillets. Fresh trout fillets were marinated in analytical grade PE (3.9 μg/mL) prepared in citric acid (4 mg/mL), and stored at 4 °C and 8 °C for 21 days. Microbiological analysis, antioxidant activity and organoleptic evaluation of both control and treated fish fillets were then statistically compared. The results demonstrated noticeable (P < 0.05) differences in the microbial counts, antioxidant activity, and organoleptic characteristic values between PE-treated and non-treated groups. In addition, we observed that treating fresh fish fillets with a PE solution leads to a significant increase in shelf life by at least 14 days. Consequently, PE could be an alternative to synthetic chemical additives since it does not contain the potentially dangerous residues of the synthetic chemical additives and is thus healthier to the consumers.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Ahmadi
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079, Universite Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | - Amir Eghbal Khajerahimi
- Department of Aquatic animal health and disease, science and research branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Tounsi L, Ben Hlima H, Hentati F, Hentati O, Derbel H, Michaud P, Abdelkafi S. Microalgae: A Promising Source of Bioactive Phycobiliproteins. Mar Drugs 2023; 21:440. [PMID: 37623721 PMCID: PMC10456337 DOI: 10.3390/md21080440] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined.
Collapse
Affiliation(s)
- Latifa Tounsi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Hajer Ben Hlima
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Faiez Hentati
- INRAE, Animal Research Unit and Functionalities of Animal Products (UR AFPA), University of Lorraine, USC 340, F-54000 Nancy, France;
| | - Ons Hentati
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Hana Derbel
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| |
Collapse
|
10
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
11
|
Singh A, Čížková M, Náhlík V, Mezricky D, Schild D, Rucki M, Vítová M. Bio-removal of rare earth elements from hazardous industrial waste of CFL bulbs by the extremophile red alga Galdieria sulphuraria. Front Microbiol 2023; 14:1130848. [PMID: 36860487 PMCID: PMC9969134 DOI: 10.3389/fmicb.2023.1130848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
In recent decades, a shift has been seen in the use of light-emitting diodes over incandescent lights and compact fluorescent lamps (CFL), which eventually led to an increase in wastes of electrical equipment (WEE), especially fluorescent lamps (FLs) and CFL light bulbs. These widely used CFL lights, and their wastes are good sources of rare earth elements (REEs), which are desirable in almost every modern technology. Increased demand for REEs and their irregular supply have exerted pressure on us to seek alternative sources that may fulfill this demand in an eco-friendly manner. Bio-removal of wastes containing REEs, and their recycling may be a solution to this problem and could balance environmental and economic benefits. To address this problem, the current study focuses on the use of the extremophilic red alga, Galdieria sulphuraria, for bioaccumulation/removal of REEs from hazardous industrial wastes of CFL bulbs and the physiological response of a synchronized culture of G. sulphuraria. A CFL acid extract significantly affected growth, photosynthetic pigments, quantum yield, and cell cycle progression of this alga. A synchronous culture was able to efficiently accumulate REEs from a CFL acid extract and efficiency was increased by including two phytohormones, i.e., 6-Benzylaminopurine (BAP - Cytokinin family) and 1-Naphthaleneacetic acid (NAA - Auxin family).
Collapse
Affiliation(s)
- Anjali Singh
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Vít Náhlík
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia,Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| | - Dana Mezricky
- Institute of Medical and Pharmaceutical Biotechnology, IMC FH Krems, Krems, Austria
| | - Dominik Schild
- Institute of Medical and Pharmaceutical Biotechnology, IMC FH Krems, Krems, Austria
| | - Marian Rucki
- Laboratory of Predictive Toxicology, National Institute of Public Health, Prague, Czechia
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia,Centre for Phycology, Institute of Botany, Czech Academy of Sciences, Třeboň, Czechia,*Correspondence: Milada Vítová,
| |
Collapse
|
12
|
Protein hydrolysate from Anabaena sp. cultured in an optimized condition designed by RSM; insight into bioactive attributes. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Effects of Temperature, pH, and NaCl Concentration on Biomass and Bioactive Compound Production by Synechocystis salina. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010187. [PMID: 36676136 PMCID: PMC9867336 DOI: 10.3390/life13010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Synechocystis salina is a cyanobacterium that has biotechnological potential thanks to its ability to synthesize several bioactive compounds of interest. Therefore, this study aimed to find optimal conditions, in terms of temperature (15-25 °C), pH (6.5-9.5), and NaCl concentration (10-40 g·L-1), using as objective functions the productivities of biomass, total carotenoids, total PBPs, phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and antioxidants (AOXs) capacity of Synechocystis salina (S. salina) strain LEGE 06155, based in factorial design resorting to Box-Behnken. The model predicted higher biomass productivities under a temperature of 25 °C, a pH of 7.5, and low NaCl concentrations (10 g·L-1). Maximum productivities in terms of bioactive compounds were attained at lower NaCl concentrations (10 g·L-1) (except for PE), with the best temperature and pH in terms of carotenoids and total and individual PBPs ranging from 23-25 °C to 7.5-9.5, respectively. PE was the only pigment for which the best productivity was reached at a lower temperature (15 °C) and pH (6.5) and a higher concentration of NaCl (≈25 g·L-1). AOX productivities, determined in both ethanolic and aqueous extracts, were positively influenced by lower temperatures (15-19 °C) and higher salinities (≈15-25 g·L-1). However, ethanolic AOXs were better recovered at a higher pH (pH ≈ 9.5), while aqueous AOXs were favored by a pH of 8. The model showed that biomass production can be enhanced by 175% (compared to non-optimized conditions), total carotenoids by 91%, PC by 13%, APC by 50%, PE by 130%, and total PBPs by 39%; for AOX productivities, only water extracts exhibited a (marginal) improvement of 1.4%. This study provided insightful information for the eventual upgrading of Synechocystis salina biomass in the biotechnological market.
