1
|
Akca MS, Kinaci OK, Inanc B. Improving light availability and creating high-frequency light-dark cycles in raceway ponds through vortex-induced vibrations for microalgae cultivation: a fluid dynamic study. Bioprocess Biosyst Eng 2024; 47:1863-1874. [PMID: 39133298 PMCID: PMC11438835 DOI: 10.1007/s00449-024-03074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Limited light availability due to insufficient vertical mixing strongly reduces the applicability of raceway ponds (RWPs). To overcome this and create light-dark (L/D) cycles for enhanced biomass production through improved vertical mixing, vortex-induced vibration (VIV) system was implemented by the authors in a previous study to an existing pilot-scale RWP. In this study, experimental characterization of fluid dynamics for VIV-implemented RWP is carried out. Particle image velocimetry (PIV) technique is applied to visualize the flow. The extents of the vertical mixing due to VIV and the characteristics of L/D cycles were examined by tracking selected particles. Pond depth was hypothetically divided into three zones, namely dark, light Iimited and light saturated for detailed analysis of cell trajectories. It has been observed that VIV cylinder oscillation can efficiently facilitate the transfer of cells from light-limited to light-saturated zones. Among the cells that were tracked, 44% initially at dark zone entered the light-limited zone and 100% of initially at light-limited zone entered the light-saturated zone. 33% of all tracked cells experienced high-frequency L/D cycles with an average frequency of 35.69 s-1 and 0.49 light fraction. The impact of VIV was not discernible in the deeper sections of the pond, due to constrained oscillation amplitudes. Our findings suggest that the approximately 20% increase in biomass production reported in our previous study can be attributed to the synergistic effects of enhanced L/D cycle frequencies and improved light availability resulting from the transfer of cells from dark to light-limited zones. To further enhance the effectiveness of VIV, design improvements were developed. It was concluded that light availability could be significantly improved with the presented method for more effective use of RWPs.
Collapse
Affiliation(s)
- Mehmet Sadik Akca
- Department of Environmental Engineering Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Omer Kemal Kinaci
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Mechatronics Engineering, Istanbul Technical University, Istanbul, Turkey
- Marine Cybernetics Advanced Vehicle Technologies (MARNETICS), Istanbul, Turkey
| | - Bulent Inanc
- Department of Environmental Engineering Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Shao C, Zheng H, Sobhi M, Zhu F, Hu X, Cui Y, Chen H, Zou B, Zan X, Li G, Huo S. Enhancing microalgal biomass production in lab-scale raceway ponds through innovative computational fluid dynamics-based electrode deflectors. BIORESOURCE TECHNOLOGY 2024; 394:130282. [PMID: 38163488 DOI: 10.1016/j.biortech.2023.130282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The design of novel electrode deflector structures (EDSs) introduced a promising strategy for enhancing raceway ponds performance, increasing carbon fixation, and improving microalgal biomass accumulation. The computational fluid dynamics, based flow field principles, proved that the potency of arc-shaped electrode deflector structures (A-EDS) and spiral electrode deflector structures (S-EDS) were optimal. These configurations yielded superior culture effects, notably reducing dead zones by 9.1% and 11.7%, while elevating biomass increments of 14.7% and 11.5% compared to the control, respectively. In comparison to scenarios without electrostatic field application, the A-EDS group demonstrated pronounced post-stimulation growth, exhibiting an additional biomass increase of 11.2%, coupled with a remarkable 23.6% surge in CO2 fixation rate and mixing time reduction by 14.7%. A-EDS and S-EDS, combined with strategic electric field integration, provided a theoretical basis for promoting microalgal biomass production and enhancing carbon fixation in a raceway pond environment to similar production practices.
