1
|
Wangchuk S, Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Numnuam A, Kanatharana P, Thavarungkul P, Limbut W. Cuprous oxide-functionalized activated porous carbon-modified screen-printed carbon electrode integrated with a smartphone for portable electrochemical nitrate detection. Talanta 2025; 287:127581. [PMID: 39837205 DOI: 10.1016/j.talanta.2025.127581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Nitrate (NO3-) is a widespread contaminant in drinking water. An electrochemical NO3- sensor was developed based on a first-time application of materials. Activated porous carbon (APC) was synthesized by carbonizing orange peel (OP) activated with KOH. Cuprous oxide crystals were uniformly decorated by electrodeposition on a screen-printed carbon electrode modified with the synthesized APC (Cu2O@APC/SPE). The modified electrode was integrated with a portable potentiostat interfaced with a smartphone to create a chronoamperometric nitrate sensor. The modified electrodes were structurally and morphologically characterized using conventional techniques, while electrochemical tests were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). The electrode material exhibited a highly porous structure, large accessible active surface areas, and excellent conductivity, which enhanced electrocatalytic performances. The developed NO3- sensor displayed a wide linear range (4-1000 μM) and a low limit of detection (LOD) of 1.2 μM. The sensor demonstrated good precision, selectivity, and reasonable recoveries. The real-world application of the NO3- sensor was validated using water samples. The sensor shows promise for applications in pharmaceuticals, agriculture, forensic investigations, and environmental monitoring.
Collapse
Affiliation(s)
- Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Physical Sciences, Sherubtse College, Royal University of Bhutan, Kanglung, 42002, Trashigang, Bhutan
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kritsada Samoson
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Apon Numnuam
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Knani S, Khemis IB, Fuhr ACFP, Lefi N, Mahmoud SA, Dotto GL, Alenazi A, Selmi R. Theoretical modeling of 2,4-dichlorophenoxyacetic acid on acid-treated peanut skin: microscopic analysis via statistical physics treatment. Sci Rep 2025; 15:14238. [PMID: 40274840 PMCID: PMC12022058 DOI: 10.1038/s41598-025-92567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
In this study, the experimental adsorption isotherms of 2,4-dichlorophenoxyacetic acid (2,4-DA) on peanut skin treated with sulfuric acid were analyzed under different temperatures and characterized by Fourier transform infrared spectroscopy. The adsorption mechanism was interpreted based on statistical physics theory using the homogeneous double-layer model with one energy (HDLM1E). The modeling results indicated that the removal of 2,4-DA molecules occurred through a multi-interactive adsorption mechanism at temperatures of 25, 35, and 45 °C (0.76 < n < 0.99). In comparison, at 55 °C, a monomolecular adsorption mechanism was observed (n = 1.00). At 25 °C, the adsorbent demonstrated excellent performance in the 2,4-DA removal, with a maximum capacity of 244.33 mg/g. The increase in temperature reduced the adsorbent's performance in removing 2,4-DA molecules because it increased thermal collisions, which harmed the system. From an energetic point of view, the adsorbent showed less effectiveness in removing the herbicide at high temperatures, indicating an exothermic adsorption process. The surface adsorption energies ranged from 4.72 to 6.06 kJ/mol, indicating the predominance of a physisorption mechanism. Therefore, the adsorption process at low temperatures is essential for industrial applications to ensure efficient wastewater treatment. This result is possible using an adsorbent from peanut skin subjected to acid treatment. Finally, the creation of an adsorbent from acid-treated peanut (Arachis hypogaea) skin presents an excellent alternative, yielding exceptional results in removing the 2,4-DA herbicide.
Collapse
Affiliation(s)
- Salah Knani
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia.
| | - Ismahene Ben Khemis
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, LR 18 ES 18, Environment Street, 5019, Monastir, Tunisia.
| | - Ana Carolina Ferreira Piazzi Fuhr
- Materials Science and Engineering Graduate Program, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nizar Lefi
- Department of Physics, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Safwat A Mahmoud
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Abdulaziz Alenazi
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Ridha Selmi
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
3
|
Xu ZC, Shi YH, Jin XL, Chen ZL, Li B. A pyridinium-functionalized chitosan derivative as ecofriendly carrier for efficient adsorption and controlled release of 2,4-dichlorophenoxyacetic acid sodium. Int J Biol Macromol 2025; 302:140502. [PMID: 39900153 DOI: 10.1016/j.ijbiomac.2025.140502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Herbicides with wide use and low efficiency in agriculture severely threaten the environment. However, employing adsorbents and controlled-release formulations (CRFs) can alleviate these environmental risks. Herein, a pyridinium-functionalized chitosan derivative (PFCS) was prepared successfully and characterized by various techniques. The abundant cationic pyridinium groups enable PFCS to strongly adsorb a typical anionic herbicide, 2,4-dichlorophenoxyacetic acid sodium (2,4-D Na), across a broad pH range of 4 to 10. The adsorption kinetics follow the pseudo-second-order model, and the adsorption isotherms align with the Langmuir equation. The adsorption capacity can exceed 618.03 mg·g-1. Batch assays and further characterization reveal the mechanism of PFCS adsorbing 2,4-D Na anions mainly involves electrostatic attraction, anion exchange and other forces (e.g., π-π stacking and H bonding). Notably, PFCS loaded with 2,4-D Na (2,4-D@PFCS) demonstrates a significant sustained-release behavior, responding to changes in environmental pH and ion strength. The release rate was more influenced by ion strength than pH, and the release process adhered to a first-order kinetic model, primarily driven by ion exchange. Additionally, the 2,4-D@PFCS CRF has shown high biological efficacy on rapeseed. This work demonstrates the PFCS can effectively adsorb and control the release of anionic herbicides, minimizing their adverse impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Zheng-Cheng Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yu-Hao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xin-Lei Jin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Zi-Le Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
4
|
Khatoon A, Siddiqui S, Haq N. Cellulose -Polyvinylalcohol supported magnetic nanocomposites from lentil husk for sequestration of cationic dyes from the aqueous solution: Kinetics, isotherm and reusability studies. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104503. [PMID: 39892219 DOI: 10.1016/j.jconhyd.2025.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
The study emphasize on the synthesis of eco-friendly cellulose based magnetic nanocomposite derived from Lens cullnaris husk and Poly Vinyl Alcohol (Fe3O4@LENT/PVA) for the adsorption of Crystal Violet, Methylene Blue and Malachite Green Dye. The structural and functional morphology was determined by SEM-EDAX analysis and FTIR. The crystalline of Fe3O4@LENT/PVA was analyzed by XRD and pore size was determined by BET. The surface area of nanocellulose Fe3O4@LENT/PVA was found to be 22.308 m2/g and the pore volume of 0.074cm3/g. The Fe3O4@LENT/PVA nanocomposites show successful adsorption of CV, MB and MG in 120 min equilibrium time at pH 7 for CV and 8 for MB and MG respectively. The Fe3O4@LENT/PVA nanocomposites was best fitted Langmuir isotherm and follows pseudo 2nd order kinetics with intra particle as rate controlling mechanism. The nanocellulose Fe3O4@LENT/PVA composite shows good monolayer adsorption capacity in the order of CV(357 mg/g) > MB(112.35 mg/g) > MG(111.11 mg/g). Thermodynamic study reveals the process is endothermic and spontaneous in nature with ΔG0 value less than 20KJ mol-1 at respective temperatures indicating Physiosorption. The nano-cellulose Fe3O4@LENT/PVA composite can be effectively desorb dyes by 0.1 M NaOH. The nanocellulose Fe3O4@LENT/PVA composite proves to be an effective adsorbent showing regeneration ability upto five times for all the dyes.
Collapse
Affiliation(s)
- Afsana Khatoon
- Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj 211007, U.P., India.
| | - Shaziya Siddiqui
- Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj 211007, U.P., India.
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia..
| |
Collapse
|
5
|
Khan M, Ahmad S, Alzahrani KA, Khan SB. Development and detailed investigation of metal nanoparticles decorated carbon black/sodium alginate composite beads for catalytic reduction of environmental toxicants and hydrogen production. Int J Biol Macromol 2024; 283:137300. [PMID: 39521228 DOI: 10.1016/j.ijbiomac.2024.137300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The discharge of environmental pollutants requires intellectual and rapid solutions to convert them into safer products. Simultaneously, the high energy demands underscore the imperative importance of generating sufficient green energy to fulfill human needs. This study focused on metal nanoparticles (MNPs) decoration on polymeric beads (BDs), employing orange peel derived carbon black (OrP) and sodium alginate polymer (Alg). The resulting Alg-OrP-BDs serve as a versatile platform for the adsorption of different metal ions and their treatment with a potent reducing agent (NaBH4) yielding modified BDs catalysts: Ag0@Alg-OrP-BDs, Ni0@Alg-OrP-BDs, Co0@Alg-OrP-BDs, Fe0@Alg-OrP-BDs, and Cu0@Alg-OrP-BDs. These synthesized nanocomposite catalysts were characterized and exhibit remarkable catalytic reduction capabilities against various nitrophenols and dyes. Notably, Cu0@Alg-OrP-BDs emerges as an outstanding catalyst, demonstrating high efficiency in the (>98 %) reduction of 4-nitrophenol and methyl orange with the rates of 1.568 min-1 and 2.185 min-1, respectively. Furthermore, its parametric study was investigated to explore the efficiency of the selected catalyst in detail. Similarly, the Cu0@Alg-OrP-BDs also enhance hydrogen gas production in various conditions, achieving a rate of 1620.37 mL g-1 of catalyst min-1. The purity of the hydrogen was determined using a GC-TCD system. Hence, this study pioneers the development and thorough examination of the Cu0@Alg-OrP-BDs catalyst, showcasing its exceptional activity and recyclability.