Collapse
|
14
|
A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Mar Drugs 2022; 21:md21010028. [PMID: 36662201 PMCID: PMC9863059 DOI: 10.3390/md21010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Phycoerythrin (PE) is a pink/red-colored pigment found in rhodophytes, cryptophytes, and blue-green algae (cyanobacteria). The interest in PE is emerging from its role in delivering health benefits. Unfortunately, the current cyanobacterial-PE (C-PE) knowledge is still in the infant stage. It is essential to acquire a more comprehensive understanding of C-PE. This study aimed to review the C-PE structure, up and downstream processes of C-PE, application of C-PE, and strategies to enhance its stability and market value. In addition, this study also presented a strengths, weaknesses, opportunities, and threats (SWOT) analysis on C-PE. Cyanobacteria appeared to be the more promising PE producers compared to rhodophytes, cryptophytes, and macroalgae. Green/blue light is preferred to accumulate higher PE content in cyanobacteria. Currently, the prominent C-PE extraction method is repeated freezing-thawing. A combination of precipitation and chromatography approaches is proposed to obtain greater purity of C-PE. C-PE has been widely exploited in various fields, such as nutraceuticals, pharmaceuticals, therapeutics, cosmetics, biotechnology, food, and feed, owing to its bioactivities and fluorescent properties. This review provides insight into the state-of-art nature of C-PE and advances a step further in commercializing this prospective pigment.
Collapse
|
15
|
Assunção J, Pagels F, Tavares T, Malcata FX, Guedes AC. Light Modulation for Bioactive Pigment Production in Synechocystis salina. Bioengineering (Basel) 2022; 9:bioengineering9070331. [PMID: 35877382 PMCID: PMC9312138 DOI: 10.3390/bioengineering9070331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are microorganisms that are well-adapted to sudden changes in their environment, namely to light conditions. This has allowed them to develop mechanisms for photoprotection, which encompass alteration in pigment composition. Therefore, light modulation appears to be a suitable strategy to enhance the synthesis of specific pigments (e.g., phycocyanin) with commercial interest, in addition to conveying a more fundamental perspective on the mechanisms of acclimatization of cyanobacterium species. In this study, Synechocystis salina was accordingly cultivated in two light phase stages: (i) white LED, and (ii) shift to distinct light treatments, including white, green, and red LEDs. The type of LED lighting was combined with two intensities (50 and 150 µmolphotons·m−2·s−1). The effects on biomass production, photosynthetic efficiency, chlorophyll a (chl a) content, total carotenoids (and profile thereof), and phycobiliproteins (including phycocyanin, allophycocyanin, and phycoerythrin) were assessed. White light (under high intensity) led to higher biomass production, growth, and productivity; this is consistent with higher photosynthetic efficiency. However, chl a underwent a deeper impact under green light (high intensity); total carotenoids were influenced by white light (high intensity); whilst red treatment had a higher effect upon total and individual phycobiliproteins. Enhanced PC productivities were found under modulation with red light (low intensities), and could be achieved 7 days earlier than in white LED (over 22 days); this finding is quite interesting from a sustainability and economic point of view. Light modulation accordingly appears to be a useful tool for supplementary studies pertaining to optimization of pigment production with biotechnological interest.
Collapse
Affiliation(s)
- Joana Assunção
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Fernando Pagels
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - F. Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- FEUP—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Correspondence:
| | - A. Catarina Guedes
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
| |
Collapse
|
16
|
Hotos GN, Antoniadis TI. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures. Life (Basel) 2022; 12:837. [PMID: 35743868 PMCID: PMC9225148 DOI: 10.3390/life12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Two local marine cyanobacteria, Phormidium sp. and Cyanothece sp., were batch-cultured under 18-19.5 °C, at 40 ppt salinity, using white LED light of low (40 μmol photons/m2/s) and high (160 μmol/m2/s) intensity and, additionally, blue, green and red LED light. Yield was highest in high white light in both species (2.15 g dw/L in Phormidium, 1.47 g/L in Cyanothece), followed by green light (1.25 g/L) in Cyanothece and low white and green (1.26-1.33 g/L) in Phormidium. Green light maximized phycocyanin in Phormidium (0.45 mg/mL), while phycoerythrin was enhanced (0.17 mg/mL) by blue light and allophycocyanin by all colors (~0.80 mg/mL). All colors maximized phycocyanin in Cyanothece (~0.32 mg/mL), while phycoerythrin and allophycocyanin peaked under green light (~0.138 and 0.38 mg/mL, respectively). In Phormidium, maximization of chlorophyll-a (9.3 μg/mL) was induced by green light, while total carotenoids and b-carotene (3.05 and 0.89 μg/mL, respectively) by high white light. In Cyanothece, both white light intensities along with green maximized chlorophyll-a (~9 μg/mL) while high white light and green maximized total carotenoids (2.6-3.0 μg/mL). This study strongly indicates that these cyanobacteria can be cultured at the first stage under white light to accumulate sufficient biomass and, subsequently, under colored light for enhancing phycobiliproteins.
