1
|
Zhang J, Cao T, Jiang Y, Feng Y, Guo K, Yang J, Zhang H, Li X. Decreasing protein biotinylation background in a diatom facilitates proximity labeling of the periplastidial compartment proteome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70259. [PMID: 40489604 DOI: 10.1111/tpj.70259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 06/11/2025]
Abstract
Diatoms are ecologically and industrially significant microalgae, crucial for global carbon fixation and biotechnological applications. Their complex plastid membrane structures, resulting from secondary endosymbiosis, remain poorly characterized, particularly the periplastidial compartment (PPC). Proximity labeling techniques, such as TurboID and ascorbate peroxidase 2 (APEX2)-based labeling, are powerful tools for identifying protein-protein interactions and spatial proteomes, but their application in diatoms is hindered by unknown factors. In this study, we identified and characterized the high biotinylation background in diatoms, including Phaeodactylum tricornutum and other microalgae, which significantly impairs the effectiveness of proximity labeling. We also characterized the biotin synthase (BIOB) in P. tricornutum, a key enzyme in biotin biosynthesis. By using a biob mutant to deplete biotin, we successfully decreased the biotinylation background, enhancing the sensitivity and quality of proximity labeling. Applying this approach to the PPC, we identified several proteins previously undetectable through bioinformatics and confocal microscopy. Our results demonstrate that inhibiting biotin synthesis improves TurboID-based proximity labeling methods for studying protein interactions and spatial proteomics in diatoms. The case study of the improved proximity labeling system in PPC also increased our understanding of the complex plastids derived from higher-order endosymbiosis.
Collapse
Affiliation(s)
- Jiahuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Tianjun Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| | - Yanyou Jiang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yue Feng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Kangning Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Jin Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Huan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiaobo Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
2
|
Song Q, Kong F, Liu BF, Song X, Ren NQ, Ren HY. Ozone oxidation of actual waste leachate coupled with culture of microalgae for efficient lipid production under different temperatures. WATER RESEARCH 2025; 277:123305. [PMID: 39985995 DOI: 10.1016/j.watres.2025.123305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
The production of waste leachate (WL) has been increasing annually with the growth of population and the improvement of living standards, but it has become a difficult task to treat and resource it. Furthermore, the shortage of energy is becoming more serious, so the development of renewable energy instead of expensive fossil fuels is especially essential for productive life. This study constructed a system to oxidize WL by ozone at different temperatures and used it as a culture substrate for microalgae to produce biodiesel. It was shown that the biomass and lipid content of microalgae reached 420 ± 43.59 mg/L and 41 ± 2.2 % at a low temperature of 15 °C, respectively. Compared with the reaction system at 5 °C, the oxidation of WL by ozone at 25-45 °C was more effective in removing ammonia nitrogen, total phosphorus, and chromaticity. Three-dimension excitation emission matrix (3D-EEM) fluorescence spectroscopy results showed that the fluorescence intensity of dissolved organic matter in WL was reduced by 59.4 %-67.7 % after the ozone oxidation, which improved the bioavailability of WL and laid a nutrient foundation for the growth of microalgae. At 45 °C, 72.7 % of the chromaticity of WL was removed by ozone oxidation alone, and the ozone-coupled microalgae treatment system reduced ammonia nitrogen from 416.25 ± 1.05 to 214.6 ± 7.99 mg/L in WL. In addition, microalgae regulated the antioxidant system to mitigate oxidative damage induced by high concentrations of reactive oxygen species (ROS) caused by extreme temperatures by adjusting the levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH). The lipids of microalgae cultured in WL were dominated by saturated and unsaturated fatty acids, and the saturated fatty acids content of lipids reached 60.8 % at 15 °C, which was favorable for the production of biodiesel with better lubricating and combustion properties. This study provides a valuable theoretical basis for the resource utilization of WL and the practical production of microalgae biodiesel in cold regions.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Valizadeh S, Khani Y, Valizadeh B, Kim JC, Cho K, Park YK. Enhanced generation of jet fuel-range aromatic hydrocarbons through catalytic pyrolysis of woody biomass by simple chemical treatment on ZSM-5 catalyst. BIORESOURCE TECHNOLOGY 2025; 425:132320. [PMID: 40032191 DOI: 10.1016/j.biortech.2025.132320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Widespread reliance on fossil fuels and their increasing costs have necessitated the search for viable alternatives. This study details a reliable method for generating jet fuel-range aromatic hydrocarbons (C8-C16) via catalytic pyrolysis of woody biomass. To do this, HZSM-5 was modified using NaOH (N-HZSM-5) and HCl (H-HZSM-5) and utilized in the pyrolysis of three types of sawdust (S1, S2, and S3). In S1 pyrolysis, HZSM-5 increased C8-C16 aromatics' selectivity despite a lower bio-oil yield compared to the Non-C test. Among sawdust samples, S2 pyrolysis produced the highest C8-C16 aromatics (44.2%) due to its compositional and thermal characteristics. The use of N-HZSM-5 in S2 pyrolysis maximized the yield of bio-oil (46.9 wt%) and the selectivity for C8-C16 aromatics (49.3 %). N-HZSM-5 exhibited stable performance over three cycles, with minimal decline in C8-C16 aromatics. This study proposes a sustainable and feasible method for the generation of biojet fuel from lignocellulosic biomass. Abbreviations: RJF, Renewable jet fuel; LAS, Lewis acid sites; BAS, Brønsted Lowry acid sites; S1, Sawdust 1; S2, Sawdust 2; S3, Sawdust 3; HZSM-5 (80), HZSM-5 (SiO2/Al2O3: 80); N-HZSM-5, NaOH-treated HZSM-5 (80); H-HZSM-5, HCl-treated HZSM-5 (80); XRF, X-ray Fluorescence; XRD, X-ray diffraction (XRD); NH3-TPD, Ammonia temperature-programmed desorption; FT-IR, Pyridine Fourier transform infrared; NMR, Solid-state nuclear magnetic resonance; MAS, Magic angle spinning; FE-SEM, Field emission scanning electron microscopy; HR-TEM, High-resolution transmission electron microscopy; SBET, BET surface area; VTotal, Total pore volume; SMeso, Mesopores' surface area; VMeso, Mesopores' pore volume; SMicro, Micropores' surface area; VMicro, Micropores' pore volume; H+, Proton; Non-C, Non-Catalytic.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yasin Khani
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Behzad Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jeong-Chul Kim
- Department of Chemical and Biological Engineering, Hanbat National University, 125, Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Kanghee Cho
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
4
|
Dritsas P, Aggelis G. Impact of Temperature on the Biochemical Potential of Five Newly Isolated Strains of Microalgae Cultured in a Stirred Tank Reactor. Microorganisms 2025; 13:1155. [PMID: 40431326 PMCID: PMC12114548 DOI: 10.3390/microorganisms13051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The microalgal strains Picochlorum costavermella VAS2.5, Picochlorum oklahomense SAG4.4, Picochlorum oklahomense PAT3.2B, Microchloropsis gaditana VON5.3, and Nephroselmis pyriformis PAT2.7 were cultured in a Stirred Tank Reactor at 25 °C or 20 °C in modified artificial seawater and their biotechnological potential was assessed. VAS2.5, VON5.3, and PAT2.7 were high in biomass production at both temperatures (i.e., 438.8-671.3 mg/L and 418.4-546.7 mg/L at 25 °C and 20 °C, respectively), though P. oklahomense strains grew only at 25 °C. The highest lipid percentage was recorded for the cultures of VAS2.5 (19.3 ± 0.7%) and VON5.3 (16.4 ± 1.5%) at 25 °C, notably rich in Δ5,8,11,14,17C20:5, while PAT2.7 proved a major producer of Δ9C16:1. The predominant lipid fraction was glycolipids and sphingolipids (41.3-57.4%) for VAS2.5, PAT2.7 at 25 °C and VON5.3 at 20 °C and neutral lipids (55.6-63.5%) in the other cultures, indicating the different effect of temperature on lipid synthesis of the various microalgae. Additionally, almost all strains stood out for their high protein content, exceeding 50% in the culture of PAT3.2B, but polysaccharide and pigment content were not high. The biochemical profiles of the isolates showcased their suitability for use primarily as feed additives in the aquaculture sector.