Collapse
Affiliation(s)
- Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ahmad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
7
|
Naboulsi A, Bouzid T, Grich A, Regti A, El Himri M, El Haddad M. Understanding the column and batch adsorption mechanism of pesticide 2,4,5-T utilizing alginate-biomass hydrogel capsule: A computational and economic investigation. Int J Biol Macromol 2024; 275:133762. [PMID: 38986974 DOI: 10.1016/j.ijbiomac.2024.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Water pollution has remained a pressing concern in recent years, presenting multifaceted challenges in search of effective mitigation strategies. Our study, which targets mitigating pollution caused by 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a significant aquatic pollutant, is innovative in its approach. We have identified adsorption as a promising, cost-effective method for its removal. Our research strategy involves dynamic adsorption utilizing a peristaltic pump and composite beads containing activated carbon and sodium alginate (CA/Alg), a novel combination that mimics industrial processes. To optimize column adsorption, we examine bead stability under varied pH conditions and optimize parameters such as concentration, adsorption time, and pH through batch adsorption experiments, employing experimental design techniques. Additionally, we optimize column adsorption factors, including bead height, circulation time, and flow rate, crucial for process efficiency, and under these optimum conditions (C2,4,5-T = 80 ppm. pH = 2, t = 27h30min, H = 30 cm and D = 0.5 mL/min) the capacity of adsorption equal to 748.25 mg/g. Characterization techniques like SEM, EDX, BET analysis, XRD, and FTIR provide insights into the morphology, composition, surface area (331 m2/g), pore volume (0.11 cm3/g), crystal structure, and functional groups of the CA-P/Alg adsorbent. Theoretical analysis elucidates the adsorption mechanism and interaction with pollutants. Economic analysis, encompassing CAPEX and OPEX estimation, evaluates the feasibility of implementing this cleanup method at an industrial scale, considering initial investment and ongoing operational costs, indicating potential savings of 64 % compared with the activated carbon normally used on the Moroccan market. This comprehensive and innovative approach addresses water pollution challenges effectively while ensuring economic viability for industry-scale implementation.
Collapse
Affiliation(s)
- Aicha Naboulsi
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco.
| | - Taoufiq Bouzid
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Abdelali Grich
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Abdelmajid Regti
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Mamoune El Himri
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Mohammadine El Haddad
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| |
Collapse
|
8
|
Mou H, Tang L, Wu T, Feng L, Liu Y. Study on the mechanism of lignin non-productive adsorption on cellobiohydrolase. Int J Biol Macromol 2024; 273:133003. [PMID: 38851607 DOI: 10.1016/j.ijbiomac.2024.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Enzymatic hydrolysis is important for lignocellulosic biomass conversion into fermentable sugars. However, the nonproductive adsorption of enzyme on lignin was major hinderance for the enzymatic hydrolysis efficiency. In this study, non-productive adsorption mechanism of cellulase component cellobiohydrolase (CBH) onto lignin was specific investigated. Research revealed that the adsorption behavior of CBH on eucalyptus alkali lignin (EuA) was affected by reaction conditions. As study on the adsorption kinetic, it was indicated that the adsorption cellulose binding domain (CBD) of CBH onto EuA well fitted with Langmuir adsorption model and pseudo second-order adsorption kinetics model. And the tyrosine site related to the adsorption of CBD onto lignin was proved by the fluorescence and UV spectra analysis. The results of this work provide a theoretical guidance to understanding the nonproductive adsorption mechanism and building method to reduce the adsorption of cellulase on the lignin.
Collapse
Affiliation(s)
- Hongyan Mou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lv Tang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ting Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lu Feng
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yibei Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
López-Maldonado EA, Abdellaoui Y, Abu Elella MH, Abdallah HM, Pandey M, Anthony ET, Ghimici L, Álvarez-Torrellas S, Pinos-Vélez V, Oladoja NA. Innovative biopolyelectrolytes-based technologies for wastewater treatment. Int J Biol Macromol 2024; 273:132895. [PMID: 38848850 DOI: 10.1016/j.ijbiomac.2024.132895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Developing eco-friendly, cost-effective, and efficient methods for treating water pollutants has become paramount in recent years. Biopolyelectrolytes (BPEs), comprising natural polymers like chitosan, alginate, and cellulose, have emerged as versatile tools in this pursuit. This review offers a comprehensive exploration of the diverse roles of BPEs in combating water contamination, spanning coagulation-flocculation, adsorption, and filtration membrane techniques. With ionizable functional groups, BPEs exhibit promise in removing heavy metals, dyes, and various pollutants. Studies showcase the efficacy of chitosan, alginate, and pectin in achieving notable removal rates. BPEs efficiently adsorb heavy metal ions, dyes, and pesticides, leveraging robust adsorption capacity and exceptional mechanical properties. Furthermore, BPEs play a pivotal role in filtration membrane techniques, offering efficient separation systems with high removal rates and low energy consumption. Despite challenges related to production costs and property variability, their environmentally friendly, biodegradable, renewable, and recyclable nature positions BPEs as compelling candidates for sustainable water treatment technologies. This review delves deeper into BPEs' modification and integration with other materials; these natural polymers hold substantial promise in revolutionizing the landscape of water treatment technologies, offering eco-conscious solutions to address the pressing global issue of water pollution.
Collapse
Affiliation(s)
| | - Youness Abdellaoui
- CONAHCyT-Cinvestav Saltillo. Sustainability of Natural Resources and Energy, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila C.P. 25900, Mexico.
| | - Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research Center, Dokki, Giza 12622, Egypt
| | - Mayank Pandey
- Department of Electronics, Kristu Jayanti College, Bangalore-560077, India
| | | | - Luminita Ghimici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Silvia Álvarez-Torrellas
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense, s/n, 28040 Madrid, Spain
| | - Verónica Pinos-Vélez
- Departamento de Biociencias, Ecocampus Balzay, Universidad de Cuenca, Cuenca 010202, Ecuador; Departamento de Recursos Hídricos y Ciencias Ambientales, Ecocampus Balzay, Universidad de Cuenca, Ecuador
| | | |
Collapse
|
10
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
11
|
Samadi-Maybodi A, Ghezel-Sofla H, BiParva P. Simultaneous removal of phenoxy herbicides, 2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid from aqueous media by magnetized MgAl-LDH@Fe 3O 4 composite: application of partial least squares and Doehlert experimental design. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:97-121. [PMID: 39524115 PMCID: PMC11549278 DOI: 10.1007/s40201-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/27/2023] [Indexed: 11/16/2024]
Abstract
Today, the excessive and increasing use of phenoxy family herbicides such as 2-methyl-4-chlorophenoxyacetic acid (MCPA) and (2,4- dichlorophenoxy) acetic acid (2,4-DCPA) for reasons such as indestructibility and pollution of groundwater resources is one of the most important environmental problems. Pesticide adsorbents like layered double hydroxides (LDHs) are commonly utilized due to their straightforward synthesis, substantial specific surface area resulting from their layered structure, and the potential for surface modification. These natural minerals serve as effective options for adsorption. In this study, a co-precipitation approach was used to create an MgAl-LDH@Fe3O4 magnetic adsorbent for the simultaneous removal of MCPA and 2,4-DCPA herbicides from aqueous solution. Using different techniques such as TGA, XRD, FESEM, EDS and zeta potential, we investigated the properties of the prepared adsorbent. The partial least squares method measures the concentration of each herbicide in their mixture. The optimization of MCPA and 2,4-DCPA simultaneous adsorption by LDH was achieved through Doehlert experimental design and the response surface method. The optimal conditions for absorption were determined to be an adsorbent dose of 40.20 mg L-1, a pH of 6.8, and an initial concentration of 28.35 mg L-1. In this work, the equilibrium, kinetic, and thermodynamic absorption data of the absorption process were studied, and the obtained results were well described by the Freundlich model, and the pseudo-second-order model, respectively, and showed the spontaneity of the absorption process in this research. The highest absorption capacities of MCPA and 2.4-DCPA herbicides on the prepared adsorbent were 134.50 and 131.30 mg g-1, respectively. Graphical abstract
Collapse
Affiliation(s)
| | - Hashem Ghezel-Sofla
- Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Pourya BiParva
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
12
|
Aziz K, Mamouni R, Kaya S, Aziz F. Low-cost materials as vehicles for pesticides in aquatic media: a review of the current status of different biosorbents employed, optimization by RSM approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39907-39944. [PMID: 37227639 DOI: 10.1007/s11356-023-27640-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Water contamination by pesticides is increasing dramatically due to population growth and the extensive use of pesticides in agriculture, leading to grave environmental and health concerns. Thus, efficient processes and the design and development of effective treatment technologies are required due to the enormous demand for fresh water. The adsorption approach has been widely used to remove organic contaminants such as pesticides because of its performance, less expense, high selectivity, and simplicity of operation compared to other treatment technologies. Among alternative adsorbents, biomaterials abundantly available for pesticide sorption from water resources have attracted the attention of researchers worldwide. The main objective of this review article is to (i) present studies on a wide range of raw or chemically modified biomaterials potentially effective in removing pesticides from aqueous media; (ii) indicating the effectiveness of biosorbents as green and low-cost materials for removing pesticides from wastewater; and (iii) furthermore, report the application of response surface methodology (RSM) for modeling and optimizing adsorption.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Rachid Mamouni
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
- National Centre for Research and Study On Water and Energy (CNEREE), University Cadi Ayyad, BP 511, 40000, Marrakech, Morocco.
| |
Collapse
|
13
|
Ajab H, Nayab D, Mannan A, Waseem A, Jafry AT, Yaqub A. Comparative analysis of the equilibrium, kinetics, and characterization of the mechanism of rapid adsorption of Congo red on nano-biosorbents based on agricultural waste in industrial effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120863. [PMID: 38615396 DOI: 10.1016/j.jenvman.2024.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
This study aims to remove Congo red dye from industrial effluent using economical agriculturally-based nano-biosorbents like magnetic orange peel, peanut shells, and tea waste. The nano-biosorbents were characterized by various analytical techniques like SEM, FT-IR, BET and XRD. The highest adsorption capacity was obtained under the following ideal conditions: pH = 6 (orange peel and peanut shells), pH = 3 (tea waste), and dosages of nano-biosorbents with varying timeframes of 50 min for tea waste and peanut shells and 30 min for orange peel. The study found that tea waste had the highest removal rate of 94% due to its high porosity and responsible functional groups, followed by peanut shells at 83% and orange peel at 68%. The Langmuir isotherm model was found to be the most suitable, with R2 values of 0.99 for tea waste, 0.92 for orange peel, and 0.71 for peanut shells. On the other hand, a pseudo-second-order kinetic model was very feasible, showing an R2 value of 0.99 for tea waste, 0.98 for peanut shells and 0.97 for orange peel. The significance of the current study lies in its practical application, enabling efficient waste management and water purification, thereby preserving a clean and safe environment.
