1
|
Nemati Z, Kianmehr MH, Arabhosseini A, Abdulkhani A, Stelte W. Ozone pretreatment and process optimization to improve fuel pellet production from sugarcane bagasse pith. BIORESOURCE TECHNOLOGY 2025; 426:132321. [PMID: 40032189 DOI: 10.1016/j.biortech.2025.132321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Sugarcane bagasse pith (SBP), a byproduct of sugar production, is often discarded or burned as waste, despite its potential as a biofuel feedstock. This study explores ozone pretreatment as a processing step to enhance the physicochemical and pelletizing properties of SBP for biofuel production. Ozone pretreatment, conducted in a fixed-bed reactor, selectively reduced lignin content and improved the biomass's binding properties, promoting stronger interparticle adhesion during pelletization. Key variables, including moisture content, die temperature, pressure, and ozonation time, were optimized using Response Surface Methodology (RSM) with Central Composite Design (CCD), leading to improved pellet density and mechanical strength. Thermogravimetric analysis revealed enhanced thermal stability and combustion efficiency in ozone-treated SBP pellets. These findings demonstrate that ozone pretreatment is a promising, sustainable approach to valorize SBP and optimize biomass pellet production.
Collapse
Affiliation(s)
- Zahra Nemati
- Department of Agrotechnology, College of Aburaihan, University of Tehran, Tehran, Iran; CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Kongens Lyngby 2800, Denmark
| | | | - Akbar Arabhosseini
- Department of Agrotechnology, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Ali Abdulkhani
- Department of Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Wolfgang Stelte
- CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
2
|
Prado ERL, Rial RC. Biohydrogen production from residual biomass: The potential of wheat, corn, rice, and barley straw - recent advances. BIORESOURCE TECHNOLOGY 2025; 432:132638. [PMID: 40355006 DOI: 10.1016/j.biortech.2025.132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
This work reviews the potential of wheat, corn, rice, and barley straw for biohydrogen production, highlighting it as a promising solution for sustainable energy. We analyze the physicochemical properties of these straws, which are rich in carbohydrates and lignin, essential components for bioenergy production. Advanced pretreatment approaches, such as ultrasound, torrefaction, and electrohydrolysis, have proven effective in increasing biohydrogen yields. Research and development of fermentation technologies, such as dark fermentation and photofermentation, are crucial to improving process efficiency. Despite environmental and economic advantages, biohydrogen production faces significant challenges, including biomass conversion efficiency and economic viability. The infrastructure for the collection, transportation, and storage of agricultural residues also presents a challenge. This review explores the potential of wheat, corn, rice, and barley straw for biohydrogen production, emphasizing its role in sustainable energy generation. Biohydrogen production from agricultural residues is a viable alternative for the circular economy and environmental sustainability, contributing to waste reduction and climate change mitigation.
Collapse
Affiliation(s)
| | - Rafael Cardoso Rial
- Federal Institute of Mato Grosso do Sul, 79750-000, Nova Andradina, MS, Brazil.
| |
Collapse
|
3
|
Kim T, Im H, Jang A. High-yield extraction of long-chain fatty acids from Chlorella vulgaris: Comparative analysis of ozone extraction methods. BIORESOURCE TECHNOLOGY 2025; 424:132269. [PMID: 39986630 DOI: 10.1016/j.biortech.2025.132269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The production of biodiesel using microalgae has emerged as a promising alternative to fossil fuel-derived energy. However, microalgae-based biodiesel still faces challenges in achieving commercial economic feasibility. One of the primary reasons for this challenge is the limited extraction yield of long-chain fatty acids (LCFAs), which are essential for biodiesel synthesis. This study explores an easily accessible ozone-based extraction method to maximize LCFAs yields to address limitations. The experiments were conducted using Chlorella vulgaris, and the extraction efficiency was assessed for single ozone treatment and the combination of ozone treatment with physical (ultrasound) and chemical (pH adjustment) methods. The results indicated that LCFAs yield (33.12 mg/g) was achieved at 5 mg/L ozone concentration for 15 min at neutral pH, which was 3.41 times higher than that of the control (9.71 mg/g). Furthermore, combining ozone treatment with 100 W of ultrasound further enhanced the LCFAs yield to 52.32 mg/g, demonstrating a synergistic effect between ozone and physical treatment. The mechanism behind the increased extraction efficiency was attributed to the weakening of the cell wall, which facilitated LCFAs extraction. Additionally, it was observed that endogenous lipid synthesis was enhanced when the antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) was promoted in response to oxidative stress. The extracted LCFAs in this study were mainly saturated fatty acids, namely palmitic acid (C16:0) and stearic acid (C18:0). This study offers insights into optimizing ozone-based LCFA extraction as a scalable, eco-friendly method for microalgal biodiesel production, emphasizing its potential to reduce carbon dioxide emissions and support carbon-neutral energy solutions.
Collapse
Affiliation(s)
- Taehun Kim
- Department of Global Smart City, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Hongrae Im
- Department of Global Smart City, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
4
|
Biswa Sarma J, Mahanta S, Tanti B. Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass. Arch Microbiol 2024; 206:448. [PMID: 39470782 DOI: 10.1007/s00203-024-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world's energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon-neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.
Collapse
Affiliation(s)
- Janayita Biswa Sarma
- Department of Energy Engineering, Assam Science and Technology University, Jalukbari, Tetelia, Guwahati, 781011, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology, Guwahati, 781022, Assam, India.
