1
|
Guo X, Chen D, Huang P, Gao L, Zhou W, Zhang J, Zhang Q. Effects of tannin-tolerant lactic acid bacteria in combination with tannic acid on the fermentation quality, protease activity and bacterial community of stylo silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2540-2551. [PMID: 39568328 DOI: 10.1002/jsfa.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Proteolysis during ensiling primarily occurs due to undesirable microbial and plant protease activities, which reduce the protein supply to ruminant livestock and cause a series of environmental problems. The objective of this study was to investigate the effects of the tannin-tolerant lactic acid bacterium strain Lactiplantibacillus plantarum 4 (LABLP4) in combination with tannic acid (TA) on protein preservation in stylo (Stylosanthes guianensis) silage. The stylos were either ensiled without additives (control) or treated with LABLP4 (106 colony-forming units per gram of fresh matter), 1% (fresh matter basis) TA, 2% TA, LABLP4 + 1% TA and LABLP4 + 2% TA. Fermentation quality, protein composition, protease activity and bacterial diversity were determined at 3, 7, 14 and 31 days of ensiling. RESULTS The combination of LABLP4 and TA decreased the pH, coliform bacteria count, non-protein nitrogen, ammonia-nitrogen (NH3-N) content and protease activities (P < 0.05) and increased the true protein content (P < 0.05) compared to the control. LABLP4 + TA led to a lower pH and NH3-N content than LABLP4 or TA alone (P < 0.05). On the last day (31 days) of ensiling, LABLP4 + TA increased the relative abundances of Firmicutes and Lactiplantibacillus (P < 0.05), except for the LABLP4 treatment, and decreased the relative abundance of Actinobacteria (P < 0.05). CONCLUSION The combination of tannin-tolerant LABLP4 and TA effectively improved the fermentation quality of stylo silage and reduced protein degradation by altering the bacterial community structure. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Guo
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Dandan Chen
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Peishan Huang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Lin Gao
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Jianguo Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| |
Collapse
|
2
|
Hu Y, Pan G, Zhao M, Yin H, Wang Y, Sun J, Yu Z, Bai C, Xue Y. Suitable fermentation temperature of forage sorghum silage increases greenhouse gas production: Exploring the relationship between temperature, microbial community, and gas production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175325. [PMID: 39117229 DOI: 10.1016/j.scitotenv.2024.175325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Silage is an excellent method of feed preservation; however, carbon dioxide, methane and nitrous oxide produced during fermentation are significant sources of agricultural greenhouse gases. Therefore, determining a specific production method is crucial for reducing global warming. The effects of four temperatures (10 °C, 20 °C, 30 °C, and 40 °C) on silage quality, greenhouse gas yield and microbial community composition of forage sorghum were investigated. At 20 °C and 30 °C, the silage has a lower pH value and a higher lactic acid content, resulting in higher silage quality and higher total gas production. In the first five days of ensiling, there was a significant increase in the production of carbon dioxide, methane, and nitrous oxide. After that, the output remained relatively stable, and their production at 20 °C and 30 °C was significantly higher than that at 10 °C and 40 °C. Firmicutes and Proteobacteria were the predominant silage microorganisms at the phylum level. Under the treatment of 20 °C, 30 °C, and 40 °C, Lactobacillus had already dominated on the second day of silage. However, low temperatures under 10 °C slowed down the microbial community succession, allowing, bad microorganisms such as Chryseobacterium, Pantoea and Pseudomonas dominate the fermentation, in the early stage of ensiling, which also resulted in the highest bacterial network complexity. According to random forest and structural equation model analysis, the production of carbon dioxide, methane and nitrous oxide is mainly affected by microorganisms such as Lactobacillus, Klebsiella and Enterobacter, and temperature influences the activity of these microorganisms to mediate gas production in silage. This study helps reveal the relationship between temperature, microbial community and greenhouse gas production during silage fermentation, providing a reference for clean silage fermentation.
Collapse
Affiliation(s)
- Yifei Hu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China
| | - Gang Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China
| | - Meirong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China
| | - Hang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China
| | - Yibo Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China
| | - Juanjuan Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunsheng Bai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China.
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010031, China.
| |
Collapse
|
3
|
Liu J, Zhao M, Hao J, Yan X, Fu Z, Zhu N, Jia Y, Wang Z, Ge G. Effects of temperature and lactic acid Bacteria additives on the quality and microbial community of wilted alfalfa silage. BMC PLANT BIOLOGY 2024; 24:844. [PMID: 39251915 PMCID: PMC11382506 DOI: 10.1186/s12870-024-05501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This study investigated the influence of different temperatures (35℃ High temperature and average indoor ambient temperature of 25℃) and lactic acid bacterial additives (Lactiplantibacillus plantarym, Lentilactobacillus buchneri, or a combination of Lactiplantibacillus plantarym and Lentilactobacillus buchneri) on the chemical composition, fermentation quality, and microbial community of alfalfa silage feed. After a 60-day ensiling period, a significant interaction between temperature and additives was observed, affecting the dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) of the silage feed (p < 0.05). Temperature had a highly significant impact on the pH value of the silage feed (p < 0.0001). However, the effect of temperature on lactic acid, acetic acid, propionic acid, and butyric acid was not significant (p > 0.05), while the inoculation of additives had a significant effect on lactic acid, acetic acid, and butyric acid (p > 0.05). As for the dynamic changes of microbial community after silage, the addition of three kinds of bacteria increased the abundance of lactobacillus. Among all treatment groups, the treatment group using complex bacteria had the best fermentation effect, indicating that the effect of complex lactic acid bacteria was better than that of single bacteria in high temperature fermentation. In summary, this study explained the effects of different temperatures and lactic acid bacterial additives on alfalfa fermentation quality and microbial community, and improved our understanding of the mechanism of alfalfa related silage at high temperatures.
Collapse
Affiliation(s)
- Jingyi Liu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Muqier Zhao
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Junfeng Hao
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Xingquan Yan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Zhihui Fu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Yushan Jia
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Zhijun Wang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China
| | - Gentu Ge
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China.
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Hohhot, 010019, China.