Collapse
Affiliation(s)
| | - George Aggelis
- Department of Biology, School of Natural Sciences, University of Patras, 26500 Patras, Greece;
| |
Collapse
|
5
|
Tamayo-Castañeda RG, Cerrillo-Rojas GV, Ibarra-Pérez T, Ndjatchi C, Correa-Aguado HC. A Push-Pull Strategy to Enhance Biomass and Lipid Production in Nannochloropsis oculata. Microorganisms 2025; 13:1131. [PMID: 40431303 PMCID: PMC12114038 DOI: 10.3390/microorganisms13051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
The high demand for sustainable biodiesel feedstocks has led to the exploration of innovative strategies to enhance lipid productivity in microalgae. This study introduces a push-pull strategy to optimize lipid accumulation in Nannochloropsis oculata. The benzyl amino purine (BAP) and naphthalene acetic acid (NAA) stimulation, acting as the 'push' component, significantly boost growth and nutrient stress tolerance. Meanwhile, the 'pull' component, nitrogen (N) deficiency, triggers lipid biosynthesis. A Box-Behnken design was employed to optimize the factors named BAP fraction (0-1), total phytohormone (PH) BAP/NAA mix dose (0-20 ppm), and N-concentration (0-50%). The combined BAP/NAA treatment significantly increased biomass (15% higher than the control) and mitigated N-stress with higher doses (20 ppm). Lipid yield surged from 12.4% to 38.87% under optimized conditions (23.25% N, 39.5 ppm NAA, and BAP fraction 0). The push-pull strategy contributed to boosting lipid synthesis and balancing biomass production. N-limitation and total PH dosage were the determining factors in this strategy. This work demonstrates the potential of the push-pull strategy in increasing lipid accumulation, offering a promising and optimistic solution for biodiesel production at scale from microalgae. By reducing dependence on fossil fuels, N. oculata emerges as a reliable feedstock for oil extraction and biodiesel.
Collapse
Affiliation(s)
| | | | | | | | - Hans Christian Correa-Aguado
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Zacatecas 98160, Mexico (G.V.C.-R.); (T.I.-P.); (C.N.)
| |
Collapse
|
6
|
Lo C, Boboescu I, Haemers S, Wijffels RH, Eppink MHM. Semi-hydrophobic eutectic solvents: Sequential extraction of lipids, proteins & carbohydrates, recycling, scalability of microalga Nannochloropsis oceanica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179373. [PMID: 40220467 DOI: 10.1016/j.scitotenv.2025.179373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Semi-hydrophobic eutectic solvents (ES) possess a great potential as lipid extraction solvent from untreated microalgae. However, the low vapor pressure of these solvents and the unknown effects on other biomolecules (e.g., proteins, carbohydrates) limit their application in microalgae biorefinery. In this work, recovery of the extracted lipids was performed by addition of antisolvents and the affecting parameters (i.e., antisolvent type, amount, temperature, ES imidazole content) were studied. The highest recovery was obtained with methanol addition to ES with 15 mol% imidazole at -20 °C, where lipid crystals were formed consisting mainly of saturated fatty acids. The remaining soluble lipids under the same condition were found to be fractions with mono- and poly-unsaturated fatty acids. Furthermore, based on the iterative extractions, the regenerated solvents could create sufficient driving force for lipid extraction despite the lipid accumulation. In addition, a scale-up study of lipid extraction and solvent recycling was performed (2 mL vs 500 mL), whereby the larger scale also showed a good performance. Finally, protein and carbohydrate isolation from the defatted biomass was feasible, but the proposed ES process was not sufficiently mild to maintain native proteins. On the other hand, opportunities are discussed to create new functionalities for proteins and carbohydrates so that a multiproduct biorefinery is feasible for this ES.
Collapse
Affiliation(s)
- Calvin Lo
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - Iulian Boboescu
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - Sebastiaan Haemers
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
7
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2025; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Ali MS, Haq M, Park SW, Han JM, Kim JW, Choi MS, Lee SM, Park JS, Chun MS, Lee HJ, Chun BS. Recent advances in recovering bioactive compounds from macroalgae and microalgae using subcritical water extraction: Prospective compounds and biological activities. Food Chem 2025; 469:142602. [PMID: 39724698 DOI: 10.1016/j.foodchem.2024.142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Algae, widely as a valuable marine biomass, are appreciated globally for their unique chemical compositions and exceptional nutritional benefits. Scientists are increasingly focusing on valorizing algae biomass to recover polysaccharides and bioactive extracts. Conventional methods commonly used to extract bioactive compounds have several limitations. Subcritical water extraction (SWE) is a green extraction technology for extracting bioactive compounds from natural products. SWE has garnered significant attention attributed to its use of safe solvent (water), high extraction efficiency, economical, promising application potential and environmental friendliness. The factors influencing the extraction of bioactive compounds using SWE, including temperature, pressure, extraction time, particle size, and solid-to-solvent ratio, were thoroughly discussed. Furthermore, these bioactive compounds exhibit antioxidant, antimicrobial, antihypertensive, anticancer, and antidiabetic properties. The bioactive compounds from the hydrolysates were not purified, but future research could address this for potential applications. This study provides valuable reference points for both academia and industrial-scale commercialization.
Collapse
Affiliation(s)
- Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Monjurul Haq
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Min-Seo Choi
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Sang-Min Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea
| | - Man-Seog Chun
- Korea Science Academy of KAIST, 105-47, Baegyanggwanmun-ro, Busanjin-gy, Busan 47162, Republic of Korea
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
9
|
Zhang H, Liu B, Sun F, Zhang Z, Kong Y, Liu X, Cui Y, Ma Y, Wu Y, Fan J, Ge B, Cheng Y, Wang M, Meng C, Gao Z. Interactions between the co-contamination system of oxcarbazepine-polypropylene microplastics and Chlorella sp. FACHB-9: Toxic effects and biodegradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124434. [PMID: 39914217 DOI: 10.1016/j.jenvman.2025.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
The co-contamination of microplastics and pharmaceutical pollutants has attracted increasing attention. However, studies on the joint toxicity of pollutants on organisms in aquatic ecosystems are still lacking. This study aimed to investigate the joint toxicity of oxcarbazepine (OXC, 30 mg/L) and polypropylene microplastics (PP-MPs, 500 mg/L and particle size of 180 μm) microplastics on microalgae (Chlorella sp. FACHB-9) and the biodegradation of OXC by strain FACHB-9. Compared to the single OXC exposure, the cell density of microalgae was decreased by 38.93% in OXC/PP-MPs co-contamination system, with enhanced oxidative stress and decreased photosynthetic efficiency. Transcriptomic analyses indicated that photosynthetic pathways and TCA cycle pathways were significantly inhibited, while DNA damage repair pathways were up regulated in microalgae co-exposed to OXC and PP-MPs. Moreover, strain FACHB-9 showed a remarkable degradation effect (91.61% and 86.27%) on OXC in single and mixture group, respectively. These findings significantly expanded the existing knowledge on the joint toxicity of pollutants on microalgae, indicating prospective promise of microalgae for the bioremediation of polluted aquatic environments.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Baoming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA, 30043, USA
| | - Ziqi Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yifan Kong
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiang Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuyang Ma
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuyong Wu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jianhua Fan
- East China University of Science and Technology, Shanghai, 200237, China
| | - Baosheng Ge
- China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Cheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Meng Wang
- Yantai Hongyuan Bio-fertilizer Co., Ltd., Yantai, 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
10
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
11
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Zhang W, Xu D, Zhao Y, Gao D, Xie Z, Zhang X, Wu B, Huang T, Peng L. Enhancing electricity generation and pollutant degradation in microbial fuel cells using cyanobacteria-derived biochar electrodes. BIORESOURCE TECHNOLOGY 2025; 418:132000. [PMID: 39706306 DOI: 10.1016/j.biortech.2024.132000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Utilizing microbial fuel cells (MFCs) technology to simultaneously achieve efficient biopower generation and pollutant degradation is a persistent pursuit. However, the limited rate of extracellular electron transfer (EET) and the availability of electrode materials remain key factors limiting the practical application of MFCs. In this article, modified carbon derived from cyanobacteria is applied to modify electrodes and assemble MFCs. By outputting voltage, power density, chemical oxygen demand removal rate and Coulombic efficiency the excellent bioelectricity performance of the assembled MFCs is demonstrated. The degradation performance of the assembled MFCs on various typical pollutants represented by tetracycline is illuminated, even up to 95.12%. Moreover, the pollutant removal mechanism by assembled MFCs is elucidated, including biofilm community and degradation pathway analysis. In a word, the enhanced EET process and high accessibility make the proposed MFC anode have fascinating application prospects in achieving efficient biopower generation and pollutant degradation simultaneously.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Daifei Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China
| | - Yue Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China
| | - Degui Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zhaotian Xie
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xinming Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215009, People's Republic of China.
