1
|
Xu B, He Q, Sun D, Li X, Fan J, Yan X, Ruan R, Wang N, Cheng P. Inhibition mechanism of leukemia cells HL-60 by exopolysaccharides from Botryococcus braunii in response to high-concentration cobalt. Int J Biol Macromol 2025; 290:139092. [PMID: 39716694 DOI: 10.1016/j.ijbiomac.2024.139092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The influence of metal elements on the biomedical activity of microalgal exopolysaccharides (EPS) remains underexplored. This study examined the antitumor properties of Botryococcus braunii EPS under high cobalt conditions and the role of exogenous 3-indole acetic acid (IAA) in enhancing its activity. Results showed that IAA mitigated cobalt-induced inhibition of B. braunii growth and improved its antioxidant capacity. Notably, EPS obtained from B. braunii treated with IAA under high cobalt conditions (HC-IAA-EPS) exhibited a 98.06 % inhibition of human promyelocytic leukemia cells (HL-60), significantly higher than the control (83.86 %). HC-IAA-EPS induced mitochondrial damage in HL-60 cells, evidenced by a decrease in mitochondrial transmembrane potential (observed via fluorescence microscopy) and a 1.5-fold increase in reactive oxygen species (ROS) levels compared to the control, ultimately triggering endogenous apoptosis. Proteomic analysis revealed that HC-IAA-EPS caused significant changes in apoptosis and cell cycle-related protein changes in HL-60. Gene Ontology (GO) analysis indicated enrichment in pathways such as neutrophil degranulation, Toll-like receptor (TLR) signaling, and vesicle binding complexes. This study concludes that HC-IAA-EPS inhibits HL-60 cell proliferation by inducing mitochondrial dysfunction, reducing transmembrane potential, and increasing ROS production, providing valuable insights into the antitumor potential of microalgal EPS under metal stress conditions.
Collapse
Affiliation(s)
- Baoyu Xu
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qilin He
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Danni Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Nazloo EK, Danesh M, Sarrafzadeh MH, Moheimani NR, Ennaceri H. Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171734. [PMID: 38508258 DOI: 10.1016/j.scitotenv.2024.171734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Botryococcus braunii has garnered significant attention in recent years due to its ability to produce high amounts of renewable hydrocarbons through photosynthesis. As the world shifts towards a greener future and seeks alternative sources of energy, the cultivation of B. braunii and the extraction of its hydrocarbons can potentially provide a viable solution. However, the development of a sustainable and cost-effective process for cultivating B. braunii is not without challenges. Compared to other microalgae, B. braunii grows very slowly, making it time-consuming and expensive to produce biomass. In response to these challenges, several efforts have been put into optimizing Botryococcus braunii cultivation systems to increase biomass growth and hydrocarbon production efficiency. This review presents a comparative analysis of different Botryococcus braunii cultivation systems, and the factors affecting the productivity of biomass and hydrocarbon in Botryococcus braunii are critically discussed. Attached microalgal growth offers several advantages that hold significant potential for enhancing the economic viability of microalgal fuels. Here, we propose that employing attached growth cultivation, coupled with the milking technique for hydrocarbon extraction, represents an efficient approach for generating renewable fuels from B. braunii. Nevertheless, further research is needed to ascertain the viability of large-scale implementation.