Collapse
Affiliation(s)
- Huma Ajab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Durre Nayab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan.
| | - Ali Turab Jafry
- Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences & Technology Topi, District Swabi, KPK, 23640, Pakistan.
| | - Asim Yaqub
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| |
Collapse
|
14
|
Harabi S, Guiza S, Álvarez-Montero A, Gómez-Avilés A, Belver C, Rodríguez JJ, Bedia J. Adsorption of 2,4-dichlorophenoxyacetic acid on activated carbons from macadamia nut shells. ENVIRONMENTAL RESEARCH 2024; 247:118281. [PMID: 38266891 DOI: 10.1016/j.envres.2024.118281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
This study reports on the application of activated carbons from macadamia nut shells as adsorbents for the removal of 2,4-dichlorophenoxyacetic acid, a commonly used pesticide, from water. Different activating agents (FeCl3, ZnCl2, KOH and H3PO4) were used to obtain adsorbents within a wide range of porous texture and surface properties. The characterization of the resulting activated carbons was performed by N2 adsorption-desorption, elemental analysis, TG and pHPZC. The adsorption experiments were conducted in batch at 25, 45 and 65 °C. The adsorption kinetics on activated carbons obtained with FeCl3 H3PO4 or KOH was well described by the pseudo-second order model, whereas for the resulting from ZnCl2 activation the experimental data fit better the pseudo-first order model. The equilibrium studies were performed with the KOH- and ZnCl2-activated carbons, the two showing higher surface area values. In both cases, high adsorption capacities were obtained (c.a. 600 mg g-1) and the experimental data were better described by the Langmuir and Toth models. The thermodynamic study allows concluding the spontaneous and endothermic character of the adsorption process, as well as an increase of randomness at the solid/liquid interface. Breakthrough curves were also obtained and fitted to the logistic model.
Collapse
Affiliation(s)
- S Harabi
- University of Gabes, National Engineering School of Gabes, Laboratory of Applied Thermodynamic, LR18ES33, 6029, Gabes, Tunisia
| | - S Guiza
- University of Gabes, National Engineering School of Gabes, Laboratory of Applied Thermodynamic, LR18ES33, 6029, Gabes, Tunisia
| | - A Álvarez-Montero
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - A Gómez-Avilés
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - C Belver
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - J J Rodríguez
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain.
| | - J Bedia
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
15
|
Czerwinska N, Giosuè C, Matos I, Sabbatini S, Ruello ML, Bernardo M. Development of activated carbons derived from wastes: coffee grounds and olive stones as potential porous materials for air depollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169898. [PMID: 38184266 DOI: 10.1016/j.scitotenv.2024.169898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Agro-industrial byproducts and food waste necessitate an environmentally friendly way of reducing issues related to their disposal; it is also necessary to recover as much new raw material from these resources as possible, especially when we consider their potential usage as a precursor for preparing depolluting materials, such as activated carbon. In this work, coffee grounds and olive stones were chosen as precursors and the adsorption capacity of the obtained porous carbons for volatile organic compounds (VOCs) was studied. Microporous activated carbons (ACs) were prepared using chemical (K2CO3) and physical (CO2) activation. The influence of the activation process, type, and time of activation was also investigated. Measurements of VOCs adsorption were performed, and methyl-ethyl-ketone (MEK) and toluene were chosen as the model pollutants. The surface areas and total pore volumes of 1487 m2/g and 0.53 cm3/g and 870 m2/g and 0.22 cm3/g for coffee ground carbons and olive stone carbons, respectively, were obtained via chemical activation, whereas physical activation yielded values of 716 m2/g and 0.184 cm3/g and 778 cm2 g-1 and 0.205 cm3/g, respectively. As expected, carbons without activation (biochars) showed the smallest surface area, equal to 331 m2/g and 251 m2/g, and, hence, the lowest adsorption capacity. The highest adsorption capacity of MEK (3210 mg/g) and toluene (2618 mg/g) was recorded for chemically activated coffee grounds. Additionally, from the CO2 isotherms recorded at a low pressure (0.03 bar) and 0 °C, the maximum CO2 adsorption capacity was equal to 253 mg/g.
Collapse
Affiliation(s)
- Natalia Czerwinska
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy.
| | - Chiara Giosuè
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy.
| | - Ines Matos
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Simona Sabbatini
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy
| | - Maria Letizia Ruello
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica delle Marche, UdR INSTM Ancona, Italy
| | - Maria Bernardo
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
16
|
Keshavarzi F, Samaei MR, Hashemi H, Azhdarpoor A, Mohammadpour A. Application of montmorillonite/octadecylamine nanoparticles in the removal of textile dye from aqueous solutions: Modeling, kinetic, and equilibrium studies. Heliyon 2024; 10:e25919. [PMID: 38404893 PMCID: PMC10884807 DOI: 10.1016/j.heliyon.2024.e25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
In the study, the proliferation of industries has been associated with an increase in the production of industrial wastewater and subsequent environmental pollution, wherein dyes emerge as prominent pollutants. The characteristics of nanoclay modified with octadecylamine, were elucidated throughvarious techniques, including Field Emission Scanning Electron Microscopy/Energy Dispersive Spectroscopy (FE-SEM/EDS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), and Brunauer-Emmett-Teller Surface Area Analysis (BET). The research delved into the impact of variables such as pH, initial dye concentration, adsorbent dose, temperature, and ultrasonication time on the removal of Acid Black 1 (AB1) through an ultrasonic process, employing a central composite design (CCD). Optimal conditions for the adsorption process were determined: pH at 5.46, adsorbent mass at 4 mg/30 mL, initial dye concentration at 20 mg/L, ultrasound time at 20 min, and temperature at 50 °C, resulting in a remarkable 96.49% adsorption efficiency. The fitting of experimental equilibrium data to different isotherm models, including Langmuir, Freundlich, and Temkin, indicated thatthe Freundlich model was the most suitable. Analysis of the adsorption data with various kinetic models such as pseudo-first and second-order models, and intraparticle diffusion models, revealed the applicability of the second-order equation model. A thermodynamic study unveiled that the adsorption process was spontaneous and endothermic. In conclusion, the study highlights the significant capability ofmontmorillonite nanoclay modified with octadecylamine in removing AB1 dye, rendering it a viable option for wastewater treatment.
Collapse
Affiliation(s)
- Fatemeh Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Hashemi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Zandi-Darehgharibi F, Haddadi H, Asfaram A. A new tannin-based adsorbent synthesized for rapid and selective recovery of palladium and gold: Optimization using central composite design. Heliyon 2024; 10:e24639. [PMID: 38314278 PMCID: PMC10837505 DOI: 10.1016/j.heliyon.2024.e24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
A tannin-based adsorbent was synthesized by pomegranate peel tannin powder modified with ethylenediamine (PT-ED) for the rapid and selective recovery of palladium and gold. To characterize PT-ED, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS-Mapping), and Fourier transform infrared spectroscopy (FT-IR) were used. Central composite design (CCD) was used for optimization. The kinetic, isotherm, interference of coexisting metal ions, and thermodynamics were studied. The optimal conditions, including Au (III) concentration = 30 m g L - 1 , Pd (II) concentration = 30 m g L - 1 , adsorbent mass = 26 mg, pH = 2, and time = 26 min with the sorption percent more than 99 %, were anticipated for both metals using CCD. Freundlich model and pseudo-second-order expressed the isotherm and kinetic adsorption of the both metals. The inhomogeneity of the adsorbent surface and the multi-layer adsorption of gold and palladium ions on the PT-ED surface are depicted by the Freundlich model. The thermodynamic investigation showed that P d 2 + and A u 3 + ions adsorption via PT-ED was an endothermic, spontaneous, and feasible process. The maximum adsorption capacity of P d 2 + and A u 3 + ions on PT-ED was 261.189 m g g - 1 and 220.277 m g g - 1 , respectively. The probable adsorption mechanism of P d 2 + and A u 3 + ions can be ion exchange and chelation. PT-ED (26 mg) recovered gold and palladium rapidly from the co-existing metals in the printed circuit board (PCB) scrap, including Ca, Zn, Si, Cr, Pb, Ni, Cu, Ba, W, Co, Mn, and Mg with supreme selectivity toward gold and palladium. The results of this work suggest the use of PT-ED with high selectivity and efficiency to recover palladium and gold from secondary sources such as PCB scrap.
Collapse
Affiliation(s)
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
18
|
Hasan IMA, Assaf FH, Tawfik AR. Sustainable synthesis of magnetic Sargassum siliquastrum activated carbon loaded with NiS nanorods for adsorption of 2,4-D herbicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13246-13269. [PMID: 38244163 PMCID: PMC10881655 DOI: 10.1007/s11356-024-31987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The upgrade of sustainable resource waste into a valuable and beneficial material is an urgent task. The current paper outlines the development of an economical, sustainable, and prolonged adsorbent derived from Sargassum siliquastrum biomass and its use for potent 2,4-dichlorophenoxyacetic acid (2,4-D) removal. A simple carbonization approach was applied to obtain the highly functionalized carbon structure, which was subsequently transformed into a novel magnetic nanoadsorbent. The magnetic nanoadsorbent was characterized using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET)-specific surface area, and vibrating sample magnetometer (VSM). The characterization results confirm the successful formation of a high specific surface area and a uniform distribution of Fe3O4/NiS NPs grafted activated carbon. The adsorption kinetics was more accurately described via the pseudo-second order model; nevertheless, the isothermal data showed that the Langmuir model was most suitable. The monolayer adsorption capacity for 2,4-D was 208.26 ± 15.75 mg/g at 328 K. The favourability and spontaneity of the adsorption process were demonstrated by thermodynamic studies. The adsorbent displayed exceptional selectivity for 2,4-D and high stability in multi-cycle use. Electrostatic attraction, π-π stacking, and hydrogen bonding were all believed to have an impact on the sorbent's robust 2,4-D adsorption. Analyses of real tap and Nile River water samples showed little effect of the sample matrix on 2,4-D adsorption. This study presents an innovative approach for developing highly efficient adsorbent from natural biomass and offers an affordable way to recycle algal waste into beneficial materials.