| | - Tianyin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215009, People's Republic of China
| | - Lele Peng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
13
|
Khanashyam AC, Mundanat AS, Sajith Babu K, Thorakkattu P, Krishnan R, Abdullah S, Bekhit AEDA, McClements DJ, Santivarangkna C, Nirmal NP. Emerging alternative food protein sources: production process, quality parameters, and safety point of view. Crit Rev Biotechnol 2025; 45:1-22. [PMID: 39676293 DOI: 10.1080/07388551.2024.2341902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 12/17/2024]
Abstract
The rise in the global population has increased the demand for dietary food protein. Strategies to maximize agricultural and livestock outputs could strain land and freshwater supply and contribute to substantial negative environmental impacts. Consequently, there has been an emphasis on identifying alternative sources of edible proteins that are more sustainable, sustainable, ethical, and healthy. This review provides a critical report on future food protein sources including: plant, cultured meat, insect, and microbial, as alternative sources to traditional animal-based sources. The technical challenges associated with the production process of alternative protein sources are discussed. The most important quality parameters of alternative proteins, such as: protein composition and digestibility, allergenicity, functional and sensory attributes, and safety regulations have been documented. Lastly, future direction and conclusion have been made on future protein trends. However, further regulatory norms need to develop for safe consumption and distribution around the world.
Collapse
Affiliation(s)
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sajeeb Abdullah
- Department of Food Technology, Saintgits College of Engineering, Kottukulam Hills, Kerala, India
| | | | | | - Chalat Santivarangkna
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Nilesh Prakash Nirmal
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
14
|
Labara Tirado J, Herdean A, Ralph PJ. The need for smart microalgal bioprospecting. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:7. [PMID: 39815030 PMCID: PMC11735771 DOI: 10.1007/s13659-024-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new properties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selective sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscoveries. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. in ACS Appl Bio Mater 4:5080-5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 19:3810-3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
Collapse
Affiliation(s)
- Joan Labara Tirado
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Andrei Herdean
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
15
|
Dewan A, Sridhar K, Yadav M, Bishnoi S, Ambawat S, Nagaraja SK, Sharma M. Recent trends in edible algae functional proteins: Production, bio-functional properties, and sustainable food packaging applications. Food Chem 2025; 463:141483. [PMID: 39369604 DOI: 10.1016/j.foodchem.2024.141483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.
Collapse
Affiliation(s)
- Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Monika Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sonam Bishnoi
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Shobhit Ambawat
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
16
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
17
|
Blanco-Llamero C, García-García P, Señoráns FJ. Efficient Green Extraction of Nutraceutical Compounds from Nannochloropsis gaditana: A Comparative Electrospray Ionization LC-MS and GC-MS Analysis for Lipid Profiling. Foods 2024; 13:4117. [PMID: 39767059 PMCID: PMC11675803 DOI: 10.3390/foods13244117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Microalgae have been described as a potential alternative source of a wide range of bioactive compounds, including polar lipids and carotenoids. Specifically, Nannochloropsis gaditana is described as producing large amounts of polar lipids, such as glycolipids and phospholipids. These natural active compounds serve as key ingredients for food, cosmetic, or nutraceutical applications. However, microalgae usually possess a rigid cell wall that complicates the extraction of these compounds. Thus, an ultrasound-assisted enzymatic pretreatment is necessary to efficiently extract bioactives from microalgae, and it was studied in this article. Pretreated biomass was extracted using different advanced and green methodologies and compared to traditional extraction. Furthermore, the analysis, characterization, and identification of valuable compounds using GC-MS and LC-MS analytical methods were also investigated. Interestingly, major results demonstrated the efficiency of the pretreatment, enriching polar lipids' distribution in all extracts produced no matter the extraction technique, although they presented differences in their concentration. Pressurized liquid extraction and microwave-assisted extraction were found to be the techniques with the highest yields, whereas ultrasound-assisted extraction achieved the highest percentage of glycolipids. In summary, green extraction techniques showed their effectiveness compared to traditional extraction.
Collapse
Affiliation(s)
| | | | - Francisco Javier Señoráns
- Healthy Lipids Group, Faculty of Sciences, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, 28049 Madrid, Spain (P.G.-G.)
| |
Collapse
|
18
|
Figueira Garcia L, Gojkovic Z, Venuleo M, Guidi F, Portillo E. The Use of Chemical Flocculants and Chitosan as a Pre-Concentration Step in the Harvesting Process of Three Native Microalgae Species from the Canary Islands Cultivated Outdoors at the Pilot Scale. Microorganisms 2024; 12:2583. [PMID: 39770786 PMCID: PMC11677443 DOI: 10.3390/microorganisms12122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl3 and AlCl3 were tested on freshwater Chlorella sorokiniana and two marine algae, Dunaliella tertiolecta and Tetraselmis striata. A preliminary screening at the laboratory scale was performed to detect the most suitable doses of flocculants. On the basis of these results, selected doses were tested on the pilot scale, using the flocculants for a pre-concentration step and the centrifugation as a second step to confirm the effectiveness of flocculants in a realistic operational environment. The biomass recoveries (Rpilot, %) of 100 L cultures were as follows: (1) for T. striata, Rpilot = 94.6% for 0.08 g/L AlCl3, 88.4% for 0.1 g/L FeCl3, and 68.3% for 0.04 g/L chitosan; (2) for D. tertiolecta, Rpilot = 81.7% for 0.1 g/L AlCl3, 87.9% for 0.2 g/L FeCl3, and 81.6% for 0.1 g/L chitosan; and (3) for C. sorokiniana, Rpilot = 89.6% for 0.1 g/L AlCl3, 98.6% for 0.2 g/L FeCl3, and 68.3% for 0.1 g/L chitosan. Flocculation reduced the harvesting costs by 85.9 ± 4.5% using chemical flocculants. Excesses of aluminum and iron in the biomass could be solved by decreasing the pH in the biomass combined with washing. This is the first study, to the best of our knowledge, that investigates the pilot-scale flocculation of three native Canarian microalgal strains. A pilot-scale pre-concentration step before centrifugation can improve the yield and reduce costs in the microalgae harvesting process.
Collapse
Affiliation(s)
| | - Zivan Gojkovic
- Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain
| | | | | | | |
Collapse
|
19
|
Lacroux J, Mahieux M, Llamas M, Bonnafous A, Trably E, Steyer JP, van Lis R. Mixotrophic cultivation of microalgae-bacteria consortia enhances dark fermentation effluent treatment. BIORESOURCE TECHNOLOGY 2024; 414:131616. [PMID: 39395604 DOI: 10.1016/j.biortech.2024.131616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Dark fermentation (DF) is a waste treatment bioprocess which produces biohydrogen and volatile fatty acids (VFAs) such as acetate or butyrate. DF can be coupled with microalgae cultivation, allowing VFA conversion into valuable biomass. Nevertheless, the process is hindered by slow butyrate consumption. In this study, novel artificial microalgae-bacteria consortia were used as a strategy to accelerate butyrate removal. Three microalgal strains with various trophic metabolisms, Chlorella sorokiniana, Euglena gracilis and Ochromonas danica, were cultivated on DF effluent that was either sterile or contained endogenous bacteria. Bacteria did not impact microalgal biomass production of C. sorokiniana or E. gracilis while accelerating butyrate removal rates 2 to 10-fold. O. danica greatly impacted microbial diversity, probably due to its phagotrophic metabolism. These results show that bacteria in organic rich effluents can greatly aid in substrate removal while allowing microalgal growth, inspiring bioprocesses coupling raw fermentation effluents with microalgae biomass production and valorization.