Collapse
Affiliation(s)
- Cong Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjing Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Zhu C, Ji Y, Du X, Kong F, Chi Z, Zhao Y. A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158515. [PMID: 36063957 DOI: 10.1016/j.scitotenv.2022.158515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Microalgae biotechnology is a great candidate for carbon neutralization, wastewater treatment and the sustainable production of biofuels and food. Efficient and cost-effective microalgae production depends on highly coordinating the resources used for algal growth. However, dynamic natural disturbances such as culture temperature and sunlight can lead to the poor coordination and waste of resources. Open ponds are the most commonly used commercial microalgal production systems, and enhanced mixing can significantly increase their productivity, but mixing energy can be seriously wasted due to dynamic disturbances, presenting a hindrance to further reducing production costs. Herein, a smart and precise mixing strategy was developed for open ponds in which a paddle wheel's stirring speed for an open pond was smartly and precisely controlled in real time based on dynamic variations in light intensity and culture temperature. The proposed technology achieved the same biomass productivity of Spirulina platensis (8.37 g m-2 day-1) as a control with a constant high mixing rate under dynamic disturbances while reducing mixing energy inputs by approximately 30 % compared to the control. This study provides a promising method to address serious resource waste and poor coordination due to dynamic natural disturbances, holding great potential for efficient and cost-effective microalgae production.
Collapse
Affiliation(s)
- Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China, 361005.
| | - Yu Ji
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Xiang Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Yunpeng Zhao
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| |
Collapse
|
4
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
5
|
Cheng P, Li Y, Wang C, Guo J, Zhou C, Zhang R, Ma Y, Ma X, Wang L, Cheng Y, Yan X, Ruan R. Integrated marine microalgae biorefineries for improved bioactive compounds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152895. [PMID: 34998757 DOI: 10.1016/j.scitotenv.2021.152895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Marine microalgae offer a promising feedstock for biofuels and other valuable compounds for biorefining and carry immense potential to contribute to a clean energy and environment future. However, it is currently not economically feasible to use marine algae to produce biofuels, and the potential bioactive chemicals account for only a small market share. The production of algal biomass with multiple valuable chemicals is closely related to the algal species, cultivation conditions, culture systems, and production modes. Thus, higher requirements for screening of dominant algal strains, developing integrated technologies with the optimum culture conditions, efficient cultivation systems, and production modes to exploit algal biomass for biorefinery applications, are all needed. This review summarizes the screening of dominant microalgae, discusses the environmental conditions that may affect the growth, as well as the culture systems and production modes, and further emphasizes the valorization options of the algal biomass, which should help to offer a sustainable approach to run a profitable marine algae production system.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, USA
| | - Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiameng Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Xiaochen Ma
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Lu Wang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
6
|
Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Cheng J, Liu S, Guo W, Song Y, Kumar S, Kubar AA, Su Y, Li Y. Developing staggered woven mesh aerator with three variable-micropore layers in recycling water pipeline to enhance CO 2 conversion for improving Arthrospira growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143941. [PMID: 33341634 DOI: 10.1016/j.scitotenv.2020.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