Collapse
Affiliation(s)
- George N. Hotos
- Plankton Culture Laboratory, Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece;
| | | |
Collapse
|
17
|
Park J, Lee H, Dinh TB, Choi S, De Saeger J, Depuydt S, Brown MT, Han T. Commercial Potential of the Cyanobacterium Arthrospira maxima: Physiological and Biochemical Traits and the Purification of Phycocyanin. BIOLOGY 2022; 11:biology11050628. [PMID: 35625356 PMCID: PMC9138259 DOI: 10.3390/biology11050628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Arthrospira maxima is an unbranched, filamentous cyanobacterium rich in important cellular products such as vitamins, minerals, iron, essential amino acids, essential fatty acids, and protein, which has made it one of the most important commercial photoautotrophs. To optimize the growth conditions for the production of target compounds and to ensure profitability in commercial applications, the effects of pH and temperature were investigated. A. maxima has been shown to be tolerant to a range of pH conditions and to exhibit hyper-accumulation of phycoerythrin and allophycocyanin at low temperatures. These traits may offer significant advantages for future exploitation, especially in outdoor cultivation with fluctuating pH and temperature. Our study also demonstrated a new method for the purification of phycocyanin from A. maxima by using by ultrafiltration, ion-exchange chromatography, and gel filtration, producing PC at 1.0 mg·mL−1 with 97.6% purity. Abstract Arthrospira maxima is a natural source of fine chemicals for multiple biotechnological applications. We determined the optimal environmental conditions for A. maxima by measuring its relative growth rate (RGR), pigment yield, and photosynthetic performance under different pH and temperature conditions. RGR was highest at pH 7–9 and 30 °C. Chlorophyll a, phycocyanin, maximal quantum yield (Fv/Fm), relative maximal electron transport rate (rETRmax), and effective quantum yield (ΦPSII) were highest at pH 7–8 and 25 °C. Interestingly, phycoerythrin and allophycocyanin content was highest at 15 °C, which may be the lowest optimum temperature reported for phycobiliprotein production in the Arthrospira species. A threestep purification of phycocyanin (PC) by ultrafiltration, ion-exchange chromatography, and gel filtration resulted in a 97.6% purity of PC.
Collapse
Affiliation(s)
- Jihae Park
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Hojun Lee
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
| | - Thai Binh Dinh
- Department of Cosmetic Science and Management, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Soyeon Choi
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium;
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Murray T. Brown
- School of Marine Science & Engineering, Plymouth University, Plymouth PL4 8AA, Devon, UK;
| | - Taejun Han
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
18
|
Assessment of novel halo- and thermotolerant desert cyanobacteria for phycobiliprotein production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Khazi MI, Li C, Liaqat F, Malec P, Li J, Fu P. Acclimation and Characterization of Marine Cyanobacterial Strains Euryhalinema and Desertifilum for C-Phycocyanin Production. Front Bioeng Biotechnol 2021; 9:752024. [PMID: 34858957 PMCID: PMC8631506 DOI: 10.3389/fbioe.2021.752024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
This study involves evaluation of two native cyanobacterial strains Euryhalinema and Desertifilum isolated from a mangrove pond in Haikou (China) for their possible phycocyanin (C-PC) production. Maximal growth rate with highest chlorophyll and C-PC accumulation were observed at 28°C and 60 μmol photons m-2 s-1 photon flux density for Euryhalinema sp., while for Desertifilum sp. at 32°C and 80 μmol photons m-2 s-1. Nitrogen and iron concentration trails revealed that double strength concentration of sodium nitrate and ferric ammonium citrate in original BG11 media increased growth rate and accumulation of C-PC for both strains. Three different C-PC extraction methods were tested. The combined extraction protocol of freeze-thaw and ultrasonication markedly increased the C-PC extraction efficiency and attained the food grade purity (A 620/A 280 ratio >0.7), whereas a higher C-PC yield was found with Na-phosphate buffer. Furthermore, the clarified crude extract was used to purify C-PC by fractional ammonium sulfate [(NH₄)₂SO₄] precipitation, Sephadex G-25 gel filtration chromatography, and DEAE-sephadex ion exchange chromatography and attained analytical grade purity (A 620/A 280 ratio >3.9). Taken together, both strains showed their potential to be domesticated for valuable phycocyanin production.