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, 010019, China.
| |
Collapse
|
4
|
Kharazian ZA, Xu D, Su R, Guo X. Effects of inoculation and dry matter content on microbiome dynamics and metabolome profiling of sorghum silage. Appl Microbiol Biotechnol 2024; 108:257. [PMID: 38456919 PMCID: PMC10923742 DOI: 10.1007/s00253-024-13096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Sorghum forage was ensiled for 90 days at two dry matter (DM) contents (27 vs. 39%) without or with Lactiplantibacillus plantarum inoculation. On day 90 of fermentation, silages were sampled to assess the microbial community dynamics and metabolome profile. L. plantarum inoculation improved silage quality, as shown by a lower pH and greater acetic acid concentration. Loss of DM remained unaffected by L. plantarum inoculation but was greater in low- vs. high-DM sorghum silages (14.4 vs. 6.62%). The microbiome analysis revealed that Pseudomonas congelans represented the dominant species of the epiphytic microbiota in both low- and high-DM sorghum forage before ensiling. However, L. buchneri represented the dominant species at the end of ensiling. Ensiling fermentation resulted in distinct metabolic changes in silages with varying DM content. In low-DM silages, ensiling fermentation led to the accumulation of 24 metabolites and a reduction in the relative concentration of 13 metabolites. In high-DM silages, ensiling fermentation resulted in an increase in the relative concentration of 26 metabolites but a decrease in the concentration of 8 metabolites. Compared to non-inoculated silages, L. plantarum inoculation resulted in an increased concentration of 3 metabolites and a reduced concentration of 5 metabolites in low-DM silages. Similarly, in high-DM silages, there was an elevation in the relative concentration of 3 metabolites, while a decrease in 7 other metabolites. Ten metabolites with bio-functional activity were identified, including chrysoeriol, isorhamnetin, petunidin 3-glucoside, apigenin, caffeic acid, gallic acid, p-coumaric acid, trans-cinnamic acid, herniarin, and 3,4-dihydroxy-trans-cinnamate. This study presents a comprehensive analysis of microbiome and metabolome profiling of sorghum forage during ensiling as a function of DM content and L. plantarum inoculation, with a particular emphasis on identifying metabolites that may possess bio-functional properties. KEY POINTS: • DM loss was not different by L. plantarum but higher in low- vs. high-DM silage. • L. buchneri dominated ensiling, regardless of DM level. • 10 metabolites with bio-functional activity were identified.
Collapse
Affiliation(s)
- Zohreh Akhavan Kharazian
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Dongmei Xu
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Rina Su
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Kovalev AA, Kovalev DA, Zhuravleva EA, Laikova AA, Shekhurdina SV, Vivekanand V, Litti YV. Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. BIORESOURCE TECHNOLOGY 2023; 376:128919. [PMID: 36934902 DOI: 10.1016/j.biortech.2023.128919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The performance and kinetics response of thermophilic semi-continuous dark fermentation (DF) of simulated complex carbohydrate-rich waste was investigated at various hydraulic retention times (HRT) (2, 2.5, and 3 d) and compared with data obtained from biochemical hydrogen potential assay (BHP). A culture of Thermoanaerobacterium thermosaccharolyticum was used as the inoculum and dominated both in BHP and semi-continuous reactor. Both the modified Gompertz and first-order models described the DF kinetics well (R2 = 0.97-1.00). HRT of 2.5 d was found to be optimal in terms of maximum hydrogen production rate and hydrogen potential, which were 3.97 and 1.26 times higher, respectively, than in BHP. The hydrolysis constant was highest at HRT of 3 d and was closest to the value obtained in the BHP. Overall, BHP has been shown to be a useful tool for predicting H2 potential and the hydrolysis constant, while the maximum H2 production rate is greatly underestimated.
Collapse
Affiliation(s)
- Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia
| | - Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Alexandra A Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| |
Collapse
|
6
|
Chen W, Wang J, Song J, Sun Q, Zhu B, Qin L. Exogenous and Endophytic Fungal Communities of Dendrobium nobile Lindl. across Different Habitats and Their Enhancement of Host Plants' Dendrobine Content and Biomass Accumulation. ACS OMEGA 2023; 8:12489-12500. [PMID: 37033800 PMCID: PMC10077458 DOI: 10.1021/acsomega.3c00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Both the biosynthesis and array of bioactive and medicinal compounds in plants can be influenced by interactions with endophytic and exogenous fungi. However, the composition of endophytic and exogenous fungal communities associated with many medicinal plants is unknown, and the mechanism by which these fungi stimulate the secondary metabolism of host plants is unclear. In this study, we conducted a correlative analysis between endophytic and exogenous fungi and dendrobine and biomass accumulation in Dendrobium nobile across five Chinese habitats: wild Danxia rock, greenhouse-associated large Danxia stone, broken Danxia stone, broken coarse sandstone, and wood spile. Across habitats, fungal communities exhibited significant differences. The abundances of Phyllosticta, Trichoderma, and Hydropus were higher in wild habitats than in greenhouse habitats. Wild habitats were host to a higher diversity and richness of exogenous fungi than were greenhouse habitats. However, there was no significant difference in endophytic fungal diversity between habitats. The differences between the fungal communities' effects on the dendrobine content and biomass of D. nobile were attributable to the composition of endophytic and exogenous fungi. Exogenous fungi had a greater impact than endophytic fungi on the accumulation of fresh weight (FW) and dendrobine in D. nobile. Furthermore, D. nobile samples with higher exogenous fungal richness and diversity exhibited higher dendrobine content and FW. Phyllosticta was the only genus to be significantly positively correlated with both FW and dendrobine content. A total of 86 strains of endophytic fungi were isolated from the roots, stems, and leaves of D. nobile, of which 8 strains were found to be symbiotic with D. nobile tissue-cultured seedlings. The strain DN14 (Phyllosticta fallopiae) was found to promote not only biomass accumulation (11.44%) but also dendrobine content (33.80%) in D. nobile tissue-cultured seedlings. The results of this study will aid in the development of strategies to increase the production of dendrobine in D. nobile. This work could also facilitate the screening of beneficial endophytic and exogenous fungal probiotics for use as biofertilizers in D. nobile.
Collapse
|
7
|
Yang W, Cai C, Yang D, Dai X. Implications for assessing sludge hygienization: Differential responses of the bacterial community, human pathogenic bacteria, and fecal indicator bacteria to sludge pretreatment-anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130110. [PMID: 36332277 DOI: 10.1016/j.jhazmat.2022.130110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Sewage sludge is the byproduct of wastewater treatment plants, which host enormous diversity of microbes including potential pathogens. However, there are still challenges in assessing hygienization during sludge stabilization due to the complex relationships between dominant microbes and human pathogenic bacteria (HPB), and the accuracy of fecal indicator bacteria (FIB) is also disputed. Here, the responses of the bacterial community, HPB, and FIB to sludge pretreatment-anaerobic digestion (AD) were comprehensively compared using culture-based and 16S rRNA gene molecular analysis methodologies. Bacterial and HPB communities differed in response to sludge pretreatment-AD. AD drove the variation of bacterial community, but led to the convergence of HPB communities in pretreated sludge, indicating the existence of ecological niches that favors HPB dissemination in digesters. The correlation analysis indicated that FIB was suitable for characterizing general pathogen removal instead of showing the real pattern of HPB (i.e., each HPB), implying the need for comprehensive assessment approaches. Moreover, AD-related parameters including pH, total solids destruction, and methane yield were found to play important role in assessing pathogen inactivation given their correlation. This work provides theoretical basis for the selection of appropriate sludge stabilization approaches and future supervision of biosolids biosafety, which finally benefits human health.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Cao J, Xu C, Zhou R, Duan G, Lin A, Yang X, You S, Zhou Y, Yang G. Potato peel waste for fermentative biohydrogen production using different pretreated culture. BIORESOURCE TECHNOLOGY 2022; 362:127866. [PMID: 36049714 DOI: 10.1016/j.biortech.2022.127866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
How to manage potato peel waste sustainably has been an issue faced by the potato industry. This work explored the feasibility of potato peel waste for biohydrogen production via dark fermentation, and investigated the effects of various inoculum enrichment methods (acid, aeration, heat-shock and base) on the process efficiency. It was observed that the hydrogen production showed a great variation when using various inoculum enrichment methods, and the aeration enriched inoculum obtained the maximum hydrogen yield of 71.0 mL/g-VSadded and VS removal of 28.9 %. Different enriched cultures also exhibited huge variations in the bacterial community structure and metabolic pathway. The highest abundance of Clostridium sensu stricto fundamentally contributed to the highest process efficiency for the fermenter inoculated with aeration treated culture. This work puts forward a promising strategy for recycling potato peel waste, and fills a gap in the optimal inoculum preparation method for biohydrogen fermentation of potato peel waste.