A staggered woven mesh (SWM) aerator equipped with three variable-micropore layers was developed to enhance the CO2 conversion into HCO3- in a recycling water pipeline for promoting CO2 utilization efficiency and Arthrospira growth in large-scale raceway ponds. The input CO2 gas was broken into smaller bubbles (0.78- 2.43 mm) through the first-stage shear with axial rectangles, second-stage shear with radial rectangles (equivalent pore diameter = 150 μm), and third-stage shear with uniform micropores. A high-speed camera (MotionXtra HG-100K CMOS) and an Image J image processing software were employed to capture the bubble pictures. Compared to the traditional steel pipe (TSP) aerator, the bubble generation diameter and time in the SWM aerator reduced by 72.3% and 48.6%, respectively. The optimized structure (ε = 14, pore = 23 μm) of the SWM aerator promoted the carbonization efficiency and HCO3- conversion efficiency into biomass by 78.6% and 64.6% than the TSP aerator. Further, the chlorophyll fluorescence and biomass measurements showed an increase in the actual photochemical efficiency (analyzed by Hansatech FMS1 chlorophyll fluorescence instrument) and biomass yield by 1.8 times and 80.1%.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Shuzheng Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Youning Su
- Inner Mongolia Rejuve Biotech Co., Ltd, Ordos 016199, China
| | - Yuguo Li
- Inner Mongolia Rejuve Biotech Co., Ltd, Ordos 016199, China
| |
Collapse
|
8
|
Xu J, Cheng J, Xin K, Xu J, Yang W. Strengthening flash light effect with a pond-tubular hybrid photobioreactor to improve microalgal biomass yield. BIORESOURCE TECHNOLOGY 2020; 318:124079. [PMID: 32911369 DOI: 10.1016/j.biortech.2020.124079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Poor light utilization efficiency and large occupied area of traditional raceway pond photobioreactors result in low areal microalgal biomass yield in industrial applications. In this study, a pond-tubular hybrid photobioreactor (PTH-PBR) comprising raceway ponds and horizontal tubes was developed to strengthen flash light effect and improve areal microalgal biomass yield. The highest flash cycle frequency (0.63 Hz) of microalgae cells along flow pathway was obtained in the raceway pond of PTH-PBR when shaded area percentage was 20% and ratio of adjacent tube interval to tube diameter was 1, which enhanced microalgal biomass yield by 31.2% than traditional raceway pond. Meanwhile, intracellular chlorophyll content increased by 33.6% and PSII maximum quantum yield (Fv/Fm) increased by 8.1% due to decreased photoinhibition stress. The areal microalgal biomass yield of PTH-PBR was 54.7% higher than that of traditional raceway pond without horizontal tubes.
Collapse
Affiliation(s)
- Junchen Xu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Kai Xin
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jinhui Xu
- China Energy Penglai Generation Company Ltd., Penglai 265601, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Ali Kubar A, Cheng J, Guo W, Kumar S, Song Y. Development of a single helical baffle to increase CO 2 gas and microalgal solution mixing and Chlorella PY-ZU1 biomass yield. BIORESOURCE TECHNOLOGY 2020; 307:123253. [PMID: 32244074 DOI: 10.1016/j.biortech.2020.123253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
A single helical baffle (SHB), consisting of twisted turns, was developed to convert straight flow into spiral flow in a Chlorella PY-ZU1 open raceway pond (ORWP) bubbled with 15% CO2. Microalgal solution flowing through the SHB alternative helical interspaces generated whirling flow both vertically and horizontally, which decreased mixing and increased mass transfer rates. The optimized SHB had a pitch length to total SHB length ratio of 0.13 and SHB diameter to ORWP single channel width ratio of 0.30, which decreased mixing times and increased mass transfer coefficients by 41.1% and 38.4% respectively. SHB moved Chlorella PY-ZU1 from the ORWP bottom to the top, increasing light exposure for photosynthesis. Cellular electron transfer rates and photochemical efficiency (φPSII) increased by 18%, chlorophyll a content increased by 16% and variable to maximum fluorescence ratio increased by 13%. The microalgal biomass of SHB ORWP was 23% higher than that of conventional ORWP.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
10
|
Lu W, Asraful Alam M, Liu S, Xu J, Parra Saldivar R. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO 2 from livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135247. [PMID: 31839294 DOI: 10.1016/j.scitotenv.2019.135247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Development of renewable and clean energy as well as bio-based fine chemicals technologies are the keys to overcome the problems such as fossil depletion, global warming, and environment pollution. To date, cultivation of microalgae using wastewater is regarded as a promising approach for simultaneous nutrients bioremediation and biofuels production due to their high photosynthesis efficiency and environmental benefits. However, the efficiency of nutrients removal and biomass production strongly depends on wastewater properties and microalgae species. Moreover, the high production cost is still the largest limitation to the commercialization of microalgae biofuels. In this review paper, the state-of-the-art algae species employed in livestock farm wastes have been summarized. Further, microalgae cultivation systems and impact factors in livestock wastewater to microalgae growth have been thoroughly discussed. In addition, technologies reported for microalgal biomass harvesting and CO2 mass transfer enhancement in the coupling process were presented and discussed. Finally, this article discusses the potential benefits and challenges of coupling nutrient bioremediation, CO2 capture, and microalgal production. Possible engineering measures for cost-effective nutrients removal, carbon fixation, microalgal biofuels and bioproducts production are also proposed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China; Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Jinliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Roberto Parra Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| |