Collapse
Affiliation(s)
- Mahammed Ilyas Khazi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Chenshuo Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Fakhra Liaqat
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Przemyslaw Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
20
|
Cottas AG, Teixeira TA, Cunha WR, Ribeiro EJ, de Souza Ferreira J. Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Potential Antioxidant and Anticancer Activities of Secondary Metabolites of Nostoc linckia Cultivated under Zn and Cu Stress Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9111972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of the present study is to determine the antioxidant and anticancer activities of Nostoc linckia extracts cultivated under heavy metal stress conditions (0.44, 0.88, and 1.76 mg/L for zinc and 0.158, 0.316, 0.632 mg/L for copper). Phycobiliprotein, phenolic compounds, flavonoids, and tannins were measured. Active ingredients of extracts were evaluated by GC-mass spectroscopy. The obtained results revealed that higher zinc and copper concentrations showed growth inhibition while 0.22 mg/L (Zn) and 0.079 mg/L (Cu) enhanced growth, reaching its maximum on the 25th day. Increases in catalase, lipids peroxidation, and antioxidants, as well as tannins and flavonoids, have been induced by integration of 0.88 mg/L (Zn) and 0.316 mg/L (Cu). Elevation of Zn concentration induced augmentation of antioxidant activity of crude extract (DPPH or ABTS), with superior activity at 0.44 mg/L zinc concentration (81.22%). The anticancer activity of Nostoc linckia extract (0.44 mg/L Zn) tested against four cancer cell lines: A549, Hela, HCT 116, and MCF-7. The extract at 500 µg/mL appeared the lowest cell viability of tested cell lines. The promising extract (0.44 mg/L Zn) recorded the lowest cell viability of 25.57% in cervical cell line, 29.74% in breast cell line, 33.10% in lung cell line and 34.53% in the colon cell line. The antioxidant active extract showed significant stability against pH with attributed increase in antioxidant activity in the range between 8–12. The extract can be used effectively as a natural antioxidant and anticancer after progressive testing.
Collapse
|
22
|
Evaluation of extraction methods and purification by aqueous two-phase systems of phycocyanin from Anabaena variabilis and Nostoc sp. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Saini DK, Rai A, Devi A, Pabbi S, Chhabra D, Chang JS, Shukla P. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. BIORESOURCE TECHNOLOGY 2021; 329:124908. [PMID: 33690058 DOI: 10.1016/j.biortech.2021.124908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The cyanobacterial phycobiliproteins (PBPs) are an important natural colorant for nutraceutical industries. Here, a multi-objective hybrid machine learning-based optimization approach was used for enhanced cell biomass and PBPs production simultaneously in Nostoc sp. CCC-403. A central composite design (CCD) was employed to design an experimental setup for four input parameters, including three BG-11 medium components and pH. We achieved a 61.76% increase in total PBPs production and an almost 90% increase in cell biomass by our prediction model. We also established a test genome-scale metabolic network (GSMN) for Nostoc sp. and identified potential metabolic fluxes contributing to PBPs enhanced production. This study highlights the advantage of the hybrid machine learning approach and GSMN to achieve optimization for more than one objective and serves as the foundation for future efforts to convert cyanobacteria as an economically viable source for biofuels and natural products.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Amit Rai
- Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Alka Devi
- Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
24
|
Zuorro A, Leal-Jerez AG, Morales-Rivas LK, Mogollón-Londoño SO, Sanchez-Galvis EM, García-Martínez JB, Barajas-Solano AF. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS OMEGA 2021; 6:10527-10536. [PMID: 34056207 PMCID: PMC8153776 DOI: 10.1021/acsomega.0c04665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 05/06/2023]
Abstract
Phycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO3, K2HPO4, MgSO4, CaCl2, Na2CO3, and EDTA) and the concentration of trace metals in BG-11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m-2 s-1 for 15 days, and the effect of nutrients was evaluated using a Plackett-Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett-Burman Design revealed that only NaNO3, Na2CO3, and K2HPO4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (34) using NaNO3, Na2CO3, K2HPO4, and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO4, CaCl2, and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na2CO3 and K2HPO4 highly increased PBPs' concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients' concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department
of Chemical Engineering, Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Angela G. Leal-Jerez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Leidy K. Morales-Rivas
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Sandra O. Mogollón-Londoño
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Edwar M. Sanchez-Galvis
- Grupo
Ambiental de Investigación Aplicada-GAIA, Facultad de Ingeniería,
Universidad de Santander (UDES), Campus Universitario Lagos del Cacique, Cll 70 No 55-210, Bucaramanga 680003, Colombia
| | - Janet B. García-Martínez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Andrés F. Barajas-Solano
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| |
Collapse
|
25
|
El-fayoumy EA, Shanab SM, Hassan OMA, Shalaby EA. Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-11 0 medium composition. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:6049-6066. [PMID: 33898157 PMCID: PMC8053234 DOI: 10.1007/s13399-021-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 05/21/2023]
Abstract
The current work aims to investigate the effect of abiotic stresses (nitrogen (N) and sulfur (S) [0.0 g/l, 1.5 g/l, 3 g/l, 6 g/l, and 12 g/l N and 0.0 g/l, 0.07 g/l, 0.15 g/l, 0.3 g/l, and 0.6 g/l S] and their combination [0.3 g/l S + 6 g/l N]) of axenic culture of Nostoc linckia on the production of secondary metabolites which induce different biological activities. Growth rate was measured by dry weight (DW) and optical density (OD)550 nm. Additionally, phytochemical compounds, defense enzymes as well as antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(ethylbenzthiazoline-6-sulfonic acid) (ABTS·+) radical assays of crude extracts (methylene chloride:methanol, 1:1) were evaluated. Based on antioxidant activity, four promising extracts were subjected to different biological activities such as anticancer, antimicrobial, and antiviral activities. The obtained results revealed that supplementation of external nitrogen source in the form of sodium nitrate was found to increase the total phycobiliprotein content by fivefold. Also, nitrogen depletion provoked significantly highest quantities of phenolic and flavonoid content and this has effects on biological activities of Nostoc linckia. Moreover, 0.3 g/l S was found to be the most effective extract exhibiting a significant increase in antioxidant activity based on DPPH and ABTS assays, respectively (88.18 ± 0.64% and 84.20 ± 1.01%). Furthermore, it recorded anticancer activity against HCT 116 cell line with IC50 of 155 μg/ml. Moreover, this extract possessed a noticeable antibacterial potency (21.0 ± 1.0 as mm inhibition zone against Staphylococcus aureus and 19.3 ± 0.6 against Streptococcus mutans). In addition, its antiviral activity against H5N1 virus as a percentage of inhibition was 50% and 63.6% at a concentration of 7 μg/ml and 28 μg/ml, respectively, with cytotoxicity less than 7 μg/μl. GC-MS analysis recorded the presence of bioactive compounds exhibiting different biological activities. Therefore, the obtained results can represent valuable bioactive compounds with variable biological potencies.