Collapse
Affiliation(s)
- Ibrahem M A Hasan
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Fawzy H Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed R Tawfik
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
19
|
McGinley J, Healy MG, Scannell S, Ryan PC, Harmon O'Driscoll J, Mellander PE, Morrison L, Siggins A. Field assessment of coconut-based activated carbon systems for the treatment of herbicide contamination. CHEMOSPHERE 2024; 349:140823. [PMID: 38042422 DOI: 10.1016/j.chemosphere.2023.140823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Once released into the environment, herbicides can move through soil or surface water to streams and groundwater. Filters containing adsorbent media placed in fields may be an effective solution to herbicide loss in the environment. However, to date, no study has investigated the use of adsorbent materials in intervention systems at field-scale, nor has any study investigated their optimal configuration. Therefore, the aim of this paper was to examine the efficacy of low-cost, coconut-based activated carbon (CAC) intervention systems, placed in streams and tributaries, for herbicide removal. Two configurations of interventions were investigated in two agricultural catchments and one urban area in Ireland: (1) filter bags and (2) filter bags fitted into polyethylene pipes. Herbicide sampling was conducted using Chemcatcher® passive sampling devices in order to identify trends in herbicide exceedances at the sites, and to quantifiably assess, compare, and contrast the efficiency of the two intervention configurations. While the Chemcatcher® passive sampling devices are capable of analysing eighteen different acid herbicides, only six different acid herbicides (2,4-D, clopyralid, fluroxypyr, MCPA, mecoprop and triclopyr) were ever detected within the three catchment areas, which were also the only acid herbicides used therein. The CAC was capable of complete herbicide removal, when the water flow was slow (0.5-1 m3 s-1), and the interventions spanned the width and depth of the waterway. Overall, the reduction in herbicide concentrations was better for the filter pipes than for the filter bags, with a 48% reduction in detections and a 37% reduction in exceedances across all the sampling sites for the filter pipe interventions compared to a 13% reduction in the number of detections and a 24% reduction in exceedances across all sampling sites for the filter bag interventions (p < 0.05). This study demonstrates, for the first time, that CAC may be an effective in situ remediation strategy to manage herbicide exceedances close to the source, thereby reducing the impact on environmental and public health.
Collapse
Affiliation(s)
- John McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Mark G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Shane Scannell
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Paraic C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jenny Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - Per-Erik Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Liam Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - Alma Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
20
|
Abdel-Galil EA, Kasem AE, Mahrous SS. Elaboration and characterization of molybdenum titanium tungsto-phosphate towards the decontamination of radioactive liquid waste from 137 Cs and 85Sr. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2732-2744. [PMID: 38066266 PMCID: PMC10791734 DOI: 10.1007/s11356-023-31104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
The crystalline phase of molybdenum titanium tungsto-phosphate (MoTiWPO4) as an inorganic sorbent material was synthesized via the sol-gel method. The physicochemical characteristics of MoTiWPO4 were evaluated by using Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy dispersive X-ray (EDX), thermal analysis (TGA-DTA), and X-ray diffraction (XRD). MoTiWPO4 sorbent material exhibits a high chemical resistance to HNO3, HCl, and alkaline media. MoTiWPO4 has good thermal stability as it retained about 75.63% of its saturation capacity upon heating at 500 °C. The sorption studies for several metal ions revealed marked high sorption efficiency of MoTiWPO4 towards Cs+ and Sr2+ ions which reached 99% and 95%, respectively. The saturation capacity of MoTiWPO4 for Cs+ and Sr2+ is 113 and 109 mg/g, respectively. MoTiWPO4 is approved to be successfully eliminating both 137Cs and 85Sr from liquid radioactive waste streams by %eff. of 92.5 and 90.3, respectively, in the presence of competing ions from 60Co(divalent) and 152Eu (trivalent), confirming the batch experiment results for the removal of Cs+ and Sr2+ metal ions. Furthermore, the decontamination factor exceeds 13.3 in the case of 137Cs and 10.3 for 85Sr.
Collapse
Affiliation(s)
- Ezzat A Abdel-Galil
- Environmental Radioactive Pollution Department, Hot Laboratories and Waste Management Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer E Kasem
- Environmental Radioactive Pollution Department, Hot Laboratories and Waste Management Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sara S Mahrous
- Environmental Radioactive Pollution Department, Hot Laboratories and Waste Management Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
21
|
Yousefzadeh Y, Izadkhah V, Sobhanardakani S, Lorestani B, Alavinia S. UiO-66-NH 2/guanidine-functionalized chitosan: A new bio-based reusable bifunctional adsorbent for removal of methylene blue from aqueous media. Int J Biol Macromol 2024; 254:127391. [PMID: 37827406 DOI: 10.1016/j.ijbiomac.2023.127391] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Methylene Blue (MB) is a common pollutant found in industrial wastewater, and its removal is crucial to ensure environmental sustainability. Due to MOFs have high surface area, tunable pore size distribution, and excellent adsorption capacity, in the current study, Uio-66-NH2@Cs-ISo-Gu nanohybrid was prepared through soluthermal method and then was used to remove MB dye. The results displayed that dye optimal adsorption by Uio-66-NH2@Cs-ISo-Gu nanohybrid occurred in the first 40 min, pH = 8, and low dye concentrations. Also, with increasing temperature, the amount of adsorption has decreased, which indicated the adsorption process would be exothermic. Based on the results, the Uio-66-NH2@Cs-ISo-Gu nanohybrid has a surface area of 120.9 m2.g-1 and a type IV isotherm. Also, the Freundlich isotherm and pseudo-second order models had the best agreement with the experimental data. The maximum adsorption capacity for this nanohybrid was 178.571, 153.846, and 135.135 mg.g-1 at 25 °C, 45 °C, and 65 °C temperatures, respectively, which could be successfully used as an excellent adsorbent in treatment of wastewater. However, further research is needed to understand the underlying adsorption mechanism and optimize the process for efficient removal of MB from contaminated water sources.
Collapse
Affiliation(s)
- Yadollah Yousefzadeh
- Department of Environmental Engineering, College of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Vida Izadkhah
- Department of Chemistry, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
22
|
Venkateswarlu S, Umer M, Son Y, Govindaraju S, Chellasamy G, Panda A, Park J, Umer S, Kim J, Choi SI, Yun K, Yoon M, Lee G, Kim MJ. An Amiable Design of Cobalt Single Atoms as the Active Sites for Oxygen Evolution Reaction in Desalinated Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305289. [PMID: 37649146 DOI: 10.1002/smll.202305289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Muhammad Umer
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Younghu Son
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Atanu Panda
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, Namiki-1, Tsukuba, 3050044, Japan
| | - Juseong Park
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sohaib Umer
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
23
|
Asghar A, Mabarak S, Ashraf B, Rizwan M, Massey S, Asghar BH, Shahid B, Rasheed T. A sustainable approach for the removal of chlorpyrifos pesticide from aqueous phase using novel nano magnetized biochar. INORG CHEM COMMUN 2024; 159:111790. [DOI: 10.1016/j.inoche.2023.111790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
|
24
|
Demiti GMM, Barbosa de Andrade M, Marcuzzo JS, Vieira MF, Bergamasco R. A novel magnetic adsorbent from activated carbon fiber and iron oxide nanoparticles for 2,4-D removal from aqueous medium. ENVIRONMENTAL TECHNOLOGY 2023; 44:4219-4237. [PMID: 35666625 DOI: 10.1080/09593330.2022.2086825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Carbonaceous materials have been widely applied as adsorbents, but there are some factors that affect their efficiency. In this context, advances in nanotechnology provide new and more efficient methodologies for water treatment. This study evaluated the efficiency of a novel carbon-based adsorbent developed from Brazilian polyacrylonitrile textile fiber and functionalized with iron oxide magnetic nanoparticles for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from the aqueous medium. The synthesized adsorbent (ACF-Fe3O4) was characterized by FTIR, XRD, VSM, Zeta potential, SEM, EDX, and TEM. The characterization techniques showed that the adsorbent has peaks characteristic of its precursors and superparamagnetic characteristics, confirming the efficiency of the synthesis method. The adsorption tests evaluated the influence of adsorbent dosage, pH of the contaminant solution, contact time and temperature on the removal of 2,4-D. The experimental data were better adjusted by the pseudo-second order kinetic model and by the Langmuir isothermal model. The thermodynamic parameters revealed that the process is exothermic, spontaneous and thermodynamically favorable. Under the best experimental conditions, the maximum adsorption capacity obtained was 51.10 mg g-1 with an adsorbent concentration of 0.33 g L-1, natural pH of the solution, temperature of 288 K at the equilibrium time of six hours. Adsorbent reusage was studied in four desorption cycles. The adsorption mechanism can be explained through π-π bonds, hydrogen bonds and electrostatic interactions. The prepared material presented high-efficiency adsorption capacity of 2,4-D compared to other carbonaceous materials present in the literature, demonstrating its viability for the removal of this contaminant from the aqueous medium.