Collapse
Affiliation(s)
- Jinman Cao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Rui Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow G12 8QQ, UK
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Current Trends in Biological Valorization of Waste-Derived Biomass: The Critical Role of VFAs to Fuel A Biorefinery. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The looming climate and energy crises, exacerbated by increased waste generation, are driving research and development of sustainable resource management systems. Research suggests that organic materials, such as food waste, grass, and manure, have potential for biotransformation into a range of products, including: high-value volatile fatty acids (VFAs); various carboxylic acids; bioenergy; and bioplastics. Valorizing these organic residues would additionally reduce the increasing burden on waste management systems. Here, we review the valorization potential of various sustainably sourced feedstocks, particularly food wastes and agricultural and animal residues. Such feedstocks are often micro-organism-rich and well-suited to mixed culture fermentations. Additionally, we touch on the technologies, mainly biological systems including anaerobic digestion, that are being developed for this purpose. In particular, we provide a synthesis of VFA recovery techniques, which remain a significant technological barrier. Furthermore, we highlight a range of challenges and opportunities which will continue to drive research and discovery within the field. Analysis of the literature reveals growing interest in the development of a circular bioeconomy, built upon a biorefinery framework, which utilizes biogenic VFAs for chemical, material, and energy applications.
Collapse
|
10
|
Chen H, Wu J, Huang R, Zhang W, He W, Deng Z, Han Y, Xiao B, Luo H, Qu W. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. CHEMOSPHERE 2022; 286:131655. [PMID: 34315083 DOI: 10.1016/j.chemosphere.2021.131655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-continuous experiments were carried out in lab-scale continuous stirred tank reactors to evaluate the effects of fermentation temperature (37 ± 1 °C and 55 ± 1 °C) and total solids (TS) contents (3 %, 6 %, and 12 %) on biohydrogen production from the dark fermentations (DF) of rice straw (RS) and the total operation duration was 105 days. The experimental results show that biohydrogen production (0.46-63.60 mL/g VSadded) from the thermophilic (55 ± 1 °C) DF (TDF) was higher than the mesophilic (37 ± 1 °C) DF (MDF) (0.19-2.13 mL/g VSadded) at the three TS contents, and achieved the highest of 63.60 ± 2.98 mL/g VSadded at TS = 6 % in TDF. The pH, NH4+-N and total volatile fatty acid of fermentation liquids in the TDF were all higher than those in the MDF. The high abundance of lactic acid-producing bacteria resulted in low biohydrogen produced at TS = 3 %. Under the TDF with TS = 6 %, the highest abundance of hydrolytic bacteria (Ruminiclostridium 54.24 %) led to the highest biohydrogen production. The increase of TS content from 6 % to 12 % induced degradation pathway changes from biohydrogen production to methane production. This study demonstrated that butyric acid fermentation was the main pathway to produce biohydrogen from RS in both DFs.
Collapse
Affiliation(s)
- Hong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Jun Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Rong Huang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weining He
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Zhengyu Deng
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongmei Luo
- Hunan Provincial Meteorological Service Center, Changsha, 410118, China
| | - Wei Qu
- Changsha Environmental Protection College, Changsha, 410004, China
| |
Collapse
|
11
|
He L, Li S, Wang C, Chen X, Zhang Q. Effects of Vanillic Acid on Dynamic Fermentation Parameter, Nitrogen Distribution, Bacterial Community, and Enzymatic Hydrolysis of Stylo Silage. Front Microbiol 2021; 12:690801. [PMID: 34512568 PMCID: PMC8424185 DOI: 10.3389/fmicb.2021.690801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Vanillic acid (VA) is a phenolic acid derivative commonly found in plants and foods, with a pleasant creamy odor and pharmacologic activities, which is hypothesized to help improve silage fermentation. The silage profile of stylo silage ensiled with addition of VA was evaluated. The results showed that VA addition resulted in the decrease of pH value (5.22 vs. 4.33), dry matter loss (5.37 vs. 2.51% DM), and ammonia-N proportion (14.57 vs. 1.51% CP) of stylo silage as well as the increase of lactic acid concentration (0.51 vs. 1.17% DM), true protein proportion (51.18 vs. 58.47% CP), and saccharification yield (113.64 vs. 126.40 mg/g DM). Meanwhile, bacterial community of stylo silage was altered, where the relative abundance of Enterobacter, Clostridium, and Kosakonia decreased and that of Commensalibacter and Methylobacterium increased. In conclusion, it is suggested that VA could be used as a novel silage additive to improve silage fermentation and nutrient preservation of stylo silage.
Collapse
Affiliation(s)
- Liwen He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Bu J, Wei HL, Wang YT, Cheng JR, Zhu MJ. Biochar boosts dark fermentative H 2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer. WATER RESEARCH 2021; 202:117440. [PMID: 34304072 DOI: 10.1016/j.watres.2021.117440] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The influence of biochar (BC) on anerobic digestion (AD) of organic wastes have been widely studied. However, the effect of BC on rate-limiting step during AD of lignocellulosic waste, i.e. the hydrolysis and acidogenesis step, is rarely studied and the underlying mechanisms have not been investigated. In this study, the benefits of BC with respect to dark fermentative hydrogen production were explored in a fermentation system by a heat-shocked consortium from sewage sludge (SS) with pretreated sugarcane bagasse (PSCB) as carbon source. The results showed that biochar boosted biohydrogen production by 317.1% through stimulating bacterial growth, improving critical enzymatic activities, manipulating the ratio of NADH/NAD+ and enhancing electron transfer efficiency of fermentation system. Furthermore, cellulolytic Lachnospiraceae was efficiently enriched and electroactive bacteria were selectively colonized and the ecological niche was formed on the surface of biochar. Synergistic effect between functional bacteria and extracellular electron transfer (EET) in electroactive bacteria were assumed to be established and maintained by biochar amendment. This study shed light on the underlying mechanisms of improved performance of biohydrogen production from lignocellulosic waste during mesophilic dark fermentation by BC supplementation.