Collapse
Affiliation(s)
- Eman A. El-fayoumy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Sanaa M. Shanab
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Omnia M. A. Hassan
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Center, Dokki, Egypt
| | - Emad A. Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| |
Collapse
|
26
|
Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs 2020; 18:md18120659. [PMID: 33371308 PMCID: PMC7767163 DOI: 10.3390/md18120659] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, research on natural products has gained considerable attention, particularly in the cosmetic industry, which is looking for new bio-active and biodegradable molecules. In this study, cosmetic properties of cyanobacteria and red macroalgae were analyzed. The extractions were conducted in different solvents (water, ethanol and two combinations of water:ethanol). The main molecules with antioxidant and photoprotective capacity were mycosporine-like amino acids (MAAs), scytonemin and phenolic compounds. The highest contents of scytonemin (only present in cyanobacteria) were observed in Scytonema sp. (BEA 1603B) and Lyngbya sp. (BEA 1328B). The highest concentrations of MAAs were found in the red macroalgae Porphyra umbilicalis, Gelidium corneum and Osmundea pinnatifida and in the cyanobacterium Lyngbya sp. Scytonema sp. was the unique species that presented an MAA with maximum absorption in the UV-B band, being identified as mycosporine-glutaminol for the first time in this species. The highest content of polyphenols was observed in Scytonema sp. and P. umbilicalis. Water was the best extraction solvent for MAAs and phenols, whereas scytonemin was better extracted in a less polar solvent such as ethanol:dH2O (4:1). Cyanobacterium extracts presented higher antioxidant activity than those of red macroalgae. Positive correlations of antioxidant activity with different molecules, especially polyphenols, biliproteins and MAAs, were observed. Hydroethanolic extracts of some species incorporated in creams showed an increase in the photoprotection capacity in comparison with the base cream. Extracts of these organisms could be used as natural photoprotectors improving the diversity of sunscreens. The combination of different extracts enriched in scytonemin and MAAs could be useful to design broad-band natural UV-screen cosmeceutical products.
Collapse
|
27
|
Polyzois A, Kirilovsky D, Dufat TH, Michel S. Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. Toxins (Basel) 2020; 12:toxins12120809. [PMID: 33371249 PMCID: PMC7766261 DOI: 10.3390/toxins12120809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Cryptophycin-1 is a cyanotoxin produced by filamentous cyanobacteria. It has been evaluated as an anticancer agent with great potential. However, its synthesis provides insufficient yield for industrial use. An alternative solution for metabolite efficient production is to stress cyanobacteria by modifying the environmental conditions of the culture (Nostoc sp. ATCC 53789). Here, we examined the effects of light photoperiod, wavelength, and intensity. In light photoperiod, photoperiods 24:0 and 16:8 (light:dark) were tested while in wavelength, orange-red light was compared with blue. Medium, high, and very high light intensity experiments were performed to test the effect of light stress. For a 10-day period, growth was measured, metabolite concentration was calculated through HPLC, and the related curves were drawn. The differentiation of light wavelength had a major effect on the culture, as orange-red filter contributed to noticeable increase in both growth and doubled the cyanotoxin concentration in comparison to blue light. Remarkably, constant light provides higher cryptophycin yield, but slightly lower growth rate. Lastly, the microorganism prefers medium light intensities for both growth and metabolite expression. The combination of these optimal conditions would contribute to the further exploitation of cryptophycin.
Collapse
Affiliation(s)
- Alexandros Polyzois
- Produits Naturels, Analyse et Synthèse, Université de Paris, UMR CNRS 8038 CITCOM, Faculté de Pharmacie de Paris, 75006 Paris, France;
- Correspondence: (A.P.); (S.M.); Tel.: +33-153739803 (S.M.)
