1
|
Mahawong S, Onsri P, Thaveemas P, Kaowphong S, Nijpanich S, Rattanachueskul N, Techasakul S, Chuenchom L, Dechtrirat D. Transforming waste into value: Single-step in situ synthesis of magnetic porous carbon composite adsorbents from sugarcane bagasse and iron scrap. Sci Rep 2025; 15:16098. [PMID: 40341644 PMCID: PMC12062248 DOI: 10.1038/s41598-025-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The demand for sustainability is driving research into new ways to make use of waste products. Porous adsorbents with magnetic properties are reusable and do not require a significant external energy source. They are well-suited to the task of decontaminating water on a large scale and, if benignly synthesized from waste products, they would meet the demand for sustainability. In this research, an in situ single-step synthesis is developed that generates a magnetic porous carbon composite from iron scrap and sugarcane bagasse, both of which are abundant waste products. This procedure combines the processes of carbonization, magnetization, and activation in one step. Iron scrap serves as both a magnetic precursor and a self-activating agent, so no additional chemical activators are required. The large surface area (505 m2/g) of the synthesized magnetic porous carbon composite adsorbent and its large capacity for tetracycline adsorption (687.6 mg/g) are suitable properties for the treatment of contaminated wastewater. The synthesis process is straightforward, and the use of waste materials to fabricate an adsorbent that retains its performance even after five cycles of adsorption and desorption ensures both cost-effectiveness and sustainability to support the concept of the circular economy.
Collapse
Affiliation(s)
- Sirinad Mahawong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Parichart Onsri
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Piyatida Thaveemas
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Sulawan Kaowphong
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Natthanan Rattanachueskul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Laemthong Chuenchom
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand.
| | - Decha Dechtrirat
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Mahawong S, Thaveemas P, Onsri P, Kaowphong S, Watcharin W, Techasakul S, Dechtrirat D, Chuenchom L. Single-Step Upcycling of Sugarcane Bagasse and Iron Scrap into Magnetic Carbon for High-Performance Adsorbents. Molecules 2025; 30:2040. [PMID: 40363845 PMCID: PMC12073645 DOI: 10.3390/molecules30092040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The sugar industry produces significant quantities of waste biomass, while other industrial sectors generate iron scrap as waste. This study seeks to make use of these waste products using an in situ approach that integrates carbonization, activation, and magnetization to convert sugarcane waste and iron scrap into a magnetic carbon composite adsorbent. The porosity of the activated carbon was enhanced by the activating agent potassium hydroxide (KOH) and further improved by the addition of iron scrap, which also imparted magnetic properties to the composite. The developed porosity of the composite increased the overall adsorption capacity of the adsorbent. The synthesis conditions were varied to examine the effects on the properties of the adsorbent. The amount of KOH used in the synthesis influenced the performance of the material. The best-performing adsorbent demonstrated strong potential in the treatment of wastewater by exhibiting an adsorption capacity of 1736.93 mg/g for the antibiotic tetracycline. The magnetic properties of the composite adsorbent enable simple separation and recovery, making the adsorbent reusable and lowering operating costs. This study provides a clear framework for the synthesis of waste-derived magnetic carbon composite adsorbents that can offer financial and environmental advantages while remaining effective in industrial contexts.
Collapse
Affiliation(s)
- Sirinad Mahawong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand;
| | - Piyatida Thaveemas
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (P.T.); (P.O.); (S.T.)
| | - Parichart Onsri
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (P.T.); (P.O.); (S.T.)
| | - Sulawan Kaowphong
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Waralee Watcharin
- Faculty of Biotechnology, Assumption University, Hua Mak Campus, Bangkok 10240, Thailand;
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (P.T.); (P.O.); (S.T.)
| | - Decha Dechtrirat
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (P.T.); (P.O.); (S.T.)
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Laemthong Chuenchom
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand;
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| |
Collapse
|
3
|
Wu Z, Zuo Z, Zhang X, Yan H, Zhao W, Wu L, Zhang C, Yang Z. Characterization of a novel 1,2-dichloroethane degrader Ancylobacter sp. J3 and use of its immobilized cells in the treatment of polluted groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138346. [PMID: 40286663 DOI: 10.1016/j.jhazmat.2025.138346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/29/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
A novel 1,2-dichloroethane (1,2-DCA) degrading bacteria strain J3 was isolated from 1,2-DCA contaminated groundwater and identified as Ancylobacter sp. The strain J3 was associated with self-flocculation during the growth process, and the degradation pathway study showed that the bacteria could completely mineralize 1,2-DCA. The microorganism was immobilized and the optimum preparation conditions were obtained by orthogonal experiment: 6 % polyvinyl alcohol, 2 % sodium alginate, 1 % biochar, and 2 % CaCl2, and the immobilized cells were named J3C. The degradation rates of J3C at low pH, temperature, and high concentration NaCl were higher than that of free J3. The fitting results of the pseudo-first-order degradation kinetics model showed that for above 200 mg/L 1,2-DCA, the degradation rate of J3C was higher than that of free J3. The adsorption process of the sterile J3C aligns with the pseudo-first-order kinetic model and the intraparticle diffusion model. The internal mass transfer kinetics analysis revealed that the beads with biochar and a small diameter (0.34 cm) were more conducive to mass transfer. Finally, remediation of real polluted groundwater by J3C shows that for groundwater with a pH value of about 7, 1,2-DCA concentrations of about 100, 200 mg/L, 1,2-DCA can be completely degraded by J3C, while for groundwater with a pH value of 12, 250 mg/L 1,2-DCA, the degradation rate was 83.15 % by J3C, 66.91 % higher than that of free J3. The changes in microbial communities in groundwater showed that J3C disturbed the groundwater microbial little for the immobilized cells in J3C originated from the groundwater.
Collapse
Affiliation(s)
- Zhiguo Wu
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China; College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihan Zuo
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xueyang Zhang
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huijuan Yan
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenli Zhao
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liya Wu
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chaozheng Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zongzheng Yang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China; College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Ngan TT, Thuan NT, Ngan NTT, Minh TBN, Linh DH. Synthesis of magnetic activated carbons derived from Artocarpus heterophyllus peel with different magnetization methods: comparative characterizations and hexavalent chromium adsorption study. BMC Chem 2024; 18:251. [PMID: 39726035 DOI: 10.1186/s13065-024-01354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Magnetic activated carbon has been proved its separation ability to overcome a main drawback of activated carbon powder. However, effect of magnetization method on characterizations and Chromium (VI) adsorption of this adsorbent from Artocarpus Heterophyllus Peel (jackfruit peel) has not been investigated yet. This study magnetized jackfruit peel activated carbon using thermochemical and co-precipitation methods. Magnetic jackfruit activated carbon (MJAC) were examined and compared to jackfruit activated carbon (JAC) for surface chemistry, texture, morphology and crystalline properties. The isotherm/kinetics of Cr(VI) adsorption on these adsorbents were also analyzed. The results showed that all the adsorbents showed a typical peak of -(COO)n-Fe of iron oxide particles and functional groups but the adsorbent prepared with thermochemical method had the greatest Fe-O-C bond signal. The thermochemical adsorbent also had various particles of Fe3O4, Zero Valent Iron, and α-Fe2O3 while the co-precipitation absorbents gave a greater mesoporous structure and specific surface area than their JAC precursor; especially the adsorbent produced at mild temperature was covered by the highest iron oxide distribution on the surface and better magnetite property. As a result of the high specific surface area, these co-precipitation adsorbents were more effective for Cr(VI) adsorption than others. The PSO model best describes Cr(VI) adsorption on all absorbents with and without magnetite. Cr(VI) adsorption on JAC was dominated by intra-particle diffusion while multistep processes, including external mass transfer, governed the overall MJAC adsorption process. This work has created jackfruit peel-based magnetic activated carbon for wastewater treatment to remove toxic heavy metals and promote the circular economy that uses solid wastes as raw materials.
