1
|
Zhang Z, Liu R, Zheng W, Lan Y, Li Y. Specialized genera and niche partitioning promote the biosynthesis of short-chain fatty acids in anaerobic cofermentation of sewage sludge and protein-rich waste. ENVIRONMENTAL RESEARCH 2025; 271:121034. [PMID: 39909096 DOI: 10.1016/j.envres.2025.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Elucidating the relationships among various microorganisms and their reactions to environmental fluctuations, such as dissolved organic matter (DOM), remains a key objective in the anaerobic cofermentation (ACF) of sewage sludge (SS) and protein-rich waste (PRW); however, this topic is inadequately understood. In this study, the microbial traits associated with the biosynthesis of short-chain fatty acids (SCFAs) were investigated in the ACF of SS in conjunction with four distinct PRWs (pupa, fishmeal, maize gluten, and soybean meal). Compared with those in the SS-only reactor, the first-order rate constants for biosolid dissolution in the SS/PRW reactors were increased by 1.9-4.0-fold. Pupa performed best among the four PRWs in the ACF process, with the solubilization rate increasing from 9.4% (SS-only reactor) to 33.5%. The copious and readily biodegradable DOM created a unique niche for functional microbes, leading to reframing of the microfloral structure. Specialized genera, such as Holophaga, Alistipes, and Geothrix, were responsible for SCFA biosynthesis in the SS/pupa reactor. The highly differentiated, low-redundancy microecosystem constructed in the SS/pupa reactor contributed to the independent functioning of the hydrolyzers and acidogens, resulting in an SCFA yield that was 6.9-fold greater than that in the SS-only reactor. In addition, the ACF of SS/pupa resulted in the genes encoding the NiFe hydrogenase and Wood-Ljungdahl pathway being intact, which promoted the synthesis of SCFAs, especially acetate. These findings offer new insights into the microbiological mechanisms that augment SCFA generation by the ACF of SS/PRW in terms of microorganism fate, metabolic network relationships, and microecosystem niche.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Liu
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| | - Wei Zheng
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yaqiong Lan
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Wang Q, Wang H, Sun X, Li L, Liang X. Enhancing pollutant removal efficiency through multi-flow cascade flocculation and flotation reactor: a detailed flow field analysis. RSC Adv 2025; 15:4187-4202. [PMID: 39926232 PMCID: PMC11803578 DOI: 10.1039/d4ra07770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
The treatment of oilfield wastewater, characterized by high oil content and complex composition, presents significant challenges in environmental protection. This study developed a novel multi-stage cascade flocculation and flotation reactor (MCFR) to enhance pollutant removal from oilfield wastewater. Particle image velocimetry was used to investigate the internal flow fluid distribution within the reactor. Results show that inlet flow rates of 100 and 150 L h-1 create a high velocity and energy mixing environment near the inlet, facilitating thorough interaction between flocculants and wastewater. This promotes the rapid formation of small flocs and the coalescence of oil droplets. Under the influence of evenly distributed vortex generators, both flocs and oil droplets increase in size, with large oil droplets separated by flotation and dense flocs through sedimentation. In flocculation experiments, the MCFR, operating at 70 mg L-1 of polymerized ferrous sulfate (PFS), 0.6 mg L-1 of polyacrylamide (PAM), and an inlet flow rate of 100 L h-1, achieved turbidity and oil removal rates of 95% and 94%, respectively. In comparison, a traditional stirred flocculation reactor achieves 82% and 78% removal rates for turbidity and oil, respectively, but requires a longer treatment time of up to 21 minutes. Additionally, the MCFR operates continuously with a treatment time of less than 1 minute, offering a faster and more efficient solution for gas and oil field wastewater treatment. These findings provide critical insights for designing advanced flocculation-flotation systems for the complex wastewater treatment needs of the oil and gas industry.
Collapse
Affiliation(s)
- Qingji Wang
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing Beijing 102249 China
| | - Hao Wang
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China
| | - Xiumei Sun
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China
| | - Liang Li
- School of Chemical Engineering and Technology, China University of Mining and Technology Xuzhou Jiangsu 221116 China +86-13201817769
- State Key Laboratory of Coking Coal Resources Green Exploitation, China University of Mining and Technology Xuzhou Jiangsu 221116 China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology Xuzhou Jiangsu 221116 China
| | - Xing Liang
- School of Chemical Engineering and Technology, China University of Mining and Technology Xuzhou Jiangsu 221116 China +86-13201817769
- State Key Laboratory of Coking Coal Resources Green Exploitation, China University of Mining and Technology Xuzhou Jiangsu 221116 China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology Xuzhou Jiangsu 221116 China
| |
Collapse
|
3
|
Zhou S, Gong H, Chen X, Wang X, Zhu D, Zhang Y, Wang H, Dai X. Spatial and temporal dynamics of sewage sludge phosphorus recovery potential in the cities of Yangtze River Zone in China: Implications for regional recycling policies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176428. [PMID: 39312979 DOI: 10.1016/j.scitotenv.2024.176428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Sewage sludge phosphorus (P) recovery presents opportunities to sustainably recycle P from cities to agriculture and alleviate global P scarcity. However, limited research explores sustainable recovery targets considering spatial-temporal variations in sludge generation and implications based on city-level local P demand. This study analyzed sludge production form 2009-2021 across 130 cities in China's Yangtze River Zone, which increased by almost 35 % from 2009 to 2021. Per capita gross domestic product (GDP), influent chemical oxygen demand (COD), and per capita drainage infrastructure were identified as the main significant influencing factors. City-level analysis revealed pronounced spatial-temporal disparities, with yearly sludge generation spanning five orders of magnitude (62-5.4 × 105 t/a). An indicator, "Potential of P recovery to local P demand", was defined, indicating the average city-level P recycle contribution increased from 5.3 % to 18.9 % from 2009-2021. A novel frame paradigm classified cities into six types based on the local P supply-demand characteristics, prioritizing sludge P recovery and implementing strategic management. City-specific dynamics and possibilities of broader "city clusters" to match supply and demand should be considered for policy implement. Recovering P from livestock manure and kitchen waste alongside sludge can further strengthen urban P cycles. This study provides novel city-scale analysis and strategic considerations for regional sludge P recycling policies in China and beyond.
Collapse
Affiliation(s)
- Shuyan Zhou
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanyan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hang Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Wang Z, Li L, Gao H, Jiang J, Zhao Q, Li X, Mei W, Gao Q, Zhou H, Wang K, Wei L. Simultaneously enhancement of methane production and active phosphorus transformation by sludge-based biochar during high solids anaerobic co-digestion of dewatered sludge and food waste: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 406:130987. [PMID: 38885724 DOI: 10.1016/j.biortech.2024.130987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biochar has been proved to improve methane production in high solids anaerobic co-digestion (HS-AcoD) of dewatered sludge (DS) and food waste (FW), but its potential mechanism for simultaneous methane production and phosphorus (P) transformation has not been sufficiently revealed. Results showed that the optimal preparation temperature and dosage of sludge-based biochar were selected as 300 °C and 0.075 g·g-1, respectively. Under this optimized condition, the methane production of the semi-continuous reactor increased by 54%, and the active phosphorus increased by 18%. The functional microorganisms, such as Methanosarcina, hydrogen-producing, sulfate-reducing, and iron-reducing bacteria, were increased. Metabolic pathways associated with sulfate reduction and methanogenesis, especially hydrogenotrophic methanogenesis, were enhanced, which in turn promoted methanogenesis and phosphorus transformation and release. This study provides theoretical support for simultaneously recovery of carbon and phosphorus resources from DS and FW using biochar.