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Jalukbari, Guwahati, 781014, Assam, India
| |
Collapse
|
5
|
Tong KTX, Tan IS, Foo HCY, Hadibarata T, Lam MK, Wong MK. Dilute acid-assisted microbubbles-mediated ozonolysis of Eucheuma denticulatum phycocolloid for biobased L-lactic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131082. [PMID: 38972432 DOI: 10.1016/j.biortech.2024.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Biobased L-lactic acid (L-LA) appeals to industries; however, existing technologies are plagued by limited productivity and high energy consumption. This study established an integrated process for producing macroalgae-based L-LA from Eucheuma denticulatum phycocolloid (EDP). Dilute acid-assisted microbubbles-mediated ozonolysis (DAMMO) was selected for the ozonolysis of EDP to optimize D-galactose recovery. Through single-factor optimization of DAMMO treatment, a maximum D-galactose recovery efficiency (59.10 %) was achieved using 0.15 M H2SO4 at 80 °C for 75 min. Fermentation with 3 % (w/v) mixed microbial cells (Bacillus coagulans ATCC 7050 and Lactobacillus acidophilus-14) and fermented residues achieved a 97.67 % L-LA yield. Additionally, this culture approach was further evaluated in repeated-batch fermentation and showed an average L-LA yield of 93.30 %, providing a feasible concept for macroalgae-based L-LA production.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Tony Hadibarata
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Lot 3288 & 3289, Off Jalan Ayer Hitam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
6
|
Chen X, Liu Z, Zhou Z, Li R, Li L, Cao Y. The Synergetic Reduction of the Condensation Degree of Dissolved Lignin (DL) during the Refining Process of Wheat Straw Biomass Based on the MA/O 3 System. Molecules 2024; 29:3228. [PMID: 38999180 PMCID: PMC11243111 DOI: 10.3390/molecules29133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Lignin, a natural pol2ymer with a complex structure that is difficult to separate, is prone to C-C bond condensation during the separation process. To reduce the condensation of lignin, here, a novel method is proposed for separating the components by using a combination of maleic acid (MA)/ozone (O3) to co-treat wheat straw. The removal of lignin, glucan, and xylan was 38.07 ± 0.2%, 31.44 ± 0.1%, and 71.98 ± 0.1%, respectively, under the conditions of ball-milling of wheat straw for 6 h, reaction temperature of 60 °C, and O3 holding time of 9 min. Lignin-rich solutions were collected to extract the dissolved lignin (DL) after washing the treated samples. The DL obtained under MA/O3 conditions had a carboxyl group (-COOH) content of 2.96 mmol/g. The carboxyl group of MA underwent esterification with the hydroxyl group (-OH) at the γ position of lignin and O3 reacted on the positions of the lignin side chain or the phenolic ring, resulting in a break in the side chain and the opening of the phenolic ring to introduce the carboxyl group. The 2D-HSQC-NMR results revealed that the phenolic ring-opening reaction of lignin in the presence of O3 was essentially free of β-β and β-5 condensation bonds.
Collapse
Affiliation(s)
- Xiuguang Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| | - Zhulan Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Zhenyu Zhou
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Renai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| | - Lizi Li
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| |
Collapse
|
7
|
Ebrahimi M, Acha V, Hoang L, Martínez-Abad A, López-Rubio A, Rhazi L, Aussenac T. Extraction of homogeneous lignin oligomers by ozonation of Miscanthus giganteus and vine shoots in a pilot scale reactor. BIORESOURCE TECHNOLOGY 2024; 402:130804. [PMID: 38718904 DOI: 10.1016/j.biortech.2024.130804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Lignin, a complex phenolic polymer crucial for plant structure, is mostly used as fuel but it can be harnessed for environmentally friendly applications. This article explores ozonation as a green method for lignin extraction from lignocellulosic biomass, aiming to uncover the benefits of the extracted lignin. A pilot-scale ozonation reactor was employed to extract lignin from Miscanthus giganteus (a grass variety) and vine shoots (a woody biomass). The study examined the lignin extraction and modification of the fractions and identified the generation of phenolic and organic acids. About 48 % of lignin was successfully extracted from both biomass types. Phenolic monomers were produced, vine shoots yielding fewer monomers than Miscanthus giganteus. Ozonation generated homogeneous lignin oligomers, although their molecular weight decreased during ozonation, with vine shoot oligomers exhibiting greater resistance to ozone. Extracted fractions were stable at 200 °C, despite the low molecular weight, outlining the potential of these phenolic fractions.
Collapse
Affiliation(s)
- M Ebrahimi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France; Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - V Acha
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - L Hoang
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - A Martínez-Abad
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - A López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - L Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - T Aussenac
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France.
| |
Collapse
|
8
|
Ebrahimi SS, Hamzeh Y, Ashori A, Roohani M, Marlin N, Spigno G. Ozone-activated lignocellulose films blended with chitosan for edible film production. Int J Biol Macromol 2024; 270:132285. [PMID: 38735600 DOI: 10.1016/j.ijbiomac.2024.132285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
This work focuses on the influence of ozone pretreatment on the fractionation and solubilization of sugarcane bagasse and soda bagasse pulp fibers in sodium hydroxide/urea solution, as well as the application of regenerated cellulose for producing edible films. The methodology involved pretreating lignocelluloses with ozone for 20 to 120 min before dissolving in sodium hydroxide/urea solution. The influence of the pretreatment conditions on cellulose dissolution yield was investigated. Regenerated cellulose films were then formed, with and without the addition of 2 % chitosan. Mechanical, physical, structural, thermal, and antimicrobial attributes were determined as a function of ozonation conditions of raw materials and chitosan content. The findings exhibited positive effects of short ozonation on enhancing mechanical strength, cohesion, and hydrophobicity. The prolonged ozonation of 120 min demonstrated optimal improvements in continuity, swelling, and antibacterial resistance of obtained films. Incorporating chitosan enhanced tensile performance, stiffness, and vapor barriers but increased moisture absorption. Tailoring the activation of biomass through ozone pretreatment and chitosan addition resulted in renewable films with adjustable properties to meet diverse packaging requirements, particularly for fruit protective coatings, ensuring the preservation of post-harvest quality.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Ebrahimi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Yahya Hamzeh
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Mehdi Roohani
- Research Center of Chemistry and Petrochemistry, Standard Research Institute (SRI), Karaj, Iran
| | - Nathalie Marlin
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble F-38000, France
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| |
Collapse
|
9
|
Ali SS, Al-Tohamy R, Elsamahy T, Sun J. Harnessing recalcitrant lignocellulosic biomass for enhanced biohydrogen production: Recent advances, challenges, and future perspective. Biotechnol Adv 2024; 72:108344. [PMID: 38521282 DOI: 10.1016/j.biotechadv.2024.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Biohydrogen (Bio-H2) is widely recognized as a sustainable and environmentally friendly energy source, devoid of any detrimental impact on the environment. Lignocellulosic biomass (LB) is a readily accessible and plentiful source material that can be effectively employed as a cost-effective and sustainable substrate for Bio-H2 production. Despite the numerous challenges, the ongoing progress in LB pretreatment technology, microbial fermentation, and the integration of molecular biology techniques have the potential to enhance Bio-H2 productivity and yield. Consequently, this technology exhibits efficiency and the capacity to meet the future energy demands associated with the valorization of recalcitrant biomass. To date, several pretreatment approaches have been investigated in order to improve the digestibility of feedstock. Nevertheless, there has been a lack of comprehensive systematic studies examining the effectiveness of pretreatment methods in enhancing Bio-H2 production through dark fermentation. Additionally, there is a dearth of economic feasibility evaluations pertaining to this area of research. Thus, this review has conducted comparative studies on the technological and economic viability of current pretreatment methods. It has also examined the potential of these pretreatments in terms of carbon neutrality and circular economy principles. This review paves the way for a new opportunity to enhance Bio-H2 production with technological approaches.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Cabrera-Villamizar LA, Ebrahimi M, Martínez-Abad A, Talens-Perales D, López-Rubio A, Fabra MJ. Order matters: Methods for extracting cellulose from rice straw by coupling alkaline, ozone and enzymatic treatments. Carbohydr Polym 2024; 328:121746. [PMID: 38220332 DOI: 10.1016/j.carbpol.2023.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Rice straw is a widely produced residue that can be converted into value-added products. This work aimed at using greener processes combining mild alkali (A), ozone (O) and enzymatic (engineered xylanase) (E) treatments to extract cellulose and other value-added compounds from rice straw and to evaluate the effects of the order of the treatments. Solid (S) and liquid (L) fractions from the process were collected for physicochemical characterization. AOE treatment showed the best capacity to extract high purity cellulose and other valuable compounds. The lignin content was significantly decreased independently of the order of the treatments and, its content in the extract obtained after the AOE process was lower than the one obtained after the OAE process. Moreover, thermal stability of the samples increased after the enzymatic process, being higher in SAOE. The alkaline treatment increased the hemicellulose and polyphenol content (antioxidant activity) in the liquid fractions (LA and LOA). In contrast, the ozonized liquid fractions had lower polyphenol content. Therefore, alkali was fundamental in the process. In conclusion, the AOE strategy could be a more environmentally friendly method for extracting cellulose and other valuable compounds, which could be used to develop active materials in the future.