Collapse
Affiliation(s)
- Tran Tuyet Ngan
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngo Thi Thuan
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| | - Nguyen Thi Thu Ngan
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Bao Ngoc Minh
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Doan Hoai Linh
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
6
|
Bao B, Hu C, Zheng Q, Huo G, Jiang J, Zhang Y, Zheng H, Li H. Amidation modified hollow composite microspheres as a self-floating adsorbent for efficient capture of anionic dye DB86 and heavy metal nickel (II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59140-59154. [PMID: 39340606 DOI: 10.1007/s11356-024-35151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
The co-contamination of dyes and heavy metal ions often used as mordants poses potential risks to environment and public health, and is a challenging problem that needs to be solved in water treatment. Meanwhile, improving the solid-liquid separation capability of adsorbents is of great significance for the application of adsorption technology. Herein, amidation modified hollow composite microspheres were prepared using hollow glass microsphere (HGM) as matrix through hydrolysis and condensation of silane coupling agent (A-1100) and subsequent amidation reaction. The material (HGMNE) not only exhibited good adsorption performance for DB86 and Ni2+ but also had stable self-floating capability. The adsorption of DB86 by HGMNE is mainly carried out by the electrostatic interaction between positively charged quaternary amine nitrogen and negatively charged DB86, while the adsorption of Ni2+ is achieved by the carboxyl group in EDTA group through complexation interaction to adsorb Ni2+ to form Ni complex. This research not only is devoted to the utilization of HGMNE to achieve the co-removal of DB86 and Ni2+ and flexible self-floating solid-liquid separation but also verifies the feasibility and applicability of the modification method of introducing organic adsorption functional groups through amidation reaction, so as to expand the preparation path of HGM-based adsorbents.
Collapse
Affiliation(s)
- Bing Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chao Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiquan Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Guoyou Huo
- Shenzhen Shenshui Water Resources Consulting Co., Ltd, Shenzhen, 518024, PR China
| | - Junyi Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
7
|
Duong LTK, Nguyen TTT, Nguyen LM, Hoang TH, Nguyen DTC, Tran TV. A waste-to-wealth conversion of plastic bottles into effective carbon-based adsorbents for removal of tetracycline antibiotic from water. ENVIRONMENTAL RESEARCH 2024; 255:119144. [PMID: 38751006 DOI: 10.1016/j.envres.2024.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Currently, plastic waste and antibiotic wastewater are two of the most critical environmental problems, calling for urgent measures to take. A waste-to-wealth strategy for the conversion of polyethylene terephthalate (PET) plastic bottles into value-added materials such as carbon composite is highly recommended to clean wastewater contaminated by antibiotics. Inspired by this idea, we develop a novel PET-AC-ZFO composite by incorporating PET plastic-derived KOH-activated carbon (AC) with ZnFe2O4 (ZFO) particles for adsorptive removal of tetracycline (TTC). PET-derived carbon (PET-C), KOH-activated PET-derived carbon (PET-AC), and PET-AC-ZFO were characterized using physicochemical analyses. Central composite design (CCD) was used to obtain a quadratic model by TTC concentration (K), adsorbent dosage (L), and pH (M). PET-AC-ZFO possessed micropores (d ≈ 2 nm) and exceptionally high surface area of 1110 m2 g-1. Nearly 90% TTC could be removed by PET-AC-ZFO composite. Bangham kinetic and Langmuir isotherm were two most fitted models. Theoretical maximum TTC adsorption capacity was 45.1 mg g-1. This study suggested the role of hydrogen bonds, pore-filling interactions, and π-π interactions as the main interactions of the adsorption process. Thus, a strategy for conversion of PET bottles into PET-AC-ZFO can contribute to both plastic recycling and antibiotic wastewater mitigation.
Collapse
Affiliation(s)
- Loan Thi Kim Duong
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Thu Hien Hoang
- Amazon Corporate Headquarters, 440 Terry Ave North, Seattle, WA 98109-5210, United States
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
8
|
Yu D, Zeng S, Wu Y, Niu J, Tian H, Yao Z, Wang X. Removal of tetracycline in the water by a kind of S/N co-doped tea residue biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121601. [PMID: 38959771 DOI: 10.1016/j.jenvman.2024.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Tetracycline (TC) is widely present in the environment, and adsorption technology is a potential remediation method. S/N co-doped tea residue biochar (SNBC) was successfully prepared by hydrothermal carbonization method using tea residue as raw material. S was doped by Na2S2O3·5H2O, and N was doped by N in tea residue. The adsorption efficiency of SNBC could reach 94.16% when the concentration of TC was 100 mg L-1. The adsorption effect of SNBC on TC was 9.38 times more than that of unmodified biochar. Tea biochar had good adsorption effect at pH 4-9. The maximum adsorption capacity of 271 mg g-1 was calculated by the Langmuir isotherm model. The adsorption mechanism involved many mechanisms such as pore filling, π-π interaction and hydrogen bonding. The adsorbent prepared in this study could be used as an effective adsorbent in the treatment of TC wastewater.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Siqi Zeng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yifan Wu
- Beijing Boqi Electric Power Science and Technology Co., Ltd, Beijing, 100123, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Hailong Tian
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Xiaowei Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
9
|
Simelane L, Mahlambi P, Rochat S, Baker B. Removal of antiretroviral drugs from wastewater using activated macadamia nutshells: Adsorption kinetics, adsorption isotherms, and thermodynamic studies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11020. [PMID: 38636954 DOI: 10.1002/wer.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024]
Abstract
Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.
Collapse
Affiliation(s)
- Lindokuhle Simelane
- Department of Chemistry, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Precious Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | | |
Collapse
|
10
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
11
|
Saning A, Thanachayanont C, Suksai L, Watcharin W, Techasakul S, Chuenchom L, Dechtrirat D. Green magnetic carbon/alginate biocomposite beads from iron scrap waste for efficient removal of textile dye and heavy metal. Int J Biol Macromol 2024; 261:129765. [PMID: 38290640 DOI: 10.1016/j.ijbiomac.2024.129765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The circular economy can help enhance the value of industrial waste and remediate the environment. This study considers the application of iron scrap from steel production as a free resource to produce magnetic adsorbent beads to remove methylene blue dye and lead (II) ions from wastewater. Composite beads were prepared by incorporating iron scrap and activated carbon into a calcium alginate gel using a simple 'mix and drop' synthesis. The optimized magnetic beads were stable and offered a large specific surface area. The maximum adsorption capacity of the adsorbent, calculated from the Langmuir isotherm model, was 476.19 mg g-1 for methylene blue and 163.93 mg g-1 for lead (II) ions. This study places emphasis upon the zero-waste principle and employs a scalable synthetic approach for the conversion of waste iron scrap into an adsorbent material capable of delivering significant environmental benefits.
Collapse
Affiliation(s)
- Amonrada Saning
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Ladawan Suksai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Waralee Watcharin
- Faculty of Biotechnology (Agro-Industry), Assumption University, Bangkok 10240, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Laemthong Chuenchom
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Decha Dechtrirat
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
12
|
Han W, Zhang M, Zhao Y, Chen W, Sha H, Wang L, Diao Y, Tan Y, Zhang Y. Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168744. [PMID: 38007113 DOI: 10.1016/j.scitotenv.2023.168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Since the remediation performance of soil tetracycline pollution by original biochar is not ideal, many modified methods have been proposed to improve its performance. Considering the cost, complex modification process and environmental friendliness, many modified biochar are difficult to be used in soil environments. In this work, biochar derived from corn stover was modified using phosphate to increase the adsorption ability of soil tetracycline and alleviate the negative effects caused by tetracycline. The results showed that pyrolysis temperatures and anion types of phosphate (PO43-, HPO42-, H2PO4-) played important roles in the performance of modified biochar. Compared with original biochar, phosphate modified biochar not only improved the adsorption capacity, but also changed the adsorption behavior of tetracycline. Via SEM, BET and FTIR techniques, the intrinsic reasons for the increase of adsorption capacity were explained by the change of morphological structures as well as functional groups of the modified biochar. K3PO4 and high temperature (800 °C) maximally improved the surface morphology, increased the pore structure, changed the surface functional groups of biochar, and then increased the adsorption capacity of tetracycline (124.51 mg/g). Subsequently, the optimal material (K3PO4-800) was selected and applied for tetracycline contaminated soil remediation. Compared to the soil without remediation, K3PO4-800 modified biochar effectively reduced the effective concentration of tetracycline in soil, and improved soil K and P nutrition, and reshaped microbial communities. Our study showed that K3PO4-800 modified biochar was not only a good tetracycline resistant material, but also a good soil amendment.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Weichang Chen
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Huixin Sha
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yiran Diao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yuanji Tan
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China.