Collapse
|
11
|
Chuka-ogwude D, Ogbonna J, Moheimani NR. A review on microalgal culture to treat anaerobic digestate food waste effluent. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101841] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Guo W, Cheng J, Liu S, Feng L, Su Y, Li Y. A novel porous nickel-foam filled CO 2 absorptive photobioreactor system to promote CO 2 conversion by microalgal biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136593. [PMID: 31955094 DOI: 10.1016/j.scitotenv.2020.136593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
In order to solve problems associated with a short residence time and low conversion efficiency when CO2 gas is aerated directly into raceway ponds, a novel porous nickel-foam filled CO2 absorptive photobioreactor system was developed to promote CO2 conversion to NaHCO3 in a short time to improve photosynthesis of microalgal cells. Numerical simulation showed that the porous nickel-foam promoted the Na2CO3 solution radial velocity and CO2 volume fraction in the CO2 absorption reactor, which enhanced the reaction rate of CO2 gas and soluble Na2CO3. The conversion efficiency of CO2 gas to soluble NaHCO3 gradually increased with an increasing nickel-foam pore diameter and a decreasing CO2 gas outflow rate, while it first increased and then decreased with an increasing relative nickel-foam height in the CO2 absorption reactor. The conversion efficiency from soluble NaHCO3 to microalgal biomass first increased and then decreased with an increasing nickel-foam pore diameter (peaking at 2 mm) and relative height (peaking at 0.24); and CO2 gas outflow rate (peaking at 2 L/min). The chlorophyll fluorescence measurements showed that a sufficient HCO3- supply promoted the quantum ratio used for electron transfer (from 0.19 to 0.23) and the maximum photochemical efficiency (from 0.48 to 0.52), resulting in an increased biomass growth rate (by 1.1 times) when the nickel-foam pore diameter increased from 0.1 to 2 mm.
Collapse
Affiliation(s)
- Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Shuzheng Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yongning Su
- Inner Mongolia Rejuve Biotech Co., Ltd, Ordos 016199, China
| | - Yuguo Li
- Inner Mongolia Rejuve Biotech Co., Ltd, Ordos 016199, China
| |
Collapse
|
13
|
Guo W, Cheng J, Song Y, Kumar S, Ali KA, Wang Y, Li X, Yang W. Improving flashing light frequency and CO2 fixation rate with vortex movement of algal cells in raceway pond with conic baffles. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Optimization of Tubular Microalgal Photobioreactors with Spiral Ribs under Single-Sided and Double-Sided Illuminations. Processes (Basel) 2019. [DOI: 10.3390/pr7090619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microalgae can be raw materials for the production of clean energy and have great potential for development. The design of the microalgal photobioreactor (PBR) affects the mixing of the algal suspension and the utilization efficiency of the light energy, thereby affecting the high-efficiency cultivation of the microalgae. In this study, a spiral rib structure was introduced into a tubular microalgal PBR to improve the mixing performance and the light utilization efficiency. The number of spiral ribs, the inclination angle, and the velocity of the algal suspension were optimized for single-sided and double-sided parallel light illuminations with the same total incident light intensity. Next, the optimization results under the two illumination modes were compared. The results showed that the double-sided illumination did not increase the average light/dark (L/D) cycle frequency of the microalgae particles, but it reduced the efficiency of the L/D cycle enhancement. This outcome was analyzed from the point of view of the relative position between the L/D boundary and the vortex in the flow field. Finally, a method to increase the average L/D cycle frequency was proposed and validated. In this method, the relative position between the L/D boundary and the vortex was adjusted so that the L/D boundary passed through the central region of the vortex. This method can also be applied to the design of other types of PBRs to increase the average L/D cycle frequency.