Collapse
Affiliation(s)
- Jie Bu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Hao-Lin Wei
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Yu-Tao Wang
- The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jing-Rong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China.
| |
Collapse
|
13
|
Mesocosm Experiments Reveal Global Warming Accelerates Macrophytes Litter Decomposition and Alters Decomposition-Related Bacteria Community Structure. WATER 2021. [DOI: 10.3390/w13141940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Global climate change scenarios predict that lake water temperatures will increase up to 4 °C and extreme weather events, such as heat waves and large temperature fluctuations, will occur more frequently. Such changes may result in the increase of aquatic litter decomposition and on shifts in diversity and structure of bacteria communities in this period. We designed a two-month mesocosm experiment to explore how constant (+4 °C than ambient temperature) and variable (randomly +0~8 °C than ambient temperature) warming treatment will affect the submerged macrophyte litter decomposition process. Our data suggests that warming treatments may accelerate the decomposition of submerged macrophyte litter in shallow lake ecosystems, and increase the diversity of decomposition-related bacteria with community composition changed the relative abundance of Proteobacteria, especially members of Alphaproteobacteria increased while that of Firmicutes (mainly Bacillus) decreased.
Collapse
|
14
|
Magrini FE, de Almeida GM, da Maia Soares D, Dos Anjos Borges LG, Marconatto L, Giongo A, Paesi S. Variation of the Prokaryotic and Eukaryotic Communities After Distinct Methods of Thermal Pretreatment of the Inoculum in Hydrogen-Production Reactors from Sugarcane Vinasse. Curr Microbiol 2021; 78:2682-2694. [PMID: 34013423 DOI: 10.1007/s00284-021-02527-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
The aim of this study is to evaluate the effect of different thermal pretreatments of the inoculum on the diversity of the microbial community producing hydrogen from sugarcane vinasse. High-throughput sequencing of the 16S and 18S rRNA genes was performed. The reactor samples were also selected for the isolation of strict anaerobes. Decreased microbial diversity was observed with increasing pretreatment temperatures, with Firmicutes predominating: 90% to 97%. The highest abundance of Staphylococcus (7.9%) was found in pretreatment at 120 °C / 20 min at pH 6. The fungal analysis revealed a high prevalence of Candida (47%), Agaricomycetes, Pezizomycotina and Aspergillus in assays with higher H2 production (90° C / 10 min at pH 6). Three species of Clostridium were isolated: C. bifermentans, C. saccharoperbutylacetonicum and C. saccharobutylicum. The isolates were tested separately and in co-cultures for the production of hydrogen. Hydrogen-producing capacity by co-culture of Clostridium species was increased by 18%. Knowing microorganisms and understanding the interaction between eukaryotes and prokaryotes is essential to obtain strategies for biotransformation of vinasse for the production of bioenergy.
Collapse
Affiliation(s)
- Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, University of Caxias Do Sul (UCS), Biotechnology Institute, Caxias Do Sul, RS95070-560, Brazil.
| | - Gabriela Machado de Almeida
- Molecular Diagnostic Laboratory, University of Caxias Do Sul (UCS), Biotechnology Institute, Caxias Do Sul, RS95070-560, Brazil
| | - Denis da Maia Soares
- Molecular Diagnostic Laboratory, University of Caxias Do Sul (UCS), Biotechnology Institute, Caxias Do Sul, RS95070-560, Brazil
| | - Luiz Gustavo Dos Anjos Borges
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leticia Marconatto
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Adriana Giongo
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, University of Caxias Do Sul (UCS), Biotechnology Institute, Caxias Do Sul, RS95070-560, Brazil
| |
Collapse
|
15
|
Dahiya S, Chatterjee S, Sarkar O, Mohan SV. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 321:124354. [PMID: 33277136 DOI: 10.1016/j.biortech.2020.124354] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Global urbanization has resulted in amplified energy and material consumption with simultaneous waste generation. Current energy demand is mostly fulfilled by finite fossil reserves, which has critical impact on the environment and thus, there is a need for carbon-neutral energy. In this view, biohydrogen (bio-H2) is considered suitable due to its potential as a green and dependable carbon-neutral energy source in the emerging 'Hydrogen Economy'. Bio-H2 production by dark fermentation of biowaste/biomass/wastewater is gaining significant attention. However, bio-H2production still holds critical challenges towards scale-up with reference to process limitations and economic viabilities. This review illustrates the status of dark-fermentation process in the context of process sustainability and achieving commercial success. The review also provides an insight on various process integrations for maximum resource recovery including closed loop biorefinery approach towards the accomplishment of carbon neutral H2 production.
Collapse
Affiliation(s)
- Shikha Dahiya
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Zhao C, Wang L, Ma G, Jiang X, Yang J, Lv J, Zhang Y. Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover. Animals (Basel) 2021; 11:ani11020334. [PMID: 33525728 PMCID: PMC7912217 DOI: 10.3390/ani11020334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of this experiment was to investigate the effect of lactic acid bacteria (LAB) and cellulase (CE) on the fermentation quality, rumen degradation rate and bacterial community of mixed silage of soybean residue (SR) and corn stover (CS). The experiment adopted a single-factor experimental design. Four treatment groups were set up: the control group (CON), lactic acid bacteria treatment group (LAB), cellulase treatment group (CE) and lactic acid bacteria + cellulase treatment group (LAB + CE). Among them, the amount of added LAB was 1 × 106 CFU/g, and the amount of added CE was 100 U/g. After 56 days of mixed silage, samples were taken and analyzed, and the chemical composition, fermentation quality, rumen degradation rate and microbial diversity were determined. The results showed that the pH of each treatment group was significantly (p < 0.05) lower than that of CON, while the lactic acid and ammoniacal nitrogen contents of each treatment group were significantly higher than that of CON, with the highest contents in the LAB + CE group. The contents of DNFom (Ash-free NDF), ADFom (Ash-free ADF) and DM in the LAB + CE group were significantly lower than those in the CON group, while the content of crude protein (CP) was significantly higher than that in the CON group. The in situ effective degradation rates of DM (ISDMD), DNF (ISNDFD) and CP (ISCPD) were all significantly (p < 0.05) higher in each treatment group than in the control group. The results of principal component analysis showed that the bacterial composition of the LAB, CE and LAB + CE groups was significantly different from that of the CON group (p < 0.05). Bacterial genus level analysis showed that the content of lactic acid bacteria was significantly higher in the LAB + CE group than in the other treatment groups (p < 0.05), while the content of undesirable bacteria was significantly lower than in the other treatment groups. The results showed that the addition of Lactobacillus and/or cellulase in mixed silage of SR and CS could effectively improve the quality of mixed silage fermentation, rumen degradation rate and microbial diversity, with better results when Lactobacillus and cellulase were added together, which provides new ideas for better application of SR and CS in dairy production.