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Thi-hanh Dufat
- Produits Naturels, Analyse et Synthèse, Université de Paris, UMR CNRS 8038 CITCOM, Faculté de Pharmacie de Paris, 75006 Paris, France;
| | - Sylvie Michel
- Produits Naturels, Analyse et Synthèse, Université de Paris, UMR CNRS 8038 CITCOM, Faculté de Pharmacie de Paris, 75006 Paris, France;
- Correspondence: (A.P.); (S.M.); Tel.: +33-153739803 (S.M.)
| |
Collapse
|
28
|
Devi TE, Parthiban R. Hydrothermal liquefaction of Nostoc ellipsosporum biomass grown in municipal wastewater under optimized conditions for bio-oil production. BIORESOURCE TECHNOLOGY 2020; 316:123943. [PMID: 32750639 DOI: 10.1016/j.biortech.2020.123943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Microalgae offer numerous potential applications, however the industrial scale-up of algal technology still remains a challenge due to high production cost. Optimization of growth conditions and integration with waste streams can improve the economic viability of microalgal production systems. This study investigated on the optimal growth conditions of microalgae Nostoc ellipsosporum cultivated in municipal wastewater with the objective of achieving maximum biomass production, nutrient removal efficiency and bio-oil yield. The effect of light intensity, photoperiod, wavelength, aeration and growth media composition were studied. Different formulations of municipal wastewater blended with Fog's nutrient were used as growth medium. Optimization of growth conditions and acclimatization to wastewater enhanced the biomass yield of Nostoc ellipsosporum from 1.42 to 2.9 g L-1, achieving 87.59% of nitrogen removal and 88.31% of phosphate removal from wastewater. Furthermore, hydrothermal liquefaction of biomass produced bio-oil yield of 24.62% at 300 °C.
Collapse
Affiliation(s)
- Thangavelu Eswary Devi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu 603110, India
| | - Rangasamy Parthiban
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu 603110, India.
| |
Collapse
|
29
|
Klepacz-Smółka A, Pietrzyk D, Szeląg R, Głuszcz P, Daroch M, Tang J, Ledakowicz S. Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. BIORESOURCE TECHNOLOGY 2020; 313:123700. [PMID: 32590305 DOI: 10.1016/j.biortech.2020.123700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The effect of light colour and light regime on growth and production of the thermostable C-phycocyanin (PC) by the thermophilic cyanobacterium Synechococcus 6715 in the tubular photobioreactor has been analysed. The highest specific growth rate (1.918 d-1) and biomass concentration (5.11 gVS ⋅L-1) were observed under constant illumination of the red light. However, the PC concentration in volatile solids (e.g blue light 30.68 ± 0.8 mgPC⋅gVS-1 PP and 21.7 ± 1 mgPC⋅gVS-1 CI) as well as per photobioreactor unit volume (e.g red light 122.66 ± 2.28 mgPC⋅L-1 PP and 74.71 ± 8.43 mgPC⋅L-1 PP) was higher in the 16L:8D photoperiod. The obtained PC purity was higher in the case of photoperiod (≈1.5). PCC6715 lacks genes encoding phycoerythrins what suggests T1 type of pigmentation. Although changes in biomass pigmentation were not significant, the strain was able to adapt its photosystem what can be used in the optimization of PC production by application of different light colours.
Collapse
Affiliation(s)
- Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland.
| | - Damian Pietrzyk
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland
| | - Rafał Szeląg
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland
| | - Paweł Głuszcz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen , China
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Stanisław Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland
| |
Collapse
|
30
|
Kumar Saini D, Yadav D, Pabbi S, Chhabra D, Shukla P. Phycobiliproteins from Anabaena variabilis CCC421 and its production enhancement strategies using combinatory evolutionary algorithm approach. BIORESOURCE TECHNOLOGY 2020; 309:123347. [PMID: 32334343 DOI: 10.1016/j.biortech.2020.123347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/23/2023]
Abstract
The production of phycobiliproteins (PBPs) from cyanobacteria represents both the industrial application and their commercial value. In this study, the capability of Anabaena variabilis CCC421 for the production of PBPs was evaluated which was further improved by optimization of selected BG-11 medium components viz. FAC, K2HPO4 and trace metals. A design matrix approach using evolutionary algorithm comprised of genetic-algorithm (GA) and fuzzy-logic-methodology (FLM), i.e., GA-Fuzzy, was used for the optimization. The maximum production of PBPs obtained with combinatory approach of GA-Fuzzy was 408.5 mg/L at an optimum combination of factors (FAC 0.153 g/L, K2HPO4 0.2 g/L and Trace metals 0.5 ml/L) which was a 2.13 fold more than the control medium. This novel approach is very useful for modulating biological processes since various nutrients and metabolites have greater influence on these processes.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Dinesh Yadav
- Department of Mechanical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, Haryana, India; Department of Mechanical Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
31
|
Ghosh T, Mishra S. Studies on Extraction and Stability of C-Phycoerythrin From a Marine Cyanobacterium. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
32
|
Prado JM, Veggi PC, Náthia-Neves G, Meireles MAA. Extraction Methods for Obtaining Natural Blue Colorants. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666181115125740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background:
Blue is a color not often present in food. Even so, it is especially attractive
to children. Today, most blue coloring agents used by the food industry are synthetic. With increasing
health issues concern by the scientific community and the general population, there is a trend to look
for natural alternatives to most synthetic products. There only exist few natural blue colorants, which
are presented in a literature survey, along with the methods currently used for their recovery from
natural sources. The best extraction methods and process parameters for the extraction of blue anthocyanins,
iridoids and phycocyanin are discussed.
Methods:
A literature survey was conducted to detect the main sources of blue colorants found in nature.
The focus was on the extraction methods used to recover such molecules, with the objective of
finding efficient and environmentally safe techniques for application at industrial level, and, thus, allowing
the production of natural blue colorants at scale high enough for food industry consumption.