Collapse
Affiliation(s)
- Laura Andrea Cabrera-Villamizar
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain.
| | - Mahrokh Ebrahimi
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France.
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, 28006 Madrid, Spain.
| | - David Talens-Perales
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain.
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, 28006 Madrid, Spain.
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, 28006 Madrid, Spain.
| |
Collapse
|
11
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
13
|
Saddique Z, Imran M, Latif S, Javaid A, Nawaz S, Zilinskaite N, Franco M, Baradoke A, Wojciechowska E, Boczkaj G. Advanced nanomaterials and metal-organic frameworks for catalytic bio-diesel production from microalgal lipids - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119028. [PMID: 39492394 DOI: 10.1016/j.jenvman.2023.119028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy demands require exploring renewable, eco-friendly (green), and cost-effective energy resources. Among various sources of biodiesel, microalgal lipids are an excellent resource, owing to their high abundance in microalgal biomass. Transesterification catalyzed by advanced materials, especially nanomaterials and metal-organic frameworks (MOFs), is a revolutionary process for overcoming the energy crisis. This review elaborates on the conversion of microalgal lipids (including genetically modified algae) into biodiesel while primarily focusing on the transesterification of lipids into biodiesel by employing catalysts based on above mentioned advanced materials. Furthermore, current challenges faced by this process for industrial scale upgradation are presented with future perspectives and concluding remarks. These materials offer higher conversion (>90%) of microalgae into biodiesel. Nanocatalytic processes, lack the need for higher pressure and temperature, which simplifies the overall process for industrial-scale application. Green biodiesel production from microalgae offers better fuel than fossil fuels in terms of performance, quality, and less environmental harm. The chemical and thermal stability of advanced materials (particularly MOFs) is the main benefit of the blue recycling of catalysts. Advanced materials-based catalysts are reported to reduce the risk of biodiesel contamination. While purity of glycerin as side product makes it useful skin-related product. However, these aspects should still be controlled in future studies. Further studies should relate to additional aspects of green production, including waste management strategies and quality control of obtained products. Finally, catalysts stability and recycling aspects should be explored.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nemira Zilinskaite
- Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Faculty of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101, Vilnius, Lithuania
| | - Marcelo Franco
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370, Ilhéus, Brazil
| | - Ausra Baradoke
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdańsk, G. Narutowicza 11/12 Str, Poland
| | - Grzegorz Boczkaj
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdańsk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland.
| |
Collapse
|
14
|
Epelle E, Macfarlane A, Cusack M, Burns A, Okolie JA, Vichare P, Rolland L, Yaseen M. Ozone Decontamination of Medical and Nonmedical Devices: An Assessment of Design and Implementation Considerations. Ind Eng Chem Res 2023; 62:4191-4209. [PMID: 36943762 PMCID: PMC10020969 DOI: 10.1021/acs.iecr.2c03754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments. As this interest continues to grow, it is necessary to consider key factors affecting the applicability of lab-based findings to large-scale systems utilizing ozone. In this review, we present recent developments on the critical factors affecting the successful deployments of industrial ozone technologies. Some of these include the medium of application (air or water), material compatibility, efficient circulation and extraction, measurement and control, automation, scalability, and process economics. We also provide a comparative assessment of ozone relative to other decontamination methods/sterilization technologies and further substantiate the necessity for increased developments in gaseous and aqueous ozonation. Modeling methodologies, which can be applied for the design and implementation of ozone contacting systems, are also presented in this review. Key knowledge gaps and open research problems/opportunities are extensively covered including our recommendations for the development of novel solutions with industrial importance.