Collapse
Affiliation(s)
- Julien Lacroux
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Margot Mahieux
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Mercedes Llamas
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Edificio 46., Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Anaïs Bonnafous
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Eric Trably
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | | | - Robert van Lis
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
20
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
21
|
Imamoglu E. Artificial Intelligence and/or Machine Learning Algorithms in Microalgae Bioprocesses. Bioengineering (Basel) 2024; 11:1143. [PMID: 39593803 PMCID: PMC11592280 DOI: 10.3390/bioengineering11111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This review examines the increasing application of artificial intelligence (AI) and/or machine learning (ML) in microalgae processes, focusing on their ability to improve production efficiency, yield, and process control. AI/ML technologies are used in various aspects of microalgae processes, such as real-time monitoring, species identification, the optimization of growth conditions, harvesting, and the purification of bioproducts. Commonly employed ML algorithms, including the support vector machine (SVM), genetic algorithm (GA), decision tree (DT), random forest (RF), artificial neural network (ANN), and deep learning (DL), each have unique strengths but also present challenges, such as computational demands, overfitting, and transparency. Despite these hurdles, AI/ML technologies have shown significant improvements in system performance, scalability, and resource efficiency, as well as in cutting costs, minimizing downtime, and reducing environmental impact. However, broader implementations face obstacles, including data availability, model complexity, scalability issues, cybersecurity threats, and regulatory challenges. To address these issues, solutions, such as the use of simulation-based data, modular system designs, and adaptive learning models, have been proposed. This review contributes to the literature by offering a thorough analysis of the practical applications, obstacles, and benefits of AI/ML in microalgae processes, offering critical insights into this fast-evolving field.
Collapse
Affiliation(s)
- Esra Imamoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey
| |
Collapse
|
22
|
Klepacz-Smolka A, Shah MR, Jiang Y, Zhong Y, Chen P, Pietrzyk D, Szelag R, Ledakowicz S, Daroch M. Microalgae are not an umbrella solution for power industry waste abatement but could play a role in their valorization. Crit Rev Biotechnol 2024; 44:1296-1324. [PMID: 38105487 DOI: 10.1080/07388551.2023.2284644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 12/19/2023]
Abstract
Microalgae have long been regarded as a promising solution for biological carbon abatement from the power industry, offering renewable biomass without competing for land or water resources used for food crops. In this study, we extensively examined the application of photosynthetic microorganisms for closing carbon, nitrogen, and micronutrient loops in the power industry. Subsequently, we explored the bottom-up integration of algal biorefineries into power industry waste streams for increased economic benefits and reduced environmental impacts. Analysis of the available data indicated that microalgae integration with the power industry is primarily performed using flue-gas-assisted cultivation. This approach allows for carbon sequestration typically below one gram per liter per day, too low to significantly impact carbon abatement at achievable scales of microalgae cultivation. Alternative approaches are also being explored. For example, soluble bicarbonate platforms allow for higher biomass productivity and temporary carbon storage. Meanwhile, the use of ashes and waste heat and thermophilic strains can result in lower cultivation costs and better control of cultivation conditions. These approaches offer further incremental improvement to microalgae-based carbon abatement systems in the power industry but are unlikely to be an umbrella solution for carbon reduction. Consequently, in the near term, microalgae-based carbon valorization systems are likely to be limited to niche applications involving the synthesis of high-value products. For microalgae to truly transform carbon abatement processes radical improvements in both biology and engineering approaches are urgently needed.
Collapse
Affiliation(s)
- Anna Klepacz-Smolka
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuqing Zhong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Damian Pietrzyk
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Rafal Szelag
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Stanislaw Ledakowicz
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
23
|
Zhu J, Guo X, Zhao K, Chen X, Zhao X, Yang Z, Yin Y, Wakisaka M, Fang W. Comparative Analysis of Pretreatment Methods for Fruit Waste Valorization in Euglena gracilis Cultivation: Impacts on Biomass, β-1,3-Glucan Production, and Photosynthetic Efficiency. Foods 2024; 13:3439. [PMID: 39517223 PMCID: PMC11545038 DOI: 10.3390/foods13213439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This study explored the sustainable valorization of fruit waste extracts from sugarcane bagasse (SB), banana peel (BP), and watermelon rind (WR) for Euglena gracilis biomass and β-1,3-glucan production. The extracts were prepared using water extraction (WE), high-temperature and pressure treatment (HTP), and dilute sulfuric acid treatment (DSA). The DSA-treated extracts consistently yielded the best results. E. gracilis cultured in SB-DSA showed the highest cell density with a 2.08-fold increase compared to the commercial HUT medium, followed by BP-DSA (1.35-fold) and WR-DSA (1.70-fold). Photosynthetic pigment production increased significantly, with chlorophyll a yield being highest in SB-DSA (1.90-fold increase). The chlorophyll a/b ratio and total carotenoid content also improved, indicating enhanced light-harvesting capacity and photoprotection. Photosynthetic efficiency, measured by chlorophyll fluorescence, notably improved. The maximum quantum yield of PSII (Fv/Fm) increased by up to 25.88% in SB-DSA, suggesting reduced stress and improved overall photosynthetic health. The potential photochemical efficiency (Fv/F0) showed even greater improvements: up to 40.53% in SB-DSA. Cell morphology analysis revealed larger cell aspect ratios, implying a more active cellular physiological state. β-1,3-glucan yield also increased by 23.99%, 12.92%, and 23.38% in SB-DSA, BP-DSA, and WR-DSA, respectively. This study demonstrates the potential of pretreated fruit waste as a cost-effective and sustainable medium for E. gracilis cultivation, offering the dual benefits of waste valorization and high-value compound production. These findings contribute to the development of more efficient biorefinery processes and align with the circular economy principles in food biotechnology.
Collapse
Affiliation(s)
- Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Xinyue Guo
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Kaile Zhao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Xinyu Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Xinxin Zhao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| | - Minato Wakisaka
- Food Study Centre, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Fukuoka 813-8529, Japan;
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.G.); (K.Z.); (X.C.); (X.Z.); (Z.Y.); (Y.Y.); (W.F.)
| |
Collapse
|
24
|
Bbosa WK, Feng L, Odongol EE, Su Y, Liu T, Xu B. Environmental sustainable treatment and disposal technologies for reservoir wastes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59749-59766. [PMID: 39373838 DOI: 10.1007/s11356-024-35125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
The process of dredging reservoirs serves the purpose of preserving water storage capacity and ensuring the functionality of navigational channels. Additionally, it has the potential to mitigate the presence of pollutants and chemicals that pose risks to both the environment and human well-being. This review article examines the many ways of disposal and treatment of dredged sediment, as well as the ecological and economic advantages associated with these approaches. Algae and reed-based treatment methods have the potential to effectively and economically remediate and sustainably manage dredged sediments. Landfills and ocean dumping are widely utilized methods for the disposal of excavated materials. However, other approaches such as land reclamation, the use of fill material, and the preservation of wetlands can offer cost-effective solutions while also contributing to environmental conservation. The implementation of sediment cleaning, stabilization, and solidification techniques has the potential to effectively mitigate waste and improve the quality of sediment, hence facilitating its reuse. Algae and reed-based treatment systems have been found to effectively mitigate disposal costs and contribute to environmental enhancement. Additionally, the practice of reusing dredged sediments has been recognized as a valuable strategy in promoting a circular economy.