Collapse
|
17
|
Feng WM, Liu P, Yan H, Zhang S, Shang EX, Yu G, Jiang S, Qian DW, Ma JW, Duan JA. Impact of Bacillus on Phthalides Accumulation in Angelica sinensis (Oliv.) by Stoichiometry and Microbial Diversity Analysis. Front Microbiol 2021; 11:611143. [PMID: 33488552 PMCID: PMC7819887 DOI: 10.3389/fmicb.2020.611143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Plant-microorganism interaction in the rhizosphere is thought to play an important role in the formation of soil fertility, transformation and absorption of nutrients, growth and development of medicinal plants, and accumulation of medicinal ingredients. Yet, the role that they play in the phthalides accumulation of Angelica sinensis (Oliv.) Diels remains unclear. In the present study, we report a correlative analysis between rhizosphere microorganisms and phthalides accumulation in A. sinensis from Gansu, China where was the major production areas. Meanwhile, Bacillus was explored the potential functions in the plant growth and phthalide accumulation. Results revealed that the common bacterial species detected in six samples comprised 1150 OTUs which were involved in 368 genera, and predominant taxa include Actinobacteria, Acidobacteria, and Proteobacteria. The average contents of the six phthalides were 4.0329 mg/g. The correlation analysis indicated that 20 high abundance strains showed positive or negative correlations with phthalides accumulation. Flavobacterium, Nitrospira, Gaiella, Bradyrhizobium, Mycobacterium, Bacillus, RB41, Blastococcus, Nocardioides, and Solirubrobacter may be the key strains that affect phthalides accumulation on the genus level. By the plant-bacterial co-culture and fermentation, Bacillus which were isolated from rhizosphere soils can promote the plant growth, biomass accumulation and increased the contents of the butylidenephthalide (36∼415%) while the ligustilide (12∼67%) was decreased. Altogether, there is an interaction between rhizosphere microorganisms and phthalides accumulation in A. sinensis, Bacillus could promote butylidenephthalide accumulation while inhibiting ligustilide accumulation.
Collapse
Affiliation(s)
- Wei-Meng Feng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Wei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
He L, Lv H, Xing Y, Chen X, Zhang Q. Intrinsic tannins affect ensiling characteristics and proteolysis of Neolamarckia cadamba leaf silage by largely altering bacterial community. BIORESOURCE TECHNOLOGY 2020; 311:123496. [PMID: 32438093 DOI: 10.1016/j.biortech.2020.123496] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The mechanism that tannins alter microbial community to inhibit proteolysis and enhance silage quality is unclear. Neolamarckia cadamba leaf (NCL; rich in tannins) were ensiled alone or with addition of polyethylene glycol (PEG, tannins inactivator), and then fermentation quality, proteolysis activity and bacterial community were investigated during ensiling (Day 3, 7, 14 and 30). As a result, PEG addition increased lactic acid (1.09% vs 2.03%, on dry matter basis) and nonprotein-N (13.65% vs 17.59%, on crude protein basis) contents but decreased ammonia-N content (9.21% vs 2.29%, on crude protein basis) in NCL silage. Meanwhile, the dominant microbiome shifted from Cyanobacteria (60.92%-81.50%) to Firmicutes (48.96%-88.67%), where the unclassified genus (80.95%-85.71%) was substituted by Leuconstoc (42.03%-55.55%) and subsequently Lactobacillus (65.98%-82.43%). This study suggests that the intrinsic tannins inhibit lactic acid fermentation and protein degradation in NCL silage.
Collapse
Affiliation(s)
- Liwen He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China; College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Xing
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Liu W, Sun L, Li Z, Fujii M, Geng Y, Dong L, Fujita T. Trends and future challenges in hydrogen production and storage research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31092-31104. [PMID: 32529621 DOI: 10.1007/s11356-020-09470-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 05/23/2023]
Abstract
With the rapid industrialization, increasing of fossil fuel consumption and the environmental impact, it is an inevitable trend to develop clean energy and renewable energy. Hydrogen, for its renewable and pollution-free characteristics, has become an important potential energy carrier. Hydrogen is regarded as a promising alternative fuel for fossil fuels in the future. Therefore, it is very necessary to summarize the technological progress in the development of hydrogen energy and research the status and future challenges. Hydrogen production and storage technology are the key problems for hydrogen application. This study applied bibliometric analysis to review the research features and trends of hydrogen production and storage study. Results showed that in the 2004-2018 period, China, USA and Japan leading in these research fields, the research and development in the world have grown rapidly. However, the development of hydrogen energy still faces the challenge of high production cost and high storage requirements. Photocatalytic decomposition of water to hydrogen has attracted more and more research in hydrogen production research, and the development of new hydrogen storage materials has become a key theme in hydrogen storage research. This study provides a comprehensive review of hydrogen production and storage and identifies research progress on future research trend in these fields. It would be helpful for policy-making and technology development and provide suggestions on the development of a hydrogen economy.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Lu Sun
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Zhaoling Li
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Minoru Fujii
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yong Geng
- China Institute for Urban Governance, School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, 200030, China
- School of Economics and Management, China University of Mining and Technology, Xuzhou, 221116, China
| | - Liang Dong
- Department of Public and Social Administration, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Tsuyoshi Fujita
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| |
Collapse
|
20
|
Wang Y, Zhou W, Wang C, Yang F, Chen X, Zhang Q. Effect on the ensilage performance and microbial community of adding Neolamarckia cadamba leaves to corn stalks. Microb Biotechnol 2020; 13:1502-1514. [PMID: 32449595 PMCID: PMC7415371 DOI: 10.1111/1751-7915.13588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
To comprehensively evaluate the fermentation performance and microbial community of corn stalks (CS) silage mixed with Neolamarckia cadamba leaves (NCL), CS were ensiled with four levels (0%, 10%, 30% and 50% of fresh weight) of NCL for 1, 7, 14, 30, 60 days in two trials. The results showed that all silages were well preserved with low pH (3.60-3.88) and ammonia nitrogen content (0.08-0.19% DM). The silage samples with NCL displayed lower (P < 0.05) acetic acid, propionic acid and ammonia nitrogen contents and lactic acid bacteria population during ensiling than control silages (100% CS). The addition of NCL also influenced the distribution of bacterial and fungal communities. Fungal diversity (Shannon's indices were 5.15-5.48 and 2.85-4.27 in trial 1 and trial 2 respectively) increased while the relative abundances of Lactobacillus, Leuconostocs, Acetobacter and two moulds (Aspergillus and Fusarium) decreased after added NCL. In summary, mixing NCL is a promising effective approach to preserve protein of CS silage and inhibit the growth of undesirable bacteria and mould, thus to improve the forage quality to some extent.