Collapse
Affiliation(s)
- Zhaoxia Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lili Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyuan Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwen Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wangyang Mei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huimin Zhou
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Zheng C, Zhang J, Ni M, Pan Y. Phosphate recovery from urban sewage by the biofilm sequencing batch reactor process: Key factors in biofilm formation and related mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118985. [PMID: 38663668 DOI: 10.1016/j.envres.2024.118985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The biofilm sequencing batch reactor (BSBR) technique has been deployed in the laboratory to enrich phosphorus from simulated wastewater, but it is still not clear what its performance will be when real world sewage is used. In this work, the effluent from the multi-stage anoxic-oxic (AO) activated sludge process at a sewage plant was used as the feed water for a BSBR pilot system, which had three reactors operating at different levels of dissolved oxygen (DO). The phosphorus adsorption and release, the biofilm growth, and the extracellular polymeric substances (EPS) components and contents were examined. The microbial communities and the signaling molecules N-acyl-l-homoserine lactones (AHLs) were also analyzed. Gratifyingly, the BSBR process successfully processed the treated sewage, and the biofilm developed phosphorus accumulation capability within 40 days. After entering stable operation, the system concentrated phosphate from 2.59 ± 0.77 mg/L in the influent to as much as 81.64 mg/L in the recovery liquid. Sludge discharge had profound impacts on all aspects of BSBR, and it was carried out successfully when the phosphorus absorption capacity of the biofilm alone was comparable to that of the reactor containing the activated sludge. Shortly after the sludge discharge, the phosphate concentration of the recovery liquid surged from 50 to 140 mg/L, the biofilm thickness grew from 20.56 to 67.32 μm, and the diversity of the microbial population plunged. Sludge discharge stimulated Candidatus competibacter to produce a large amount of AHLs, which was key in culturing the biofilm. Among the AHLs, both C10-HSL and 3OC12-HSL were significantly positively correlated with EPS and the abundance of Candidatus competibacter. The current results demonstrated BSBR as a viable option to enrich phosphorus from real world sewage with low phosphorus content and fluctuating chemistry. The mechanistic explorations also provided theoretical guidance for cultivating phosphorus-accumulating biofilms.
Collapse
Affiliation(s)
- Chao Zheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jun Zhang
- Suzhou Drainage Company Limited, Suzhou, 215009, China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
6
|
Du J, Tian C, Xiao J, Liu Y, Zhang F, Gao X, Xing B, Zhao Y. Co-fermentation of titanium-flocculated-sludge with food waste towards simultaneous water purification and resource recovery. WATER RESEARCH 2024; 251:121110. [PMID: 38198972 DOI: 10.1016/j.watres.2024.121110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Recovery of resources from domestic sewage and food waste has always been an international-thorny problem. Titanium-based flocculation can achieve high-efficient destabilization, quick concentration and separation of organic matter from sewage to sludge. This study proposed co-fermentation of the titanium-flocculated sludge (Ti-loaded sludge) and food waste towards resource recovery by converting organic matter to value-added volatile fatty acids (VFAs) and inorganic matter to struvite and TiO2 nanoparticles. When Ti-loaded sludge and food waste were co-fermented at a mass ratio of 3:1, the VFAs yield reached 3725.2 mg-COD/L (VFAs/SCOD 91.0%), which was more than 4 times higher than the case of the sludge alone. The 48-day semicontinuous co-fermentation demonstrated stable long-term operation, yielding VFAs at 2529.0 mg-COD/L (VFAs/SCOD 89.8%) and achieving a high CODVFAs/NNH4 of 58.9. Food waste provided sufficient organic substrate, enriching plenty of acid-producing fermentation bacteria (such as Prevotella 7 about 21.0% and Bacteroides about 9.4%). Moreover, metagenomic sequencing analysis evidenced the significant increase of the relative gene abundance corresponding to enzymes in pathways, such as extracellular hydrolysis, substrates metabolism, and VFAs biosynthesis. After fermentation, the precious element P (≥ 99.0%) and extra-added element Ti (≥99.0%) retained in fermented residues, without releasing to VFAs supernatant, which facilitated the direct re-use of VFAs as resource. Through simple and commonly used calcination and acid leaching methodologies, 80.9% of element P and 82.1% of element Ti could be successfully recovered as struvite and TiO2 nanoparticles, respectively. This research provides a strategy for the co-utilization of domestic sludge and food waste, which can realize both reduction of sludge and recovery of resources.
Collapse
Affiliation(s)
- Jinming Du
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Chang Tian
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, 250353, Jinan, Shandong, China
| | - Jianan Xiao
- Shandong Huankeyuan Environmental Testing Co., Ltd, 250013, Shandong, China
| | - Yuyu Liu
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Fenfen Zhang
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Xiaomei Gao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Baoshan Xing
- Shaanxi Provincial Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China.
| |
Collapse
|
7
|
Zhang Z, Liu R, Lan Y, Zheng W, Chen L. Anaerobic co-fermentation of waste activated sludge with corn gluten meal enhanced phosphorus release and volatile fatty acids production: Critical role of corn gluten meal dosage on fermentation stages and microbial community traits. BIORESOURCE TECHNOLOGY 2024; 394:130275. [PMID: 38176597 DOI: 10.1016/j.biortech.2023.130275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The anaerobic co-fermentation of iron bound phosphorus (P) compounds (FePs)-bearing sludge with corn gluten meal (CGM) and the underlying mechanisms associated with P release and volatile fatty acids (VFAs) production were investigated. The optimal CGM dosage for P release was 0.6 g chemical oxygen demand (COD)/g total suspended solid (TSS), which resulted in an increase in efficiency from 7 % (control sample) to 39 %. However, the optimal CGM dosage for VFAs production was 0.4 g COD/g TSS, and the yield increased from 37.4 (control sample) to 331.7 mg COD/g volatile suspended solid. The addition of CGM enhanced hydrolysis and acidogenesis by supplying abundant organic substrates to promote the growth of hydrolytic and acidogenic bacteria. A higher VFAs/ammonium-nitrogen ratio resulted in a lower pH, which promoted greater FePs dissolution and P release from the sludge. This study provides novel insights into the effects of CGM on P release and VFAs production.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Saoudi MA, Dabert P, Ponthieux A, Vedrenne F, Daumer ML. Correlation between phosphorus removal technologies and phosphorus speciation in sewage sludge: focus on iron-based P removal technologies. ENVIRONMENTAL TECHNOLOGY 2023; 44:2091-2103. [PMID: 35019813 DOI: 10.1080/09593330.2021.2023222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 05/30/2023]
Abstract
Phosphorus recovery from sewage sludge as secondary raw materials or as a direct P-rich fertiliser is one of the top frontrunner solutions to tackle Phosphorus (P) scarcity and depletion. However, the efficiency of this P recovery process greatly depends on its phosphorus dissolution potential, which in return relies on the phosphorus speciation in the sewage sludge. This article investigates the potential correlation between P speciation in sewage sludge and the iron-based P removal technologies used in sewage treatment plants (STP) through an innovative sequential extraction method based on the SEDEX method that distinguishes quantitatively between ferrous bound phosphate and ferric bound phosphate. XRD and SEM-EDX were also used to characterise P and Fe species in the studied sludge qualitatively. Principal component analysis showed that the sludge characterised by P bound to ferric iron (as the dominant P fraction) are mostly correlated with sludge produced from the CPR process (chemical phosphorus removal) and primary sludge. Moreover, sludge with a non-negligible amount of P bound to ferrous iron were correlated with sludge from the mixed EBPR-CPR process (Enhanced Biological P Removal assisted with CPR). However, Vivianite was only found in CPR sludge with Fe/P molar ratio higher than 0.6.
Collapse
|
9
|
Belibagli P, Isik Z, Dizge N, Mazmanci MA, Balakrishnan D, Shaik F, Mishra NK. Optimization of the anaerobic fermentation process for phosphate release using food waste. ENVIRONMENTAL RESEARCH 2023; 225:115498. [PMID: 36804319 DOI: 10.1016/j.envres.2023.115498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) problem worries the whole world due to the increasing demand for finite and non-renewable natural phosphate resources and the inadequacy of sustainable phosphate production technologies. In this study, bio-acidification processes using waste sludge and food waste for simultaneous sustainable phosphate release and biogas production were investigated. Response surface methodology (RSM) was used for bio-acidification optimization. High performance was achieved with the addition of 10% FW and a temperature of 45 °C, which provided 5.30 pH and 371 mg/L P release for 10 days. A total of 196 mL of cumulative biogas was produced. Using food waste potentially reduces operating costs, eliminating the need for external chemical additions for pH control. Also, this approach offers benefits such as waste management, recovery of valuable resources, cost reduction, and environmental friendly.