Collapse
Affiliation(s)
- Wilfred Kisaakye Bbosa
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Leiyu Feng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Institute of Environment and Sustainable Development, 1239 Siping Road, Shanghai, 200092, China.
| | - Ernest Emmanuel Odongol
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Su
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tao Liu
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Xu
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
25
|
Yu KL, Ong HC, Zaman HB. Integrated energy informatics technology on microalgae-based wastewater treatment to bioenergy production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122085. [PMID: 39142099 DOI: 10.1016/j.jenvman.2024.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
The production of renewable biofuel through microalgae and green technology can be a promising solution to meet future energy demands whilst reducing greenhouse gases (GHG) emissions and recovering energy for a carbon-neutral bio-economy and environmental sustainability. Recently, the integration of Energy Informatics (EI) technology as an emerging approach has ensured the feasibility and enhancement of microalgal biotechnology and bioenergy applications. Integrating EI technology such as artificial intelligence (AI), predictive modelling systems and life cycle analysis (LCA) in microalgae field applications can improve cost, efficiency, productivity and sustainability. With the approach of EI technology, data-driven insights and decision-making, resource optimization and a better understanding of the environmental impact of microalgae cultivation could be achieved, making it a crucial step in advancing this field and its applications. This review presents the conventional technologies in the microalgae-based system for wastewater treatment and bioenergy production. Furthermore, the recent integration of EI in microalgal technology from the AI application to the modelling and optimization using predictive control systems has been discussed. The LCA and techno-economic assessment (TEA) in the environmental sustainability and economic point of view are also presented. Future challenges and perspectives in the microalgae-based wastewater treatment to bioenergy production integrated with the EI approach, are also discussed in relation to the development of microalgae as the future energy source.
Collapse
Affiliation(s)
- Kai Ling Yu
- Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Tan Sri Leo Moggie Distinguished Chair in Energy Informatics, Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Halimah Badioze Zaman
- Tan Sri Leo Moggie Distinguished Chair in Energy Informatics, Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
26
|
Lu X, Yang S, He Y, Zhao W, Nie M, Sun H. Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Mar Drugs 2024; 22:386. [PMID: 39330267 PMCID: PMC11433211 DOI: 10.3390/md22090386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae are considered promising sustainable feedstocks for the production of food, food additives, feeds, chemicals and various high-value products. Marine microalgae Phaeodactylum tricornutum, Isochrysis galbana and Nitzschia laevis are rich in fucoxanthin, which is effective for weight loss and metabolic diseases. The selection of microalgae species with outstanding nutritional profiles is fundamental for novel foods development, and the nutritional value of P. tricornutum, I. galbana and N. laevis are not yet fully understood. Hence, this study investigates and analyzes the nutritional components of the microalgae by chromatography and mass spectrometry, to explore their nutritional and industrial application potential. The results indicate that the three microalgae possess high nutritional value. Among them, P. tricornutum shows significantly higher levels of proteins (43.29%) and amino acids, while I. galbana has the highest content of carbohydrates (25.40%) and lipids (10.95%). Notwithstanding that P. tricornutum and I. galbana have higher fucoxanthin contents, N. laevis achieves the highest fucoxanthin productivity (6.21 mg/L/day) and polyunsaturated fatty acids (PUFAs) productivity (26.13 mg/L/day) because of the competitive cell density (2.89 g/L) and the advantageous specific growth rate (0.42/day). Thus, compared with P. tricornutum and I. galbana, N. laevis is a more promising candidate for co-production of fucoxanthin and PUFAs.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Shufang Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Man Nie
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Han Sun
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
27
|
Lee A, Lan JCW, Jambrak AR, Chang JS, Lim JW, Khoo KS. Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100203. [PMID: 38633725 PMCID: PMC11021955 DOI: 10.1016/j.fochms.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Fruit and vegetable wastes are linked to the depletion of natural resources and can pose serious health and environmental risks (e.g. eutrophication, water and soil pollution, and GHG emissions) if improperly managed. Current waste management practices often fail to recover high-value compounds from fruit wastes. Among emerging valorization methods, the utilization of fruit wastes as a feedstock for microalgal biorefineries is a promising approach for achieving net zero waste and sustainable development goals. This is due to the ability of microalgae to efficiently sequester carbon dioxide through photosynthesis, utilize nutrients in wastewater, grow in facilities located on non-arable land, and produce several commercially valuable compounds with applications in food, biofuels, bioplastics, cosmetics, nutraceuticals, pharmaceutics, and various other industries. However, the application of microalgal biotechnology towards upcycling fruit wastes has yet to be implemented on the industrial scale due to several economic, technical, operational, and regulatory challenges. Here, we identify sources of fruit waste along the food supply chain, evaluate current and emerging fruit waste management practices, describe value-added compounds in fruit wastes, and review current methods of microalgal cultivation using fruit wastes as a fermentation medium. We also propose some novel strategies for the practical implementation of industrial microalgal biorefineries for upcycling fruit waste in the future.
Collapse
Affiliation(s)
- Alicia Lee
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
28
|
Metin U, Altınbaş M. Evaluating Ammonia Toxicity and Growth Kinetics of Four Different Microalgae Species. Microorganisms 2024; 12:1542. [PMID: 39203384 PMCID: PMC11355981 DOI: 10.3390/microorganisms12081542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/03/2024] Open
Abstract
Although wastewater with high ammonia concentration is an ideal alternative environment for microalgae cultivation, high ammonia concentrations are toxic to microalgae and inhibit microalgae growth. In this study, the ammonia responses of four widely used microalgae species were investigated. Chlorella vulgaris, Chlorella minutissima, Chlamydomonas reinhardtii and Arthrospira platensis were grown in batch reactors maintained at seven different NH4Cl concentrations at a constant pH of 8. Growth and nitrogen removal kinetics were monitored. IC50 values for the mentioned species were found as 34.82 mg-FA/L, 30.17 mg-FA/L, 27.2 mg-FA/L and 44.44 mg-FA/L, respectively, while specific growth rates for different ammonia concentrations ranged between 0.148 and 1.271 d-1. C. vulgaris demonstrated the highest biomass growth under an ammonia concentration of 1700.95 mg/L. The highest removal of nitrogen was observed for A. platensis with an efficiency of 99.1%. The results showed that all tested species could grow without inhibition in ammonia levels comparable to those found in municipal wastewater. Furthermore, it has been concluded that species C. vulgaris and A. platensis can tolerate high ammonia levels similar to those found in high strength wastewaters.
Collapse
Affiliation(s)
- Umut Metin
- Department of Environmental Engineering, Faculty of Civil Engineering, Yıldız Technical University, 34220 Istanbul, Turkey;
| | - Mahmut Altınbaş
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
29
|
Cicci A, Scarponi P, Cavinato C, Bravi M. Microalgae production in olive mill wastewater fractions and cattle digestate slurry: Bioremediation effects and suitability for energy and feed uses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172773. [PMID: 38685426 DOI: 10.1016/j.scitotenv.2024.172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The possibility of obtaining energy or nutritive streams and bioremediation as an add-on opens new perspectives for the massive culturing of microalgal biomass on waste waters generated by the agro-food sector. Ordinary revenue streams are fully preserved, or even boosted, if they are used in microalgal cultivation; however, the suitability of wastewaters depends on multiple nutritional and toxic factors. Here, the effect of modulating the Olive Mill Wastewater (OMW) and cattle digestate (CD) fraction in the formulation of a growth medium on biomass accumulation and productivity of selected biomass fractions and their relevance for biofuel and/or feed production were tested for the microalga Scenedesmus dimorphus and for the cyanobacterium Arthrospira platensis (Spirulina). Tests highlighted the strong S. dimorphus adaptability to digestate, as on OMW, compared to A. platensis, with the maximum lipid storage (48 %) when culture medium was composed by 50 % of cattle digestate.
Collapse
Affiliation(s)
- A Cicci
- Department of Chemical Engineering Materials Environment, Sapienza University of Roma, via Eudossiana, 18, 00184 Roma, Italy
| | - P Scarponi
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - M Bravi
- Department of Chemical Engineering Materials Environment, Sapienza University of Roma, via Eudossiana, 18, 00184 Roma, Italy
| |
Collapse
|
30
|
Park Y, Jeong GT. Production of levulinic acid from macroalgae by hydrothermal conversion with ionic resin catalyst. BIORESOURCE TECHNOLOGY 2024; 402:130778. [PMID: 38701985 DOI: 10.1016/j.biortech.2024.130778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Gracilaria verrucosa is red algae (Rhodophyta) that is particularly significant because of its potential for bioenergy production as a sustainable and environmentally friendly marine bioresource. This study focuses on the production of levulinic acid from G. verrucosa using hydrothermal conversion with an ionic resin Purolite CT269DR as the catalyst. By optimization of the conversion condition, a 30.3 % (22.58 g/L) yield of levulinic acid (LA) (based on carbohydrate content) was obtained at 200 °C for 90 min with 12.5 % biomass and 50 % catalyst loading of biomass quantity. Simultaneously, formic acid yielded 14.0 % (10.42 g/L). The LA yield increased with increasing combined severity (CS) levels under tested ranges. Furthermore, the relationship between CS and LA synthesis was effectively fitted to the nonlinear sigmoidal equation. However, as the yield of sugar decreased, LA yield was linearly increased. Thus, the use of ionic resin as a heterogeneous catalyst presents significant potential for the manufacture of platform chemicals, specifically LA, through the conversion of renewable marine macroalgae.