Collapse
Affiliation(s)
- Yi Wang
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Wei Zhou
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Cheng Wang
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Fuyu Yang
- College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoyang Chen
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Qing Zhang
- College of Forestry and Landscape ArchitectureGuangdong Province Research Center of Woody Forage Engineering TechnologyGuangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial TechnologyGuangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmState Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesIntegrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
21
|
Zhang Y, Zhang H, Lee DJ, Zhang T, Jiang D, Zhang Z, Zhang Q. Effect of enzymolysis time on biohydrogen production from photo-fermentation by using various energy grasses as substrates. BIORESOURCE TECHNOLOGY 2020; 305:123062. [PMID: 32109731 DOI: 10.1016/j.biortech.2020.123062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Energy grass is an ideal raw material of biomass energy, and hydrogen energy is one of the ideal renewable energy. In order to study the feasibility of different energy grasses for hydrogen production from photosynthetic organisms, the enzymatic hydrolysis of energy grasses is a very necessary process. Therefore, biohydrogen production from photo-fermentation by using energy grasses as substrates was investgated by changing enzymolysis time. The hydrogen production results were evaluated by the experimental results of hydrogen yield, hydrogen production rate and hydrogen production efficiency. The experimental results showed that Medicago sativa L. with enzymolysis time of 60 h had the highest hydrogen yield, which was 147.64 mL. The highest hydrogen production rate was 5.53 mL/(h·g TS), which was obtained from Arundo donax with enzymolysis time of 36 h, and the highest hydrogen production efficiency was 1.15 mL/(h·g TS), which was obtained from Miscanthus with enzymolysis time of 0 h.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tian Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Yan X, Cheng JR, Wang YT, Zhu MJ. Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. BIORESOURCE TECHNOLOGY 2020; 301:122756. [PMID: 31981908 DOI: 10.1016/j.biortech.2020.122756] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Pretreatment process plays a key role in biofuel production from lignocellulosic feedstocks. A study on dilute NaOH pretreatment supplemented with H2O2 under mild condition was conducted to overcome the recalcitrance of grass waste (GW). The optimized process could selectively increase lignin removal (73.2%), resulting in high overall recovery of holocellulose (73.8%) as well as high enzymolysis efficiency (83.5%) compared to H2O2 or NaOH pretreatment. The analyses by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) revealed that supplementary H2O2 disrupted the structure of GW to facilitate the removal of lignin by NaOH, and exhibited synergistic effect on lignin removal and enzymolysis with dilute NaOH. Moreover, high titer of ethanol (100.7 g/L) was achieved by SSCF on 30% (w/v) pretreated GW loading. The present study suggests that the established synergistic pretreatment is a simple, efficient, and promising process for GW biorefinery.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| | - Jing-Rong Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China.
| |
Collapse
|
23
|
Dong M, Li Q, Xu F, Wang S, Chen J, Li W. Effects of microbial inoculants on the fermentation characteristics and microbial communities of sweet sorghum bagasse silage. Sci Rep 2020; 10:837. [PMID: 31964930 PMCID: PMC6972861 DOI: 10.1038/s41598-020-57628-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/28/2019] [Indexed: 11/29/2022] Open
Abstract
Sweet sorghum bagasse (SSB) is a promising raw material for silage fermentation due to its high residual nutritive, but the efficient fermentation strategy of SSB has not been reported yet. This study evaluated the effects of microbial inoculant on the fermentation quality, chemical composition and microbial community of SSB silage. The silage inoculated with isolated lactic acid bacteria (LpE) achieved better fermentation than that of commercial inoculant A, B (CIA, CIB) and untreatment, including low pH value, high levels of lactic acid and water soluble carbohydrates (WSC) content, which demonstrated that the LpE inoculant could contribute to the preservation of nutrition and the manipulation of fermentation process of SSB. In addition, the results of microbial community analysis indicated that the LpE inoculant significantly changed the composition and diversity of bacteria in SSB silage. After ensiling, the LpE inoculated silage were dominated by Lactobacillus(95.71%), Weissella(0.19%). These results were of great guiding significance aiming for high-quality silage production using SSB materials on the basis of target-based regulation methods.
Collapse
Affiliation(s)
- Miaoyin Dong
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Qiaoqiao Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Fuqiang Xu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Shuyang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R. China.
- Institute of Biology, Gansu Academy of Sciences, 197 dingxi South Rd., Lanzhou, Gansu, 730000, P.R. China.
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China.
| | - Jihong Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu, 730000, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| |
Collapse
|
24
|
Antonopoulou G, Vayenas D, Lyberatos G. Biogas Production from Physicochemically Pretreated Grass Lawn Waste: Comparison of Different Process Schemes. Molecules 2020; 25:molecules25020296. [PMID: 31940836 PMCID: PMC7024254 DOI: 10.3390/molecules25020296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- Correspondence: ; Tel.: +30-26-1096-5318
| | - Dimitrios Vayenas
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- Department of Chemical Engineering, University of Patras, GR 26500 Patras, Greece
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
25
|
He L, Chen N, Lv H, Wang C, Zhou W, Chen X, Zhang Q. Gallic acid influencing fermentation quality, nitrogen distribution and bacterial community of high-moisture mulberry leaves and stylo silage. BIORESOURCE TECHNOLOGY 2020; 295:122255. [PMID: 31639626 DOI: 10.1016/j.biortech.2019.122255] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
To investigate the feasibility of vegetal gallic acid (GA) improving silage quality, fermentation parameter, nitrogen distribution and bacterial community of mulberry leaves and stylo ensiled with 1% and 2% GA were analyzed after 60-d fermentation. The results showed that GA addition decreased dry matter loss (6.08% vs 5.35%, 17.79% vs 11.56% in mulberry leaves and style silage, respectively), pH (6.51 vs 5.98, 5.55 vs 4.57), butyric acid (0.41% and 0.83% DM, undetected in GA groups) and ammonia-N (0.71% vs 0.19%, 1.46% vs 0.29% TN) contents and increased lactic acid (2.27% vs 6.68%, 0.91% vs 1.91% DM) and acetic acid (1.68% vs 3.20%, 0.97% vs 2.02% DM) contents. Meanwhile, the relative abundance of Clostridium or Enterobacter was decreased, and that of lactate-producing bacteria was increased in mulberry leaves and stylo silage. In conclusion, GA could be used as a green additive to improve fermentation quality and protein preservation during ensiling.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Na Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
He L, Wang C, Xing Y, Zhou W, Pian R, Chen X, Zhang Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. BIORESOURCE TECHNOLOGY 2020; 296:122336. [PMID: 31704603 DOI: 10.1016/j.biortech.2019.122336] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Bauhinia variegate flower (BVF) was supposed to improve silage fermentation due to its abundant active components. Thus, corn stalk and stylo were ensiled with addition of 0, 5% or 10% BVF, and then ensiling characteristics, protein fraction and bacterial community were analyzed after 60-day fermentation. The contents of butyric acid (2.9 vs not detected, 13.2 vs 3.0 g/kg DM in corn stalk and stylo silage, respectively), ammonia-N (100.2 vs 83.2, 110.8 vs 61.9 g/kg total N) and free amino acid (35.6 vs 16.5, 35.0 vs 16.4 g/kg total N) were decreased in 10% BVF treated silages. The bacterial diversity was increased, where the relative abundance of Enterobacter or Clostridium decreased and that of lactic acid producing bacteria such as Lactobacillus, Weissella or Enterococcus increased. It is suggested that BVF could be used to improve fermentation quality and nutrient preservation of high-moisture corn stalk and stylo silage.