Collapse
|
15
|
Kumar S, Cheng J, Guo W, Ali KA, Song Y. Self-rotary propellers with clockwise/counterclockwise blades create spiral flow fields to improve mass transfer and promote microalgae growth. BIORESOURCE TECHNOLOGY 2019; 286:121384. [PMID: 31048263 DOI: 10.1016/j.biortech.2019.121384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
In this work, self-rotary propellers (SRPs) with clockwise/counterclockwise blades were investigated to create spiral flow fields without external power to strengthen gas-liquid mixing and promote microalgal growth in an open raceway pond. The rotational flow around the propellers and spiral flow between the propellers generated extensive wall shear stress in three dimensions. Four-clockwise blades on the propellers exerted better mixing than three-counterclockwise blades. The bubble generation diameter was reduced by 69% and the mass transfer coefficient increased by 49% when the propeller diameter was increased from 32 to 60 mm. The photochemical efficiency (φPSII) of Arthrospira platensis cells was enhanced by 25%, while the helix pitch and trichome lengths were enlarged by 7-16%. Self-rotary propellers (60 mm diameter) with four-clockwise blades enhanced the growth rate of A. platensis biomass by 35% compared to that in an unmodified raceway pond without propellers.
Collapse
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Qin C, Wu J, Wang J. Synergy between flow and light fields and its applications to the design of mixers in microalgal photobioreactors. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:93. [PMID: 31044006 PMCID: PMC6477735 DOI: 10.1186/s13068-019-1430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Mixers are usually inserted into microalgal photobioreactors to generate vortices that can enhance light/dark cycles of algal cells and consequently enhance biomass productivity. However, existing mixer designs are usually developed using a trial-and-error approach that is largely based on the designer's experience. This approach is not knowledge-based, and thus little or no understanding of the underlying mechanisms of mixer design for mixing performance of photobioreactors is attained. Moreover, a large pumping cost usually accompanies mixer introduction, and this cost is not favorable for practical applications. This study aims to improve this situation. RESULTS In addition to the individual effects of flow and light fields, improving the synergy (coordination) between these fields may markedly enhance the L/D cycle frequency with a lower increase in pumping costs. Thus, the idea of synergy between flow and light fields is introduced to mixer design. Better synergy can be obtained if (a) the vortex core and L/D boundary are closer to each other and (b) the vortex whose core is too far from the L/D boundary is removed. The synergy idea has two types of applications. First, it can facilitate a better understanding of known numerical and experimental results about mixer addition. Second, and more importantly, the idea can help to develop new rules for mixer design. A helical mixer design is provided as a case study to demonstrate the importance and feasibility of the synergy idea. An effective method, i.e., decreasing the radial height of the helical mixer from the inner side, was found, by which the L/D cycle frequency was enhanced by 10.8% while the pumping cost was reduced by 23.8%. CONCLUSIONS The synergy idea may be stated as follows: the enhancement of L/D cycle frequency depends not only on the flow and light fields individually but also on their synergy. This idea can be used to enhance our understanding of some known phenomena that emerge by mixer addition. The idea also provides useful rules to design and optimize a mixer for a higher L/D cycle frequency with a lower increase in pumping costs, and these rules will find widespread applications in PBR design.