Collapse
Affiliation(s)
- Emmanuel
I. Epelle
- School
of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
- ACS
Clothing, 6 Dovecote
Road Central Point Logistics Park, Centralpark ML1 4GP, United
Kingdom
| | - Andrew Macfarlane
- ACS
Clothing, 6 Dovecote
Road Central Point Logistics Park, Centralpark ML1 4GP, United
Kingdom
| | - Michael Cusack
- ACS
Clothing, 6 Dovecote
Road Central Point Logistics Park, Centralpark ML1 4GP, United
Kingdom
| | - Anthony Burns
- ACS
Clothing, 6 Dovecote
Road Central Point Logistics Park, Centralpark ML1 4GP, United
Kingdom
| | - Jude A. Okolie
- Gallogly
College of Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
of America
| | - Parag Vichare
- School
of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Luc Rolland
- School
of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Mohammed Yaseen
- School
of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| |
Collapse
|
15
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
16
|
Chen S, Davaritouchaee M. Nature-inspired pretreatment of lignocellulose - Perspective and development. BIORESOURCE TECHNOLOGY 2023; 369:128456. [PMID: 36503090 DOI: 10.1016/j.biortech.2022.128456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As sustainability gains increasing importance in addition to cost-effectiveness as a criterion for evaluating engineering systems and practices, biological processes for lignocellulose pretreatment have attracted growing attention. Biological systems such as white and brown rot fungi and wood-consuming insects offer fascinating examples of processes and systems built by nature to effectively deconstruct plant cell walls under environmentally benign and energy-conservative environments. Research in the last decade has resulted in new knowledge that advanced the understanding of these systems, provided additional insights into these systems' functional mechanisms, and demonstrated various applications of these processes. The new knowledge and insights enable the adoption of a nature-inspired strategy aiming at developing technologies that are informed by the biological systems but superior to them by overcoming the inherent weakness of the natural systems. This review discusses the nature-inspired perspective and summarizes related advancements, including the evolution from biological systems to nature-inspired processes, the features of biological pretreatment mechanisms, the development of nature-inspired pretreatment processes, and future perspective. This work aims to highlight a different strategy in the research and development of novel lignocellulose pretreatment processes and offer some food for thought.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Maryam Davaritouchaee
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
17
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Djellabi R, Aboagye D, Galloni MG, Vilas Andhalkar V, Nouacer S, Nabgan W, Rtimi S, Constantí M, Medina Cabello F, Contreras S. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species - A review. BIORESOURCE TECHNOLOGY 2023; 368:128333. [PMID: 36403911 DOI: 10.1016/j.biortech.2022.128333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
Collapse
Affiliation(s)
- Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Melissa Greta Galloni
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | | | - Sana Nouacer
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba BP12 2300, Algeria; École Nationale Supérieure des Mines et Métallurgie, ENSMM, Ex CEFOS Chaiba BP 233 RP Annaba, Sidi Amar W129, Algeria
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, Geneva 1201, Switzerland
| | - Magda Constantí
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | | | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| |
Collapse
|
19
|
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022; 27:molecules27248717. [PMID: 36557852 PMCID: PMC9785513 DOI: 10.3390/molecules27248717] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.
Collapse
|
20
|
Mamleeva NA, Ben’ko EM, Kharlanov AN, Shumyantsev AV. Transformations of the Lignin–Carbohydrate Complex of Triticum L. during Delignification with Ozone. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s003602442211019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Recent Advancements and Challenges in Lignin Valorization: Green Routes towards Sustainable Bioproducts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186055. [PMID: 36144795 PMCID: PMC9500909 DOI: 10.3390/molecules27186055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
The aromatic hetero-polymer lignin is industrially processed in the paper/pulp and lignocellulose biorefinery, acting as a major energy source. It has been proven to be a natural resource for useful bioproducts; however, its depolymerization and conversion into high-value-added chemicals is the major challenge due to the complicated structure and heterogeneity. Conversely, the various pre-treatments techniques and valorization strategies offers a potential solution for developing a biomass-based biorefinery. Thus, the current review focus on the new isolation techniques for lignin, various pre-treatment approaches and biocatalytic methods for the synthesis of sustainable value-added products. Meanwhile, the challenges and prospective for the green synthesis of various biomolecules via utilizing the complicated hetero-polymer lignin are also discussed.
Collapse
|
22
|
Ghorbani M, Li Q, Kianmehr MH, Arabhosseini A, Sarlaki E, Asefpour Vakilian K, Varjani S, Wang Y, Wei D, Pan J, Aghbashlo M, Tabatabaei M. Highly digestible nitrogen-enriched straw upgraded by ozone-urea pretreatment: Digestibility metrics and energy-economic analysis. BIORESOURCE TECHNOLOGY 2022; 360:127576. [PMID: 35792329 DOI: 10.1016/j.biortech.2022.127576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Ozone is a powerful oxidative gas widely used as a green pretreatment to enhance the delignification of cereal straws. Urea pretreatment can enrich straws with nitrogen to make them more accessible to anaerobic microorganisms. This study aimed to evaluate the effect of ozone-urea pretreatment on the digestibility of wheat straw (i.e., physicochemical, nitrogen enrichment, gas production, nutritional value, and surface chemistry). The results of ozone-urea pretreatment were compared with non-pretreated, ozone-pretreated, and urea-pretreated samples. This pretreatment method outperformed the other methods in terms of digestibility metrics. The ozone-urea pretreatment resulted in a 50% reduction in lignin, a 4.2 times increase in crude protein, a 22.5% increase in bonded organic-N, a 2 times increase in 24 h-gas production, and a 43.67% increase in total digestible nutrients compared to the non-pretreated sample. Based on the total digestible nutrients index, one-tonne ozone-urea-pretreated straw would be 70.6 USD cheaper than the non-pretreated one.
Collapse
Affiliation(s)
- Marzieh Ghorbani
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Agrotechnology, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran
| | - Qiao Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | | | - Akbar Arabhosseini
- Department of Agrotechnology, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran
| | - Ehsan Sarlaki
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Agrotechnology, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran
| | - Keyvan Asefpour Vakilian
- Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Yajing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Dan Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia.
| |
Collapse
|
23
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
24
|
Ozone Gas for Low Cost and Environmentally Friendly Desulfurization of Mute Grape Must. Foods 2022; 11:foods11101405. [PMID: 35626974 PMCID: PMC9140449 DOI: 10.3390/foods11101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Ozone is widely used for storage and processing facilities and food sanitization. In this research, ozone was tested as an alternative to high temperature vacuum must desulfurization in order to make a more sustainable process. Bubbling ozone in highly sulfited red must (mute must) at two treatment temperatures, a significant reduction in total and free sulfites from around 1000 mg/L to 200 and 120 mg/L at 20 and 10 °C, respectively, was observed in 24 h, but already after 4 h the concentration was halved. Air flushing of the mute must did not reduce the SO2 content. To evaluate the potential ozone effect on polyphenol oxidation, we carried out the ozone treatment on a water solution with tannins, ascorbic acid, or potassium metabisulfite (MBK) as single and as mixture. In 1 h, 2/3 of sulfite disappeared with the treatment, but the reduction was greater with ascorbate and tannins; the same was observed for ascorbate, whereas tannins decreased to a lesser extent when combined with ascorbate and MBK. Taken together, the results indicate that ozone could be an environmentally friendly, low cost, treatment for desulfurization, especially for white must, and is also easy to use by small wineries.