| |
Collapse
|
13
|
Hossain MS, Kabir MH, Ali Shaikh MA, Haque MA, Yasmin S. Ultrafast and simultaneous removal of four tetracyclines from aqueous solutions using waste material-derived graphene oxide-supported cobalt-iron magnetic nanocomposites. RSC Adv 2024; 14:1431-1444. [PMID: 38174255 PMCID: PMC10763703 DOI: 10.1039/d3ra07597d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a graphene oxide-supported cobalt-iron oxide (GO/Co-Fe) magnetic nanocomposite was successfully synthesized using waste dry cells for the efficient and simultaneous removal of tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), and doxycycline (DTC) from aqueous solutions. The GO/Co-Fe nanocomposite was thoroughly characterized using Fourier transform infrared spectroscopy, vibrating sample magnetometry, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and zeta potential analysis. This multi-faceted characterization provided clean insights into the composition and properties of the synthesized nanocomposite. The adsorption of tetracyclines (TCs) was systematically investigated by assessing the influence of critical factors, such as adsorbent dosage, contact duration, initial pH of the solution, initial concentration, and temperature. The GO/Co-Fe adsorbent showed high removal efficiencies of 94.1% TC, 94.32% CTC, 94.22% OTC, and 96.94% DTC within 30 s contact period. The maximum removal efficiency of TCs was found at a low adsorbent dose of 0.15 g L-1. Notably, this superior removal efficiency was achieved at neutral pH and room temperature, demonstrating the adsorbent's efficacy under environmentally viable conditions. The kinetic studies demonstrated that the adsorption process was fitted satisfactorily with the pseudo-second-order model. Additionally, the adsorption behaviour of TCs on the GO/Co-Fe adsorbent was assessed by isotherm models, Langmuir and Freundlich. The experimental data followed the Langmuir isotherm, signifying a monolayer adsorption mechanism on the surface of the adsorbent. The adsorption capacities (qm) of GO/Co-Fe for TC, CTC, OTC and DTC were determined to be 64.10, 71.43, 72.46 and 99.01 mg g-1, respectively. Importantly, the GO/Co-Fe adsorbent showed reusability capabilities. The super magnetic properties of GO/Co-Fe made it easy to use for several cycles. These results clearly establish GO/Co-Fe as an exceptionally effective adsorbent for the removal of TCs from aqueous systems, highlighting its great potentiality in water treatment applications.
Collapse
Affiliation(s)
- Md Sohag Hossain
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka-1205 Bangladesh
- Department of Chemistry, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Humayun Kabir
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka-1205 Bangladesh
| | - Md Aftab Ali Shaikh
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka-1205 Bangladesh
- Department of Chemistry, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Anamul Haque
- Department of Chemistry, University of Dhaka Dhaka 1000 Bangladesh
| | - Sabina Yasmin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
14
|
Verma V, Sharma YC. Facile preparation, characterization and application of novel sugarcane bagasse-derived nanoceria-biochar for defluoridation of drinking water: kinetics, thermodynamics, reusability and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:494-508. [PMID: 38012482 DOI: 10.1007/s11356-023-30993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Although expensive, rare-earth oxides are well known for being powerful defluoridation agents. Being costlier, cerium is used as a hybrid adsorbent in conjunction with a prudent and environmentally benign substance like biochar. The novel CeO2/BC (surface area 260.05 m2/g) composite was shaped using the facile chemical precipitation technique without any cross-linkers. Surface properties of synthesised CeO2/BC were investigated using powder XRD, FTIR, BET, pH point of zero charge and SEM. According to XRD analysis, immobilized Ce is primarily in form of CeO2, while pristine biochar is in an amorphous state. Batch mode adsorption tests were carried out with different solution pH, F- initial concentration, adsorbent dosage and contact time and counter anions. CeO2/BC can be used in a varied pH range (2-10) but shows maximum removal at pH 4. The Langmuir adsorption isotherm and a pseudo-second-order kinetic model are best fitted to support the adsorption process with a maximum Langmuir adsorption capacity of 16.14 mg/g (F- concentration 5 to 40 mg/L). The removal phenomenon is non-spontaneous in nature. The plausible mechanism of fluoride uptake was explained using XPS and pHPZC, and it was demonstrated that the fluoride was mainly removed by ion exchange and electrostatic attraction. The adsorbent could be successfully used up to fourth cycle after regenerating.
Collapse
Affiliation(s)
- Vartika Verma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
15
|
Lin SL, Zhang H, Chen WH, Song M, Kwon EE. Low-temperature biochar production from torrefaction for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2023; 387:129588. [PMID: 37558107 DOI: 10.1016/j.biortech.2023.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Biochar, a carbon-rich and por ous material derived from waste biomass resources, has demonstrated tremendous potential in wastewater treatment. Torrefaction technology offers a favorable low-temperature biochar production method, and torrefied biochar can be used not only as a solid biofuel but also as a pollutant adsorbent. This review compares torrefaction technology with other thermochemical processes and discusses recent advancements in torrefaction techniques. Additionally, the applications of torrefied biochar in wastewater treatment (dyes, oil spills, heavy metals, and emerging pollutants) are comprehensively explored. Many studies have shown that high productivity, high survival of oxygen-containing functional groups, low temperature, and low energy consumption of dried biochar production make it attractive as an adsorbent for wastewater treatment. Moreover, used biochar's treatment, reuse, and safe disposal are introduced, providing valuable insights and contributions to developing sustainable environmental remediation strategies by biochar.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hongjie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Mengjie Song
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Eissa F, Alsherbeny S, El-Sawi S, Slaný M, Lee SS, Shaheen SM, Jamil TS. Remediation of pesticides contaminated water using biowastes-derived carbon rich biochar. CHEMOSPHERE 2023; 340:139819. [PMID: 37586496 DOI: 10.1016/j.chemosphere.2023.139819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The competition impact and feedstock type on the removal of water pesticides using biochar have not yet been sufficiently investigated. Therefore, here we investigated the potentiality of three different biochars (BCs) derived from rice husk (RHB), date pit (DPB), and sugarcane bagasse (SBB) biowastes for the simultaneous removal of ten pesticides from water in a competitive adsorption system. The BCs structural characterization and morphology were investigated by XRD, FTIR spectroscopy and SEM analysis. The potential adsorption mechanisms have been investigated using various isothermal and kinetic models. RHB showed the highest removal percentages (61% for atrazine/dimethoate and 97.6% for diuron/chlorfenvinphos) followed by DPB (56% for atrazine/dimethoate and 95.4% for diuron/chlorpyrifos) and then SBB (60.8% for atrazine/dimethoate and 90.8% for chlorpyrifos/malathion). The higher adsorption capacity of RHB and DPB than SBB can be due to their high total pore volume and specific surface area (SSA). Langmuir model described well the sorption data (R2 = 0.99). Adsorption equilibrium was achieved after 60 min for RHB, and 120 min for both DPB and SBB. The optimum adsorbent dose (g/L) was 10 for RHB and 4 for DPB and SBB. The removal efficiency of pesticides was enhanced by decreasing pH from 9 to 5 by RHB and to 3 by DPB and SBB. XRD and FTIR spectroscopy confirmed that BCs contain some active adsorption groups and metal oxides such as MgO, SiO, Al2O3, CaO, and TiO2 that can play an effective role in the pesticides sorption. BET-N2 adsorption analysis demonstrated that the BC pore size contributes significantly to pesticide adsorption. These findings indicate that RHB, DPB, and SBB have ability for adsorption of water pesticides even under acidic conditions. Therefore, the rice husk, date pit, and sugarcane bagasse biowastes could be pyrolyzed and reused as effective and low-cost sorbents for elimination of hazardous substances such as pesticides in the aqueous environments.