Collapse
Affiliation(s)
- Pinar Belibagli
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Mehmet Ali Mazmanci
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Feroz Shaik
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Nirmith Kumar Mishra
- Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, 500043, India
| |
Collapse
|
10
|
Cui J, Yang J, Weber M, Yan J, Li R, Chan T, Jiang Y, Xiao T, Li X, Li X. Phosphate interactions with iron-titanium oxide composites: Implications for phosphorus removal/recovery from wastewater. WATER RESEARCH 2023; 234:119804. [PMID: 36889091 DOI: 10.1016/j.watres.2023.119804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between phosphate (P) and mineral adsorbents is critical for removing and recovering P from wastewater, especially in the presence of both cationic and organic components. To this end, we investigated the surface interactions of P with an iron-titanium coprecipitated oxide composite in the presence of Ca (0.5-3.0 mM) and acetate (1-5 mM), and quantified the molecular complexes and tested the possible removal and recovery of P from real wastewater. A quantitative analysis of P K-edge X-ray absorption near edge structure (XANES) confirmed the inner-sphere surface complexation of P with both Fe and Ti, whose contribution to P adsorption relies on their surface charge determined by pH conditions. The effects of Ca and acetate on P removal were highly pH-dependent. At pH 7, Ca (0.5-3.0 mM) in solution significantly increased P removal by 13-30% by precipitating the surface-adsorbed P, forming hydroxyapatite (14-26%). The presence of acetate had no obvious influence on P removal capacity and molecular mechanisms at pH 7. At pH 4, the removal amount of P was not obviously affected by the presence of Ca and acetate. However, acetate and high Ca concentration jointly facilitated the formation of amorphous FePO4 precipitate, complicating the interactions of P with Fe-Ti composite. In comparison with ferrihydrite, the Fe-Ti composite significantly decreased the formation of amorphous FePO4 probably by decreasing Fe dissolution due to the coprecipitated Ti component, facilitating further P recovery. An understanding of these microscopic mechanisms can lead to the successful use and simple regeneration of the adsorbent to recover P from real wastewater.
Collapse
Affiliation(s)
- Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinsu Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mischa Weber
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Departement of Civil Environmental and Geomatic Engineering, ETH Zurich, Switzerland
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ruohong Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingshan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Shao Q, Fang S, Fang X, Zhang M, Huang W, Wang F, Duan X, Wu Y, Luo J. Boosting short-chain fatty acids production from co-fermentation of orange peel waste and waste activated sludge: Critical role of pH on fermentation steps and microbial function traits. BIORESOURCE TECHNOLOGY 2023; 380:129128. [PMID: 37137449 DOI: 10.1016/j.biortech.2023.129128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
The anaerobic co-fermentation of orange peel waste (OPW) and waste activated sludge (WAS) for useful short-chain fatty acids (SCFAs) generation presents an environmentally friendly and efficient method for their disposal. This study amied to investigate the effects of pH regulation on OPW/WAS co-fermentation, and found that the alkaline pH regulation (pH 9) significantly enhanced the promotion of SCFAs (11843 ± 424 mg COD/L), with a high proportion of acetate (51%). Further analysis revealed that alkaline pH regulation facilitated solubilization, hydrolysis, and acidification while simultaneously inhibiting methanogenesis. Furthermore, the functional anaerobes, as well as the expressions of corresponding gene involved in SCFAs biosynthesis, were generally improved under alkaline pH regulation. Alkaline treatment might played a critical role in alleviating the toxicity of OPW, resulting in improving microbial metabolic activity. This work provided an effective strategy to recover biomass waste as high-value products, and insightful understanding of microbial traits during OPW/WAS co-fermentation.
Collapse
Affiliation(s)
- Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xinyang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Minghong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
12
|
Liang X, Wu M, Yang Y, Liu D, Li X. Shale gas hydraulic fracturing flowback fluid treatment using a modified vortex flocculation reactor: Effects of the axial and tangential inlet angles. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Xu X, Du Z, Mou W, Deng R, Gu L. Role of humic substances and alkaline in phosphorus release from sludge pre-treated by (alkali-) hydrothermal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160099. [PMID: 36370781 DOI: 10.1016/j.scitotenv.2022.160099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The scarcity of phosphorus (P) resources makes the recovery of P urgent. Sludge is a secondary resource rich in P, and the release of P from it is a key step for recovery. Hydrothermal (HT) is currently a popular method for sludge pretreatment, and its combination with alkaline (alkali-hydrothermal, AHT) could reduce the energy consumption in treatment. This study tried to compare their P release profiles in treating activated sludge in which organic P (OP) and non-apatite inorganic P (NAIP) were co-existence. Apart from the OP release in cell lysis, P release from NAIP brought by the joint effect of OH- and humic substances (HS) formed in treatment was focused. The results showed that, compared to HT treatment, more P was released when OH- participated (AHT), and the peak P release was observed at 160 °C. Variation of P distribution in the treated sludge revealed that more P was released from NAIP in AHT than in HT. HS formed in treatments was extracted and characterized. The amount and the structure of the HS varied significantly with the treatment conditions, and there was a linear correlation ship between PO43--P release and the humic acid (HA) amount in HS. Mechanism study indicated there was a synergism between HS and OH- in promoting PO43--P release from NAIP. This study linked HS produced by sludge with P release, which provided a new perspective for subsequent P recovery from sludge.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Zexuan Du
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Wei Mou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| |
Collapse
|
14
|
Xu X, Xu Q, Du Z, Gu L, Chen C, Huangfu X, Shi D. Enhanced phosphorus release from waste activated sludge using ascorbic acid reduction and acid dissolution. WATER RESEARCH 2023; 229:119476. [PMID: 36516494 DOI: 10.1016/j.watres.2022.119476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Due to the widespread application of various iron (Fe)-derived substances used in phosphorus (P) removal during wastewater treatment, Fe-P species generated in this process constitute an important part of P speciation in non-digested sludge. SEM-EDS and sequential extraction methods were utilized to analyze the speciation, distribution, and spatial variation of P contained in the sludge. Inorganic P accounted for 91.3% of the total P, and Fe(III)-P represented the greatest percentage (68.5%) in the inorganic P fraction. Ascorbic acid, also known as vitamin C (VC), performed well in releasing P from sludge, especially in combination with subsequent pH adjustment to 3.0 using HCl. Fe(III)-P in sludge was first reduced to Fe(II)-P by VC, then dissolved in acidic conditions to release Fe2+ and PO43-. Other metal-P compounds were also partially dissolved and released. VC disrupted the sludge floc structure, releasing organic P via organic efflux. There was a positive correlation (R2>0.97, p<0.05) between the amount of released P and the amount of reductant (VC). There was a synergistic effect between 120 mmol/L VC and acidity, producing the greatest P release of 67.1% of total sludge P. The P release efficiency achieved in this study was higher than other reported methods. Additionally, VC provides a more sustainable option due to its natural biodegradability. Released P and Fe2+ can be recovered as vivianite with recovery rates of 88% and 99%, respectively. This finding provides a new direction for effective, sustainable sludge P recovery and utilization.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zexuan Du
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China.
| | - Cong Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Xiaoliu Huangfu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Dezhi Shi
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| |
Collapse
|
15
|
Elucidating interactive effects of sulfidated nanoscale zero-valent iron and ammonia on anaerobic digestion of food waste. J Biosci Bioeng 2023; 135:63-70. [PMID: 36336573 DOI: 10.1016/j.jbiosc.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
In our previous study, anaerobic digestion of food waste could be effectively enhanced by adding sulfidated nanoscale zero-valent iron (S-nZVI) under high-strength ammonia concentrations. In this study, in order to further elucidate the specific interactive effects of S-nZVI and ammonia on anaerobic digestion of nitrogen-rich food waste, the methanogenic performance of anaerobic digestion systems respectively added with nanoscale zero-valent iron (nZVI) and S-nZVI were compared and monitored under different ammonia stress conditions. Both nZVI and S-nZVI could effectively stimulate the methanogenesis process among ammonia concentrations ranging from 0 to 3500 mg/L. However, the enhancing effects of S-nZVI and nZVI on anaerobic digestion of food waste were different, in which anaerobic digestion systems added with S-nZVI and nZVI performed best under 2500 mg/L of ammonia and 1500 mg/L of ammonia, respectively. Furthermore, the analysis of microbial communities suggested that ammonia stress enriched acetoclastic methanogens, while adding nZVI and S-nZVI into anaerobic digestions stimulated the process of hydrogenotrophic methanogenesis. Moreover, S-nZVI performed better in promoting the evolution of DIET-related microorganisms than nZVI, resulting in enhanced methane production under high ammonia-stressed conditions. This work provided fundamental knowledge about the interactive effects of S-nZVI and ammonia on the anaerobic digestion of food waste.