Results:
The main natural blue colorants found in literature are anthocyanins, phycocyanin, and genipin.
While anthocyanins can be recovered from a variety of plants, the source of phycocyanin are
algae, and genipin can be obtained specifically from Gardenia jasminoides Ellis and Genipa americana
L. Several extraction techniques have been applied to recover blue colorants from such sources,
from classical methods using organic solvents, to more sophisticated technologies as ultrasoundassisted
extraction, supercritical fluid extraction, pressurized liquid extraction, high-pressure extraction,
and enzyme-assisted extraction.
Conclusion:
There is great potential for anthocyanins, phycocyanin and genipin use as natural food
additives with health benefits, besides imparting color. However, the technologies for the colorants
recovery and application are not mature enough. Therefore, this area is still developing, and it is necessary
to evaluate the economic feasibility of the proposed extraction processes, along with the safety
and acceptance of colored food using these additives.
Collapse
Affiliation(s)
- Juliana M. Prado
- Engineering, Modeling and Applied Social Sciences Center (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, 09210-580, Santo Andre, SP, Brazil
| | - Priscilla C. Veggi
- Federal University of Sao Paulo (UNIFESP), School of Chemical Engineering, 210 Sao Nicolau Street, 09913-030, Diadema, SP, Brazil
| | - Grazielle Náthia-Neves
- LASEFI/DEA/FEA (College of Food Engineering)/ UNICAMP (University of Campinas), Rua Monteiro Lobato, 80; 13083-862, Campinas, SP, Brazil
| | - M. Angela A. Meireles
- LASEFI/DEA/FEA (College of Food Engineering)/ UNICAMP (University of Campinas), Rua Monteiro Lobato, 80; 13083-862, Campinas, SP, Brazil
| |
Collapse
|
33
|
Arashiro LT, Boto-Ordóñez M, Van Hulle SWH, Ferrer I, Garfí M, Rousseau DPL. Natural pigments from microalgae grown in industrial wastewater. BIORESOURCE TECHNOLOGY 2020; 303:122894. [PMID: 32032937 DOI: 10.1016/j.biortech.2020.122894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Abstract
The aim of this study was to investigate the cultivation of Nostoc sp., Arthrospira platensis and Porphyridium purpureum in industrial wastewater to produce phycobiliproteins. Initially, light intensity and growth medium composition were optimized, indicating that light conditions influenced the phycobiliproteins production more than the medium composition. Conditions were then selected, according to biomass growth, nutrients removal and phycobiliproteins production, to cultivate these microalgae in food-industry wastewater. The three species could efficiently remove up to 98%, 94% and 100% of COD, inorganic nitrogen and PO43--P, respectively. Phycocyanin, allophycocyanin and phycoerythrin were successfully extracted from the biomass reaching concentrations up to 103, 57 and 30 mg/g dry weight, respectively. Results highlight the potential use of microalgae for industrial wastewater treatment and related high-value phycobiliproteins recovery.
Collapse
Affiliation(s)
- Larissa T Arashiro
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain; LIWET - Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | | | - Stijn W H Van Hulle
- LIWET - Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034 Barcelona, Spain.
| | - Diederik P L Rousseau
- LIWET - Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| |
Collapse
|
34
|
Lauceri R, Chini Zittelli G, Torzillo G. A simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
36
|
Rodrigues RDP, de Lima PF, Santiago-Aguiar RSD, Rocha MVP. Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101391] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends Biotechnol 2019; 37:242-252. [DOI: 10.1016/j.tibtech.2018.09.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
|
38
|
Purification of phycocyanin from Arthrospira platensis by hydrophobic interaction membrane chromatography. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Middepogu A, Hou J, Gao X, Lin D. Effect and mechanism of TiO 2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:497-506. [PMID: 29913418 DOI: 10.1016/j.ecoenv.2018.06.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) have been used in numerous applications, which results in their release into aquatic ecosystems and impact algal populations. A possible toxic mechanism of n-TiO2 on algae is via the disruption of the photosynthetic biochemical pathways, which yet remains to be demonstrated. In this study, Chlorella pyrenoidosa was exposed to different concentrations (0, 0.1, 1, 5, 10, and 20 mg/L) of a type of anatase n-TiO2, and the physiological, biochemical, and molecular responses involved in photosynthesis were investigated. The 96 h half growth inhibition concentration (IC50) of the n-TiO2 to algae was determined to be 9.1 mg/L. A variety of cellular and sub-cellular damages were observed, especially the blurry lamellar structure of thylakoids, indicating the n-TiO2 impaired the photosynthetic function of chloroplasts. Malondialdehyde (MDA) and glutathione disulfide (GSSG) significantly increased while the glutathione (GSH) content decreased. This implies the increased consumption of GSH by the increased intracellular oxidative stress upon n-TiO2 was insufficient to eliminate the lipid peroxidation. The contents of photosynthetic pigments, including chlorophyll a (Chl a) and phycobiliproteins (PBPs) in the exposed algal cells increased along with the up-regulation of genes encoding Chl a and photosystem II (PS II), which could be explained by a compensatory effect to overcome the toxicity induced by the n-TiO2. On the other hand, the photosynthetic activity was significantly inhibited, indicating the impairment on the photosynthesis via damaging the reaction center of PS II. In addition, lower productions of adenosine triphosphate (ATP) and glucose, together with the change of gene expressions suggested that the n-TiO2 disrupted the material and energy metabolisms in the photosynthesis. These findings support a paradigm shift of the toxic mechanism of n-TiO2 from physical and oxidative damages to metabolic disturbances, and emphasize the threat to the photosynthesis of algae in contaminated areas.