Collapse
Affiliation(s)
- Ehsan Khorshidi Nazloo
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Moslem Danesh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Petroleum Drilling and Refining, Kurdistan Technical Institute Sulaimaniya, Iraq; Department of Biomedical Engineering, Qaiwan International University, Sulaimaniya, Iraq
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
3
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
4
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
5
|
Matulová M, Capek P. Structural properties of the biologically active Dictyosphaerium chlorelloides exopolysaccharide α-d-manno-α-l-rhamno-α-d-(2-O-methyl)-galactan. Carbohydr Res 2023; 534:108946. [PMID: 37769378 DOI: 10.1016/j.carres.2023.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Structure of biopolymers produced by microalgae plays an important role for their potential biological activity prediction and applications. Previously isolated and well characterized dominant fractions (Dch5-8) from ion-exchange chromatography separation of the biologically active microalga Dictyosphaerium chlorelloides exopolysaccharide (Dch) were pooled and partially acid hydrolyzed. The dominant sugar components in the combined Dch5-8 fraction were Gal and its 2-O-methyl derivative, Rha and Man, all accounting for about 94 mol% of total amount of sugars. Separation of obtained hydrolysate on Bio-Gel P-2 afforded ten fractions. Their main components were identified by NMR. Based on oligosaccharide structures, the repeating unit of the polysaccharide backbone was identified as →2)-α-L-Rhap-(1→4)-2-O-methyl-[3-O-β-D-Galp]-α-D-Galp-(1→ branched by Man. Furthermore, the higher molecular weight fraction contained glucuronorhamnan. NMR data indicate 1,4-linked Rha units in the backbone in α and β configuration, branched at O2 by 2,4-di-O-methyl-β-d-glucuronic acid.
Collapse
Affiliation(s)
- Mária Matulová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538, Bratislava, Slovakia
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538, Bratislava, Slovakia.
| |
Collapse
|
6
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
7
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Li N, Chen C, Zhong F, Zhang S, Xia A, Huang Y, Liao Q, Zhu X. A novel magnet-driven rotary mixing aerator for carbon dioxide fixation and microalgae cultivation: focusing on bubble behavior and cultivation performance. J Biotechnol 2022; 352:26-35. [DOI: 10.1016/j.jbiotec.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/11/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
|
9
|
Patel A, Bettiga M, Rova U, Christakopoulos P, Matsakas L. Microbial genetic engineering approach to replace shark livering for squalene. Trends Biotechnol 2022; 40:1261-1273. [PMID: 35450778 DOI: 10.1016/j.tibtech.2022.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
Squalene is generally sourced from the liver oil of deep sea sharks (Squalus spp.), in which it accounts for 40-70% of liver mass. To meet the growing demand for squalene because of its beneficial effects for human health, three to six million deep sea sharks are slaughtered each year, profoundly endangering marine ecosystems. To overcome this unsustainable practice, microbial sources of squalene might offer a viable alternative to plant- or animal-based squalene, although only a few microorganisms have been found that are capable of synthesizing up to 30% squalene of dry biomass by native biosynthetic pathways. These squalene biosynthetic pathways, on the other hand, can be genetically manipulated to transform microorganisms into 'cellular factories' for squalene overproduction.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Bioeconomy Division, EviKrets Biobased Processes Consultants, Landvetter, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
10
|
Russell C, Rodriguez C, Yaseen M. High-value biochemical products & applications of freshwater eukaryotic microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151111. [PMID: 34695461 DOI: 10.1016/j.scitotenv.2021.151111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
A shift in public perception of the health and nutritional benefits of organic supplements and skin care products has led to a surge in high-value products being extracted from microalgae. Traditional forms of microalgae products were proteins, lipids and carbohydrates. However, in recent times the extraction of carotenoids (pigments), polyunsaturated acids (PUFAs), vitamins, phytosterols and polyphenols has increased significantly. Despite the diversity of products most research has failed to scale up production to industrial scale due to economic constraints and productivity capacities. It is clear that the main market drivers are the pharmaceutical and nutraceutical industries. This paper reviews the high-value products produced from freshwater eukaryotic microalgae. In addition, the paper also considers the biochemical properties of eukaryotic microalgae to provide a comparative analysis of different strains based on their high-value product content.