Collapse
|
16
|
Lin Q, Dong X, Luo J, Zeng Q, Ma J, Wang Z, Chen G, Guo G. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism. BIORESOURCE TECHNOLOGY 2022; 361:127736. [PMID: 35932947 DOI: 10.1016/j.biortech.2022.127736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 05/16/2023]
Abstract
Waste activated sludge (WAS) has low biodegradability that restricts acidogenic fermentation (AF), thereby limiting the high-value volatile fatty acids (VFAs) production. This study investigated an alternative electrochemical pretreatment (EPT) approach that can facilitate AF of WAS and food waste (FW) and therefore enhance VFAs production. The results showed through introducing 50 % volatile solid basis of FW (containing massive chloride) into WAS, a 60-min EPT produced reactive chlorine species (RCS), which diffused into WAS-FW inner layers resulting in cell lysis, therefore significantly promoted and accelerated WAS-FW disintegration, contributing to more soluble and biodegradable dissolved organic matter (DOM). Then during the subsequent 15-day acidogenic co-fermentation (Co-AF), the residual RCS (approximate 5 mg Cl2/L) also caused acidogenic bacteria (including Prevotella_7, Lactobacillus and Veillonella) gradually outcompeted methanogens due to their different tolerance to residual RCS. Consequently, the maximum VFAs yield of the WAS-FW Co-AF with EPT was 40.8 % higher than WAS-AF without EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Xinlei Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zeng
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jie Ma
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| |
Collapse
|
17
|
Hao X, Yu W, Yuan T, Wu Y, van Loosdrecht MCM. Unravelling key factors controlling vivianite formation during anaerobic digestion of waste activated sludge. WATER RESEARCH 2022; 223:118976. [PMID: 36001903 DOI: 10.1016/j.watres.2022.118976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 05/06/2023]
Abstract
As a product of phosphorous recovery from anaerobic digestion (AD) of waste activated sludge (WAS), vivianite has received increasing attention. However, key factors controlling vivianite formation have not yet been fully addressed. Thus, this study was initiated to ascertain key factors controlling vivianite formation. A simulation of chemical equilibriums indicates that interfering ions such as metallic ions and inorganic compounds may affect vivianite formation, especially at a PO43-concentration lower than 3 mM. The experiments demonstrated that the rate of ferric bio-reduction conducted by dissimilatory metal-reducing bacteria (DMRB) and the competition of methane-producing bacteria (MPB) with DMRB for VFAs (acetate) were not the key factors controlling vivianite formation, and that ferric bio-reduction of DMRB can proceed when a sufficient amount of Fe3+ exists in WAS. The determined affinity constants (Ks) of both DMRB and MPB on acetate revealed that the KHAc constant (4.2 mmol/g VSS) of DMRB was almost 4 times lower than that of MPB (15.67 mmol/g VSS) and thus MPB could not seriously compete for VFAs (acetate) with DMRB. As a result, vivianite formation was controlled mainly by the amount of Fe3+ in WAS. In practice, a Fe/P molar ratio of 2:1 should be enough for vivianite formation in AD of WAS. Otherwise, exogenously dosing Fe3+ or Fe2+ into AD must be applied in AD.
Collapse
Affiliation(s)
- Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China.
| | - Wenbo Yu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Tugui Yuan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
18
|
Zhang Z, Ping Q, Guo W, Cai C, Li Y. A novel approach using protein-rich biomass as co-fermentation substrates to enhance phosphorus recovery from FePs-bearing sludge. WATER RESEARCH 2022; 218:118479. [PMID: 35477064 DOI: 10.1016/j.watres.2022.118479] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
A novel approach for the enhancement of phosphorus (P) recovery from Fe bound P compounds (FePs)-bearing sludge by co-fermentation with protein-rich biomass (PRB) is reported. Four PRBs (silkworm chrysalis meal, fish meal, corn gluten meal, and soya bean meal) were used for co-fermentation. The results revealed that PRBs with strong surface hydrophobicity and loose structure favored the hydrolysis and acidogenesis processes. Sulfide produced by PRB could react with FePs to form FeS and promote P release. Due to the neutralization of volatile fatty acids (VFAs) by a relatively high concentration of ammonia, the pH was maintained near neutral and thus prevented the dissolution of metal ions (e.g., Fe and Ca). This was beneficial to save the cost of subsequent P recovery and form high-purity struvite. Compared with the control, the soluble orthophosphate and VFAs increased by 88.3% and 531.3%, respectively, in the co-fermentation system with silkworm chrysalis meal. Cysteine was the important intermediate. The metagenomics analysis indicated that the gene abundances of phosphate acetyltransferase and acetate kinase, which were key enzymes in the acetate metabolism, increased by 117.7% and 52.2%, respectively. The gene abundances of serine O-acetyltransferase and cysteine synthase increased by 63.4% and 54.4%, respectively. Cysteine was primarily transformed to pyruvate and sulfide. This study provides an environment-friendly strategy to simultaneously recover P and VFAs resources from FePs-bearing sludge and PRB waste.
Collapse
Affiliation(s)
- Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
19
|
Ni M, Chen Y, Pan Y, Huang Y, Li DP, Li L, Huang B, Song Z. Study on community structure and metabolic mechanism of dominant polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in suspended biofilm based on phosphate recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152678. [PMID: 34973331 DOI: 10.1016/j.scitotenv.2021.152678] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/16/2023]
Abstract
Biofilm sequencing batch reactor (BSBR) can achieve efficient phosphate (P) removal and enrichment, but its process performance and metabolic mechanisms for P removal and enrichment of municipal wastewater remain largely unclear. In the present study, we assessed the P removal and enrichment of municipal wastewater at influent P concentrations of 2.5 mg/L and 10 mg/L. The efficiency of P removal and enzyme activity in polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) were compared, and the growth and metabolic characteristics of dominant PAOs and GAOs at different influent P concentrations were studied with the macro-sequencing technology. The results showed that the P recovery efficiencies were 70.03% and 76.19% when the influent P concentration was 2.5 mg/L and 10 mg/L in BSBR, respectively, and the maximum P concentration of recovery liquid was 81.29 mg/L and 173.12 mg/L, respectively. There were no phosphate kinase (PPK) and phosphate hydrolase (PPX) in extracellular polymeric substances (EPS). The dominant PAOs were Candidatus_Contendobacter, Dechloromonas, and Flavobacterium, and the dominant GAO was Candidatus_Competibacter. The abundance of Candidatus_Contendobacter was the highest with the most potential contribution to P removal. PAOs had competitive advantages in carbon (C) source uptake, glycogen metabolism, P metabolism, and adenosine triphosphate (ATP) metabolism. HMP was unique to PAOs, EMP had the highest abundance in glycogen metabolism, and ED was contained in PAOs of BSBR. These results indicated that BSBR provided sufficient reducing power and ATP for PAOs through different glycogen decomposition pathways to promote P uptake and obtained competitive advantages in P metabolism, C source uptake, and ATP utilization to achieve efficient P removal and enrichment. Collectively, our current findings provided valuable insights into the P removal and enrichment mechanism of BSBR in municipal sewage.
Collapse
Affiliation(s)
- Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yue Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China.
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Da-Peng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Bo Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | | |
Collapse
|
20
|
Zhang C, Guisasola A, Baeza JA. A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal. WATER RESEARCH 2022; 212:118102. [PMID: 35091221 DOI: 10.1016/j.watres.2022.118102] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P), an essential nutrient for all organisms, urgently needs to be recovered due to the increasing demand and scarcity of this natural resource. Recovering P from wastewater is a feasible and promising way widely studied nowadays due to the need to remove P in wastewater treatment plants (WWTPs). When enhanced biological P removal (EBPR) is implemented, an innovative option is to recover P from the supernatant streams obtained in the mainstream water line, and then combine it with liquor-crystallisation recovery processes, being the final recovered product struvite, vivianite or hydroxyapatite. The basic idea of these mainstream P-recovery strategies is to take advantage of the ability of polyphosphate accumulating organisms (PAO) to increase P concentration under anaerobic conditions when some carbon source is available. This work shows the mainstream P-recovery technologies reported so far, both in continuous and sequenced batch reactors (SBR) based configurations. The amount of extraction, as a key parameter to balance the recovery efficiency and the maintenance of the EBPR of the system, should be the first design criterion. The maximum value of P-recovery efficiency for long-term operation with an adequate extraction ratio would be around 60%. Other relevant factors (e.g. COD/P ratio of the influent, need for an additional carbon source) and operational parameters (e.g. aeration, SRT, HRT) are also reported and discussed.
Collapse
Affiliation(s)
- Congcong Zhang
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, Spain
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, Spain.