Collapse
Affiliation(s)
- Fawzy Eissa
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Sherif Alsherbeny
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza, 12311, Egypt
| | - Sanaa El-Sawi
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza, 12311, Egypt
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36, Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03, Bratislava, Slovakia
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Tarek S Jamil
- Water Pollution Research Department, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
17
|
Olorunnisola D, Olorunnisola CG, Otitoju OB, Okoli CP, Rawel HM, Taubert A, Easun TL, Unuabonah EI. Cellulose-based adsorbents for solid phase extraction and recovery of pharmaceutical residues from water. Carbohydr Polym 2023; 318:121097. [PMID: 37479430 DOI: 10.1016/j.carbpol.2023.121097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Cellulose has attracted interest from researchers both in academic and industrial sectors due to its unique structural and physicochemical properties. The ease of surface modification of cellulose by the integration of nanomaterials, magnetic components, metal organic frameworks and polymers has made them a promising adsorbent for solid phase extraction of emerging contaminants, including pharmaceutical residues. This review summarizes, compares, and contrasts different types of cellulose-based adsorbents along with their applications in adsorption, extraction and pre-concentration of pharmaceutical residues in water for subsequent analysis. In addition, a comparison in efficiency of cellulose-based adsorbents and other types of adsorbents that have been used for the extraction of pharmaceuticals in water is presented. From our observation, cellulose-based materials have principally been investigated for the adsorption of pharmaceuticals in water. However, this review aims to shift the focus of researchers to the application of these adsorbents in the effective pre-concentration of pharmaceutical pollutants from water at trace concentrations, for quantification. At the end of the review, the challenges and future perspectives regarding cellulose-based adsorbents are discussed, thus providing an in-depth overview of the current state of the art in cellulose hybrid adsorbents for extraction of pharmaceuticals from water. This is expected to inspire the development of solid phase exraction materials that are efficient, relatively cheap, and prepared in a sustainable way.
Collapse
Affiliation(s)
- Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Chukwunonso P Okoli
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Harshadrai M Rawel
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Timothy L Easun
- School of Chemistry, Haworth Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| |
Collapse
|
18
|
Ajala OA, Akinnawo SO, Bamisaye A, Adedipe DT, Adesina MO, Okon-Akan OA, Adebusuyi TA, Ojedokun AT, Adegoke KA, Bello OS. Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents. RSC Adv 2023; 13:4678-4712. [PMID: 36760292 PMCID: PMC9897205 DOI: 10.1039/d2ra06436g] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023] Open
Abstract
This study explores adsorptive removal measures to shed light on current water treatment innovations for kinetic/isotherm models and their applications to antibiotic pollutants using a broad range of biomass-based adsorbents. The structure, classifications, sources, distribution, and different techniques for the remediation of antibiotics are discussed. Unlike previous studies, a wide range of adsorbents are covered and adsorption of comprehensive classes of antibiotics onto biomass/biochar-based adsorbents are categorized as β-lactam, fluoroquinolone, sulfonamide, tetracycline, macrolides, chloramphenicol, antiseptic additives, glycosamides, reductase inhibitors, and multiple antibiotic systems. This allows for an assessment of their performance and an understanding of current research breakthroughs in applying various adsorbent materials for antibiotic removal. Distinct from other studies in the field, the theoretical basis of different isotherm and kinetics models and the corresponding experimental insights into their applications to antibiotics are discussed extensively, thereby identifying the associated strengths, limitations, and efficacy of kinetics and isotherms for describing the performances of the adsorbents. In addition, we explore the regeneration of adsorbents and the potential applications of the adsorbents in engineering. Lastly, scholars will be able to grasp the present resources employed and the future necessities for antibiotic wastewater remediation.
Collapse
Affiliation(s)
- Oluwaseyi Aderemi Ajala
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1, Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Solomon Oluwaseun Akinnawo
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
- Department of Chemical Sciences, Olusegun Agagu University of Science and Technology P. M. B. 353 Okitipupa Ondo State Nigeria
| | - Abayomi Bamisaye
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University Ibadan Oyo State Nigeria
| | - Demilade Tunrayo Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Morenike Oluwabunmi Adesina
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University Ibadan Oyo State Nigeria
| | - Omolabake Abiodun Okon-Akan
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
- Wood and Paper Technology Department, Federal College of Forestry Jericho Ibadan Nigeria
| | | | - Adedamola Titi Ojedokun
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
| | - Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
| | - Olugbenga Solomon Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
| |
Collapse
|
19
|
Zakaria NZJ, Rozali S, Mubarak NM, Khalid M. Synthesis of magnetic nanocarbon using palm oil as the green precursor via microwave-assisted arc for wastewater treatment. Sci Rep 2022; 12:18698. [PMID: 36333525 PMCID: PMC9636159 DOI: 10.1038/s41598-022-21982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The presence of metal with microwave irradiation has always invited controversial arguments as the metal will catch on fire easily. But interestingly, researchers found that arc discharge phenomena provide a promising way for molecule cracking to synthesize nanomaterials. This study developed a single-step yet affordable synthesis approach that combines microwave heating and arcing in transforming crude palm oil into magnetic nanocarbon (MNC), which can be considered a new alternative for the palm oil sectors. It involves synthesizing the medium at a partial inert condition with constant coiled stainless steel metal wire (dielectric media) and ferrocene (catalyst). This approach successfully demonstrates heating at a temperature ranging from 190.9 to 472.0 °C with different synthesis times (10-20 min). The produced MNC shows formations of spheres with average sizes of 20.38-31.04 nm, mesoporous structure (SBET: 14.83-151.95 m2/g), and high content of fixed carbon (52.79-71.24wt%), and the ratio of the D and G bands (ID/IG) is 0.98-0.99. The formation of new peaks in the FTIR spectra (522.29-588.48 cm-1) supports the appearance of the FeO compounds from the ferrocene. The magnetometer shows high magnetization saturation (22.32-26.84 emu/g) in ferromagnetic materials. The application of the MNC in wastewater treatment has been demonstrated by evaluating their adsorbent capability with Methylene Blue (MB) adsorption test at a different concentrations varying between 5 and 20 ppm. The MNC produced at synthesis time (20 min) shows the highest adsorption efficiency (10.36 mg/g) compared to others, with 87.79% removal of MB dye. As a result, the value for Langmuir is not promising compared to Freundlich, with R2 being around 0.80, 0.98, and 0.99 for MNC synthesized at 10 min (MNC10), 15 min (MNC15), and 20 min (MNC20), respectively. Hence, the adsorption system is in a heterogeneous condition. The microwave-assisted arcing thereby presents a promising approach to transforming CPO into MNC that could remove the hazardous dye.
Collapse
Affiliation(s)
- Nurul Zariah Jakaria Zakaria
- grid.10347.310000 0001 2308 5949Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shaifulazuar Rozali
- grid.10347.310000 0001 2308 5949Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nabisab Mujawar Mubarak
- grid.454314.3Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | - Mohammad Khalid
- grid.430718.90000 0001 0585 5508Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
20
|
Sun S, Jiang Q, Zhang W, Tian L, Li T, Zheng L, Gao Y, Zeng X, Zhou L. Efficient adsorption of tetracycline in aquatic system by thermally-treated sediment. ENVIRONMENTAL RESEARCH 2022; 214:113779. [PMID: 35780855 DOI: 10.1016/j.envres.2022.113779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The disposal of dredged sediment is a considerable challenge for environmental protection and resource utilization. In this study, the dredged sediment was thermally-treated to prepare as adsorbent and utilized for tetracycline adsorption. Sediments based adsorbents under different pyrolysis temperature and atmosphere (N2 and limited oxygen) were obtained and 600 °C and N2 atmosphere (600AN) exhibited maximum TC adsorption capacity (15.45 mg/g). SEM, N2 adsorption-desorption isotherm, XRD, FTIR and XPS analysis suggested larger pore volume, relatively higher surface area, effective pore size distribution and abundant surface functional groups were the main reasons. Moreover, the influence of key adsorption parameters, including adsorbent dosage, initial pH, coexisting ions, ionic strength, contact time, initial TC concentration and ambient temperature had also been investigated. Results revealed that TC adsorption by 600AN were more consistent with pseudo-second order kinetic and Freundlich isothermal models. Combined with characterization results, which reasonably inferred that the adsorption mechanisms of 600AN were mainly involved pore-filling effect, hydrogen bonding interaction and π-π EDA interaction. This work has provided a low-cost, high efficiency and promising method for the dredged sediment reduction and resource recovery.