Collapse
Affiliation(s)
| | | | | | | | - Rosângela Bergamasco
- State University of Maringá, Department of Chemical Engineering, Maringá, Brazil
| |
Collapse
|
25
|
Gowthaman S, Selvaraju T. Efficient integration of electrocoagulation treatment with the spray-pyrolyzed activated carbon coating on stainless steel electrodes for textile effluent-bath reuse with ease. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10938. [PMID: 37815304 DOI: 10.1002/wer.10938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
In this study, the electrocoagulation (EC) treatment was used to minimize and separate pollutants from textile industrial wastewater (TIWW), including high color, chemical oxygen demand (COD), total organic carbon (TOC), and total dissolved solids (TDS). To enhance the EC treatment efficiency, a novel strategy has been followed in the study that involves thin-film coating on 316 stainless steel (SS) electrodes with banana peel-derived activated carbon (BPAC) by dip coating, spin coating, or spray coating. Among the different types of coating, thickness and contact angle measurements have elucidated that the spray coating of BPAC on SS electrode is the best tool with minimum thickness and contact angle. In this study, a bare SS electrode was used as the anode and a thin-film spray-coated BPAC on the SS electrode was used as the cathode. Moreover, optimization plays a key role in EC treatment process, where operating conditions such as a current density of 10 mA/cm2 , contact time of 15 min, and a pH of 7 were fixed. As a result, the findings indicate comparatively high color removal of 98%, COD removal of 91%, TOC removal of 89.6%, and TDS removal of 68% are achieved with ease. Accordingly, in comparison with plain SS electrodes or dip- or spin-coated BPAC on SS electrodes, spray-coated BPAC on SS electrodes in EC treatment outperforms in removing high color, TOC, COD, and TDS. Overall, the study highlights the potential of EC treatment integrated with adsorption procedures for TIWW treatment. Particularly, the use of thin-film spray-coated BPAC on SS electrodes in the EC treatment process led to an effective and sustainable tool for treating and reuse of TIWW. It is due to its low operation and maintenance cost and studied in a short interval of time. Finally, the ultimate goal was firmly achieved in pilot-scale studies by the safe discharge into the environment or reuse of treated textile wastewater. Thus, it is a promising alternative with an environmentally friendly footprint that could be easily implemented in any textile industry premises. PRACTITIONER POINTS: Heavy metals, oils, facts, suspended solids, and other pollutants can be removed from industrial effluent by using electrocoagulation. The process is both cost-effective and energy-efficient, and it is easily integrated with other water treatment technologies. According to the findings of this study, minimum current density should be applied to BPAC-SS-coated electrodes by DC power supplies to treat textile industry effluents at low operating costs. When compared with a plain SS electrode, the spray-coated BPAC on SS electrode provides better performance in effluent treatment.
Collapse
Affiliation(s)
- S Gowthaman
- Department of Chemistry, Bharathiar University, Coimbatore, India
| | - T Selvaraju
- Department of Chemistry, Bharathiar University, Coimbatore, India
| |
Collapse
|
26
|
Hassan MG, Wassel MA, Gomaa HA, Elfeky AS. Adsorption of Rose Bengal dye from waste water onto modified biomass. Sci Rep 2023; 13:14776. [PMID: 37679514 PMCID: PMC10484916 DOI: 10.1038/s41598-023-41747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Herein, adsorption of Rose Bengal dye (RB) from aqueous solution was investigated. Nano raw orange peel (OP) activated carbon (AC) coated with nano chitosan (Cs) to obtain nano chitosan/activated carbon (AC/Cs) composite which cross-linked with functionalized multi-walled carbon nanotubes (MWCNTs-COOH) to create a novel composite (AC/Cs/MWCNTs) with high surface area (1923 m2/g). The examined parameters such as concentration (1-7 ppm), pH (6.5-9.5) and temperature (295-323 K) were traversed. The maximum removal efficiency was at pH 6.5, increased from 70.4% for nano OP to 94.7% for AC/Cs/MWCNTs nano composite. Langmuir isotherm model was the best fitting to acquired data (R2 ≥ 0.99). Also, the adsorption of RB matched with pseudo-second order model, t0.5 results for pseudo-second order was 4.4672 for nano OP and 1.2813 for AC/Cs/MWCNTs at 303 K. Thermodynamic studies showed that the adsorption of RB dye is exothermic and spontaneous due to the negative value of ΔG and ΔH.
Collapse
Affiliation(s)
- Mohammed G Hassan
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Magdy A Wassel
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hosni A Gomaa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed S Elfeky
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
27
|
Farias KCS, Guimarães RCA, Oliveira KRW, Nazário CED, Ferencz JAP, Wender H. Banana Peel Powder Biosorbent for Removal of Hazardous Organic Pollutants from Wastewater. TOXICS 2023; 11:664. [PMID: 37624169 PMCID: PMC10459949 DOI: 10.3390/toxics11080664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Disposing of pollutants in water sources poses risks to human health and the environment, but biosorption has emerged as an eco-friendly, cost-effective, and green alternative for wastewater treatment. This work shows the ability of banana peel powder (BPP) biosorbents for efficient sorption of methylene blue (MB), atrazine, and glyphosate pollutants. The biosorbent highlights several surface chemical functional groups and morphologies containing agglomerated microsized particles and microporous structures. BPP showed a 66% elimination of MB in 60 min, with an adsorption capacity (qe) of ~33 mg g-1, and a combination of film diffusion and chemisorption governed the sorption process. The biosorbent removed 91% and 97% of atrazine and glyphosate pesticides after 120 min, with qe of 3.26 and 3.02 mg g-1, respectively. The glyphosate and atrazine uptake best followed the Elovich and the pseudo-first-order kinetic, respectively, revealing different sorption mechanisms. Our results suggest that BPP is a low-cost biomaterial for green and environmentally friendly wastewater treatment.
Collapse
Affiliation(s)
- Kelly C. S. Farias
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Rita C. A. Guimarães
- Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Karla R. W. Oliveira
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Carlos E. D. Nazário
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Julio A. P. Ferencz
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Faculty of Engineering, Architecture, Urbanism, and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
28
|
Yoon K, Cho DW, Kwon G, Rinklebe J, Wang H, Song H. Practical approach of As(V) adsorption by fabricating biochar with low basicity from FeCl3 and lignin. CHEMOSPHERE 2023; 329:138665. [PMID: 37044148 DOI: 10.1016/j.chemosphere.2023.138665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
One of the main challenges of biochar application for environmental cleanup is rise of pH in water or soil due to high ash and alkali metal contents in the biochar. While this intrinsic property of biochar is advantageous in alleviating soil and water acidity, it severely impairs the affinity of biochar toward anionic contaminants such as arsenic. This study explored a technical approach that can reduce the basicity of lignin-based biochar by utilizing FeCl3 during production of biochar. Three types of biochar were produced by co-pyrolyzing feedstock composed of different combinations of lignin, red mud (RM), and FeCl3, and the produced biochar samples were applied to adsorption of As(V). The biochar samples commonly possessed porous carbon structure embedded with magnetite (Fe3O4) particles. The addition of FeCl3 in the pyrolysis feedstock had a notable effect on reducing basicity of the biochar to yield significantly lower solution pH values than the biochar produced without FeCl3 addition. The extent of As(V) removal was also closely related to the final solution pH and the greatest As(V) removal (>77.6%) was observed for the biochar produced from co-pyrolysis of lignin, RM, and FeCl3. The results of adsorption kinetics and isotherm experiments, along with x-ray spectroscopy (XPS), strongly suggested adsorption of As(V) occurred via specific chemical reaction (chemisorption) between As(V) and Fe-O functional groups on magnetite. Thus, the overall results suggest the use of FeCl3 is a feasible practical approach to control the intrinsic pH of biochar and impart additional functionality that enables effective treatment of As(V).
Collapse
Affiliation(s)
- Kwangsuk Yoon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong-Wan Cho
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132, Republic of Korea
| | - Gihoon Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
29
|
Song J, Lu L, Wang J, Li X, Li J, Wang Q, Du H, Xin S, Xu L, Yan Q, Zhou C, Liu G, Xin Y. Highly efficient nanocomposite of Y 2O 3@biochar for oxytetracycline removal from solution: Adsorption characteristics and mechanisms. BIORESOURCE TECHNOLOGY 2023:129380. [PMID: 37356503 DOI: 10.1016/j.biortech.2023.129380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Nano Y2O3-modified biochar composites (Y2O3@BC600) were fabricated successfully and exhibited great adsorption toward oxytetracycline (OTC). The Langmuir adsorption capacity of Y2O3@BC600-1:4 for OTC reached 223.46 mg/g, 10.52 times greater than that of BC600. The higher dispersion of Y2O3 nanoparticles, increased surface area of 175.65 m2/g and expanded porosity of 0.27 cm3/g accounted for higher OTC adsorption by Y2O3@BC600-1:4. Y2O3@BC600-1:4 could resist the interference of co-existing cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, NO3-, SO42-) on OTC removal. Y2O3 coating changed surface charge property of BC600, favoring the contribution of electrostatic interaction. Synchrotron radiation-based Fourier transform infrared spectroscopy detected obvious peak shift and intensity change of surface -OH when OTC adsorption occurred. Accordingly, stronger H-bonding (charge-assisted hydrogen bond, OTC-H2N+···HO-Y2O3@BC600-1:4) was proposed for OTC adsorption. Y2O3@BC600 exhibited renewability and stability in the adsorptive removal of OTC. Therefore, Y2O3@BC600 may be a novel and suitable adsorbent for antibiotic removal.
Collapse
Affiliation(s)
- Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Du
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
30
|
Son Tran V, Hao Ngo H, Guo W, Ha Nguyen T, Mai Ly Luong T, Huan Nguyen X, Lan Anh Phan T, Trong Le V, Phuong Nguyen M, Khai Nguyen M. New chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole antibiotics in water. BIORESOURCE TECHNOLOGY 2023:129384. [PMID: 37355142 DOI: 10.1016/j.biortech.2023.129384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
This study aims to develop a new chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole (SMX) antibiotics in water. Biochar was prepared from orange peel (OB) and spent coffee grounds (SCB). To fabricate chitosan-biochar composites, chitosan and biochar were crosslinked with glutaraldehyde. Results showed that pH, adsorbent dosage, time, temperature, and initial concentrations have a significant impact on the SMX adsorption. The adsorption data was better described by Langmuir (with good regression) than Freundlich model. The highest adsorption capacity (Qmax) of SMX on OB, SCB, CTS-OB, and CTS-SCB were 3.49, 7.65, 7.24, and 14.73 mg/g, respectively. The Freundlich constant (KF) values for adsorption capacity were 1.66, 1.91, 2.57, and 5.57 (mg1-nLn/g), respectively, for OB, SCB, CTS-OB, and CTS-SCB. Ion exchange, π bonding, hydrogen bonding and pore filling, were proposed as dominant mechanisms of SMX removal process.