Collapse
Affiliation(s)
- Youngshin Park
- Department of Biotechnology, School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Gwi-Taek Jeong
- Department of Biotechnology, School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
31
|
Lu X, Zhao W, Wang J, He Y, Yang S, Sun H. A comprehensive review on the heterotrophic production of bioactive compounds by microalgae. World J Microbiol Biotechnol 2024; 40:210. [PMID: 38773011 DOI: 10.1007/s11274-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 05/23/2024]
Abstract
Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
32
|
Al-Hammadi M, Güngörmüşler M. New insights into Chlorella vulgaris applications. Biotechnol Bioeng 2024; 121:1486-1502. [PMID: 38343183 DOI: 10.1002/bit.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 04/14/2024]
Abstract
Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.
Collapse
Affiliation(s)
- Mohammed Al-Hammadi
- Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir, Türkiye
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Türkiye
| |
Collapse
|
33
|
Wang C, Lin X, Zhang X, Show PL. Research advances on production and application of algal biochar in environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123860. [PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
| | - Xiao Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
34
|
Le TT, Corato A, Gerards T, Gérin S, Remacle C, Franck F. Heterotrophy Compared to Photoautotrophy for Growth Characteristics and Pigment Compositions in Batch Cultures of Four Green Microalgae. PLANTS (BASEL, SWITZERLAND) 2024; 13:1182. [PMID: 38732397 PMCID: PMC11085138 DOI: 10.3390/plants13091182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Four strains of green microalgae (Scenedesmus acutus, Scenedesmus vacuolatus, Chlorella sorokiniana, and Chlamydomonas reinhardtii) were compared to determine growth and pigment composition under photoautotrophic or heterotrophic conditions. Batch growth experiments were performed in multicultivators with online monitoring of optical density. For photoautotrophic growth, light-limited (CO2-sufficient) growth was analyzed under different light intensities during the exponential and deceleration growth phases. The specific growth rate, measured during the exponential phase, and the maximal biomass productivity, measured during the deceleration phase, were not related to each other when different light intensities and different species were considered. This indicates species-dependent photoacclimation effects during cultivation time, which was confirmed by light-dependent changes in pigment content and composition when exponential and deceleration phases were compared. Except for C. reinhardtii, which does not grow on glucose, heterotrophic growth was promoted to similar extents by acetate and by glucose; however, these two substrates led to different pigment compositions. Weak light increased the pigment content during heterotrophy in the four species but was efficient in promoting growth only in S. acutus. C. sorokiniana, and S. vacuolatus exhibited the best potential for heterotrophic biomass productivities, both on glucose and acetate, with carotenoid (lutein) content being the highest in the former.
Collapse
Affiliation(s)
- Thanh Tung Le
- Laboratory of Bioenergetics, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium; (T.T.L.); (A.C.); (T.G.); (S.G.)
- Research Institute for Marine Fisheries, 224 Le Lai Street, Ngo Quyen District, Hai Phong City 04000, Vietnam
| | - Amélie Corato
- Laboratory of Bioenergetics, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium; (T.T.L.); (A.C.); (T.G.); (S.G.)
- Diagenode, Liège Science Park, Rue du Bois Saint-Jean 3, 4102 Liège, Belgium
| | - Thomas Gerards
- Laboratory of Bioenergetics, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium; (T.T.L.); (A.C.); (T.G.); (S.G.)
- Département de la Recherche et du Développement Technologique, SPW, Place de la Wallonie 1 (B3), 5100 Namur, Belgium
| | - Stéphanie Gérin
- Laboratory of Bioenergetics, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium; (T.T.L.); (A.C.); (T.G.); (S.G.)
- Genetics and Physiology of Microalgae, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium;
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium;
| | - Fabrice Franck
- Laboratory of Bioenergetics, InBios/PhytoSystems, Department of Life Sciences, University of Liège, Chemin de la Vallée 4, 4000 Liège, Belgium; (T.T.L.); (A.C.); (T.G.); (S.G.)
| |
Collapse
|
35
|
Sun G, Jia R, Zhang Y, Zhang Z, Wang Y, Ma R, Wang Y, Jiang Z, Liu M, Jiang Y. Mechanisms of the novel pesticide sodium dodecyl benzene sulfonate in the mitigation of protozoan ciliated pathogens during microalgal cultivation. MARINE POLLUTION BULLETIN 2024; 201:116204. [PMID: 38430678 DOI: 10.1016/j.marpolbul.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Protozoan ciliates represent a common biological contaminant during microalgae cultivation, which will lead to a decline in microalgae productivity. This study investigated the effectiveness of sodium dodecyl benzene sulfonate (SDBS) in controlling ciliate populations within microalgae cultures. SDBS concentrations of 160 mg/L and 100 mg/L were found to effectively manage the representative species of ciliates contamination by Euplotes vannus and Uronema marinum during the cultivation of Synechococcus and Chlorella, and the growth vitality of microalgae has been restored. Additionally, SDBS at these concentrations reduced oxidative stress resistance and induced membrane damage to remove biological pollutants by modulating enzyme activity, affecting lipid, energy, amino acid metabolism pathways, and processes such as translation and protein folding. This research provides insights into the mechanisms through which SDBS effectively combats protozoan ciliates during the microalgal cultivation. This contributes to reduce biological pollution, ensure the overall productivity and healthy and sustainable management of microalgae ecosystems.
Collapse
Affiliation(s)
- Gaojingwen Sun
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Rui Ma
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhiyang Jiang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
36
|
Rodríguez-Bolaños M, Vargas-Romero G, Jaguer-García G, Aguilar-Gonzalez ZI, Lagos-Romero V, Miranda-Astudillo HV. Antares I: a Modular Photobioreactor Suitable for Photosynthesis and Bioenergetics Research. Appl Biochem Biotechnol 2024; 196:2176-2195. [PMID: 37486539 PMCID: PMC11035454 DOI: 10.1007/s12010-023-04629-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO2. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO2 is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Vargas-Romero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Girian Jaguer-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zhaida I Aguilar-Gonzalez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Verónica Lagos-Romero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor V Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
37
|
Syed T, Krujatz F, Ihadjadene Y, Mühlstädt G, Hamedi H, Mädler J, Urbas L. A review on machine learning approaches for microalgae cultivation systems. Comput Biol Med 2024; 172:108248. [PMID: 38493599 DOI: 10.1016/j.compbiomed.2024.108248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Microalgae plays a crucial role in biomass production within aquatic environments and are increasingly recognized for their potential in generating biofuels, biomaterials, bioactive compounds, and bio-based chemicals. This growing significance is driven by the need to address imminent global challenges such as food and fuel shortages. Enhancing the value chain of bio-based products necessitates the implementation of an advanced screening and monitoring system. This system is crucial for tailoring and optimizing the cultivation conditions, ensuring the lucrative and efficient production of the final desired product. This, in turn, underscores the necessity for robust predictive models to accurately emulate algae growth in different conditions during the initial cultivation phase and simulate their subsequent processing in the downstream stage. In pursuit of these objectives, diverse mechanistic and machine learning-based methods have been independently employed to model and optimize microalgae processes. This review article thoroughly examines the techniques delineated in the literature for modeling, predicting, and monitoring microalgal biomass across various applications such as bioenergy, pharmaceuticals, and the food industry. While highlighting the merits and limitations of each method, we delve into the realm of newly emerging hybrid approaches and conduct an exhaustive survey of this evolving methodology. The challenges currently impeding the practical implementation of hybrid techniques are explored, and drawing inspiration from successful applications in other machine-learning-assisted fields, we review various plausible solutions to overcome these obstacles.