Collapse
Affiliation(s)
- Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Qian Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Liu Tian
- School of Civil Engineering, Chongqing University, No. 83 Shabei Street, Shapingba District, Chongqing, 400044, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yu Gao
- Shanxi CBM Exploration & Development Branch, PetroChina Huabei Oilfield Company, Shanxi, 048000, China
| | - Xin Zeng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| |
Collapse
|
21
|
Zhou J, Sun J, Ullah M, Wang Q, Zhang Y, Cao G, Chen L, Ullah MW, Sun S. Polyethylene terephthalate hydrolysate increased bacterial cellulose production. Carbohydr Polym 2022; 300:120301. [DOI: 10.1016/j.carbpol.2022.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
22
|
Hu ZT, Wang XF, Xiang S, Ding Y, Zhao DY, Hu M, Pan Z, Varjani S, Wong JWC, Zhao J. Self-cleaning MnZn ferrite/biochar adsorbents for effective removal of tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157202. [PMID: 35810898 DOI: 10.1016/j.scitotenv.2022.157202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
A renewable tri-metallic spinel decorated biochar adsorbent (MZF-BC) was fabricated by a facile hydrothermal method and to remove tetracycline. The physicochemical properties of MZF-BC were well studied. MZF-BC with a hybrid pore structure of mesopores (~7.6 nm) and macropores (~50 nm) has the maximum tetracycline adsorption capacity reaching 142.4 mg g-1. Through the study of adsorption kinetics, isotherms and key influencing factors, it was found that MZF-BC adsorption on tetracycline was primarily multi-layer effect with the initial adsorption behavior of pore filling associated with hydrogen bonding and π-π stacking. Furthermore, the MZF-BC performs excellent regeneration ability by driving Fenton-like catalysis as the self-cleaning process in the liquid phase. This study contributes to a new insight into the in-situ regeneration of biochar-based adsorbents after adsorbing organic pollutants in pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China; Industrial Catalysts Institute of ZJUT, Hangzhou 310014, China; Zhejiang PUZE Environmental Protection Technology Pte Ltd, Ningbo 315301, China
| | - Xiao-Fang Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Shuo Xiang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yin Ding
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Dong-Yang Zhao
- Industrial Catalysts Institute of ZJUT, Hangzhou 310014, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Jonathan Woon-Chung Wong
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
23
|
Rocha L, Sousa EML, Gil MV, Otero M, Esteves VI, Calisto V. Dynamic adsorption of diclofenac onto a magnetic nanocomposite in a continuous stirred-tank reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115755. [PMID: 35930880 DOI: 10.1016/j.jenvman.2022.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, a waste-based magnetic activated carbon (MAC) was used for the first time in a continuous-flow stirred tank reactor (CSTR). The aim was to evaluate the dynamic removal of diclofenac (DCF) from water and wastewater. Firstly, the breakthrough curves corresponding to DCF adsorption from distilled water at different feed flow rates and doses of MAC were determined. After selecting the most favourable conditions, namely 0.18 h L-1 flow rate and 400 mg L-1 of MAC, the effect of different aqueous matrices was studied, with the breakthrough curves evidencing a performance decline in wastewater in comparison with distilled water. Finally, the exhausted MAC was magnetically recovered, regenerated by microwave-assisted heating and applied in two subsequent adsorption cycles. The regeneration studies pointed to a decrease of the specific surface area and an improvement of the magnetic retrievability of MAC. After the first regeneration step, just mild effects were observed in the dynamic adsorptive performance of MAC. However, after a second regeneration step, the performance declined ca. 50%. Overall, the results highlight the feasibility of producing waste-based magnetic composites that simultaneously combine high adsorption efficiency under dynamic operation in a CSTR, with easy retrievability and successful one-stage regeneration for further reutilization.
Collapse
Affiliation(s)
- L Rocha
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - E M L Sousa
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M V Gil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - M Otero
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Departamento de Química y Física Aplicadas, Universidad de León, 24071, León, Spain
| | - V I Esteves
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - V Calisto
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
24
|
Ryenchindorj U, Zaib Q, Putra AS, Park HS. Production and characterization of cost-effective magnetic pine bark biochar and its application to remove tetracycline from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62382-62392. [PMID: 35397033 DOI: 10.1007/s11356-022-19866-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Low-cost adsorbent, pine bark biochar (PBB) from the forest residue, was produced and applied to remove tetracycline (TC) from aqueous solution via adsorption pathway. The PBB, hence obtained, was modified using aqueous ferric and ferrous ion solutions to obtain magnetic pine bark biochar (M-PBB). Batch adsorption experiments were conducted to examine the adsorption of TC by PBB and M-PBB in the variation of pH, contact time, dosage, and temperature. The adsorbents were characterized by SEM/EDX, TGA, and pHpzc. The adsorption mechanism was evaluated by fitting Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherms model. Also, the experimental data were analyzed by kinetics models (pseudo-first-order, pseudo-second-order, intra-particle diffusion, and Elovich) and thermodynamics. The maximum adsorption capacity (qm) of M-PBB was 15.3 mg/g from the experiment at pH 6. A high correlation coefficient (R2 ≈ 0.9) of Freundlich isotherm postulated multi-layer adsorption of TC on M-PBB at pH 6. The kinetic studies showed that the pseudo-first-order was more suitable for representing the adsorption of TC molecules on the surface. The thermodynamic analysis was showed that the adsorption process is favorable, spontaneous, and endothermic at studied temperatures. M-PBB demonstrated a potential for removal of TC from water as a low-cost and convenient adsorbent.
Collapse
Affiliation(s)
- Urjinlkham Ryenchindorj
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 680-749, Republic of Korea
| | - Qammer Zaib
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 680-749, Republic of Korea
| | - Agusta Samodra Putra
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 680-749, Republic of Korea
- Research Center for Chemistry, National Research and Innovation Agency, PUSPIPTEK Area, Serpong, 15314, Indonesia
| | - Hung-Suck Park
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 680-749, Republic of Korea.
| |
Collapse
|
25
|
Hu C, Jiang J, Li Y, Wu Y, Ma J, Li H, Zheng H. Eco-friendly poly(dopamine)-modified glass microspheres as a novel self-floating adsorbent for enhanced adsorption of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications. ENERGIES 2022. [DOI: 10.3390/en15103629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several studies have reported that the hydrothermal carbonization method (HTC) of agricultural waste is able to produce a solid residue with interesting properties for the adsorption of organic pollutants from contaminated water. This work represents a facile method to prepare hydrochar (HC) from pomegranate peels’ waste using the microwave-assisted hydrothermal carbonization method (MHTC) at 200 °C for 1 h with a mass ratio of peel to water = 1:10. Activated hydrochar (AHC) was prepared by in situ chemical activation using ZnCl2 and MHTC. Several techniques have been applied to characterize the prepared samples as FTIR, XRD, TEM and SEM. The samples were investigated for their possible use as adsorbents of methylene blue (MB) dye. The results confirm the formation of amorphous hydrochar with a porous structure. The pH of zero point charge (pHzpc) is 4.3 and 4.6 for HC and AHC samples, respectively. The maximum adsorption capacity of HC and AHC samples are 194.9 and 12.55 mg/g (i.e., mg of adsorbate/g of adsorbent), respectively.
Collapse
|
27
|
Sugarcane Bagasse Ash as a Catalyst Support for Facile and Highly Scalable Preparation of Magnetic Fenton Catalysts for Ultra-Highly Efficient Removal of Tetracycline. Catalysts 2022. [DOI: 10.3390/catal12040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Sugarcane bagasse ash, which is waste from the combustion process of bagasse for electricity generation, was utilized as received as a catalyst support to prepare the magnetic sugarcane bagasse ash (MBGA) with different iron-to-ash ratios using a simple co-precipitation method, and the effects of NaOH and iron loadings on the physicochemical properties of the catalyst were investigated using various intensive characterization techniques. In addition, the catalyst was used with a low amount of H2O2 for the catalytic degradation of a high concentration of tetracycline (800 mg/L) via a Fenton system. The catalyst exhibited excellent degradation activity of 90.43% removal with good magnetic properties and high stabilities and retained good efficiency after four cycles with NaOH as the eluent. Moreover, the hydroxyl radical on the surface of catalyst played a major role in the degradation of TC, and carbon-silica surface of bagasse ash significantly improved the efficiencies. The results indicated that the MBGA catalyst shows the potential to be highly scalable for a practical application, with high performance in the heterogeneous Fenton system.