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, Spain
| |
Collapse
|
21
|
Bareha Y, Saoudi M, Santellani AC, Le Bihan A, Picard S, Mebarki C, Cunha M, Daumer ML. Use of fermentation processes for improving the dissolution of phosphorus and its recovery from waste activated sludge. ENVIRONMENTAL TECHNOLOGY 2022; 43:1307-1317. [PMID: 32957838 DOI: 10.1080/09593330.2020.1827301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Recycling phosphorus from waste activated sludge has attracted a lot of interest to tackle the problem of phosphorus stocks depletion and the increase in food demand. In this study, the use of fermentation processes was investigated to enhance phosphorus dissolution from waste activated sludge to improve its recycling. Two fermentation processes, bioacidification and dark fermentation, were used on two different sludges fermented with wheat starch syrup in continuous operating conditions. Hydrogen yield from the co-substrate fermentation with waste activated sludge reached 3.9 mmolH2.gCODcosubstrate-1 yield during dark fermentation process and was negligible during bioacidification. Dissolved phosphorus in the waste activated sludge increased by 68% during bioacidification and by 43% during dark fermentation. In both processes, phosphorus dissolution was accompanied by iron, calcium and magnesium dissolution. Results show that fermentation enhances phosphorus dissolution in waste activated sludge to improve its recovery along with hydrogen and organic acids.
Collapse
Affiliation(s)
- Y Bareha
- INRAE, UR OPAALE, Rennes, France
| | - M Saoudi
- INRAE, UR OPAALE, Rennes, France
| | | | | | - S Picard
- INRAE, UR OPAALE, Rennes, France
| | - C Mebarki
- Business Support & Performance, Veolia, Aubervilliers, France
| | - M Cunha
- Technical & Performance Department, Veolia, Aubervilliers, France
| | | |
Collapse
|
22
|
Perez-Esteban N, Vinardell S, Vidal-Antich C, Peña-Picola S, Chimenos JM, Peces M, Dosta J, Astals S. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152498. [PMID: 34968594 DOI: 10.1016/j.scitotenv.2021.152498] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
Fermentation (not anaerobic digestion) is an emerging biotechnology to transform waste into easily assimilable organic compounds such as volatile fatty acids, lactic acid and alcohols. Co-fermentation, the simultaneous fermentation of two or more waste, is an opportunity for wastewater treatment plants (WWTPs) to increase the yields of sludge mono-fermentation. Most publications have studied waste activated sludge co-fermentation with food waste or agri-industrial waste. Mixing ratio, pH and temperature are the most studied variables. The highest fermentation yields have been generally achieved in mixtures dominated by the most biodegradable substrate at circumneutral pH and mesophilic conditions. Nonetheless, most experiments have been performed in batch assays which results are driven by the capabilities of the starting microbial community and do not allow evaluating the microbial acclimation that occurs under continuous conditions. Temperature, pH, hydraulic retention time and organic load are variables that can be controlled to optimise the performance of continuous co-fermenters (i.e., favour waste hydrolysis and fermentation and limit the proliferation of methanogens). This review also discusses the integration of co-fermentation with other biotechnologies in WWTPs. Overall, this review presents a comprehensive and critical review of the achievements on co-fermentation research and lays the foundation for future research.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - C Vidal-Antich
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Peña-Picola
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
23
|
Liu Q, Wu C, Bin L, Li P, Gao X, Zhao Y, Huang S, Fu F, Tang B. Distribution characteristics of phosphorus-containing substances in a long running aerobic granular sludge-membrane bioreactor with no sludge discharge. BIORESOURCE TECHNOLOGY 2022; 347:126694. [PMID: 35017092 DOI: 10.1016/j.biortech.2022.126694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
This work aimed at revealing the distribution characteristics of phosphorus (P) containing substances in an aerobic granular sludge-membrane bioreactor (AGS-MBR). During the long running period (180 days) with no sludge discharge, AGS was successfully cultivated on day 20, and the system performed well in removing organic pollutants and total nitrogen (TN). However, the removal of total P (TP) showed a fluctuant tendency, and P was found to distribute in all the phases of the system. In the intracellular phase, it occupied the largest ratio all through the period. In AGS, inorganic P (IP) was measured to be about 74.4-77.8% of TP, with non-apatite IP (NAIP) composing 57.5-69.6%, while in organic P (OP), the ratio of monoester and diester phosphate was in the range of 19-26.9% and 12-13.5%, respectively. The presence of highly releasable and bioavailable P (NAIP + OP) in AGS implied that it might be a potential P resource for utilization.
Collapse
Affiliation(s)
- Qing Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chuandong Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinlei Gao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Yan Zhao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Luo J, Li Y, Li H, Li Y, Lin L, Li Y, Huang W, Cao J, Wu Y. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126318. [PMID: 34775055 DOI: 10.1016/j.biortech.2021.126318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This work explored the feasibility of paper waste (PW)/sewage sludge (SS) co-fermentation for volatile fatty acids (VFAs) production, and disclosed its correlation with the key operational parameters (i.e., pH and PW/SS ratio). The results indicated that the maximal VFAs was 251.55 mg COD/g TSS at optimal conditions, which was approximately 10-folds of sole SS fermentation. PW feeding contributed to the bioavailable substrates and C/N balance during co-fermentation process. The pH exhibited evident impacts on organics solubilization/hydrolysis, in which acidic pH was more beneficial for carbohydrates metabolism while alkaline pH was better for proteins. Under optimal operational conditions, the metabolic functions associated with VFAs production (i.e., substrate membrane transport, intracellular metabolism and VFAs biosynthesis) were up-regulated. Moreover, functional microorganisms (i.e., Saccharofermentans and Bacteroides) responsible for VFAs generation were enriched. This work provided an innovative approach to recovery valuable products from biowastes, and in-depth understandings of microbial features in PW/SS co-fermentation systems.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yuxiao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yibing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Lifang Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
25
|
Ni M, Pan Y, Chen Y, Zhang X, Huang Y, Song Z. Effects of seasonal temperature variations on phosphorus removal, recovery, and key metabolic pathways in the suspended biofilm. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Wu G, Zeng W, Li S, Jia Z, Peng Y. Phosphorus recovery from waste activated sludge by sponge iron seeded crystallization of vivianite and process optimization with response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58375-58386. [PMID: 34114145 DOI: 10.1007/s11356-021-14561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
As a novel phosphorus recovery product, vivianite (Fe3(PO4)2·8H2O) has attracted much attention due to its enormous recycling potential and foreseeable economic value. Taking sponge iron as seed material, the effect of different reaction conditions on the recovery of phosphorus in waste activated sludge by vivianite crystallization was studied. Through single factor tests, the optimal conditions for vivianite formation were in the pH range of 5.5-6.0 with Fe/P molar ratio of 1.5. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) were used to analyze the components of the crystals. The results showed that the vivianite produced by sponge iron as the seed crystal were larger and thicker (300-700 μm) than other seed (200-300 μm) and without seed (50-100 μm). Moreover, vivianite, which was synthesized with sponge iron as seed, was obviously magnetic and could be separated from the sludge by rubidium magnet. The Box-Behnken design of the response surface methodology was used to optimize the phosphorus-recovery process with sponge iron (maximum phosphorus recovery rate was 83.17%), and the interaction effect of parameters was also examined, pH had a significant effect on the formation of vivianite. In summary, this research verifies the feasibility of using sponge iron as the seed crystal to recover phosphorus in the form of vivianite from waste activated sludge, which is conducive to the subsequent separation and utilization of vivianite.