Collapse
Affiliation(s)
- Tehreem Syed
- Institute of Automation, Technische Universität Dresden, 01062, Saxony, Germany
| | - Felix Krujatz
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763, Zittau, Germany; Institute of Natural Materials Technology, Technische Universität Dresden, 01069, Saxony, Germany
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069, Saxony, Germany
| | | | - Homa Hamedi
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062, Saxony, Germany
| | - Jonathan Mädler
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062, Saxony, Germany.
| | - Leon Urbas
- Institute of Automation, Technische Universität Dresden, 01062, Saxony, Germany; Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062, Saxony, Germany
| |
Collapse
|
38
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
39
|
Alavianghavanini A, Shayesteh H, Bahri PA, Vadiveloo A, Moheimani NR. Microalgae cultivation for treating agricultural effluent and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169369. [PMID: 38104821 DOI: 10.1016/j.scitotenv.2023.169369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia
| | - Hajar Shayesteh
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
40
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
41
|
Keet G, Du Toit JP, Pott RWM. Methods for the separation of hydraulic retention time and solids retention time in the application of photosynthetic microorganisms in photobioreactors: a review. World J Microbiol Biotechnol 2024; 40:100. [PMID: 38366203 PMCID: PMC10873236 DOI: 10.1007/s11274-024-03909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Photosynthetic microorganisms have a wide range of biotechnical applications, through the application of their versatile metabolisms. However, their use in industry has been extremely limited to date, partially because of the additional complexities associated with their cultivation in comparison to other organisms. Strategies and developments in photobioreactors (PBRs) designed for their culture and applications are needed to drive the field forward. One particular area which bears examination is the use of strategies to separate solid- and hydraulic-residence times (SRT and HRT), to facilitate flow-through systems and continuous processing. The aim of this review is to discuss the various types of PBRs and methods which are currently demonstrated in the literature and industry, with a focus on the separation of HRT and SRT. The use of an efficient method of biomass retention in a PBR may be advantageous as it unlocks the option for continuous operation, which may improve efficiency, and improve economic feasibility of large-scale implementation of photosynthetic biocatalysts, especially where biomass is not the primary product. Due to the underexplored nature of the separation of HRT and SRT in reactors using photosynthetic microorganisms, limited literature is available regarding their performance, efficiencies, and potential issues. This review first introduces an overview into photosynthetic microorganisms cultivated and commonly exploited for use in biotechnological applications, with reference to bioreactor considerations specific to each organism. Following this, the existing technologies used for the separation of HRT and SRT in PBRs are explored. The respective advantages and disadvantages are discussed for each PBR design, which may inform an interested bioprocess engineer.
Collapse
Affiliation(s)
- Grant Keet
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - J P Du Toit
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
- Watchmaker Genomics, Cape Town, South Africa
| | | |
Collapse
|
42
|
Fermoso FG, Hidalgo C, Trujillo-Reyes A, Cubero-Cardoso J, Serrano A. Effect of harvesting time in the methane production on the anaerobic digestion of microalgae. ENVIRONMENTAL TECHNOLOGY 2024; 45:827-834. [PMID: 36151908 DOI: 10.1080/09593330.2022.2128893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are being proposed as excellent substrates for different biorefinery processes. Anaerobic digestion process of microalgae is one of these interesting processes but has some limitations in deleting cell walls. For this reason, many studies proposed different types of pre-treatments, entailing energy, operation, and investment costs. This work aims to optimize the anaerobic digestion of the microalgae Chlorella sorokiniana and Chlorella sorokiniana (strain S12/S13/S16) without any pre-treatment by selecting the optimal harvesting time. The greatest influence is seen at 5:00 PM in methane production for both microalgae. For Chlorella sorokiniana, it is the most optimal moment for anaerobic digestion, whereas Chlorella sorokiniana (strain S12/S13/S16) is the least optimal. In the other harvesting times, both microalgae present a similar methane production, i.e. 173 ± 12 mL CH4/g of total volatile solids. The highest methane production rate values were obtained during peak sunlight, 1:00 PM and 8:00 AM, respectively, and lower overnight.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada, Spain
- Department of Microbiology, Pharmacy Faculty, University of Granada, Granada, Spain
| |
Collapse
|
43
|
Paladino O, Neviani M. Interchangeable modular design and operation of photo-bioreactors for Chlorella vulgaris cultivation towards a zero-waste biorefinery. Enzyme Microb Technol 2024; 173:110371. [PMID: 38100847 DOI: 10.1016/j.enzmictec.2023.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
This study explores diverse cultivation modes for Chlorella vulgaris within a biorefinery at pilot scale that produces both biodiesel by transesterification of waste frying oils and syngas by gasification of organic wood waste. Given microalgae's comparatively modest biofuel yield relative to principal biorefinery products, the microalgae cultivation process is designed on the biofuels production rates. Liquid and gaseous waste streams are recycled inside the biorefinery: crude glycerol is mixed with wood to enhance the quality of syngas, wastewater is fed to microalgae so as flue gas. Also, the oil extracted from microalgae contributes to produce biodiesel and the waste cells are gasified. Considering that the optimal fit for each cultivation mode varies with the shape of the reactor, we propose a modular approach to assemble them in batteries of tubular, bubble flow, and airlift reactors, and present an operating design criterion that can fulfill the mass balance of the plant by adding/transforming the number of units inside the different batteries. Methods to adjust the operating conditions and control the operating parameters are also discussed. The designed configurations were operated recycling nominal waste streams of about 30 L d-1 of wastewater and 90 Nm3 h-1 of flue gas. Results confirm that the most advantageous one, in terms of volume per recycled waste streams, is a battery of 16 airlift reactors, operating in mixotrophic mode, with growing rate of 0.427 d-1, yield of 3.06, glycerol conversion 39 %, CO2 removal 64 % of inlet 6-10 %(mol) concentration. The same nominal waste streams can also be managed by 40 tubular reactors in almost heterotrophic conditions coupled with 12 bubble columns in autotrophic conditions; working respectively at growing rates of 0.395 d-1 and 0.362 d-1 and yields of 2.94 and 2.84. The battery of tubular reactors reached a glycerol conversion of 45 % and the array of bubble columns removed about 51 % of inlet 12-20 %(mol) CO2 concentration. A complete comparison is reported also in terms of dimensionless numbers and pumping/mixing requirements.
Collapse
Affiliation(s)
- Ombretta Paladino
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, Genoa 16145, Italy.
| | - Matteo Neviani
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, Genoa 16145, Italy
| |
Collapse
|
44
|
Wang Y, Zhang X, Wu Y, Sun G, Jiang Z, Hao S, Ye S, Zhang H, Zhang F, Zhang X. Improving biomass yields of microalgae biofilm by coculturing two microalgae species via forming biofilms with uniform microstructures and small cell-clusters. BIORESOURCE TECHNOLOGY 2024; 393:130052. [PMID: 37995875 DOI: 10.1016/j.biortech.2023.130052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 ∼ 10 μm accounted for 96 % and 68 %, respectively). By analyzing morphologies and surface properties of cells, it was found that cells with small size, spherical shape, and reduced surface polymers could hinder the cell-clusters formation, thereby promoting biomass yields. The study provides new insights into choosing cocultured microalgae species for improving the biomass yield of biofilm via manipulating biofilm microstructures.
Collapse
Affiliation(s)
- Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China.
| | - Yuyang Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guangpu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Siyuan Hao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiya Ye
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hu Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
45
|
Delran P, Barthe L, Peydecastaing J, Pontalier PY, Guihéneuf F, Frances C. Integrating wet stirred-bead milling for Tetraselmis suecica biorefinery: Operating parameters influence and specific energy efficiency. BIORESOURCE TECHNOLOGY 2024; 394:130181. [PMID: 38109980 DOI: 10.1016/j.biortech.2023.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Stirred bead milling proved to be an efficient cell destruction technique in a biorefinery unit for the extraction of over 95 % of proteins and 60 % of carbohydrates from the green marine microalga Tetraselmis suecica. Optimum conditions, expressed in terms of metabolite yield and energy consumption, were found for average values of bead size and agitator rotation speed. The higher the microalgae concentration, up to 100 g.L-1, which is adequate for biofilm algae growth in an industrial unit, the more efficient the cell destruction process. Cell destruction rates and metabolite extraction yields are similar in pendular and recycling modes, but the pendular configuration reduces the residence time of the suspension in the grinding chamber, which is less costly. With regard to the cell destruction mechanism, it was concluded that bead shocks first damage cells by permeabilizing them, and that after a longer period, all cells are shredded and destroyed, forming elongated debris.