Collapse
|
28
|
Zhang X, Zhang T, Guo J, Ahmad M, Yang H, Su X, Huang F, Jin Y, Xiao H, Song J. Hierarchically porous tobacco midrib-based biochar prepared by a simple dual-templating approach for highly efficient Rhodamine B removal. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
29
|
Preparation of nitrogen-doped porous carbon modified by iron carbide and its application in an oxygen reduction reaction. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Prasannamedha G, Senthil Kumar P, Shankar V. Facile route for synthesis of Fe 0/Fe 3C/γ-Fe 2O 3 carbon composite using hydrothermal carbonization of sugarcane bagasse and its use as effective adsorbent for sulfamethoxazole removal. CHEMOSPHERE 2022; 289:133214. [PMID: 34890608 DOI: 10.1016/j.chemosphere.2021.133214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Non-toxic mesoporous magnetic carbon composite was synthesised from hydrothermal carbonization of sugarcane bagasse with Iron (III) nitrate nonahydrate in two steps along with thermo-chemical oxidation process using sodium hydroxide. IR spectrum exposed the presence of oxygenated functional groups and FeO whereas XRD analysis revealed the availability of Fe0/Fe3C/γ-Fe2O3 at varying intensities. SEM analysis showed the spherical shaped carbon is well encapsulated with iron particles. Textural studies showed that after thermo-chemical activation intensified the surface area on composites to about 491.474 m2 g-1 thereby, promoting improved porosity on the carbon matrix. The fabricated composite showed magnetization of 32.84 emu g-1 and SMX adsorption capacity as 169.49 mg g-1. Kinetics and isotherm studies revealed that removal of SMX fitted well in Pseudo-second order and Langmuir models. The mode of interaction of SMX on magnetic carbon composites with respect to different pH was studied showing that π-π electron donor interaction (EDA), hydrophobic interaction, charge assisted hydrogen bond formation were responsible for SMX removal. The selectivity nature of magnetic composite with respect to SMX was studied in the presence of multiple pollutant. Use of magnetic carbon helps in industrialising the material to high level due to their unique property in separation and recycling. Application of hydrothermal carbonization is found to be applicable for wet solid substance thereby evolving structural carbon compound.
Collapse
Affiliation(s)
- G Prasannamedha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India.
| | - Vignesh Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| |
Collapse
|
31
|
Du Z, Wang Q, Du Y, Xu Q, Wang D, Zhang W. Obtaining high-value nitrogen-containing carbon nanosheets with ultrahigh surface area from waste sludge for energy storage and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150353. [PMID: 34818788 DOI: 10.1016/j.scitotenv.2021.150353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Recovering high value-added resources from waste activated sludge (WAS) is a potential way for the sustainable wastewater treatment. In this study, hydrothermal treatment at 180 °C was used to simultaneously improve sludge dewaterability and recover sludge organic matters (SOMs). The recovered SOMs were subsequently employed as precursors to prepare nitrogen-doped porous carbon nanosheets via a facile stepwise synthesis method. The as-prepared optimal carbon (AP-SOM800) was characterized with an ultrahigh specific surface area (3473 m2/g), appropriate porosity (1.77 cm3/g), and abundant heteroatoms (1.47% N and 7.44% O). AP-SOM800 exhibited a high specific capacitance (409 F/g at 0.25 A/g), low resistance (0.52 Ω), and superior cyclic stability (only 9.09% loss after 10,000 cycles) in 6 M KOH aqueous electrolyte. Furthermore, AP-SOM800 demonstrated an extraordinary adsorption capacity (1528 mg/g for methyl orange (MO) and 1265 mg/g for tetracycline (TC)) that can be maintained (˃ 1200 mg/g) over a wide range of pH conditions. Specifically, 80.97% of MO and 66.67% of TC were rapidly absorbed through AP-SOM800 within 10 min, and 90.27% of MO and 81.24% of TC were eventually removed from wastewater after 60 min. The adsorption processes fit closely with the pseudo-second-order kinetic (R2 > 0.999) and Langmuir models (R2 > 0.914), revealing that the adsorption processes were dominated by a monolayer chemical adsorption reaction. This study suggests that high value-added materials can be obtained from the WAS through improving and extending the traditional sludge treatment processes, which will enrich the technical options available for future sustainable sludge treatment and disposal.
Collapse
Affiliation(s)
- Zhengliang Du
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Qiandi Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Youjing Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, Yunnan, China
| | - Qiongying Xu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China.
| |
Collapse
|
32
|
Junfeng W, Bowen H, Xiaoqing W, Zuwen L, Zhaodong W, Biao L, Songya L, Hongbin G, Xinfeng Z, Yanli M. Preparation of N,S-codoped magnetic bagasse biochar and adsorption characteristics for tetracycline. RSC Adv 2022; 12:11786-11795. [PMID: 35481070 PMCID: PMC9016741 DOI: 10.1039/d1ra08404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Agricultural waste disposal and purification of polluted water are always the key issues of environmental restoration. In this work, thiourea-functionalized magnetic bagasse biochar (MFeBC) was prepared for tetracycline (TC) removal from aqueous solutions. Firstly, MFeBC was prepared by a combined impregnation and chemical coprecipitation method. Furthermore, MFeBC was characterized by Brunauer–Emmett–Teller surface area analysis, Fourier transform infrared spectrometry, X-ray diffraction analysis, scanning electron microscopy, X-ray photoelectron spectroscopy and the magnetic hysteresis curves. For the TC adsorption, the effects of different solution pH level, adsorbent dosage, initial TC concentration and temperature on the adsorption performance were studied respectively. Moreover, the results indicated that the Freundlich isotherm models appropriately described the adsorption process. The kinetic data were better fitted by the pseudo-second-order kinetic model. The maximum TC adsorption capacity of MFeBC reached 69.26 mg g−1. Hydrogen bonding and Π–Π interactions played a dominant role in the adsorption process. Therefore, MFeBC can be used as an effective adsorbent for tetracycline removal from aqueous solution. Preparation of N,S-codoped magnetic bagasse biochar and adsorption of tetracycline.![]()
Collapse
Affiliation(s)
- Wu Junfeng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hou Bowen
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wang Xiaoqing
- Henan Province Town of Comprehensive Design and Research Institute, Pingdingshan, 467036, China
| | - Liu Zuwen
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wang Zhaodong
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Liu Biao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Li Songya
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Gao Hongbin
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhu Xinfeng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Mao Yanli
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
33
|
Davies G, McGregor J. Hydrothermal Synthesis of Biomass-Derived Magnetic Carbon Composites for Adsorption and Catalysis. ACS OMEGA 2021; 6:33000-33009. [PMID: 34901651 PMCID: PMC8655907 DOI: 10.1021/acsomega.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of magnetic iron-carbon composites (Fe/C) from waste avocado seeds via hydrothermal carbonization (HTC) has been demonstrated for the first time. These materials are shown to be effective in adsorption and catalytic applications, with performances comparable to or higher than materials produced through conventional processing routes. Avocado seeds have been processed in high-temperature water (230 °C) at elevated pressure (30 bar at room temperature) in the presence of iron nitrate and iron sulfate, in a process mimicking natural coalification. Characterization of the synthesized material has been carried out by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), Fourier-transform infrared spectroscopy (FT-IR), magnetometry, and through surface area measurements. The supported iron particles are observed to be predominately magnetite, with an oxidized hematite surface region. The presence of iron catalyzes the formation of an extended, ordered polymeric structure in the avocado seed-derived carbon. The magnetic Fe/C has been demonstrated as an adsorbent for environmental wastewater treatment using methylene blue and indigo carmine. Kinetic analysis suggests that the adsorbates are chemisorbed, with the positive surface charge of Fe/C being preferential for indigo carmine adsorption (49 mg g-1). Additionally, Fe/C has been evaluated as a heterogeneous catalyst for the hydroalkoxylation of phenylacetylene with ethylene glycol to 2-benzyl-1,3-dioxolane. Product yields of 45% are obtained, with 100% regioselectivity to the formed isomer. The solid catalyst has the advantages of being prepared from a waste material and of easy removal after reaction via magnetic separation. These developments provide opportunities to produce carbon-based materials for a variety of high-value applications, potentially also including energy storage and biopharmaceuticals, from a wide range of lignocellulosic biomass feedstocks.