Collapse
Affiliation(s)
- Callum Russell
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Cristina Rodriguez
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
11
|
Reddy AR. Biopolymers Production from Algal Biomass and their Applications- A Review. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/nkwndz9ah7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Velamakanni RP, Sree BS, Vuppugalla P, Velamakanni RS, Merugu R. Biopolymers from Microbial Flora. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
İnan B, Çakır Koç R, Özçimen D. Comparison of the anticancer effect of microalgal oils and microalgal oil-loaded electrosprayed nanoparticles against PC-3, SHSY-5Y and AGS cell lines. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:381-389. [PMID: 33861179 DOI: 10.1080/21691401.2021.1906263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Many of the bioactive substances used in pharmaceutical industry are easily affected by temperature, light and oxygen, and are easily degraded during storage and processing, and exhibit poor adsorption properties during digestion, which limits their direct use. Microalgae are rich in oils which have antimicrobial properties and antioxidants that attract attention in both food and pharmaceutical sectors in recent years. Studies to encapsulate bioactive compound-rich microalgae oils with nanotechnological approaches to improve the physical and chemical stability are relatively new, and it is promising to apply these approaches for pharmaceutical purposes. In this study, cytotoxic effects of oil extracts of Botryococcus braunii and Microcystis aeruginosa and their oil-loaded nanoparticles on L929 cell line, PC-3 prostate cell line, SHSY-5Y neuroblastoma cell line and AGS gastric adenocarcinoma cell line were investigated. The obtained extracts were found to have no cytotoxic effect on L929 cells. However, they showed cytotoxic effect on cancer cells. As for the nanoparticles; a gradual release was determined and the stability of the nanoparticle structure was shown. In the light of obtained findings, it was considered that nanoparticles produced with oil extracts of microalgae which have bioactive substances, have potential to be evaluated especially in pharmaceutical and cosmetic fields.
Collapse
Affiliation(s)
- Benan İnan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Esenler-Istanbul, Turkey
| | - Rabia Çakır Koç
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Esenler-Istanbul, Turkey
| | - Didem Özçimen
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Esenler-Istanbul, Turkey
| |
Collapse
|
14
|
Kartik A, Akhil D, Lakshmi D, Panchamoorthy Gopinath K, Arun J, Sivaramakrishnan R, Pugazhendhi A. A critical review on production of biopolymers from algae biomass and their applications. BIORESOURCE TECHNOLOGY 2021; 329:124868. [PMID: 33707076 DOI: 10.1016/j.biortech.2021.124868] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Algae is abundantly present in our ecosystems and can be easily extracted and used for production of biopolymers. Algae does not produce any anthropogenic, harmful effects, has a good growth rate, and cultivable in wastewater. This literature elucidates the potential of algae biomass by comparing various seaweed and microalgae strains. The routes for biopolymer production were portrayed and their novel methods of isolation such as microwave assisted, ultrasound assisted, and subcritical water assisted extraction are discussed in detail. These novel methods are observed to be highly efficient compared to conventional solvent extraction, with the microwave assisted and ultrasound assisted processes yielding 33% and 5% more biopolymer respectively than the conventional method. Biopolymers are used in variety of applications such as environmental remediation, adsorbent and antioxidant. Biopolymer is shown to be highly effective in the removal of potentially toxic elements and is seen to extract more than 40 mg PTE/g biopolymer.