Collapse
Affiliation(s)
- Van Son Tran
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Thanh Ha Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Thi Mai Ly Luong
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Xuan Huan Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Thi Lan Anh Phan
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Research Centre for Environmental Technology and Sustainable Development, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Van Trong Le
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam; Food Industries Research Institute, Ministry of Industry and Trade, Viet Nam
| | - Minh Phuong Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Manh Khai Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| |
Collapse
|
31
|
Cao S, Huang J, Tian J, Liu Z, Su H, Chen Z. Deep insight into selective adsorption behavior and mechanism of novel deep eutectic solvent functionalized bio-sorbent towards methcathinone: Experiments and DFT calculation. ENVIRONMENTAL RESEARCH 2023; 227:115792. [PMID: 36997045 DOI: 10.1016/j.envres.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
This work designed and synthesized novelly selective, highly efficient and friendly environmental biochar nanomaterial (ZMBC@ChCl-EG) by screening suitable deep eutectic solvent (DES) as the functional monomer via Density Functional Theory (DFT). The prepared ZMBC@ChCl-EG achieved the highly efficient adsorption of methcathinone (MC) and exhibited excellent selectivity as well as good reusability. Selectivity analysis concluded that the distribution coefficient value (KD) of ZMBC@ChCl-EG towards MC was 3.247 L/g, which was about 3 times higher than that of ZMBC, corresponding to stronger selective adsorption capacity. The studies of isothermal and kinetics indicated that ZMBC@ChCl-EG had an excellent adsorption capacity towards MC and the adsorption was mainly chemically controlled. In addition, DFT was used to calculate the binding energies between MC and each component. The binding energies were -10.57 kcal/mol for ChCl-EG/MC, -3.15∼-9.51 kcal/mol for BCs/MC, -2.33 kcal/mol for ZIF-8/MC, respectively, suggesting that DES played a major role in enhancing methcathinone adsorption. Lastly, the adsorption mechanisms were revealed by variables experiment combined with characterizations and DFT calculation. The main mechanisms were hydrogen bonding and π-π interaction.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Jing Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
32
|
Li L, Lv Y, Jia C, Yin D, Dong Z, Zhan Z, Han J, Zhang J. Preparation of sludge-cyanobacteria composite carbon for synergistically enhanced co-removal of Cu(II) and Cr(VI). CHEMOSPHERE 2023; 320:138043. [PMID: 36738939 DOI: 10.1016/j.chemosphere.2023.138043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Traditional sludge disposal is currently restricted by the risk of secondary pollution. Sludge carbon material has gained widespread attention because of its low cost and environmentally sustainable properties. However, owing to the high ash content and low-energy density of sludge, sludge pyrolysis alone has certain limitations, and the performance of carbon materials needs to be improved. Herein, a sludge-cyanobacteria composite carbon (SCC) was easily synthesized, and the adsorption process of Cu(II) and Cr(VI) by SCC was examined. SCC-700-2-50% exhibited a high SBET (1047.54 m2/g) and developed pore structure rich in functional groups (such as -NH, -OH, and C-O). The combination of pore structure and functional groups improved the adsorption performance of SCC. The adsorption processes exhibited a synergistic effect in a binary system: the qm of Cu(II) and Cr(VI) were 386 mg/g and 341 mg/g, respectively, and the selectivity of Cu(II) adsorption by SCC was greater than Cr(VI). The adsorption process, examined by SEM-EDS, FTIR, and XPS analysis, indicated that Cu(II) as a cationic interface strengthens Cr(VI) adsorption through electrostatic interaction, and the anion Cr(VI) created a valid electrostatic shield against the electrostatic repulsion between H+ and Cu(II), facilitating Cu(II) adsorption. SCC had great reusability: Cu(II) and Cr(VI) adsorption capacity were 90% and 84%, of the initial adsorption capacity, respectively, after six cycles. This study demonstrates the prospect of SCC as a valid adsorbent for multiple heavy metal contaminations removal.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Ying Lv
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Chao Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Dawei Yin
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zilong Dong
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhaoshun Zhan
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Jiazhen Han
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Jun Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
33
|
Cao S, Tian Y, Liu Y, Xi C, Su H, You J, Liu Z, Chen Z. Enhanced adsorption of 3,4-methylenedioxymethamphetamine by magnetic graphene oxide-polydopamine nanohybrid modified zeolitic imidazolate framework-67 and its micro-mechanism: Experiments and calculations. J Chromatogr A 2023; 1695:463927. [PMID: 36948110 DOI: 10.1016/j.chroma.2023.463927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Exploring the structure-dependent adsorption mechanism of contaminants in wastewater is beneficial to high-efficiency adsorbents design and environmental remediation. In this study, emerging porous material of zeolitic imidazolate framework-67 (ZIF-67) has been modified by the magnetic graphene oxide-polydopamine nanohybrid (mGOP) to obtain three-dimensional ZIF-67/mGOP through an in-situ growth strategy, which was applied to adsorb 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in wastewater. A combination of characterizations, experiments (pH, humic acid and ion strength effect) and quantum chemical calculations revealed the microscopic adsorption mechanism involves each single component, of which the hydrogen bond (O/N…HO) and π-π electron donor acceptor (π-π EDA) interactions of mGOP endowed favourable adsorption of ZIF-67/mGOP, and mechanisms of the pore filling and Co-O chelation of ZIF-67 played synergistic effect. Such nanocomposite as a ZIFs-based adsorbent exhibited ultra-high porosity (total pore volume = 0.4033 cm3/g) and specific surface area (995.22 m2/g), revealed the heterogeneity and multilayer adsorption properties, and obtained a theoretical maximum adsorption capacity of 159.845 μg/g which higher than that of mZIF-67 alone. Overall, this work provided an effective strategy for rationally modulate ZIFs-based composites and exploration of adsorption mechanism.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing 401120, China; Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing 401120, China.
| | - Yu Tian
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Cunxian Xi
- The Inspection Technical Center of Chongqing Customs, Chongqing 400020, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing 401120, China
| | - Jiade You
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
34
|
Ghorbanpour Khamseh AA, Amini Y, Shademan MM, Ghazanfari V. Intensification of thorium biosorption onto protonated orange peel using the response surface methodology. CHEMICAL PRODUCT AND PROCESS MODELING 2023. [DOI: 10.1515/cppm-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
In this research work, intensifying the possibility of protonated orange peel to uptake thorium (IV) ions from aqueous solutions in a batch system was investigated and optimized using the response surface methodology. The effect of three independent process variables including thorium initial concentration, pH, and biosorbent dosage was assessed based on the central composite design. The validity of the quadratic model was verified by the coefficient of determination. The optimization results showed that the rate of thorium (IV) uptake under optimal conditions is 183.95 mg/g. The modeling results showed that the experimental data of thorium biosorption kinetics are fitted well by the pseudo-second-order model. According to the results, the biosorption process reached equilibrium after around 4 h of contact. The Langmuir isotherm describes the experimental biosorption equilibrium data well. The maximum absorption capacity of protonated orange peel for thorium adsorption was estimated by the Langmuir isotherm at 236.97 mg/g. Thermodynamic studies show that thorium adsorption on protonated orange peel is thermodynamically feasible, spontaneous, and endothermic.
Collapse
Affiliation(s)
| | - Younes Amini
- Nuclear Fuel Cycle Research School , Nuclear Science and Technology Research Institute , Tehran , Iran
| | - Mohammad Mahdi Shademan
- Nuclear Fuel Cycle Research School , Nuclear Science and Technology Research Institute , Tehran , Iran
| | - Valiyollah Ghazanfari
- Nuclear Fuel Cycle Research School , Nuclear Science and Technology Research Institute , Tehran , Iran
| |
Collapse
|
35
|
Adsorptive removal of Cd2+, Pb2+, and Fe2+ from acid mine drainage using a mixture of waste orange and lemon activated carbon (WOLAC): equilibrium study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Naboulsi A, El Mersly L, Yazid H, El Himri M, Rafqah S, El Haddad M. Adsorption behaviors and mechanisms by theoretical study of herbicide 2,4,5-Trichlorophenoxyacetic on activated carbon as a new biosorbent material. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Valente AJM, Pirozzi D, Cinquegrana A, Utzeri G, Murtinho D, Sannino F. Synthesis of β-cyclodextrin-based nanosponges for remediation of 2,4-D polluted waters. ENVIRONMENTAL RESEARCH 2022; 215:114214. [PMID: 36058273 DOI: 10.1016/j.envres.2022.114214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Two cyclodextrin-based nanosponges (CD-NSs) were synthesized using diamines with 6 and 12 methylene groups, CDHD6 and CDHD12, respectively, and used as adsorbents to remove 2,4-D from aqueous solutions. The physico-chemical characterization of the CD‒NSs demonstrated that, when using the linker with the longest chain length, the nanosponges show a more compact structure and higher thermal stability, probably due to hydrophobic interactions. SEM micrographs showed significant differences between the two nanosponges used. The adsorption of 2,4-D was assessed in terms of different parameters, including solid/liquid ratio, pH, kinetics and isotherms. Adsorption occurred preferentially at lower pH values and for short-chain crosslinked nanosponges; while the former is explained by the balance of acid-base characteristics of the adsorbent and adsorbate, the latter can be justified by the increase in the crosslinker-crosslinker interactions, predominantly hydrophobic, rather than adsorbent-adsorbate interactions. The maximum adsorption capacity at the equilibrium (qe) was 20,903 mmol/kg, obtained using CDHD12 with an initial 2,4-D concentration of 2 mmol/L. An environmentally friendly strategy, based on alkali desorption, was developed to recycle and reuse the adsorbents. On the basis of the results obtained, cyclodextrin-based nanosponges appear promising materials for an economically feasible removal of phenoxy herbicides, to be used as potential adsorbents for the sustainable management of agricultural wastewaters.