Collapse
Affiliation(s)
- Guoding Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental and Biological Sciences, Beijing University of Technology, Pingleyuan No.100, Chaoyang District, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental and Biological Sciences, Beijing University of Technology, Pingleyuan No.100, Chaoyang District, Beijing, 100124, China.
| | - Shuaishuai Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental and Biological Sciences, Beijing University of Technology, Pingleyuan No.100, Chaoyang District, Beijing, 100124, China
| | - Ziyue Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental and Biological Sciences, Beijing University of Technology, Pingleyuan No.100, Chaoyang District, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental and Biological Sciences, Beijing University of Technology, Pingleyuan No.100, Chaoyang District, Beijing, 100124, China
| |
Collapse
|
27
|
Li C, Sheng Y. Organic matter affects phosphorus recovery during vivianite crystallization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2038-2050. [PMID: 33905371 DOI: 10.2166/wst.2021.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vivianite crystallization is a promising route for phosphorus (P) recovery from P-rich wastewater. However, organic matter (OM) in wastewater may influence vivianite formation. In this study, the effects of four representative OMs, glucose, bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA), on P recovery by vivianite were investigated. The results showed that P recovery efficiency was inhibited by HA and SA, declining by 3.7% and 12.1% under HA (100 mg/L) and SA (800 mg/L), respectively. BSA, HA and SA affected the aggregated form of vivianite crystals. Vivianite particle size decreased in the presence of HA and SA. Subsequent mechanistic exploration indicated that the complexation between the OM and Fe2+ was the main cause of P recovery efficiency reduction. The coprecipitation of HA and SA with vivianite could reduce the zeta potential on the crystal surface, resulting in a smaller particle size. The nucleation sites provided by BSA and SA could transfer vivianite from single plate-like agglomerate to multilayer plate-like agglomerate. This study provided a better understanding of P recovery by vivianite from OM-rich wastewater.
Collapse
Affiliation(s)
- Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China E-mail: ; University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China E-mail:
| |
Collapse
|
28
|
Wu Y, Wang C, Wang S, An J, Liang D, Zhao Q, Tian L, Wu Y, Wang X, Li N. Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement. WATER RESEARCH 2021; 189:116663. [PMID: 33307376 DOI: 10.1016/j.watres.2020.116663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Biomineralized vivianite induced by dissimilatory iron reduction bacteria (DIRB) has received increasing attention because it alleviates phosphorus crisis and phosphorus pollution simultaneously. However, the relatively small crystal size and low Fe(III) reduction rate restrict the separation and recovery of vivianite. In this study, graphite was selected as additive to enhance vivianite biomineralization with soluble ferric citrate and insoluble hematite as two representative electron acceptors. As soluble ferric citrate provided abundant accessible electron acceptors, relatively inconspicuous increase (lower than 7%) was observed for graphite on vivianite formation while inoculated with raw sewage or DIRB. In contrast, graphite considerably increased vivianite formation efficiency by 23% in insoluble hematite inoculated with raw sewage. The graphite promotion on vivianite formation in hematite batch was magnified to 70% by DIRB. Dosing hematite inhibited the supply of electron acceptors, while conductive graphite promoted the electrical connection between minerals and DIRB, thus improved the Fe(III) reduction rate and efficiency. In addition, secondary minerals in hematite exhibited a larger aspect ratio and tended to aggregate on graphite. Graphite enlarged the vivianite size in hematite from 10 µm to 90 µm due to aggregation. Enhancing dissimilatory iron reduction (DIR) rate of iron oxides and enlarging crystal size provide new insights for vivianite formation and separation during wastewater treatment.
Collapse
Affiliation(s)
- Yu Wu
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Cong Wang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Shu Wang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jingkun An
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Danhui Liang
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yue Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
29
|
Wu M, Liu J, Gao B, Sillanpää M. Phosphate substances transformation and vivianite formation in P-Fe containing sludge during the transition process of aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2021; 319:124259. [PMID: 33254472 PMCID: PMC7558235 DOI: 10.1016/j.biortech.2020.124259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/30/2023]
Abstract
Excess sludge was considered as a promising raw material for phosphorus recovery. In this study, the P-Fe containing sludge came from the aerobic membrane bioreactor with electrocoagulation (EC), which was refluxed to the anaerobic unit for iron reduction. Under anaerobic condition, the ORP and pH maintained at -350 mV and 7.5, which exactly met the conditions for vivianite formation. According to the analysis of X-ray polycrystalline diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), the final product of the sludge after anaerobic condition was mainly vivianite. Microbial analysis showed that there were iron reducing bacteria (IRB) in sludge before and after anaerobic process, including Dechloromonas, Desulfovibrio. Aeromonas and Methanobacterium. During the transition process of aerobic and anaerobic conditions, amorphous phosphate substances in P-Fe containing sludge could be transformed vivianite just with long term standing, which could promote the recovery of phosphate resource from wastewater.
Collapse
Affiliation(s)
- Mingzhao Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
30
|
Yuan T, Wang Y, Nuramkhaan M, Wang X, Zhang Z, Lei Z, Shimizu K, Utsumi M, Adachi Y, Lee DJ. Coupling biogas recirculation with FeCl 3 addition in anaerobic digestion system for simultaneous biogas upgrading, phosphorus conservation and sludge conditioning. BIORESOURCE TECHNOLOGY 2020; 315:123811. [PMID: 32673981 DOI: 10.1016/j.biortech.2020.123811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The high costs involved in sewage sludge treatment and disposal in wastewater treatment plants (WWTPs) not only bring about improper sludge disposal and thus environmental pollutions, but also limit the investment on construction of WWTPs, especially in rural areas or low-income regions. This comparative study examined the effect of biogas recirculation coupled with chemical addition in a semi-continuous anaerobic digester for sludge treatment, which was proven to achieve biogas upgrading, phosphorus conservation and sludge conditioning simultaneously, largely reducing the sludge treatment cost. Results show that FeCl3 addition coupling biogas recirculation can improve sludge dewaterability by 94% in comparison to 75% by equivalent MgCl2 addition, and 97% phosphorus in digestate can be conserved in solid with formation of vivianite-like crystals. Biogas recirculation can enhance CH4 yield and content by 13% and 11%, respectively, likely attributable to the increased relative abundances of both hydrogenotrophic Methanomicrobiales and acetoclastic Methanosarcinales.
Collapse
Affiliation(s)
- Tian Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yinxin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Marjangul Nuramkhaan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuezhi Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
31
|
Zhang C, Hu D, Yang R, Liu Z. Effect of sodium alginate on phosphorus recovery by vivianite precipitation. J Environ Sci (China) 2020; 93:164-169. [PMID: 32446452 DOI: 10.1016/j.jes.2020.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
There are good prospects for phosphorus recovery from excess sludge by vivianite crystallization while a large number of extracellular polymeric substances in sludge will have impact on vivianite precipitation. In this study, as a representative of extracellular polymeric substance, the effect of sodium alginate (SA) on phosphorus recovery by vivianite precipitation under different initial SA concentrations (0-800 mg/L), pH values (6.5-9.0) and Fe/P molar ratios (1:1-2.4:1) was investigated using synthetic wastewater. The results showed that SA in low concentrations (≤400 mg/L) had little inhibitory effect on the phosphorus recovery rate. However, when the concentration of SA was larger than 400 mg/L, the phosphorus recovery rate decreased significantly with increasing SA concentrations. The inhibition rate of 800 mg/L SA was about 3 times as large as that of 400 mg/L SA. It was worth noting that the inhibitory effect of SA on vivianite precipitation decreased with increasing initial pH and Fe/P molar ratios. Additionally, SA has no obvious influence on the composition of products, but the morphology of harvested crystals was transformed from branches to plates or rods in uneven sizes.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Dexiu Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Ruijie Yang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Zichen Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
32
|
Wu Y, Cao J, Zhang T, Zhao J, Xu R, Zhang Q, Fang F, Luo J. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 305:123078. [PMID: 32135351 DOI: 10.1016/j.biortech.2020.123078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
This research proposed an innovative approach to synchronously enhance the recovery of phosphorus (P) as vivianite and volatile fatty acids (VFAs) during waste activated sludge (WAS) and food waste (FW) co-fermentation. A high performance was achieved under 30% FW addition and pH uncontrolled, which gained 83.09% of TP recovery as high-purity vivianite (93.90%), together with efficient VFAs production (7671 mg COD/L). The FW supplement could enhance VFAs production and subsequently lower pH to contribute to the release of Fe2+ and PO43-. Also, it could dampen disrupting effects of strong acidic pH on microbial cells (lowering LDH release). Moreover, the flexible pH variation caused by biological acidification could maintain relatively higher microbial activities (increasing enzymes' activities), which was advantageous to the biological effects involved in Fe2+ and PO43 release and VFAs generation. Therefore, this research provide a promising and economic alternative to dispose of WAS and FW simultaneously for valuable resource recovery.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China.