Collapse
|
25
|
Donkor KO, Gottumukkala LD, Lin R, Murphy JD. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. BIORESOURCE TECHNOLOGY 2022; 351:126950. [PMID: 35257881 DOI: 10.1016/j.biortech.2022.126950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a bioprocess technology that integrates into circular economy systems, which produce renewable energy and biofertilizer whilst reducing greenhouse gas emissions. However, improvements in biogas production efficiency are needed in dealing with lignocellulosic biomass. The state-of-the-art of AD technology is discussed, with emphasis on feedstock digestibility and operational difficulty. Solutions to these challenges including for pre-treatment and bioaugmentation are reviewed. This article proposes an innovative integrated system combining alkali pre-treatment, temperature-phased AD and bioaugmentation techniques. The integrated system as modelled has a targeted potential to achieve a biodegradability index of 90% while increasing methane production by 47% compared to conventional AD. The methane productivity may also be improved by a target reduction in retention time from 30 to 20 days. This, if realized has the potential to lower energy production cost and the levelized cost of abatement to facilitate an increased resource of sustainable commercially viable biomethane.
Collapse
Affiliation(s)
- Kwame O Donkor
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Celignis Limited, Mill Court, Upper William Street, Limerick V94 N6D2, Ireland
| | | | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Recycled Paper Sludge (RPS)-Derived Nanocellulose: Production, Detection and Water Treatment Application. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paper production and recycling result in large amounts of recycled paper sludge (RPS) that is currently being disposed of in very costly and unsustainable practices, raising the importance of developing green solutions for waste management. The use of nanocellulose (NC) as the next generation of materials has gained much attention due to its economic potential. However, there are substantial challenges in NC extraction, detection, and quantification methods. In this study, NC was produced from RPS as a means of converting waste into a resource. The process included a short, 30 min ozonation (21 mg O3/g RPS), which allowed a sufficient delignification and facilitated the following hydrolysis step. Among all tested durations, a 4-h hydrolysis with 64% w/w sulfuric acid resulted in the highest NC production. Fluorescent staining by calcofluor white was used for simple and low-cost detection of NC in-situ. Crude NC showed a significant 63% dye uptake of 0.1 ppm acid red 131 within 30 min. Compared to the standard disposal methods of RPS, its utilization for NC production supports the circular economy concept and significantly contributes to the development of cellulose bio-based nanomaterials for water treatment applications.
Collapse
|
27
|
Structural Changes of Alkali Lignin under Ozone Treatment and Effect of Ozone-Oxidized Alkali Lignin on Cellulose Digestibility. Processes (Basel) 2022. [DOI: 10.3390/pr10030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, the structural changes of alkali lignin induced by ozonation were investigated, and the effect of ozone-treated alkali lignin and its mechanism on Avicel enzymatic hydrolysis was examined. The physicochemical properties of alkali lignin were analyzed by FTIR, 1H-13C HSQC NMR, and GPC. It was revealed that ozone pretreatment increased the content of carboxyl and/or aldehyde groups and the negative zeta potential of alkali lignin, which enhanced the electrostatic repulsion between alkali lignin and cellulase; The S/G ratio was reduced, indicating the hydrophobic interaction was diminished. The Langmuir adsorption isotherm showed that the cellulase binding strength of ozone pretreated alkali lignin (OL-pH3, OL-pH7, and OL-pH12 were 16.67, 13.87, and 44.05 mL/g, respectively) was significantly lower than that of alkali lignin (161.29 mL/g). The 72 h hydrolysis yields of Avicel added with OL-pH3, OL-pH7, and OL-pH12 were 55.4%, 58.6%, and 54.9% respectively, which were 2.6–6.3% higher than that of Avicel added with AL (52.3%). This research aimed to reduce the non-productive adsorption between cellulase and lignin by investigating the structural changes of lignin caused by ozone treatment. For the first time, we discovered that ozone-treated alkali lignin has a further promotion effect on the enzymatic digestion of cellulose, providing a green and feasible pretreatment process for the enzymatic hydrolysis of lignocellulose and aiding in the more efficient utilization of biomass.
Collapse
|
28
|
Jablonowski ND, Pauly M, Dama M. Microwave Assisted Pretreatment of Szarvasi (Agropyron elongatum) Biomass to Enhance Enzymatic Saccharification and Direct Glucose Production. FRONTIERS IN PLANT SCIENCE 2022; 12:767254. [PMID: 35058946 PMCID: PMC8765703 DOI: 10.3389/fpls.2021.767254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Biomass from perennial plants can be considered a carbon-neutral renewable resource. The tall wheatgrass hybrid Szarvasi-1 (Agropyron elongatum, hereafter referred to as "Szarvasi") belongs to the perennial Poaceae representing a species, which can grow on marginal soils and produce large amounts of biomass. Several conventional and advanced pretreatment methods have been developed to enhance the saccharification efficiency of plant biomass. Advanced pretreatment methods, such as microwave-assisted pretreatment methods are faster and use less energy compared to conventional pretreatment methods. In this study, we investigated the potential of Szarvasi biomass as a biorefinery feedstock. For this purpose, the lignocellulosic structure of Szarvasi biomass was investigated in detail. In addition, microwave-assisted pretreatments were applied to Szarvasi biomass using different reagents including weak acids and alkali. The produced pulp, hydrolysates, and extracted lignin were quantitatively characterized. In particular, the alkali pretreatment significantly enhanced the saccharification efficiency of the pulp 16-fold compared to untreated biomass of Szarvasi. The acid pretreatment directly converted 25% of the cellulose into glucose without the need of enzymatic digestion. In addition, based on lignin compositional and lignin linkage analysis a lignin chemical model structure present in Szarvasi biomass could be established.