Collapse
Affiliation(s)
- Liwen He
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yaqi Xing
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ruiqi Pian
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
27
|
Li Y, Wang Z, He Z, Luo S, Su D, Jiang H, Zhou H, Xu Q. Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation. BIORESOURCE TECHNOLOGY 2020; 295:122296. [PMID: 31670205 DOI: 10.1016/j.biortech.2019.122296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Synthesis gas (Syngas) biomethanation is an environmentally friendly technology for fuel calorific value improvement. However, the slow mass transfer and poor product quality limit its development. In this study, the effects of temperature, hydrogen/carbon monoxide (H2/CO) ratio and trace element addition on simulated syngas biomethanation were investigated in three batches of experiments. Results showed that (1) the temperature influenced little on the quality of produced biogas; (2) the methane content in the biogas production were 66.37 ± 4.04%, 70.61 ± 6.06% and 73.35 ± 2.39% respectively with the H2/CO ratio of 3:1, 4:1 and 5:1; (3) after the addition of Fe, Co and Ni elements, the biogas quality was significantly improved (methane content was 79.76 ± 7.35%), but the microbial community structure did not change. This experiment provided a guidance for improving the biogas production performance of syngas biomethanation.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China.
| | - Zhenxin Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Ziying He
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Sen Luo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Dongfang Su
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Hao Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| |
Collapse
|
28
|
Fernandez‐Gonzalez N, Pedizzi C, Lema JM, Carballa M. Air-side ammonia stripping coupled to anaerobic digestion indirectly impacts anaerobic microbiome. Microb Biotechnol 2019; 12:1403-1416. [PMID: 31532080 PMCID: PMC6801131 DOI: 10.1111/1751-7915.13482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/26/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Air-side stripping without a prior solid-liquid phase separation step is a feasible and promising process to control ammonia concentration in thermophilic digesters. During the process, part of the anaerobic biomass is exposed to high temperature, high pH and aerobic conditions. However, there are no studies assessing the effects of those harsh conditions on the microbial communities of thermophilic digesters. To fill this knowledge gap, the microbiomes of two thermophilic digesters (55°C), fed with a mixture of pig manure and nitrogen-rich co-substrates, were investigated under different organic loading rates (OLR: 1.1-5.2 g COD l-1 day-1 ), ammonia concentrations (0.2-1.5 g free ammonia nitrogen l-1 ) and stripping frequencies (3-5 times per week). The bacterial communities were dominated by Firmicutes and Bacteroidetes phyla, while the predominant methanogens were Methanosarcina sp archaea. Increasing co-substrate fraction, OLR and free ammonia nitrogen (FAN) favoured the presence of genera Ruminiclostridium, Clostridium and Tepidimicrobium and of hydrogenotrophic methanogens, mainly Methanoculleus archaea. The data indicated that the use of air-side stripping did not adversely affect thermophilic microbial communities, but indirectly modulated them by controlling FAN concentrations in the digester. These results demonstrate the viability at microbial community level of air side-stream stripping process as an adequate technology for the ammonia control during anaerobic co-digestion of nitrogen-rich substrates.
Collapse
Affiliation(s)
- Nuria Fernandez‐Gonzalez
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
- Present address:
Present address:Department of Chemical Engineering and Environmental TechnologyValladolid UniversityDr. Mergelina, s/n47011ValladolidSpain
| | - Chiara Pedizzi
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
| | - Juan M. Lema
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
| | - Marta Carballa
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
| |
Collapse
|
29
|
Yang G, Wang J, Shen Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 292:122012. [PMID: 31442834 DOI: 10.1016/j.biortech.2019.122012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residue produced from pharmaceutical plants has been listed as a "Hazardous Waste", however it contains various substrates which can be used for biofuel production. In this study, the possibility of biohydrogen production from antibiotic fermentation residue was evaluated, the process efficiency and microbial community dynamics with five different inoculum pretreatments (alkaline, γ-radiation, heat-shock, aeration and acid) were assessed. Results showed that alkaline pretreatment was most efficient for hydrogen fermentation, and the hydrogen yield, volatile solids (VS) removal and maximal hydrogen production rate reached 17.8 mL/g-VSadded, 17.8% and 3.79 mL/h, respectively. Different inoculum pretreatments led to a obvious variation in the fermentation pathway and microbial community structure. The highest content of hydrogen-producing bacteria, especially Clostridium, essentially contributed to the highest hydrogen fermentation efficiency for the system with alkaline pretreatment. This investigation suggested that antibiotic fermentation residue is a potential feedstock for hydrogen production through dark fermentation.
Collapse
Affiliation(s)
- Guang Yang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China
| |
Collapse
|
30
|
Sun H, Cui X, Stinner W, Mustafa Shah G, Cheng H, Shan S, Guo J, Dong R. Synergetic effect of combined ensiling of freshly harvested and excessively wilted maize stover for efficient biogas production. BIORESOURCE TECHNOLOGY 2019; 285:121338. [PMID: 30999188 DOI: 10.1016/j.biortech.2019.121338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the synergetic effects of ensiling freshly harvested maize stover (FHM) and excessively wilted maize stover (EWM) on biogas production. FHM and EWM were mixed in various proportions to obtain dry matter (DM) contents of 30%, 35% and 40%. For reference, FHM alone was ensiled and stored in open-air. Successful storage performance was obtained by the ensiling treatments, and the organic matter loss of 1.1-2.2% was far lower than in open-air storage (63.1%). An initial water-soluble carbohydrate (WSC) of 5% DM is adequate for the combined ensiling of maize stover with the highest WSC degradation rate of 81.2%. Combined ensiling enhanced the activity of Weissella, a genus of heterofermentative lactic acid bacteria, under relatively high pH conditions. Therefore, the combined ensiling can preserve FHM and enhance the digestibility of EWM (theoretical specific methane yield increased 16.5%), which would be a promising storage strategy for efficient biogas production.
Collapse
Affiliation(s)
- Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Xian Cui
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Walter Stinner
- German Biomass Research Center (Deutsches Biomasseforschungszentrum, DBFZ), Torgauer Str. 116, 04347 Leipzig, Germany; Sino-German Biomass Research Center Anhui (C-DBFZ Anhui), Hefei University, Hefei 230601, Anhui, PR China
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Huicai Cheng
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050081, Hebei, PR China
| | - Shengdao Shan
- Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
31
|
Yang G, Wang J. Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2019; 275:10-18. [PMID: 30572258 DOI: 10.1016/j.biortech.2018.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 05/20/2023]
Abstract
In this study, the dilute acid pretreatment combined with ultrasound was applied to improve fermentative hydrogen production from grass. The experimental results indicated that SCOD and soluble carbohydrate contents of grass was improved by 98.6% and 236.9% after the combined treatment, respectively. Surface morphology (SEM and AFM) and crystallinity analysis revealed that the combined pretreatment process could effectively destroyed the biomass structure and increased their surface area. Owing to the increased soluble organics proportion and better enzymatic accessibility of residual solids, the hydrogen yield reached 42.2 mL/g-dry grass after the combined treatment, which was 311.7%, 190.0% and 35.0% higher in comparison with the control, individual ultrasound and acid pretreated groups, respectively. Meanwhile, the combined treatment also increased the substrate utilization efficiency and induced a more efficient fermentation pathway. Bacterial community analysis revealed that more enrichment of Clostridium and less enrichment of Enterococcus contributed to the improved hydrogen production.