Collapse
Affiliation(s)
- Artur J M Valente
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Domenico Pirozzi
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering, Piazzale Tecchio, 80, 80125, Naples, Italy
| | - Alessia Cinquegrana
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055 Portici, Naples, Italy
| | - Gianluca Utzeri
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Dina Murtinho
- University of Coimbra, Department of Chemistry, CQC, 3004-535 Coimbra, Portugal
| | - Filomena Sannino
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055 Portici, Naples, Italy.
| |
Collapse
|
38
|
McGinley J, Healy MG, Ryan PC, Mellander PE, Morrison L, O'Driscoll JH, Siggins A. Batch adsorption of herbicides from aqueous solution onto diverse reusable materials and granulated activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116102. [PMID: 36103789 DOI: 10.1016/j.jenvman.2022.116102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study reports the kinetics and isotherms of the adsorption of five herbicides, MCPA, mecoprop-P, 2,4-D, fluroxypyr and triclopyr, from aqueous solutions onto a range of raw and pyrolysed waste materials originating from an industrial setting. The raw waste materials investigated demonstrated little capability for any herbicide adsorption. Granulated activated carbon (GAC) was capable of the best removal of the herbicides, with >95% removal observed. A first order kinetic model fitted the data best for GAC adsorption of 2,4-D, while a pseudo-first order model fitted the data best for GAC adsorption of fluroxypyr and triclopyr, indicating that adsorption was via physisorption. A pseudo-second order kinetic model fitted the GAC adsorption of MCPA and mecoprop-P, which is indicative of chemisorption. The adsorption of the herbicides in all cases was best described by the Freundlich model, indicating that adsorption occurred onto heterogeneous surfaces.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P-E Mellander
- Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - J Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - A Siggins
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland; Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|
39
|
Rehman A, Nazir G, Rhee KY, Park SJ. Valorization of orange peel waste to tunable heteroatom-doped hydrochar-derived microporous carbons for selective CO 2 adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157805. [PMID: 35944625 DOI: 10.1016/j.scitotenv.2022.157805] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Constrained by the extortionately expensive carbon sources, low carbon yields, inadequate adsorption capacities, and corrosive chemical activating agents, the commercialization of carbonaceous CO2 adsorbents remains a challenging task. Herein, potassium oxalate (K2C2O4), an activating agent with less corrosive properties, was used for the synthesis of activated carbons from inexhaustibly available "orange peel biowaste." For the first time, a comprehensive report is presented on the effect of hydrothermal treatment, hydrochar/K2C2O4 ratio, activation temperature, and melamine modification in tailoring the porosity and surface functionalization of activated carbons. The optimized sample, OPMK-900, exhibited large specific surface area ~2130 m2/g; micropore volume ~1.1166 cm3/g, and a high pyrrolic nitrogen content (~ 46.1 %). Notably, melamine played the dual role as a promoter to K2C2O4 porosity generation and a nitrogen dopant, which synergistically led to an efficient CO2 uptake of ~6.67 mmol/g at 273 K/ 1 bar via micropore-filling mechanism and Lewis acid-base interactions. Moreover, remarkably high IAST CO2/N2 selectivity (105 at 273 K and 96 at 298 K) surpasses most of the biomass-derived carbons. Furthermore, the moderately high isosteric heat of adsorption (∆Hads ~ 38.9 kJ/mol) revealed the physisorption mechanism of adsorption with a limited energy requirement for the regeneration of the spent adsorbents.
Collapse
Affiliation(s)
- Adeela Rehman
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea.
| |
Collapse
|
40
|
Malesic-Eleftheriadou N, Liakos EV, Evgenidou E, Kyzas GZ, Bikiaris DN, Lambropoulou DA. Low-cost agricultural wastes (orange peels) for the synthesis and characterization of activated carbon biosorbents in the removal of pharmaceuticals in multi-component mixtures from aqueous matrices. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull (Berl) 2022; 80:7247-7312. [PMID: 36043186 PMCID: PMC9409625 DOI: 10.1007/s00289-022-04443-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
Abstract
Biopolymers are mainly the polymers which are created or obtained from living creatures such as plants and bacteria rather than petroleum, which has traditionally been the source of polymers. Biopolymers are chain-like molecules composed of repeated chemical blocks derived from renewable resources that may decay in the environment. The usage of biomaterials is becoming more popular as a means of reducing the use of non-renewable resources and reducing environmental pollution produced by synthetic materials. Biopolymers' biodegradability and non-toxic nature help to maintain our environment clean and safe. This study discusses how to improve the mechanical and physical characteristics of biopolymers, particularly in the realm of bioengineering. The paper begins with a fundamental introduction and progresses to a detailed examination of synthesis and a unique investigation of several recent focused biopolymers with mechanical, physical, and biological characterization. Biopolymers' unique non-toxicity, biodegradability, biocompatibility, and eco-friendly features are boosting their applications, especially in bioengineering fields, including agriculture, pharmaceuticals, biomedical, ecological, industrial, aqua treatment, and food packaging, among others, at the end of this paper. The purpose of this paper is to provide an overview of the relevance of biopolymers in smart and novel bioengineering applications. Graphical abstract The Graphical abstract represents the biological sources and applications of biopolymers. Plants, bacteria, animals, agriculture wastes, and fossils are all biological sources for biopolymers, which are chemically manufactured from biological monomer units, including sugars, amino acids, natural fats and oils, and nucleotides. Biopolymer modification (chemical or physical) is recognized as a crucial technique for modifying physical and chemical characteristics, resulting in novel materials with improved capabilities and allowing them to be explored to their full potential in many fields of application such as tissue engineering, drug delivery, agriculture, biomedical, food industries, and industrial applications.
Collapse
Affiliation(s)
- Abinash Das
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Togam Ringu
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Sampad Ghosh
- Department of Chemistry, Nalanda College of Engineering, Nalanda, Bihar 803108 India
| | - Nabakumar Pramanik
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| |
Collapse
|
42
|
Ramutshatsha-Makhwedzha D, Mavhungu A, Moropeng ML, Mbaya R. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon 2022; 8:e09930. [PMID: 35965978 PMCID: PMC9363969 DOI: 10.1016/j.heliyon.2022.e09930] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 01/12/2023] Open
Abstract
The study of adsorbent behaviour in laboratory conditions helps to predict the adsorption process in a large industrial scale. In this study, orange and lemon peels-derived activated carbon (OLPAC) was successfully synthesized and activated using phosphoric acid. Characterization was performed on the OLPAC and the material was used for the removal of methyl orange (MO) and methylene (MB) dyes from wastewater. The results of the scanning electron microscope and N2 adsorption/desorption examination affirmed that the prepared nanocomposite is permeable, which is an advantage for the efficient removal of contaminants. Optimal conditions for the batch removal process were investigated using a one-factor time approach in different conditions of adsorption (Dye concentration 50–200 mg L−1, pH 2–10, adsorbent mass 0.010–0.8, and contact time 5–180 min. The adsorption isotherm equilibrium data were examined by Langmuir, Freundlich, and Temkin, isotherm model. As shown by the correlation coefficient (R2), the data were best described by Langmuir isotherms with maximum adsorption capacities of 33 and 38 mg g─1 for methyl orange and methylene blue, respectively. Adsorption kinetic data were described using the pseudo-second-order model which suggests that adsorption of MO and MB was by chemisorption mechanism. The method was applicable to real wastewater samples, with satisfactory removal percentages of OM and MB (96 and 98 %). The results of this study show that OLPAC is an inexpensive biosorbent that is successfully utilized in removing methyl orange and methylene blue dyes from wastewater.
Collapse
|
43
|
Jimoh OS, Ibrahim AO, Bello OS. Metformin adsorption onto activated carbon prepared by acid activation and carbonization of orange peel. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:125-136. [PMID: 35594381 DOI: 10.1080/15226514.2022.2064815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acid modification of orange peels (OPAC); an agro-waste, using ortho-phosphoric acid was carried out. OPAC was characterized using FTIR and SEM, BET and elemental Analysis techniques respectively. It was then used for the adsorption of metformin (MET) from aqueous solutions. OPAC has different functional groups and prominent pore sizes suitable for the sorption of MET. Experimental parameters such as effects of contact time, MET initial concentrations, solution temperature and solution pH were investigated. Optimum MET adsorption onto OPAC was obtained at a contact time: of 240 minutes, Initial MET concentration: 5 mg/L, Temperature: 323 K, and pH 7. The highest percentage of MET removal using OPAC was 97.23%. Sorption data were fitted into four different isotherm models; Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. Freundlich isotherm model best explained the sorption data with the high affinity of adsorption (R2 value) observed at 303 K. Langmuir isotherm gives an optimum monolayer sorption capacity of 50.99 mg/g at 323 K. Kinetic studies of the sorption process were investigated using pseudo-first-order, pseudo-second-order, Elovich, and Intraparticle diffusion kinetic models, and the data fitted best the pseudo-second-order kinetic model. Thermodynamic studies revealed that the sorption process is spontaneous, feasible, and endothermic. The energy of activation, Ea suggests a physisorption mechanism of MET sorption onto OPAC. Conclusively, OPAC was an efficient adsorbent for the sorption of MET from aqueous solutions. NOVELTY STATEMENT Orange peel activated carbon (OPAC) adsorbent gave a higher qo value for metformin removal from aqueous solution than other adsorbents previously reported in the literature.The highest percentage of removal of metformin drug-using OPAC was 97.23%. This is highly commendable.