| |
Collapse
|
33
|
Yuan T, Bian S, Ko JH, Liu J, Shi X, Xu Q. Exploring the roles of zero-valent iron in two-stage food waste anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:91-100. [PMID: 32278220 DOI: 10.1016/j.wasman.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/07/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This research investigated the roles of zero-valent iron (ZVI) in a two-stage food waste digestion process. ZVI was added separately to hydrolytic-acidogenic (HA) and methanogenic (MG) stages to understand its impacts on FW hydrolysis-acidification, methanogenesis and bioenergy recovery efficiency. Results showed that ZVI effectively enhanced the overall performance of digestion as compared with the controls without ZVI. Supplementing with ZVI could facilitate the HA process along with faster hydrogen generation. In addition, ZVI shortened the lag phase of MG stage by 42.43-57.23% and raised the maximum methane production rate and yield by 33.99-38.20% and 11-13%, respectively, compared with the controls. Supplementing ZVI to the HA stage could simultaneously raise the bioenergy recovery efficiency of the HA and MG stages by 71.92% and 96.96%, respectively. Further studies demonstrated that iron corrosion contributed little to hydrogen and methane production. The enrichment of syntrophic bacteria, Pseudomonas, and methanogens, and the enhancement of electron transfer among those microbes was supposed to be the main possible mechanism for the enhancement of methanogenesis with ZVI assisted.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Songwei Bian
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Jianguo Liu
- Key Laboratory for Solid Waste Management and Environment Safety, School of Environment, Tsinghua University, Beijing, PR China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
34
|
Li RH, Cui JL, Hu JH, Wang WJ, Li B, Li XD, Li XY. Transformation of Fe-P Complexes in Bioreactors and P Recovery from Sludge: Investigation by XANES Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4641-4650. [PMID: 32167751 DOI: 10.1021/acs.est.9b07138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transformation of Fe-P complexes in bioreactors can be important for phosphorus (P) recovery from sludge. In this research, X-ray absorption near-edge structure analysis was conducted to quantify the transformation of Fe and P species in the sludge of different aging periods and in the subsequent acidogenic cofermentation for P recovery. P was readily removed from wastewater by Fe-facilitated coprecipitation and adsorption and could be extracted and recovered from sludge via acidogenic cofermentation and microbial iron reduction with food waste. The fresh Fe-based sludge mainly contained fresh ferrihydrite and amorphous FePO4 with sufficient accessible surface area, which was favorable for Fe-P mobilization and dissolution via microbial reaction. Ferric iron dosed into wastewater underwent rapid hydrolysis, clustering, aggregation, and slow crystallization to form hydrous iron oxides (HFO) with various complicated structures. With the aging of sludge in bioreactors, the HFO densified into phases with much reduced surface area and reactivity (e.g., goethite), which greatly increased the difficulty of P release and recovery. Thus, aging of P-containing sludge should be minimized in wastewater treatment systems for the purpose of P recovery.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jia-Hui Hu
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wei-Jun Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
35
|
Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production — A review. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
36
|
Cao J, Wu Y, Zhao J, Jin S, Aleem M, Zhang Q, Fang F, Xue Z, Luo J. Phosphorus recovery as vivianite from waste activated sludge via optimizing iron source and pH value during anaerobic fermentation. BIORESOURCE TECHNOLOGY 2019; 293:122088. [PMID: 31499331 DOI: 10.1016/j.biortech.2019.122088] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 05/16/2023]
Abstract
This study presented an innovative method for phosphorus (P) recovery as vivianite from waste activated sludge (WAS) via optimizing iron dosing and pH value during anaerobic fermentation (AF). The optimal conditions for vivianite formation were in the pH range of 6.0-9.0 with initial PO43- >5 mg/L and Fe/P molar ratio of 1.5. Notably, FeCl3 showed advantages over ZVI for the simultaneous release of Fe2+ and PO43- during WAS fermentation, especially in acidic conditions. The FeCl3 dosing at pH 3.0 could contribute to 78.81% Fe2+ release and 85.69% of total PO43- release from WAS. They were ultimately recovered in the form of high-purity vivianite (93.67%). Clostridiaceae (40.25%) was the predominant bacteria in FeCl3-pH3 reactors, which played key roles in inducing dissimilatory iron reduction for Fe2+ formation. Therefore, P recovery as vivianite from WAS fermentation might be a promising and highly valuable approach to relieve the P crisis.
Collapse
Affiliation(s)
- Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuo Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Muhammad Aleem
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
37
|
Wu Y, Luo J, Zhang Q, Aleem M, Fang F, Xue Z, Cao J. Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review. CHEMOSPHERE 2019; 226:246-258. [PMID: 30933734 DOI: 10.1016/j.chemosphere.2019.03.138] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Due to the shortage of phosphorus resources and the limitations of existing phosphorus recovery methods, phosphorus recovery in the form of vivianite has attracted considerable attention with its natural ubiquity, easy accessibility and foreseeable economic value. This review systematically summarizes the chemistry of vivianite, including the characteristics, formation process and influencing factors of the material. Additionally, the potential of phosphorus recovery as vivianite from wastewater has also been comprehensively examined from the prospects of economic value and engineering feasibility. In general, this method is theoretically and practically feasible, and brings some extra benefits in WWTPs. However, the insufficient understanding on vivianite recovery in wastewater/sludge decelerate the development and exploration of such advanced approach. Further researches and cross-field supports would facilitate the improvement of this technique in the future.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Wanjiang University of Technology, Ma'anshan 243031, China
| | - Muhammad Aleem
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
38
|
Zhao YX, Li P, Li RH, Li XY. Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes. CHEMOSPHERE 2019; 223:383-390. [PMID: 30784745 DOI: 10.1016/j.chemosphere.2019.02.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 05/26/2023]
Abstract
Direct membrane filtration (DMF) is considered as a promising technology for municipal wastewater treatment. We utilized an innovative application of flat-sheet ceramic membranes (FSCM) for DMF for the rapid treatment of domestic sewage. Coagulation was applied before FSCM filtration to increase the pollutant removal and to mitigate membrane fouling. This coagulation-FSCM filtration can significantly reduce the pollutant load on the downstream treatment and concentrate organics and nutrients into sludge to facilitate resource recovery. Using polyaluminum chloride (PACl) based FSCM filtration, approximately 90.0% of the chemical oxygen demand (COD) and 99.0% of the phosphorus (P) were removed from the sewage influent and retained in the concentrated sludge, with less than 25.0 mg/L COD left in the effluent. Long-term operation of the PACl-based FSCM filtration stably maintained a high flux of 41.7 L/m2-h (LMH, or 1.0 m/d). The fouled membranes were cleaned chemically every 3-5 d, and the membrane permeability could almost be completely recovered using chemical backwash for only 10 min with a diluted acidic, alkaline, chlorine or H2O2 solution. The novel FSCM process will fundamentally advance wastewater treatment technology. It can be readily modularized and installed as simple add-on units to upgrade and retrofit existing wastewater treatment systems.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- School of Water Conservancy and Environment, University of Jinan, 250022, Shandong, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Pu Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruo-Hong Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|
39
|
Li RH, Wang WJ, Li B, Zhang JY, Liu J, Zhang GJ, Guo XC, Zhang XH, Li XY. Acidogenic phosphorus recovery from the wastewater sludge of the membrane bioreactor systems with different iron-dosing modes. BIORESOURCE TECHNOLOGY 2019; 280:360-370. [PMID: 30780096 DOI: 10.1016/j.biortech.2019.02.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A novel acidogenic phosphorus recovery (APR) process was developed in combination with Fe(III)-based chemical phosphorus removal and a membrane bioreactor (MBR) for enhanced wastewater treatment and effective P recovery. Two different system configurations were evaluated: Fe-dosing MBR (Fe-MBR), with the Fe-dosing into the MBR, and Fe-enhanced primary sedimentation followed by the MBR (FeP-MBR). The results show that both systems performed well for enhanced nutrient (N and P) removals and P recovery, with approximately 50% of the total P recovered from the municipal wastewater in the form of vivianite. Compared to the Fe-MBR system, FeP-MBR achieved more efficient P recovery under low food-waste loading conditions, maintained a higher ratio of biomass in activated sludge and experienced a slower rate of membrane fouling. Important functional bacteria were identified, including Prevotella and Selenomonas, which are active in hydrolysis and acidogenesis of sludge, and Aeromonas and Sulfurospirillum, which are involved in dissimilatory iron reduction.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei-Jun Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jia-Yu Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jie Liu
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Gui-Juan Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xue-Chao Guo
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xi-Hui Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|
40
|
Polymerized titanium salts for municipal wastewater preliminary treatment followed by further purification via crossflow filtration for water reuse. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Huang X, Zhao J, Xu Q, Li X, Wang D, Yang Q, Liu Y, Tao Z. Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. BIORESOURCE TECHNOLOGY 2019; 274:430-438. [PMID: 30553083 DOI: 10.1016/j.biortech.2018.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
In this study, an economical and eco-friendly strategy (i.e., adding tofu residue (TR) into waste activated sludge (WAS)) to enhance volatile fatty acid (VFA) production was reported. Experimental results indicated that the maximal VFA yield at T/W ratio (TR/WAS, the ratio of the volatile suspended solids (VSS)) of 0.64 on 5 d was 240.8 mg COD/g VSS, which was 10.2 and 1.1-fold of that in sole WAS and sole TR, respectively. The feasible fermentation time was shortened by 2 days, as compared with sole WAS or sole TR. Mechanism investigation showed that the addition of TR promoted solubilization, hydrolysis, and acidogenesis processes. The synergistic effect of microorganisms contained in TR and WAS may be responsible for the enhancement of lignocellulose hydrolysis and VFA generation. Appropriate amounts of mineral elements in TR benefited solubilization, the soluble iron and calcium in TR could contribute to the phosphorus removal in fermentation liquor.