Collapse
Affiliation(s)
- Ashokkumar Kartik
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dilipkumar Akhil
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Divya Lakshmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
15
|
Large-scale screening of natural genetic resource in the hydrocarbon-producing microalga Botrycoccus braunii identified novel fast-growing strains. Sci Rep 2021; 11:7368. [PMID: 33811231 PMCID: PMC8018972 DOI: 10.1038/s41598-021-86760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 12/04/2022] Open
Abstract
Algal biofuel research aims to make a renewable, carbon–neutral biofuel by using oil-producing microalgae. The freshwater microalga Botryococcus braunii has received much attention due to its ability to accumulate large amounts of petroleum-like hydrocarbons but suffers from slow growth. We performed a large-scale screening of fast-growing strains with 180 strains isolated from 22 ponds located in a wide geographic range from the tropics to cool-temperate. A fast-growing strain, Showa, which recorded the highest productivities of algal hydrocarbons to date, was used as a benchmark. The initial screening was performed by monitoring optical densities in glass tubes and identified 9 wild strains with faster or equivalent growth rates to Showa. The biomass-based assessments showed that biomass and hydrocarbon productivities of these strains were 12–37% and 11–88% higher than that of Showa, respectively. One strain, OIT-678 established a new record of the fastest growth rate in the race B strains with a doubling time of 1.2 days. The OIT-678 had 36% higher biomass productivity, 34% higher hydrocarbon productivity, and 20% higher biomass density than Showa at the same cultivation conditions, suggesting the potential of the new strain to break the record for the highest productivities of hydrocarbons.
Collapse
|
16
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Australian Strains of Botryococcus braunii Examined for Potential Hydrocarbon and Carotenoid Pigment Production and the Effect of Brackish Water. ENERGIES 2020. [DOI: 10.3390/en13246644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The green alga Botryococcus braunii produces abundant hydrocarbons, in the form of drop-in biodiesel, which promoted interest in the species as a renewable fuel. However, despite the observation of dense populations in the wild, Botryococcus grows very slowly in culture, severely limiting its potential for development as a bioresource. Undertaking a biodiscovery program, we found new strains of Botryococcus in locations ranging from tropical to temperate Australia and from both fresh and brackish waters. As part of the ecophysiological characterisation of this new biodiversity, lipid and pigment compositions were studied for six new strains from six different locations. The strains were inoculated in either freshwater or brackish (salinity of 4)-based medium and maintained over 150 days. The growth of cultures was studied continuously, while lipid and pigment composition were analysed at final harvest on day 150. No significant differences in growth rate between fresh and brackish media were observed. Some strains were more tolerable of brackish conditions than others with a link between salinity tolerance and original location. The use of lower salinity (4 ppt) had a minimal effect on lipid composition, with only two of the six strains showing a different hydrocarbon profile in comparison to the other strains; pigment composition showed only minor variations for fresh and brackish water cultures, although the concentrations varied significantly with the freshwater cultures containing higher pigment concentrations.
Collapse
|
18
|
Cheng P, Muylaert K, Cheng JJ, Liu H, Chen P, Addy M, Zhou C, Yan X, Ruan R. Cobalt enrichment enhances the tolerance of Botryococcus braunii to high concentration of CO 2. BIORESOURCE TECHNOLOGY 2020; 297:122385. [PMID: 31761625 DOI: 10.1016/j.biortech.2019.122385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
This work mainly studied B. braunii adapted to different CO2 concentrations with cobalt enrichment, and developed a process for CO2 capture, hydrocarbon production and cobalt removal. The results showed that B. braunii favored rapid growth at 5.0% (v/v) CO2, and the highest biomass was 1.89 g.L-1 with 4.5 mg.L-1 of cobalt. Hydrocarbon productivity in high concentration CO2 (5.0% and 10.0%) with cobalt enrichment was higher than that in Chu 13 medium. The change in cobalt removal efficiency mainly corresponded to the growth of B. braunii. The LCE of B. braunii in cobalt-rich with high CO2 concentration (5.0% and 10.0%) was 15.7%, and 14.9%, respectively, which was higher than that in normal medium. CO2 fixation rates were also higher in cobalt enrichment coupled with high CO2 concentration. This study not only provides ideas for the removal of toxic metal cobalt, but also has great potential for CO2 biofixation.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Koenraad Muylaert
- Laboratory of Aquatic Biology, KU Leuven Campus Kulak, E. Sabbelaan 54, Kortrijk 8500, Belgium
| | - Jay J Cheng
- Department of Biological and Agricultural Engineering, North Carolina State University, Box 7625, Raleigh, NC 27695, USA
| | - Hui Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Min Addy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|