Collapse
Affiliation(s)
- Oluwatimileyin Samuel Jimoh
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- LAUTECH SDG 6, Ogbomoso, Oyo State, Nigeria (Clean Water and Sanitation Research Group)
- LAUTECH SDG 11 Ogbomoso, Oyo State, Nigeria (Sustainable Cities and Communities Research Group)
| | - Asiata Omotayo Ibrahim
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- LAUTECH SDG 6, Ogbomoso, Oyo State, Nigeria (Clean Water and Sanitation Research Group)
- LAUTECH SDG 11 Ogbomoso, Oyo State, Nigeria (Sustainable Cities and Communities Research Group)
| | - Olugbenga Solomon Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- LAUTECH SDG 6, Ogbomoso, Oyo State, Nigeria (Clean Water and Sanitation Research Group)
- LAUTECH SDG 11 Ogbomoso, Oyo State, Nigeria (Sustainable Cities and Communities Research Group)
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
44
|
Arabkhani P, Asfaram A. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: A new green adsorbent for removal of antibiotics from pharmaceutical wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128289. [PMID: 35121292 DOI: 10.1016/j.jhazmat.2022.128289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
A bio-based ceramic/organic xerogel (BCO-xerogel) was obtained from the combination of sugarcane bagasse ash, polyvinyl alcohol, and pine cone-derived tannin extract, which are abundant, non-toxic, and renewable sources. The as-prepared BCO-xerogel was used as a low-cost green adsorbent for the eliminate of four types of the most widely used antibiotics, including amoxicillin (AMX), tetracycline (TC), cefalexin (CLX), and penicillin G (PEN G) residuals from contaminated water. The simultaneous effects conventional variables including adsorbent dosage, antibiotic concentrations, solution pH, and contact time were studied and optimized by central composite design (CCD) under response surface methodology (RSM). Analysis of variance (ANOVA) was employed as a statistical formula to determine the significance of operating environmental conditions and their interactions with 95% confidence limits. Under optimized conditions, the experimental removal efficiencies for AMX, TC, CLX, and PEN G were 98.78 ± 3.25, 99.12 ± 2.52, 98.02 ± 1.98, and 98.42 ± 2.19, respectively. The adsorption isotherms and kinetics were better fitted with Langmuir and pseudo-second-order models, respectively. Thermodynamic studies showed that the adsorption process was endothermic, spontaneous, and occurred by combination of physical and chemical mechanisms. Also, evaluating the ability of BCO-xerogel to adsorptive removal of AMX, TC, CLX, and PEN G antibiotics in real wastewaters showed about 97.4-98.6% adsorption efficiency in river water and about 67.1-71.3% in three hospital effluents. After the adsorption process, the antibiotic-loaded adsorbent was regenerated by NaOH (0.01 mol L-1), and the reusability tests showed that the removal efficiencies of the antibiotics in the four recovery steps were still above 90%. This work explored the development of green, efficient, and economical bio-adsorbent that can be utilized for the removal of antibiotics from contaminated wastewaters.
Collapse
Affiliation(s)
- Payam Arabkhani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
45
|
Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Khalil KM, Elhamdy WA, Mohammed KM, Said AEAA. Nanostructured P-doped activated carbon with improved mesoporous texture derived from biomass for enhanced adsorption of industrial cationic dye contaminants. MATERIALS CHEMISTRY AND PHYSICS 2022; 282:125881. [DOI: 10.1016/j.matchemphys.2022.125881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
47
|
Karapınar HS. Adsorption performance of activated carbon synthesis by ZnCl 2, KOH, H 3PO 4 with different activation temperatures from mixed fruit seeds. ENVIRONMENTAL TECHNOLOGY 2022; 43:1417-1435. [PMID: 34429039 DOI: 10.1080/09593330.2021.1968507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, new activated carbons (ACs) were synthesized from a mixture of lemon and orange seeds (LOS) for toxic metal removal from aqueous solutions. Adsorbents have been produced by chemical activation with different activation agents (with H3PO4, ZnCl2 and KOH) and activation temperature (600°C, 700°C, 800°C). The elemental analysis, FT-IR, XRD and SEM analyses were performed to determine the characterization of the ACs. A series of batch adsorption experiments were done to research the influence of various parameters such as pH, adsorbent dosage, contact time, temperature, the complexing agents on the toxic metal ions (Cu(II), Cr(III) and Ni(II)) removal capacity of ACs. Adsorption equilibration time was 60 min, the adsorption capacity was 118.02 mg/g for Ni(II) ions, 146.03 mg/g for Cr(III) ions and 150.45 mg/g for Cu(II) ions. The adsorption of toxic metal ions was observed as a maximum at pH = 5 on AC-ZnCl2 (600°C) produced under N2 atmosphere. The adsorption process was fitted with a Langmuir isotherm model and a pseudo-second-order kinetic equation, showing the metal ions adsorption on AC was monolayer coverage. Thermodynamic studies show that the adsorption is endothermic and spontaneous in nature. AC produced from the LOS mixture has not been encountered in the literature. A simple, easy-to-apply method has been developed for a new adsorbent prepared from a mixture of LOS with environmentally friendly, easy to produce, reusable, cost-effective, non-toxic and with good adsorption-desorption capacity. Therefore, this study will contribute to the world economy in terms of environmental and wastewater cleaning.
Collapse
Affiliation(s)
- Hacer Sibel Karapınar
- Scientific and Technological Research & Application Center, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
48
|
Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. Adsorption isotherm models: A comprehensive and systematic review (2010-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151334. [PMID: 34748826 DOI: 10.1016/j.scitotenv.2021.151334] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Among numerous methods developed in purification and separation industries, the adsorption process has received considerable attention due to its inexpensive, facile, and eco-friendly nature. The importance of the adsorption process causes extraordinary endeavors for modeling the adsorption isotherms during the years; thus, myriads of research have been conducted and many reviews have been published. In this paper, we have attempted to gather the most widely used adsorption isotherms and their related definitions, along with examples of correlated work of the recent decade. In the present review, 37 adsorption isotherms with about 400 references have been collected from the research published in the period of 2010-2020. The adsorption isotherms utilized are alphabetically organized for ease of access. The parameters of each isotherm, as well as the applicable definitions, are presented in the table, in addition to being discussed in the text. Another table is provided for the practical use of researchers, featuring the usage of the related isotherms in peer-reviewed studies.
Collapse
Affiliation(s)
- Mahdieh Mozaffari Majd
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Vahid Kordzadeh-Kermani
- Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Vahab Ghalandari
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Anis Askari
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| |
Collapse
|
49
|
Gupta K, Kaushik A, Singhal S. Amelioration of adsorptive efficacy by synergistic assemblage of functionalized graphene oxide with esterified cellulose nanofibers for mitigation of pharmaceutical waste. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127541. [PMID: 34879528 DOI: 10.1016/j.jhazmat.2021.127541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
An effort has been undertaken for valorization of surplus biomass to synthesize sustainable and commercially competitive nanoadsorbents utilizing green synthetic strategies. This study encompasses a pioneering research on the comparative adsorption analysis of different modified forms of graphene oxide (GO) combined with functionalized cellulose nanofibers (CNF) derived from surplus biomass for elimination of noxious drug species from aqueous environment with a comprehensive study for evaluating the effect of loading percentage of functionalized GO. Characteristic assessments of the prepared nanocomposites were performed using FT-IR studies, powder XRD studies, FESEM analysis, EDS analysis and BET studies. The prepared nanohybrids were evaluated for their adsorptive performance for elimination of ciprofloxacin and ofloxacin and their performance was optimized in terms of adsorbent loading, pH and initial drug concentration. Further, investigation of adsorbent properties and the adsorption process was undertaken by studying different kinetic and isotherm models of adsorption. The adsorption potential of functionalized CNF was substantially ameliorated through its facile assemblage with functionalized GO. The experimental outcomes revealed that 20 wt% loading of carboxylated graphene oxide within the perforated surface of esterified cellulose nanofibres exhibited best adsorption performance with maximum removal capacity of 45.04 mg g-1 and 85.30 mg g-1 for ciprofloxacin and ofloxacin, respectively. The outstanding regenerability and reusability of nanocomposites present tremendous potential for development of inexpensive and sustainable sorbent materials for managing pharmaceutical pollution. Literature presents scarce data and insufficient number of reports which thoroughly compares the role of differently functionalized GO to potentiate the adsorptive performance of biomass based nanocellulose and its broad application prospects in wastewater remediation. This marks the novelty of the present investigation.
Collapse
Affiliation(s)
- Kanu Gupta
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sonal Singhal
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
50
|
Xi J, Zhang R, Ye L, Du X, Lu X. Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114297. [PMID: 34933264 DOI: 10.1016/j.jenvman.2021.114297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A magnetic nitrogen-doped sludge-based biochar (NAlSB-Fe-Si) was prepared based on waterworks sludge for raw material and dicyandiamide for nitrogen source to adsorb methylene blue (MB) from water. And the magnetic particles loaded on the adsorbent were obtained through functionalizing iron and silicon ions which were extracted from the biochar by acid and alkali impregnation. Physicochemical properties of sludge-based biochar (SB) were analyzed by SEM, BET, FTIR, XRD, XPS and VSM. Compared with the original biochar, NAlSB-Fe-Si had richer pore structure and higher pore volume, and the SiO2 and Fe3O4 loading made the specific surface area increased by 200%. Possible adsorption mechanism was proposed by exploring the initial pH, MB concentration and reaction time. Results revealed that alkaline environment was more conducive to the rapid removal of cationic dyes such as MB. Pseudo-second-order kinetic model and intra-particle diffusion model could describe the adsorption behavior of MB on NAlSB-Fe-Si. The fitting results of Langmuir model showed that adsorption temperature is positively correlated with adsorption capacity, and the maximum adsorption capacity of MB on nitrogen-doped sludge-based biochar (NSB) and NAlSB-Fe-Si at 25 °C was 26.47 and 300.36 mg/g, respectively. Finally, the MB removal rate of NAlSB-Fe-Si could still reach 70% after four cycles, indicating that the composite was an efficient cationic dye adsorbent, and its preparation could be regarded as a way of resource utilization of waterworks sludge.
Collapse
Affiliation(s)
- Jiaran Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Lei Ye
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyuan Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; School of Science, Tibet University, Lhasa, 850000, China.
| |
Collapse
|