Collapse
Affiliation(s)
- Gareth Davies
- Department of Chemical and
Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - James McGregor
- Department of Chemical and
Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| |
Collapse
|
34
|
Toumsri P, Auppahad W, Saknaphawuth S, Pongtawornsakun B, Kaowphong S, Dechtrirat D, Panpranot J, Chuenchom L. Facile preparation protocol of magnetic mesoporous carbon acid catalysts via soft-template self-assembly method and their applications in conversion of xylose into furfural. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200349. [PMID: 34510931 DOI: 10.1098/rsta.2020.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO3H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H2SO4 at 180°C gave mesoporous carbon bearing SO3H groups (SO3H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO3H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m2 g-1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g-1 of SO3H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- P Toumsri
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - W Auppahad
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - S Saknaphawuth
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - B Pongtawornsakun
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - S Kaowphong
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - D Dechtrirat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - J Panpranot
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - L Chuenchom
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| |
Collapse
|
35
|
Engineered Magnetic Carbon-Based Adsorbents for the Removal of Water Priority Pollutants: An Overview. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9917444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the preparation, characterization, and application of magnetic adsorbents obtained from carbon-based sources and their application in the adsorption of both inorganic and organic pollutants from water. Different preparation routes to obtain magnetic adsorbents from activated carbon, biochar, hydrochar, graphene, carbon dots, carbon nanotubes, and carbon nanocages, including the magnetic phase incorporated on the solid surface, are described and discussed. The performance of these adsorbents is analyzed for the removal of fluoride, arsenic, heavy metals, dyes, pesticides, pharmaceuticals, and other emerging and relevant water pollutants. Properties of these adsorbents and the corresponding adsorption mechanisms have been included in this review. Overall, this type of magnetic adsorbents offers an alternative for facing the operational problems associated to adsorption process in water treatment. However, some gaps have been identified in the proper physicochemical characterization of these adsorbents, the development of green and low-cost preparation methods for their industrial production and commercialization, the regeneration and final disposal of spent adsorbents, and their application in the multicomponent adsorption of water pollutants.
Collapse
|
36
|
Wang Y, Li J, Yuan Y, Si Y, Xu J, Li M, Peng X. La(OH)3 loaded magnetic nanocomposites derived from sugarcane bagasse cellulose for phosphate adsorption: Characterization, performance and mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Application of Magnetic Composites in Removal of Tetracycline through Adsorption and Advanced Oxidation Processes (AOPs): A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Water pollution induced by the tetracycline (TC) has caused global increasing attention owing to its extensive use, environmental persistence, and potential harm for human health. Adsorption and advanced oxidation processes (AOPs) have been promising techniques for TC removal due to ideal effectiveness and efficiency. Magnetic composites (MCs) which exploit the combined advantages of nano scale, alternative sources, easy preparation, and separation from wastewater are widely used for catalysis and adsorption. Herein, we intensively reviewed the available literature in order to provide comprehensive insight into the applications and mechanisms of MCs for removal of TC by adsorption and AOPs. The synthesis methods of MCs, the TC adsorption, and removal mechanisms are fully discussed. MCs serve as efficient adsorbents and photocatalysts with superior performance of photocatalytic performance in TC degradation. In addition, the TC can be effectively decomposed by the Fenton-based and SO4•− mediated oxidation under catalysis of the reported MCs with excellent catalytic performance. Based on the existing literature, we further discuss the challenge and future perspectives in MCs-based adsorption and AOPs in removing TC.
Collapse
|
38
|
Nanoscale Ni enveloped in hydrochar prepared by one-step hydrothermal method for dry reforming of CH4 with CO2. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Yadav A, Bagotia N, Sharma AK, Kumar S. Advances in decontamination of wastewater using biomass-basedcomposites: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147108. [PMID: 33892326 DOI: 10.1016/j.scitotenv.2021.147108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Contaminant removal from wastewater using natural biosorbents has been widely studied as a suitable and environmentally benign alternative for conventional techniques. Currently, researchers are working on various biomass-based composites for wastewater remediation to improve the performance of natural biosorbents. This review takes into focus a wide range of biomass-based composites like hydrogel composites, metal oxide composites, magnetic composites, polymer composites, carbon nanotubes (CNTs) and graphene composites, metal organic framework composites (MOFs) and clay composites for the removal of various contaminants from wastewater. It is evident from the literature survey that the composite fabrication involves the modification of morphological and textural features of the biomass which results in significant enhancement of adsorption capacity. Apart from this, regeneration of the used biomass-based composite is also studied in depth in order to overcome the problem of solid waste generation. This review would prove to be beneficial for researchers who are currently focusing on the development of cost-effective, easily available, recyclable biomass-based composites with enhanced adsorption capacities for wastewater treatment.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India
| | - Nisha Bagotia
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, Haryana, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India.
| |
Collapse
|
40
|
|
41
|
Zheng X, He X, Peng H, Wen J, Lv S. Efficient adsorption of ciprofloxacin using Ga 2S 3/S-modified biochar via the high-temperature sulfurization. BIORESOURCE TECHNOLOGY 2021; 334:125238. [PMID: 33962160 DOI: 10.1016/j.biortech.2021.125238] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Ga2S3 and sulfur co-modified biochar (Ga/S-BC) composites were prepared for enhancing the adsorption of ciprofloxacin from sugarcane bagasse via the high-temperature sulfurization. In contrast with sulfur-modified biochar, Ga/S-BC exhibited the better adsorption capacity for ciprofloxacin removal. The increasing Ga content induced to the climbing and then declining adsorption activity of Ga/S-BC. Among these obtained Ga/S-BC composites, optimal 3-Ga/S-BC with a Ga content of 7.40% and surface area of 681.67 m2 g-1 exhibited the superior capacity of 330.21 mg g-1. The adsorption capacity of 3-Ga/S-BC declined to 301.66 mg g-1 after nine cycles. pH and inorganic salts also affected the adsorption capacity of 3-Ga/S-BC for ciprofloxacin removal. The adsorption isotherms of obtained Ga/S-BC composites were well described by Langmuir isotherm, and their adsorption kinetics were well estimated via second-order model. The adsorption performance of 3-Ga/S-BC in ciprofloxacin removal was a physisorption and spontaneous process.
Collapse
Affiliation(s)
- Xiaogang Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang Sichuan 641100, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan Guangdong 523808, China
| | - Xinyue He
- College of Chemistry and Chemical Engineering, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang Sichuan 641100, China
| | - Hao Peng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jing Wen
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Province Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining Qinghai 810008, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan Guangdong 523808, China
| |
Collapse
|
42
|
Thaveemas P, Chuenchom L, Kaowphong S, Techasakul S, Saparpakorn P, Dechtrirat D. Magnetic carbon nanofiber composite adsorbent through green in-situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. BIORESOURCE TECHNOLOGY 2021; 333:125184. [PMID: 33892424 DOI: 10.1016/j.biortech.2021.125184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
A magnetic carbon nanofiber sorbent was facilely synthesized from bio-based bacterial cellulose and FeCl3via impregnation, freeze-drying, followed by pyrolysis at 700 °C, without additional activation or nanofiber fabrication. The obtained material possessed intrinsic 3D naturally fibrous and porous structure with good magnetization. The adsorption results showed that the adsorption capacity of the prepared adsorbent towards bisphenol A (BPA) was as high as 618 mg/g, outperforming other adsorbents. Moreover, recycling the adsorbent for 10 consecutive cycles retained 96% of initial adsorption efficiency. The magnetic sorbent can maintain good magnetic properties even with recycling. Hence, the use of bacterial cellulose as a renewable carbon nanofiber precursor and FeCl3 as a source of magnetic particles, and a green pore generating agent in the present protocol, lead to a superior magnetic carbon nanofiber adsorbent with sustainable characteristics.