Collapse
Affiliation(s)
- Ayyaraju Middepogu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Gao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Rodrigues RDP, de Castro FC, Santiago-Aguiar RSD, Rocha MVP. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
|
42
|
Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Lee NK, Oh HM, Kim HS, Ahn CY. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. BIORESOURCE TECHNOLOGY 2017; 227:164-170. [PMID: 28024193 DOI: 10.1016/j.biortech.2016.12.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 05/23/2023]
Abstract
Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
44
|
Terrestrial Microalgae: Novel Concepts for Biotechnology and Applications. PROGRESS IN BOTANY VOL. 79 2017. [DOI: 10.1007/124_2017_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Kannaujiya VK, Sinha RP. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. PROTOPLASMA 2017; 254:423-433. [PMID: 27026262 DOI: 10.1007/s00709-016-0964-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Coward T, Fuentes-Grünewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW. Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. BIORESOURCE TECHNOLOGY 2016; 221:607-615. [PMID: 27693726 DOI: 10.1016/j.biortech.2016.09.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
The effect of specific narrow light-emitting diode (LED) wavelengths (red, green, blue) and a combination of LED wavelengths (red, green and blue - RGB) on biomass composition produced by Porphyridium purpureum is studied. Phycobiliprotein, fatty acids, exopolysaccharides, pigment content, and the main macromolecules composition were analysed to determine the effect of wavelength on multiple compounds of commercial interest. The results demonstrate that green light plays a significant role in the growth of rhodophyta, due to phycobiliproteins being able to harvest green wavelengths where chlorophyll pigments absorb poorly. However, under multi-chromatic LED wavelengths, P. purpureum biomass accumulated the highest yield of valuable products such as eicosapentaenoic acid (∼2.9% DW), zeaxanthin (∼586μgg-1DW), β-carotene (397μgg-1DW), exopolysaccharides (2.05g/L-1), and phycobiliproteins (∼4.8% DW). This increased accumulation is likely to be the combination of both photo-adaption and photo-protection, under the combined specific wavelengths employed.
Collapse
Affiliation(s)
- Thea Coward
- Centre for Complex Fluids Processing (CCFP), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Claudio Fuentes-Grünewald
- Centre for Complex Fluids Processing (CCFP), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Alla Silkina
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea SA2 8PP, United Kingdom
| | - Darren L Oatley-Radcliffe
- Energy Safety Research Institute (ESRI), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom.
| | - Gareth Llewellyn
- EPSRC UK National Mass Spectrometry Facility, Grove Building, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Robert W Lovitt
- Centre for Complex Fluids Processing (CCFP), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
47
|
|
48
|
Sonani RR, Rastogi RP, Patel R, Madamwar D. Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem 2016; 7:100-9. [PMID: 26981199 PMCID: PMC4768114 DOI: 10.4331/wjbc.v7.i1.100] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/07/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023] Open
Abstract
An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.
Collapse
|
49
|
An Efficient Method for the Separation and Purification of Phycobiliproteins from a Rice-Field Cyanobacterium Nostoc sp. Strain HKAR-11. Chromatographia 2016. [DOI: 10.1007/s10337-016-3025-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Kannaujiya VK, Sinha RP. Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats. PROTOPLASMA 2015; 252:1551-1561. [PMID: 25772678 DOI: 10.1007/s00709-015-0786-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
The adaptability of cyanobacteria in diverse habitats is an important factor to withstand harsh conditions. In the present investigation, the impacts of photosynthetically active radiation (PAR; 400-700 nm), ultraviolet-B (UV-B; 280-315 nm), and PAR + UV-B radiations on two cyanobacteria viz., Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 inhabiting diverse habitats such as hot springs and rice fields, respectively, were studied. Cell viability was about 14 % in Nostoc sp. HKAR-2 and <10 % in Nostoc sp. HKAR-11 after 48 h of UV-B exposure. PAR had negligible negative impact on the survival of both cyanobacteria. The continuous exposure of UV-B and PAR + UV-B showed rapid uncoupling, bleaching, fragmentation, and degradation in both phycocyanin (C-PC) and phycoerythrin (C-PE) subunits of phycobiliproteins (PBPs). Remarkable bleaching effect of C-PE and C-PC was not only observed with UV-B or PAR + UV-B radiation, but longer period (24-48 h) of exposure with PAR alone also showed noticeable negative impact. The C-PE and C-PC subunits of the rice field isolate Nostoc sp. HKAR-11 were severely damaged in comparison to the hot spring isolate Nostoc sp. HKAR-2 with rapid wavelength shifting toward shorter wavelengths denoting the bleaching of both the accessory light harvesting pigments. The results indicate that PBPs of the hot spring isolate Nostoc sp. HKAR-2 were more stable under various light regimes in comparison to the rice field isolate Nostoc sp. HKAR-11 that could serve as a good source of valuable pigments to be used in various biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|