Collapse
Affiliation(s)
- Chao Qin
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jing Wu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jing Wang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
17
|
Rayen F, Behnam T, Dominique P. Optimization of a raceway pond system for wastewater treatment: a review. Crit Rev Biotechnol 2019; 39:422-435. [DOI: 10.1080/07388551.2019.1571007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Filali Rayen
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université de Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Taidi Behnam
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université de Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Pareau Dominique
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université de Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| |
Collapse
|
18
|
Qin C, Wu J. Influence of successive and independent arrangement of Kenics mixer units on light/dark cycle and energy consumption in a tubular microalgae photobioreactor. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Guo W, Cheng J, Song Y, Kumar S, Ali KA, Guo C, Qiao Z. Developing a CO2 bicarbonation absorber for promoting microalgal growth rates with an improved photosynthesis pathway. RSC Adv 2019; 9:2746-2755. [PMID: 35520536 PMCID: PMC9059880 DOI: 10.1039/c8ra09538h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
In order to solve the problems of the short residence time and low utilization efficiency of carbon dioxide (CO2) gas added directly to a raceway pond, a CO2 bicarbonation absorber (CBA) was proposed to efficiently convert CO2 gas and sodium carbonate (Na2CO3) solution to sodium bicarbonate (NaHCO3), which was dissolved easily in the culture medium and left to promote the microalgal growth rate. The CO2 gas reacted with the Na2CO3 solution (initial concentration = 200 mM L−1 and volume ratio in CBA = 60%) for 90 min at 0.3 MPa to give the optimized molar proportion (92%) of NaHCO3 product in total inorganic carbon and increase the microalgal growth rate by 5.0 times. Quantitative label-free protein analysis showed that the expression levels of the photosystem II (PSII) reaction centre protein (PsbH) and PSII cytochrome (PsbV2) in the photosynthesis pathway increased by 4.8 and 3.4 times, respectively, while that of the RuBisCO enzyme (rbcL) in the carbon fixation pathway increased by 3.5 times in Arthrospira platensis cells cultivated with the NaHCO3 product in the CBA at 0.3 MPa. To increase the residence time of CO2 gas added directly to the raceway pond, a CO2 bicarbonation absorber was proposed to convert CO2 gas and Na2CO3 to NaHCO3, which was dissolved easily in the solution and left to promote the biomass growth rate.![]()
Collapse
Affiliation(s)
- Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Caifeng Guo
- Ordos Jiali Spirulina Co., Ltd
- Ordos 016199
- China
| | | |
Collapse
|
20
|
Cheng J, Guo W, Song Y, Kumar S, Ameer Ali K, Zhou J. Enhancing vorticity magnitude of turbulent flow to promote photochemical efficiency and trichome helix pitch of Arthrospira platensis in a raceway pond with conic baffles. BIORESOURCE TECHNOLOGY 2018; 269:1-8. [PMID: 30144753 DOI: 10.1016/j.biortech.2018.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
In order to clarify vortex mechanisms under a turbulent flow field to explain enhanced biomass productivity, computational fluid dynamics and a miniature Doppler velocimeter were employed to investigate the promoted vorticity magnitude and turbulent kinetic energy to support the increased actual photochemical efficiency of Arthrospira platensis in a raceway pond with alternatively permutated conic baffles. Results showed that whereas the first two parameters increased by 5.9 and 13.9 times, respectively, the third rose on an average by 28% to the value of 0.59 measured on pulse-modulated fluorometer. Furthermore, it was detected on a Nikon inverted-fluorescence microscope that the average helix pitch and trichome length increased by 14% and 10% respectively, resulting in higher biomass productivity (34.8%).
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Cheng J, Guo W, Ameer Ali K, Ye Q, Jin G, Qiao Z. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m 2 raceway ponds under purified carbon dioxide from a coal chemical flue gas. BIORESOURCE TECHNOLOGY 2018; 261:76-85. [PMID: 29654997 DOI: 10.1016/j.biortech.2018.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The helix pitch and trichome length of Spirulina sp. were promoted to improve the biomass harvesting efficiency and CO2 fixation rate in 660 m2 raceway ponds aerated with food-grade CO2 purified from a coal chemical flue gas. The CO2 fixation rate was improved with increased trichome length of the Spirulina sp. in a raceway pond with double paddlewheels, baffles, and CO2 aerators (DBA raceway pond). The trichome length has increased by 33.3 μm, and CO2 fixation rate has increased by 42.3% and peaked to 51.3 g/m2/d in a DBA raceway pond. Biomass harvesting efficiency was increased with increased helix pitch. When the day-average greenhouse temperature was 33 °C and day-average sunlight intensity was 72,100 lu×, the helix pitch of Spirulina sp. was increased to 56.2 μm. Hence the biomass harvesting efficiency was maximized to 75.6% and biomass actual yield was increased to 35.9 kg in a DBA raceway pond.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qing Ye