Collapse
Affiliation(s)
- Piyatida Thaveemas
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Laemthong Chuenchom
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sulawan Kaowphong
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Decha Dechtrirat
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
43
|
Fabrication of ferrihydrite-loaded magnetic sugar cane bagasse charcoal adsorbent for the adsorptive removal of selenite from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Producing Magnetic Nanocomposites from Paper Sludge for the Adsorptive Removal of Pharmaceuticals from Water-A Fractional Factorial Design. NANOMATERIALS 2021; 11:nano11020287. [PMID: 33499098 PMCID: PMC7911794 DOI: 10.3390/nano11020287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbamazepine, and diclofenac) from aqueous media were evaluated. For this purpose, a fractional factorial design (FFD) was applied to assess the effect of the most significant variables (Fe3+ to Fe2+ salts ratio, PAC to iron salts ratio, temperature, and pH), on the following responses concerning the resulting MACs: Specific surface area (SBET), saturation magnetization (Ms), and adsorption percentage of amoxicillin, carbamazepine, and diclofenac. The statistical analysis revealed that the PAC to iron salts mass ratio was the main factor affecting the considered responses. A quadratic linear regression model A = f(SBET, Ms) was adjusted to the FFD data, allowing to differentiate four of the eighteen MACs produced. These MACs were distinguished by being easily recovered from aqueous phase using a permanent magnet (Ms of 22-27 emu g-1), and their high SBET (741-795 m2 g-1) were responsible for individual adsorption percentages ranging between 61% and 84% using small MAC doses (35 mg L-1).
Collapse
|
45
|
Liu W, Yuan K, Yin K, Zuo S, Yao C. Clay-activated carbon adsorbent obtained by activation of spent bleaching earth and its application for removing Pb(II) ion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:711-723. [PMID: 32820441 DOI: 10.1007/s11356-020-10473-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BE/C-A750-1/1 is prepared by carbonizing SBE and then activating with KOH. BE/C-A750-1/1 has good adsorption capacity for Pb(II), and the adsorption capacity for Pb(II) is 206.65 mg/g. The harmful effects of coexisting cations are listed in ascending order: K+ < Na+ < Mg2+. Adsorption and desorption studies show that the adsorption capacity of BE/C-A750-1/1 for Pb(II) after adsorption and desorption 3 times is 183.62 mg/g. The adsorption mechanism mainly includes electrostatic attraction, ion exchange, physical adsorption, and chemical complexation. This suggests that activated BE/C may be a promising candidate for removing Pb(II) from industrial wastewater. Clay/carbon nanocomposites were prepared by carbonizing and activating the spent bleaching earth served as adsorbents for the efficient removal of Pb(II) from wastewater.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Kun Yuan
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Kecheng Yin
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shixiang Zuo
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Chao Yao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
46
|
Ma Y, Li M, Li P, Yang L, Wu L, Gao F, Qi X, Zhang Z. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. BIORESOURCE TECHNOLOGY 2021; 319:124199. [PMID: 33038650 DOI: 10.1016/j.biortech.2020.124199] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 05/03/2023]
Abstract
In this study, biochar derived from municipal sludge was activated by zinc chloride, which was first time used as the precursor for hydrothermal synthesis of magnetic sludge biochar (Fe/Zn-SBC) for tetracycline (TC) and ciprofloxacin (CIP) removal. The maximum adsorption capacity of Fe/Zn-SBC for TC and CIP were 145 mg g-1 and 74.2 mg g-1 at 25 °C, respectively. Kinetics, isotherms, thermodynamics and characterization analysis suggested that the adsorption process was dominated by pore filling, oxygen-containing groups complexation, π-π conjugation and hydrogen bonding. Fe/Zn-SBC had the high selective adsorption capacity for TC and CIP in a wide pH range and even at the high ionic strength. The magnetic sensitivity ensured its easy separation performance. The co-processing of ultrasound and ethanol could effectively regenerate the used Fe/Zn-SBC. Also, it exhibited great environmental safety in the pH range of 3 to 12. These superiority suggested that it is a promising adsorbent for antibiotics removal.
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Feng Gao
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
47
|
Teng F, Zhang Y, Wang D, Shen M, Hu D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122977. [PMID: 32474324 DOI: 10.1016/j.jhazmat.2020.122977] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Cationic and anionic heavy metal contamination sometimes co-exists in soil systems, such as mining areas and shooting ranges, seriously threatens human health and ecological stability. In this study, iron-modified rice husk hydrochar showed commendable ability to immobilize both heavy metal cation (Pb) and anion (Sb) simultaneously in soils. Iron-modified rice husk hydrochar (HC12.5-180) (5%) amendment reduced the bioavailability (EX- and CB-fraction) of Pb and Sb by 25 and 40%, respectively, which were 8 and 5 times higher than that of pristine rice husk hydrochar (HC0-180) (5%) amendment. The cation (Pb) immobilization mainly depends on cation exchange with mineral components (K+, Ca2+, Na+, Mg2+), precipitation with nonmetallic anions (Cl- and SO42-), and complexation. Meanwhile, the iron oxides (FeO, Fe2O3, Fe3O4), formed during hydrothermal process, can be easily combined with anion (Sb) to form geochemically stable minerals. In conclusion, this work offered a practical and cost-effective technology based on the iron modification rice husk hydrochar for the immobilization of both anionic and cationic heavy metal contaminants in soils.
Collapse
Affiliation(s)
- Fengyun Teng
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dequan Wang
- Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Yinchuan 750021, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Duofei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
48
|
Yu H, Gu L, Chen L, Wen H, Zhang D, Tao H. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. BIORESOURCE TECHNOLOGY 2020; 316:123971. [PMID: 32777718 DOI: 10.1016/j.biortech.2020.123971] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
A novel adsorbent derived from grapefruit peel (GP) based biochar (GPBC) was synthesized by combined carbonization of GP and subsequent activation by GP extracts. Compared to biochar without extracts activation, the technique granted GPBC-20 (with 1:20 of solid-solution ratio) more abundant surface functional groups, which exerts the adsorbent superior performance for tetracycline (TC) adsorption (37.92 mg/g v.s. 16.64 mg/g). The adsorption kinetics, isotherms and thermodynamics models were further used to evaluate the adsorption behavior of GPBC. The enhanced adsorption was analyzed by characterization of fresh and used GPBC, revealing that the adsorption mechanism was comprised of pore filling, charge interaction and chemical bonding. The comprehensive investigation of using agricultural waste extracts as activator to prepare its raw materials-based adsorbents may be of great significance for enhanced resource utilization.
Collapse
Affiliation(s)
- Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Lu Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai University of International Business and Economics, Shanghai 201620, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
49
|
Sun J, Cui L, Gao Y, He Y, Liu H, Huang Z. Environmental application of magnetic cellulose derived from Pennisetum sinese Roxb for efficient tetracycline removal. Carbohydr Polym 2020; 251:117004. [PMID: 33142571 DOI: 10.1016/j.carbpol.2020.117004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Pennisetum sinese Roxb is a kind of forage with high yield and high quality. However, because only the leaves are used as feed, most straw is discarded or burned, causing pollution and resources waste. In this study, a magnetic cellulose adsorbent produced by extracting cellulose from Pennisetum sinese Roxb straw was used to adsorb antibiotic tetracycline (TC) from water and can be easily separated. The physicochemical properties of the obtained cellulose samples were studied. The adsorption process was mediated by multiple mechanisms including intra-particle diffusion, chemical ion exchange, hydrogen bonding, and electrostatic interaction. We determined the optimal pH, contact time, initial TC concentration, and temperature before investigating the effects of humic acid and ionic strength on the adsorption process. Our results demonstrate that the magnetic cellulose is a promising adsorbent for the removal of TC from water and is worth to be studied further to develop real-world implementation strategies.
Collapse
Affiliation(s)
- Jie Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| | - Yuhan Gao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yuzhe He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huaqing Liu
- Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhujian Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
50
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|