Collapse
Affiliation(s)
- Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ziletao Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
42
|
Khan MA, Ngo HH, Guo W, Liu Y, Nghiem LD, Chang SW, Nguyen DD, Zhang S, Luo G, Jia H. Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2019; 271:100-108. [PMID: 30265949 DOI: 10.1016/j.biortech.2018.09.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the production of volatile fatty acids (VFAs) from low strength wastewater at various hydraulic retention time (HRT) and organic loading rate (OLR) in a continuous anaerobic membrane bioreactor (AnMBR) using glucose as carbon source. This experiment was performed without any selective inhibition of methanogens and the reactor pH was maintained at 7.0 ± 0.1. 48, 24, 18, 12, 8 and 6 h-HRTs were applied and the highest VFA concentration was recorded at 8 h with an overall VFA yield of 48.20 ± 1.21 mg VFA/100 mg CODfeed. Three different ORLs were applied (350, 550 and 715 mg CODfeed) at the optimum 8 h-HRT. The acetic and propanoic acid concentration maximums were (1.1845 ± 0.0165 and 0.5160 ± 0.0141 mili-mole/l respectively) at 550 mg CODfeed. The isobutyric acid concentration was highest (0.3580 ± 0.0407 mili-mole/l) at 715 mg CODfeed indicating butyric-type fermentation at higher organic loading rate.
Collapse
Affiliation(s)
- Mohd Atiqueuzzaman Khan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai 200433, China
| | - Gang Luo
- Department of Environmental Science and Technology, Fudan University, Shanghai 200433, China
| | - Hui Jia
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
43
|
Hu P, Liu J, Wu L, Zou L, Li YY, Xu ZP. Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction. BIORESOURCE TECHNOLOGY 2019; 271:182-189. [PMID: 30268013 DOI: 10.1016/j.biortech.2018.09.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Iron is widely used in sewage treatment systems and enriched into waste activated sludge (WAS), which is difficult and challenging to phosphorus (P) release and recovery. This study investigated simultaneous release performance of polyphosphate and iron-phosphate from iron-rich sludge via anaerobic fermentation combined with sulfate reduction (AF-SR) system. Batch tests were performed, with results showing that AF-SR system conducted a positive effect due to the relatively low solubility of ferrous sulfide in comparison with ferric phosphate precipitates. Simulation study was performed to investigate the total P release potential from actual waste activated sludge, finding that about 70% of the total P could release with the optimized pH of 7.0-8.0 and the theoretical S2-/Fe2+ molar ratio of 1.0. A potential new blueprint of a wastewater treatment plant based on AF-SR system, towards P, N recovery and Fe, S, C recycle, was finally proposed.
Collapse
Affiliation(s)
- Peishan Hu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Liang Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zhi Ping Xu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
Xu J, Li X, Gan L, Li X. Fermentation liquor of CaO 2 treated chemically enhanced primary sedimentation (CEPS) sludge for bioplastic biosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:547-555. [PMID: 29990904 DOI: 10.1016/j.scitotenv.2018.06.392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/30/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Chemically enhanced primary sedimentation (CEPS) technology has been widely applied in Hong Kong, exhibiting excellent performance in contaminants removal from sewage. The generated CEPS sludge contains abundance of organics which could be recovered as volatile fatty acids (VFAs) by fermentation for further utilization. In this work, the effect of calcium peroxide (CaO2) on the fermentation of FeCl3 based CEPS sludge was investigated. The feasibility of utilizing the fermentation liquor as substrate for polyhydroxyalkanoates (PHAs) biosynthesis was also evaluated. Results demonstrated that CaO2 addition facilitated the disintegration of CEPS sludge and enhanced VFAs production. The maximum VFAs yield of 455.8 mg COD/g VSS was obtained with the dosage of 0.1 g CaO2/g SS, improving by 44.7% compared with the control sludge. Acetic and propionic acid were the predominant components of the VFAs. Microbial analysis indicated that CaO2 induced microbial reduction of Fe(III), accelerating the initial disintegration of FeCl3 based CEPS sludge. Microbial communities with hydrolysis and acidogenesis functions were enriched effectively. CaO2 treatment had no significant influence on the release of ammonia nitrogen (NH4+-N), while reduced the concentration of orthophosphate (PO43--P) and ferrous (Fe2+) in fermentation liquor, that was beneficial to the further utilization as substrate for PHAs biosynthesis. The VFA-rich fermentation liquor was proved to be a suitable substrate for PHAs biosynthesis. After cultivation, the PHAs content in activated sludge reached 22.3%, which was comparable to those obtained using waste materials as carbon source. This integrated technology could be a superior alternative of realizing sludge disposal and bioplastic production simultaneously.
Collapse
Affiliation(s)
- Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, East China Normal University, Shanghai, China.
| | - Xiuyan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, East China Normal University, Shanghai, China
| | - Lihong Gan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiaoyan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
45
|
Pan XR, Li WW, Huang L, Liu HQ, Wang YK, Geng YK, Kwan-Sing Lam P, Yu HQ. Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. BIORESOURCE TECHNOLOGY 2018; 260:61-67. [PMID: 29614452 DOI: 10.1016/j.biortech.2018.03.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Recovery of volatile fatty acids (VFAs) from wastewater is an important route for wastewater valorization. Selective acidogenic fermentation enables an efficient production of VFAs from wastewater, whereas electrodialysis (ED) provides an effective approach to concentrate VFAs. However, these two processes have not been coupled in one single system previously. In this study, an acidogenesis-ED integrated system that coupled a continuous acidogenesis with a batch process of VFA concentration was developed for recovery of high-concentration VFAs from wastewater. Under 20.0 V voltage, the acetate was concentrated by 4-fold and the propionate and butyrate were concentrated by over 3-fold in the integrated system after 528-h operation. The declined VFAs recovery ratios at the later stage due to significant reverse diffusion indicate a need to prevent product over-accumulation. This work demonstrated the feasibility of the acidogenesis-ED integrated reactor for wastewater valorization and discussed the remaining challenges and opportunities.
Collapse
Affiliation(s)
- Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Liang Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Hou-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Yun-Kun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Yi-Kun Geng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China
| | - Paul Kwan-Sing Lam
- USTC-CityU Joint Advanced Research Center, Suzhou, China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China; USTC-CityU Joint Advanced Research Center, Suzhou, China.
| |
Collapse
|
46
|
Li RH, Li B, Li XY. An integrated membrane bioreactor system with iron-dosing and side-stream co-fermentation for enhanced nutrient removal and recovery: System performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2018; 260:248-255. [PMID: 29627652 DOI: 10.1016/j.biortech.2018.03.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
An integrated membrane bioreactor (MBR) system was developed for enhanced nutrient (N and P) removal and effective P recovery in wastewater treatment. The system consisted of an iron-dosing MBR and side-stream fermentation for P removal and recovery and side-stream denitrification for N removal. Around 98.1% of the total phosphorus (TP) in wastewater was removed by ferric iron-induced precipitation and membrane filtration in the aerobic MBR, and nearly 53.4% of the TP could be recovered via anaerobic fermentation from the MBR sludge. In addition, the fermenter that allowed acidogenic co-fermentation with food waste provided sufficient soluble organics for biological denitrification, and an overall 91.8% total N removal was achieved through the side-stream denitrification. High-throughput sequencing was applied to analyse the microbial communities in the integrated system, and important functional bacteria were identified for nitrification, denitrification, acidogenic fermentation and dissimilatory iron reduction through the different components of the system.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|