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Guiyong Jin
- Key Laboratory of Mariculture of Ministry of Education of China, Ocean University of China, Qingdao 266003,China
| | - Zhanshan Qiao
- Ordos Jiali Spirulina.sp Co., Ltd, Ordos 016199, China
| |
Collapse
|
22
|
Gao X, Kong B, Vigil RD. Simulation of algal photobioreactors: recent developments and challenges. Biotechnol Lett 2018; 40:1311-1327. [DOI: 10.1007/s10529-018-2595-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022]
|
23
|
Light/dark cycle enhancement and energy consumption of tubular microalgal photobioreactors with discrete double inclined ribs. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0214-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Shin YS, Choi HI, Choi JW, Lee JS, Sung YJ, Sim SJ. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review. BIORESOURCE TECHNOLOGY 2018; 258:335-344. [PMID: 29555159 DOI: 10.1016/j.biortech.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 05/21/2023]
Abstract
Microalgae have been rising as a feedstock for biofuel in response to the energy crisis. Due to a high lipid content, composed of fatty acids favorable for the biodiesel production, microalgae are still being investigated as an alternative to biodiesel. Environmental factors and process conditions can alternate the quality and the quantity of lipid produced by microalgae, which can be critical for the overall production of biodiesel. To maximize both the lipid content and the biomass productivity, it is necessary to start with robust algal strains and optimal physio-chemical properties of the culture environment in combination with a novel culture system. These accumulative approaches for cost reduction can take algal process one step closer in achieving the economic feasibility.
Collapse
Affiliation(s)
- Ye Sol Shin
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Won Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Sun Y, Huang Y, Liao Q, Xia A, Fu Q, Zhu X, Fu J. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. BIORESOURCE TECHNOLOGY 2018; 249:880-889. [PMID: 29145114 DOI: 10.1016/j.biortech.2017.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Aiming at alleviating the adverse effect of poor light penetrability on microalgae growth, planar waveguide modules functioned as diluting and redistributing the intense incident light within microalgae culture more homogeneously were introduced into a lab-scale open raceway pond (ORP) for Nannochloropsis oculata cultivation. As compared to the conventional ORP, the illumination surface area to volume ratio and effective illuminated volume percentage in the proposed ORP were respectively improved by 5.53 times and 19.68-172.72%. Consequently, the superior light distribution characteristics in the proposed ORP contributed to 193.33% and 443.71% increase in biomass concentration and lipid yield relative to those obtained in conventional ORP, respectively. Subsequently, the maximum biomass concentration (2.31 g L-1) and lipid yield (1258.65 mg L-1) was obtained when the interval between adjacent planar waveguide modules was 18 mm. The biodiesel produced in PWM-ORPs showed better properties than conventional ORP due to higher MUFA and C18:1 components proportions.
Collapse
Affiliation(s)
- Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
26
|
Cheng J, Guo W, Cai C, Ye Q, Zhou J. Alternatively permutated conic baffles generate vortex flow field to improve microalgal productivity in a raceway pond. BIORESOURCE TECHNOLOGY 2018; 249:212-218. [PMID: 29045924 DOI: 10.1016/j.biortech.2017.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/30/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Alternatively permutated conic (APC) baffles were proposed to generate vertical and horizontal vortex flow to intensify mixing and mass transfer in a raceway pond. Both clockwise vortexes were generated before and after conic baffles in the main stream to increase perpendicular velocity by 40.3% and vorticity magnitude by 1.7 times on vertical cross section. Self-rotary flow around conic baffles and vortex flow among conic baffles were generated to increase perpendicular velocity by 80.4% and vorticity magnitude by 4.2 times on horizontal cross section. The bubble generation time and diameter decreased by 25.5% and 38.7%, respectively, while bubble residence time increased by 84.3%. The solution mixing time decreased by 48.1% and mass transfer coefficient increased by 34.0% with optimized relative spacing (ε) and height (ω) of conic baffles. The biomass productivity of Spirulina increased by 39.6% under pure CO2 with APC baffles in a raceway pond.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Chengyi Cai