Collapse
Affiliation(s)
- Pauline Delran
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; SAS inalve, Nice / Villefranche-sur-Mer, France; Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | - Laurie Barthe
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | - Pierre Yves Pontalier
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | | | - Christine Frances
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
46
|
Mat Husin MA, Mohd Yasin NH, Takriff MS, Jamar NH. A review on pretreatment methods for lipid extraction from microalgae biomass. Prep Biochem Biotechnol 2024; 54:159-174. [PMID: 37220018 DOI: 10.1080/10826068.2023.2214923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microalgal lipids are promising and sustainable sources for the production of third-generation biofuels, foods, and medicines. A high lipid yield during the extraction process in microalgae could be influenced by the suitable pretreatment and lipid extraction methods. The extraction method itself could be attributed to the economic and environmental impacts on the industry. This review summarizes the pretreatment methods including mechanical and non-mechanical techniques for cell lysis strategy before lipid extraction in microalgae biomass. The multiple strategies to achieve high lipid yields via cell disruption techniques are discussed. These strategies include mechanical (shear forces, pulse electric forces, waves, and temperature shock) and non-mechanical (chemicals, osmotic pressure, and biological) methods. At present, two techniques of the pretreatment method can be combined to increase lipid extraction from microalgae. Therefore, the extraction strategy for a large-scale application could be further strengthened to optimize lipid recovery by microalgae.
Collapse
Affiliation(s)
- Muhammad Azreen Mat Husin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Sobri Takriff
- Chemical & Water Desalination Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environmnent, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Hidayah Jamar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
47
|
Zheng X, Cong W, Gultom SO, Wang M, Zhou H, Zhang J. Manipulation of co-pelletization for Chlorela vulgaris harvest by treatment of Aspergillus niger spore. World J Microbiol Biotechnol 2024; 40:83. [PMID: 38286963 DOI: 10.1007/s11274-023-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
The co-pelletization of microalgae with filamentous fungi was a promising approach for microalgae harvest. However, the real conditions of microalgae growth limited the arbitrary optimization of co-pellets formation with filamentous fungi. Therefore, it is urgent to develop an approach to manipulate the co-pelletization through treatment of A. niger spores. In this study, Aspergillus niger and Chlorella vulgaris were used as the model species of filamentous fungi and microalgae to investigate co-pellets formation using A. niger spores after by different pH solutions treatment, swelling, snailase treatment. The importance of spore treatments on C. vulgaris harvest in sequence was claimed based on response surface methodology analysis. The pH solutions treatment, swelling, snailase treatment of A. niger spore contributed 21.0%, 10.5%, 40.7% of harvest ratio of C. vulgaris respectively, which guided the application of spore treatment into co-pelletization. Treatment of spore was showed as an efficient approach to manipulate co-pelletization for microalgae harvest in diverse microalgae condition. This results promoted the application of co-pelletization technology in microalgae harvest of various conditions.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjie Cong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | - Mingxuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
48
|
Nurrusyda FS, Subroto T, Hardianto A, Sumeru HA, Ishmayana S, Pratomo U, Oktavia DN, Latifah RG, Dewi DASLA, Rachmadona N. Analyzing the Impact of Physicochemical Factors on Chlorella vulgaris Growth Through Design of Experiment (DoE) for Carbon Capture System. Mol Biotechnol 2024:10.1007/s12033-023-01036-y. [PMID: 38267695 DOI: 10.1007/s12033-023-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The CO2 emission is increasing every year and threatening both humans and the ecosystem. Carbon capture technological innovations have emerged as a potential solution to mitigate this emissions. Due to its high capacity of photosynthetic activity, CO2 sequestration by microalgae, such as Chlorella vulgaris has attracted much attention as a carbon capture system. The growth of this microalgae is influenced by various physicochemical factors. By designing the Design of Experiment (DoE) with Response Surface Methodology (RSM), the effect of several independent factor can be evaluated to optimize Chlorella vulgaris growth condition and CO2 conversion. This study aims to identify the most impact factors affecting C. vulgaris growth through investigating the variations in physicochemical factors of aeration, initial pH, dark light regime, saline, and substrates concentration using DoE. In this study, C. vulgaris was cultivated in batch culture for 10 days with 8 experiments that were designed under various conditions as per experimental run. Biomass growth was observed using optical density and analyzed by first order regression. The result shows that aeration parameters was statistically significant affect microalgae growth, evidence by p-value below 0.05 at all observation points. Runs with aeration treatment showed a prolonged exponential growth phase and delayed onset of the deceleration phase. Additionally, this study also found that the initial pH level also significantly affects growth at the last day of cultivation. Cultures with a higher initial pH reached the stationary phase earlier than those with a lower pH. Thus, the growth of C. vulgaris can be optimized by adding aeration treatment into culture media and regulating initial pH around 8 to enhancing carbon fixation and biomass yield.
Collapse
Affiliation(s)
- Fajriana Shafira Nurrusyda
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Husain Akbar Sumeru
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia.
| | - Uji Pratomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Diah N Oktavia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Rina G Latifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Dewa A S L A Dewi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery Between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
49
|
Dhanker R, Saxena A, Tiwari A, Kumar Singh P, Kumar Patel A, Dahms HU, Hwang JS, González-Meza GM, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. BIORESOURCE TECHNOLOGY 2024; 391:129905. [PMID: 37923226 DOI: 10.1016/j.biortech.2023.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Diatoms, with their complex cellular architecture, have been recognized as a source of limitless potential. These microbes are common in freshwater and marine habitats and are essential for primary production and carbon sequestration. They are excellent at utilizing nutrients, providing a sustainable method of treating wastewater while also producing biomass rich in beneficial substances like vitamins, carotenoids, polysaccharides, lipids, omega-3 fatty acids, pigments, and novel bioactive molecules. Additionally, they are highly efficient organisms that can be employed to monitor the environment by acting as trustworthy indicators of water quality. This comprehensive review explores the multifaceted applications of diatoms in a variety of fields, such as bioremediation, aquaculture, value-added products, and other applications. The review set out on a path towards greener, more sustainable methods amicable to both industry and the environment by utilizing theenormous diverse biotechnological potentials of diatoms.
Collapse
Affiliation(s)
- Raunak Dhanker
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Pankaj Kumar Singh
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804, Taiwan, ROC
| | - Jiang-Shiou Hwang
- National Taiwan Ocean University, Institute of Marine Biology, Keelung 20224, Taiwan, ROC
| | - Georgia Maria González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
50
|
Wang D, de Los Reyes FL, Ducoste JJ. Microplate-Based Cell Viability Assay as a Cost-Effective Alternative to Flow Cytometry for Microalgae Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21200-21211. [PMID: 38048183 DOI: 10.1021/acs.est.3c05675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Cell viability is a critical indicator for assessing culture quality in microalgae cultivation for biorefinery and bioremediation. Fluorescent dyes that distinguish viable from nonviable cells can enable viability quantification based on the percentage of live cells. However, fluorescence analysis using the typical flow cytometry method is costly and impractical for industrial applications. To address this, we developed new microplate assays utilizing fluorescein diacetate as a live cell stain and erythrosine B as a dead cell stain. These assays provide a low-cost, simple, and reliable method of assessing cell viability. The proposed microplate assays were successfully applied to monitor the viability of the microalgae Dunaliella viridis under carbon and nitrogen limitation stresses and demonstrated good agreement with flow cytometry measurements. We conducted a systematic investigation of the effects of dye concentration, incubation time, and background fluorescence on the microplate assays' performance. Further, we provide a comprehensive review of commonly used fluorescent dyes for microalgae staining, discuss strategies to enhance assay performance, and offer recommendations for dye selection and protocol development. This study presents a comprehensive new method for microplate-based viability analysis, providing valuable insights for future microalgae viability assessments and applications.
Collapse
Affiliation(s)
- Diyuan Wang
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|