Collapse
Affiliation(s)
- Guang Yang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
32
|
Study of microbial dynamics during optimization of hydrogen production from food waste by using LCFA-rich agent. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Yang A, Zhao W, Peng M, Zhang G, Zhi R, Meng F. A special light-aerobic condition for photosynthetic bacteria-membrane bioreactor technology. BIORESOURCE TECHNOLOGY 2018; 268:820-823. [PMID: 30104104 DOI: 10.1016/j.biortech.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The combined photosynthetic bacteria (PSB) and membrane bioreactor (MBR) technology has the great advantage of simultaneously realizing wastewater purification and bio-resource recovery and has attracted increasing attention in recent years. Light-oxygen conditions are the most vital factor in wastewater treatment. The special light-aerobic condition was first applied to PSB-MBR wastewater treatment, and it was compared with three typical light-oxygen conditions. The results showed that the highest chemical oxygen demand (COD) removal efficiency (96.28%) and the highest biomass production (1.12 g/L/d) were simultaneously obtained under light-aerobic condition. This phenomenon overcame the limitations whereby optimal pollutant removal and bio-resource recovery could not be achieved at the same time. An analysis of the microbial community showed that different light-oxygen conditions caused large variations in the microbial community composition of PSB-MBR. The microbial diversity was lower when light and oxygen co-existed.
Collapse
Affiliation(s)
- Anqi Yang
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Wei Zhao
- Heilongjiang Province Hydraulic Research Institute, Harbin 150080, China
| | - Meng Peng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guangming Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Ran Zhi
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Fan Meng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| |
Collapse
|
34
|
Yin Y, Wang J. Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. BIORESOURCE TECHNOLOGY 2018; 268:52-59. [PMID: 30071413 DOI: 10.1016/j.biortech.2018.07.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Suitable pretreatment can effectively enhance the fermentative hydrogen production from algae biomass. In this study, combined microwave-acid pretreatment was applied to disintegrate the biomass of macroalgae L. japonica, and dark fermentation in batch mode was conducted for hydrogen production. The results showed that combining microwave pretreatment at 140 °C and 2450 MHz with 1% H2SO4 for 15 min could effectively disrupt macroalgal cells and release the organic matters, and soluble chemical oxygen demand (SCOD) concentration increased by 1.92-fold and achieved 5.12 g/L. During the fermentation process, both polysaccharides and proteins were consumed. Hydrogen production process was dominated by acetate-type fermentation, and the dominance of genus Clostridium contributed to more efficient hydrogen production. After the pretreatment, hydrogen yield increased from 15 mL/g TSadded to 28 mL/g TSadded, and energy conversion efficiency increased from 9.5% to 23.8%. Combined microwave-acid pretreatment is potential in enhancing hydrogen production from the biomass of L. japonica.
Collapse
Affiliation(s)
- Yanan Yin
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
35
|
Yang G, Wang J. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:413-420. [PMID: 29982065 DOI: 10.1016/j.biortech.2018.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 05/09/2023]
Abstract
This paper investigated the improving mechanisms and microbial community dynamics of using zero-valent iron nanoparticles (Fe0 NPs) in hydrogen fermentation of grass. Results showed that Fe0 NPs supplement improved microbial activity and changed dominant microbial communities from Enterobacter sp. to Clostridium sp., which induced a more efficient metabolic pathway towards higher hydrogen production. Meanwhile, it is also proposed that Fe0 NPs could accelerate electron transfer between ferredoxin and hydrogenase, and promote the activity of key enzymes by the released Fe2+. The maximal hydrogen yield and hydrogen production rate were 64.7 mL/g-dry grass and 12.1 mL/h, respectively at Fe0 NPs dosage of 400 mg/L, which were 73.1% and 128.3% higher compared with the control group. Fe0 NPs also shorten the lag time and facilitated the hydrolysis and utilization of grass. This study demonstrated that Fe0 NPs could effectively improve hydrogen production and accelerate the fermentation process of grass.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
36
|
Ni K, Zhao J, Zhu B, Su R, Pan Y, Ma J, Zhou G, Tao Y, Liu X, Zhong J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. BIORESOURCE TECHNOLOGY 2018; 265:563-567. [PMID: 29861298 DOI: 10.1016/j.biortech.2018.05.097] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/11/2023]
Abstract
The silage quality of forage soybean (FS) rich in protein with crop corn (CN) or sorghum (SG) rich in water soluble carbohydrate was investigated, and microbial community after ensiling was analyzed. Results showed that pH in mixed silages dropped to 3.5-3.8 lower than 100%FS silage (4.5). Microbial analysis indicated that mixed ensiling could influence the microbial community. Although Lactobacillus and Weissella were the dominant genera in all silage samples, Lactobacillus abundance in mixed silages (33-76%) was higher compared with 100%FS silage (27%). In conclusion, FS ensiled with CN or SG could be an alternative approach to improve FS silage quality.
Collapse
Affiliation(s)
- Kuikui Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingyun Zhao
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Shanxi 032200, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rina Su
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Pan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junkui Ma
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Shanxi 032200, China
| | - Guoan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaorong Liu
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Shanxi 032200, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
37
|
Effects of light-oxygen conditions on microbial community of photosynthetic bacteria during treating high-ammonia wastewater. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Yang G, Wang J. Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2018; 255:7-15. [PMID: 29414175 DOI: 10.1016/j.biortech.2018.01.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/15/2023]
Abstract
In this study, the combined ionizing radiation-acid pretreatment process was firstly applied to enhance hydrogen fermentation of grass waste. Results showed that the combined pretreatment synergistically enhanced hydrogen fermentation of grass waste. The SCOD and soluble polysaccharide contents of grass waste increased by 1.6 and 2.91 times after the combined pretreatment, respectively. SEM observation and crystallinity test showed the combined pretreatment effectively disrupted the grass structure. Owing to the more favorable substrate conditions, the hydrogen yield achieved 68 mL/g-dry grassadded after the combined pretreatment, which was 161.5%, 112.5% and 28.3% higher than those from raw, ionizing radiation pretreated and acid pretreated grass waste, respectively. The VS removal also increased from 13.9% to 25.6% by the combined pretreatment. Microbial community analysis showed that the abundance of dominant hydrogen producing genus Clostridium sensu stricto 1 increased from 37.9% to 69.4% after the combined pretreatment, which contributed to more efficient hydrogen fermentation.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|