Collapse
Affiliation(s)
- Nicolai D. Jablonowski
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Markus Pauly
- Bioeconomy Science Center (BioSC), Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Murali Dama
- Bioeconomy Science Center (BioSC), Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
29
|
Shi H, Lundin M, Danby A, Go EP, Patil A, Zhou H, Jackson TA, Subramaniam B. Selective ozone activation of phenanthrene in liquid CO2. RSC Adv 2022; 12:626-630. [PMID: 35424516 PMCID: PMC8696549 DOI: 10.1039/d1ra06642k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
We demonstrate liquid CO2 (8 °C, 4.4 MPa) as a benign medium to perform safe ozonolysis of phenanthrene at near-ambient temperatures. The ozonolysis products consist of several monomeric oxidation products such as diphenaldehyde, diphenic acid and phenanthrenequinone as well as polymeric structures up to 1130 Da. The observed chemical shifts (1H-6.03 ppm, 13C-104.38 ppm) in 2D-NMR spectra of the products confirm the formation of secondary ozonide. Based on the range of observed products, a Criegee-type mechanism is proposed. The ability to deconstruct phenanthrene and produce oxygenated precursors via this technique is particularly of interest in creating new materials from aromatic moieties. Facile phenanthrene (as a polyaromatic model compound) ozonolysis to oxygenated material precursors has been demonstrated in liquid CO2.![]()
Collapse
Affiliation(s)
- Honghong Shi
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66047, USA
| | - Michael Lundin
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66047, USA
| | - Andrew Danby
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66047, USA
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Abhimanyu Patil
- ExxonMobil Research and Engineering Company, 1545 Rt 22 East, Annandale, New Jersey, 08801, USA
| | - Huaxing Zhou
- ExxonMobil Research and Engineering Company, 1545 Rt 22 East, Annandale, New Jersey, 08801, USA
| | - Timothy A. Jackson
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66047, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS, 66047, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
30
|
Palanisamy A, Soundarrajan N, Ramasamy G. Analysis on production of bioethanol for hydrogen generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63690-63705. [PMID: 34050510 DOI: 10.1007/s11356-021-14554-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Bioethanol is a renewable energy source carrier mainly produced from the biomass fermentation process. Reforming of bioethanol for hydrogen production is the most promising method from the renewable energy source. Production of hydrogen from ethanol reforming process is not only environmentally friendly, but also it produces greater opportunities for use of renewable energy source, which are available and affect the catalytic activity of the process. This paper reviewed the various reforming processes and associated noble and non-noble catalysts and supporting layers for the reforming process. Among that, electrochemical reforming of bioethanol is found to be cost-effective, and hydrogen production is also found to be of high purity. Hydrogen production from ethanol through various reforming processes is still in the research for better hydrogen production. Hydrogen production through the process of reforming can be widely used for fuel cell operations.
Collapse
Affiliation(s)
- Abirami Palanisamy
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Tamil Nadu, 602 117, India
| | - Nivedha Soundarrajan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Tamil Nadu, 602 117, India
| | - Govindarasu Ramasamy
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Tamil Nadu, 602 117, India.
| |
Collapse
|
31
|
Mamleeva NA, Kharlanov AN, Kupreenko SY, Chukhchin DG. Main Pathways of the Transformations of Lignocellulosic Material under the Action of Ozone. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Murlidhar Sonkar R, Savata Gade P, Bokade V, Mudliar SN, Bhatt P. Ozone assisted autohydrolysis of wheat bran enhances xylooligosaccharide production with low generation of inhibitor compounds: A comparative study. BIORESOURCE TECHNOLOGY 2021; 338:125559. [PMID: 34280853 DOI: 10.1016/j.biortech.2021.125559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ozone assisted autohydrolysis (OAAH) was evaluated for enhanced generation of xylooligosaccharide (XOS) from wheat bran. The total XOS yield with optimum ozone dose of 3% (OAAH-3) was found to be 8.9% (w/w biomass) at 110 °C in comparison to 7.96% at 170 °C by autohydrolysis (AH) alone. Although, there was no significant difference in oligomeric composition (DP 2-6), significant decrease in degradation products namely furfural (2.78-fold), HMF (3.15-fold), acrylamide (nil) and acetic acid (1.06-fold), was observed with OAAH-3 as a pretreatment option. There was 1-fold higher xylan to XOS conversion and OAAH-hydrolysate had higher DPPH radical scavenging activity than AH. PCA plots indicated clear enhancement in XOS production and lower generation of inhibitors with decrease in treatment temperature. Results of the study therefore suggest OAAH can be an effective pretreatment option that can further be integrated with downstream processing for concentration and purification of XOS.
Collapse
Affiliation(s)
- Rutuja Murlidhar Sonkar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Vijay Bokade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Catalysis Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sandeep N Mudliar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
33
|
Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel) 2021; 13:2886. [PMID: 34502925 PMCID: PMC8433819 DOI: 10.3390/polym13172886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing demand for petroleum-based polyethylene terephthalate (PET) grows population impacts daily. A greener and more sustainable raw material, lignocellulose, is a promising replacement of petroleum-based raw materials to convert into bio-PET. This paper reviews the recent development of lignocellulose conversion into bio-PET through bioethanol reaction pathways. This review addresses lignocellulose properties, bioethanol production processes, separation processes of bioethanol, and the production of bio-terephthalic acid and bio-polyethylene terephthalate. The article also discusses the current industries that manufacture alcohol-based raw materials for bio-PET or bio-PET products. In the future, the production of bio-PET from biomass will increase due to the scarcity of petroleum-based raw materials.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Didik Supriyadi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Devita Amelia
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Desi Riana Saputri
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Yuniar Luthfia Listya Devi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Wika Atro Auriyani
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Ho Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
34
|
Chemical and Structural Changes of Ozonated Empty Fruit Bunch (EFB) in a Ribbon-Mixer Reactor. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10506.383-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Agricultural wastes especially empty fruit bunch (EFB) are abundantly available to be utilized as a feedstock for biochemical synthesis or biofuel production. The components of the waste include lignin, hemicellulose and cellulose. Cellulose, the polymer of glucose, is the active component for producing bio-based chemicals. However, it is difficult to isolate cellulose since lignin, the most outer layer in the waste is recalcitrant. Therefore, the agricultural wastes need to be pre-treated prior to downstream processing. The aim of this study was to investigate the effect of ozone pretreatment on lignin degradation and total reducing sugar (TRS) yield. EFB was pre-treated using ozone gas in a ribbon-mixer reactor. The chemical and structural changes of ozonated EFB were analysed. The highest delignification obtained were 95.7 wt.% and TRS yield was enhanced to 84.9% at a moisture content of 40 wt.% with 60 g/m3 ozone concentration within one hour of reaction time. Both NMR and FTIR spectra conferred major peaks inferring higher lignin degradation could be achieved using ozonolysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
35
|