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qing Ye
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
|
28
|
Zhu H, Zhu C, Cheng L, Chi Z. Plastic bag as horizontal photobioreactor on rocking platform driven by water power for culture of alkalihalophilic cyanobacterium. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0176-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Yang Z, Cheng J, Ye Q, Liu J, Zhou J, Cen K. Decrease in light/dark cycle of microalgal cells with computational fluid dynamics simulation to improve microalgal growth in a raceway pond. BIORESOURCE TECHNOLOGY 2016; 220:352-359. [PMID: 27591521 DOI: 10.1016/j.biortech.2016.08.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
In this study, computational fluid dynamics (CFD) was used to systemically analyze the movement of algae in a vortex flow field produced by up-down chute baffles. The average cell light/dark (L/D) cycle period, vertical fluid velocity, fraction of time the algae was resides in light zone and the L/D cycle period were investigated under different paddlewheel speeds and microalgal concentrations. Results showed that the L/D cycle period decreased but the vertical fluid velocity increased when the up-down chute baffles were used. The L/D cycle period decreased by 24% (from 5.1s to 3.9s), and vertical fluid velocity increased by 75% when up-down chute baffles were used with paddlewheel speed of 30r/min. The probability of L/D cycle period of 3s increased by 52% from 0.29 to 0.44 with the up-down chute baffles. This led to approximately 22% increase in biomass yield without changing the paddlewheel speed.
Collapse
Affiliation(s)
- Zongbo Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Qing Ye
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Chen Z, Zhang X, Jiang Z, Chen X, He H, Zhang X. Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. BIORESOURCE TECHNOLOGY 2016; 219:387-391. [PMID: 27504995 DOI: 10.1016/j.biortech.2016.07.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the light/dark (L/D) cycle in raceway ponds (RWPs) by the computational fluid dynamics (CFD) method via determining the hydrodynamics of culture media and cell trajectories. The effects of paddlewheel rotational speed and flow-deflector baffles installation on the L/D cycle were analyzed. The results indicated that, the L/D cycles of microalgae cells decreased with the increase of the paddlewheel rotational speeds, when the paddlewheel rotational speeds ranged from 5 to 12rpm. In addition, the installation of the flow-deflector baffles in RWPs can greatly increase the light time and the ratio of light time to L/D cycle for microalgae cells. The study provided an effective method to characterize the L/D cycles in RWPs, and may have important implications for designing the effective large-scale microalgae culture system.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Mechanical and Energy Engineering, Jimei University, Xiamen 361021, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xuehui Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongzhou He
- School of Mechanical and Energy Engineering, Jimei University, Xiamen 361021, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Sun Y, Liao Q, Huang Y, Xia A, Fu Q, Zhu X, Zheng Y. Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth. BIORESOURCE TECHNOLOGY 2016; 220:215-224. [PMID: 27573475 DOI: 10.1016/j.biortech.2016.08.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Industrially manufactured planar waveguides doped with light scattering nanoparticles, which can dilute and redistribute the intense incident light within microalgae suspension more uniformly, were introduced into a flat-plate photobioreactor (PBR) with a width of 25cm to alleviate the adverse effect of poor light penetrability on microalgae growth. Compared with the flat-plate PBR without waveguides, the illumination surface area per unit volume in the proposed PBR was increased by 10.3 times. During the whole cultivation period, the illuminated volume fractions in the proposed PBR were 21.4-410% higher than those in the flat-plate PBR without waveguides. Consequently, attributed to the optimized light distribution in the proposed PBR, a 220% improvement in biomass production was obtained relative to that in the flat-plate PBR without waveguides. Furthermore, higher light output intensities emitted from the planar waveguide surfaces and increased microalgae growth rates were achieved by decreasing the length of planar waveguides.
Collapse
Affiliation(s)
- Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yaping Zheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
32
|
Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D. Flashing light in microalgae biotechnology. BIORESOURCE TECHNOLOGY 2016; 203:357-363. [PMID: 26747205 DOI: 10.1016/j.biortech.2015.12.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Dror Fixler
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - David Iluz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|