Patel A, Shah AR. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Mamleeva NA, Shumyantsev AV, Kharlanov AN. Degradation of Structure of Populus tremula Wood during Delignification with Ozone. Thermal Analysis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421040166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Mamleeva NA, Ben’ko EM, Kharlanov AN, Shumyantsev AV, Chukhchin DG. Physicochemical Patterns of the Delignification of Deciduous and Coniferous Wood during Ozonation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421030146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Ozonolysis of wheat bran in subcritical water for enzymatic saccharification and polysaccharide recovery. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Mamleeva NA, Kharlanov AN, Chukhchin DG, Bazarnova NG, Lunin VV. Degradation of the Pine Wood Structure in Ozonolytic Delignification. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162020070080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Vu HP, Nguyen LN, Vu MT, Johir MAH, McLaughlan R, Nghiem LD. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140630. [PMID: 32679491 DOI: 10.1016/j.scitotenv.2020.140630] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 05/26/2023]
Abstract
An effective pretreatment is the first step to enhance the digestibility of lignocellulosic biomass - a source of renewable, eco-friendly and energy-dense materials - for biofuel and biochemical productions. This review aims to provide a comprehensive assessment on the advantages and disadvantages of lignocellulosic pretreatment techniques, which have been studied at the lab-, pilot- and full-scale levels. Biological pretreatment is environmentally friendly but time consuming (i.e. 15-40 days). Chemical pretreatment is effective in breaking down lignocellulose and increasing sugar yield (e.g. 4 to 10-fold improvement) but entails chemical cost and expensive reactors. Whereas the combination of physical and chemical (i.e. physicochemical) pretreatment is energy intensive (e.g. energy production can only compensate 80% of the input energy) despite offering good process efficiency (i.e. > 100% increase in product yield). Demonstrations of pretreatment techniques (e.g. acid, alkaline, and hydrothermal) in pilot-scale have reported 50-80% hemicellulose solubilisation and enhanced sugar yields. The feasibility of these pilot and full-scale plants has been supported by government subsidies to encourage biofuel consumption (e.g. tax credits and mandates). Due to the variability in their mechanisms and characteristics, no superior pretreatment has been identified. The main challenge lies in the capability to achieve a positive energy balance and great economic viability with minimal environmental impacts i.e. the energy or product output significantly surpasses the energy and monetary input. Enhancement of the current pretreatment techno-economic efficiency (e.g. higher product yield, chemical recycling, and by-products conversion to increase environmental sustainability) and the integration of pretreatment methods to effectively treat a range of biomass will be the steppingstone for commercial lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| | - Minh T Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Robert McLaughlan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
41
|
Wright A, Rollinson A, Yadav D, Lisowski S, Iza F, Holdich R, Radu T, Hemaka Bandulasena H. Plasma-assisted pre-treatment of lignocellulosic biomass for anaerobic digestion. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Integrated Ozonation-Enzymatic Hydrolysis Pretreatment of Sugarcane Bagasse: Enhancement of Sugars Released to Expended Ozone Ratio. Processes (Basel) 2020. [DOI: 10.3390/pr8101274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The combined effects of three key ozonation process parameters on the integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse (SCB) were investigated, with emphasis on the relationship between sugar release and ozone consumption. A lab-scale fixed bed reactor was employed for ozonation at varying ozone doses (50, 75 and 100 mg O3/g SCB), particle sizes (420, 710 and 1000 µm) and moisture contents (30, 45 and 60% w/w) in multifactorial experiments, keeping a residence time of 30 min. The ozonated SCB showed a reduction in the content of acid-insoluble lignin from 26.6 down to 19.1% w/w, while those of cellulose and hemicellulose were retained above 45.5 and 13.6% w/w, with recoveries of 100–89.9 and 83.5–72.7%, respectively. Ozone-assisted enzymatic hydrolysis allowed attaining glucose and xylose yields as high as 45.0 and 37.8%, respectively. The sugars released/ozone expended ratio ranged between 2.3 and 5.7 g sugars/g O3, being the higher value achieved with an applied ozone input of 50 mg O3/g SCB and SCB with 420 µm particle size and 60% moisture. Such operating conditions led to efficient ozone utilization (<2% unreacted ozone) with a yield of 0.29 g sugars/g SCB. Overall, the amount of sugars released relative to the ozone consumed was improved, entailing an estimated cost of ozonation of USD 34.7/ton of SCB, which could enhance the profitability of the process.
Collapse
|
43
|
Osorio-González CS, Hegde K, Brar SK, Vezina P, Gilbert D, Avalos-Ramírez A. Pulsed-ozonolysis assisted oxidative treatment of forestry biomass for lignin fractionation. BIORESOURCE TECHNOLOGY 2020; 313:123638. [PMID: 32534757 DOI: 10.1016/j.biortech.2020.123638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 05/22/2023]
Abstract
Lignocellulosic biomass has been used to produce biomolecules of industrial interest through thermochemical, biological, and chemical transformation. However, few works have been developed over lignin fractionation to obtain monolignols with commercial potentials, such as sinapyl, coniferyl, and p-coumaryl alcohols. This study is focused on developing a thermochemical method to delignify biomass. Additionally, an oxidative treatment with ozone was studied to increase the release of monolignol compounds. The results showed that with 30 sec of ozonation in liquid samples from softwood sawdust a total concentration of 368.50 ± 0.73 mg/kg of monolignols was released after microwave-assisted extraction (256.5 ± 0.51 mg/kg of sinapyl alcohol and 112 ± 0.22 mg/kg of coniferyl alcohol) and 629.20 ± 0.21 mg/kg was released after thermal treatment (453.70 ± 0.15 mg/kg of sinapyl alcohol and 175.5 ± 0.06 mg/kg of coniferyl alcohol). For p-coumaryl alcohol, 16.32 mg/kg was obtained only in hardwood samples. The results of the present study showed that ozonolysis improves monolignols release from forestry residues.
Collapse
Affiliation(s)
- Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Krishnamoorthy Hegde
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Pierre Vezina
- Directeur énergie et environnement, Conseil de l'industrie Forestière du Québec, 1175 Avenue Lavigerie Suite 200, Québec G1V 4P1, QC, Canada
| | - Dave Gilbert
- EMO3 Director, 945, Newton Avenue, Suite 134, Québec G1P 4M3, QC, Canada
| | - Antonio Avalos-Ramírez
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada; Centre National en Électrochimie et en Technologies Environnementales, 2263, Avenue du Collège, Shawinigan G9N 6V8, QC, Canada
| |
Collapse
|
44
|
Ben’ko EM, Lunin VV. Patterns of the Ozone Pretreatment of Lignocellulosic Biomass for Subsequent Fermentation into Sugars. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420090034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
González-Balderas RM, Velásquez-Orta SB, Valdez-Vazquez I, Orta Ledesma MT. Sequential pretreatment to recover carbohydrates and phosphorus from Desmodesmus sp. cultivated in municipal wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1237-1246. [PMID: 33055413 DOI: 10.2166/wst.2020.404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study focused on the simultaneous recovery of carbohydrates (CHO) and phosphorus (P) from Desmodesmus sp. biomass cultivated in municipal wastewater, through a sequential pretreatment. The pretreatment consisted first of ultrasound to trigger cell disruption followed by ozonation to recover CHO and P. For ozone pretreatment, three different parameters were considered: ozone concentration (9, 15, 21, 27, 36, and 45 mg O3/L), contact time (15, 25 and 35 min), and pH (8 and 11). The maximum simultaneous release of 84% of CHO and 58% of P was achieved at the experimental parameters of ozone concentration of 45 mg O3/L, contact time of 35 min, and pH of 11. Also, P was concentrated in solution by 8- to 14-fold with respect to municipal wastewater. The sequential pretreatment was conducted at alkaline pH of 11 and atmospheric conditions, which may considerably reduce energy demand and reagents, in comparison to a traditional hydrolysis pretreatment. The results found suggest that the sequential pretreatment could be feasible on a large scale.
Collapse
Affiliation(s)
- R M González-Balderas
- Instituto de Ingeniería, Coordinación de Ingeniería Ambiental, Universidad Nacional Autónoma de México UNAM, Circuito Escolar s/n, Ciudad Universitaria, Delegación Coyoacán, México, CDMX., C.P. 04510, Mexico
| | - S B Velásquez-Orta
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK E-mail: ;
| | - I Valdez-Vazquez
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - M T Orta Ledesma
- Instituto de Ingeniería, Coordinación de Ingeniería Ambiental, Universidad Nacional Autónoma de México UNAM, Circuito Escolar s/n, Ciudad Universitaria, Delegación Coyoacán, México, CDMX., C.P. 04510, Mexico
| |
Collapse
|
46
|
Ben’ko EM, Chukhchin DG, Mamleeva NA, Kharlanov AN, Lunin VV. Ozonolytic Delignification of Wheat Straw. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420080038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Somers MH, Azman S, Bollansée G, Goedemé T, Leermakers M, Alonso-Fariñas B, Appels L. Behavior of trace elements and micronutrients in manure digestate during ozone treatment. CHEMOSPHERE 2020; 252:126477. [PMID: 32222523 DOI: 10.1016/j.chemosphere.2020.126477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Digestate treatment techniques have recently been proposed as a strategy to increase the ultimate biogas yield from dairy manure and to improve the digestate quality as an organic fertilizer. These studies however rarely take the trace elements (TE) and nutrient partitioning into account. This study focusses on ozone treatment (5-40 g O3 kg-1 Total Solids (TS)) as a digestate treatment technique to control the concentration of TE and nutrients in the liquid phase of the digestate. Controlling the TE and nutrient concentrations in the liquid and solid digestate can improve the agronomic value of dairy manure digestate. The ozone concentration of the gas stream entering reactor was 48.53 g O3/Nm³ or 3.4% w/w O3 in O2-gas. The experiments were repeated using pure oxygen gas to investigate its influence. The results from ozonation and oxygenation of the dairy manure digestates revealed that O3 treatment up to 40 g O3 kg-1 TS did not have a more pronounced effect on the biochemical parameters compared to supplementation of pure O2. Ozonation of the digestate and the supernatant showed that the TE concentration in the liquid phase followed a parabolic profile. The observed initial increase in this parabolic profile was explained by the release of TE from the organic matter to the supernatant causing an increase in TE concentration, followed by a decrease due to precipitation of TE as hydroxides and sulfides, due to the increasing pH and sulphur concentrations.
Collapse
Affiliation(s)
- Matthijs H Somers
- KU Leuven Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Samet Azman
- KU Leuven Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Giel Bollansée
- KU Leuven Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Toon Goedemé
- EAVISE: Embedded and Artificially Intelligent Vision Engineering, KU Leuven, De Nayer Campus, J. de Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Martine Leermakers
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Bernabé Alonso-Fariñas
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de Los Descubrimientos s/n, 41092, Seville, Spain
| | - Lise Appels
- KU Leuven Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
48
|
Dhanya BS, Mishra A, Chandel AK, Verma ML. Development of sustainable approaches for converting the organic waste to bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138109. [PMID: 32229385 DOI: 10.1016/j.scitotenv.2020.138109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 05/22/2023]
Abstract
Dependence on fossil fuels such as oil, coal and natural gas are on alarming increase, thereby causing such resources to be in a depletion mode and a novel sustainable approach for bioenergy production are in demand. Successful implementation of zero waste discharge policy is one such way to attain a sustainable development of bioenergy. Zero waste discharge can be induced only through the conversion of organic wastes into bioenergy. Waste management is pivotal and considering its importance of minimizing the issue and menace of wastes, conversion strategy of organic waste is effectively recommended. Present review is concentrated on providing a keen view on the potential organic waste sources and the way in which the bioenergy is produced through efficient conversion processes. Biogas, bioethanol, biocoal, biohydrogen and biodiesel are the principal renewable energy sources. Different types of organic wastes used for bioenergy generation and its sources, anaerobic digestion-biogas production and its related process affecting parameters including fermentation, photosynthetic process and novel nano-inspired techniques are discussed. Bioenergy production from organic waste is associated with mitigation of lump waste generation and its dumping into land, specifically reducing all hazards and negativities in all sectors during waste disposal. A sustainable bioenergy sector with upgraded security for fuels, tackles the challenging climatic change problem also. Thus, intensification of organic waste conversion strategies to bioenergy, specially, biogas and biohydrogen production is elaborated and analyzed in the present article. Predominantly, persistent drawbacks of the existing organic waste conversion methods have been noted, providing consideration to economic, environmental and social development.
Collapse
Affiliation(s)
- B S Dhanya
- Department of Biotechnology, Udaya School of Engineering, Udaya Nagar, Kanyakumari, Tamil Nadu 629 204, India
| | - Archana Mishra
- Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil
| | - Madan L Verma
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology, Una, Himachal Pradesh, India.
| |
Collapse
|
49
|
Benko EM, Chuhchin DG, Malkov AV, Vydrina IV, Novozhilov EV, Lunin VV. Change in the Crystallinity of Wheat Straw during Ozone Treatment. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420060059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Wu S, Chen H, Jameel H, Chang HM, Phillips R, Jin Y. Effects of Lignin Contents and Delignification Methods on Enzymatic Saccharification of Loblolly Pine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hui Chen
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hou-min Chang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Richard Phillips
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|