1
|
Pasupathi S, Rahman SSA, Karuppiah S. Insights on comprehensive characterization of distinct growth stages of Sterculia foetida pod as a potential feedstock for bioethanol production. Sci Rep 2025; 15:15448. [PMID: 40316661 PMCID: PMC12048496 DOI: 10.1038/s41598-025-99197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Lignocellulosic biomass explores a sustainable and renewable energy source that could provide a suitable solution to energy demands. However, diversity is the main obstacle that hinders the biorefinery approach to bioethanol production. In this study, the non-edible feedstock, Sterculia foetida pod, green-colored skin (GSFP), and brown-colored skin (BSFP) were used as feedstock for the production of bioethanol. To examine the comprehensive characterization of selected biomass, namely BSFP and GSFP, the various methods, namely physicochemical analysis, proximate analysis, ultimate (CHNS) analysis, bulk density, and calorific value were employed. The functional group analysis, thermal stability, surface morphology, and crystallinity index for biomasses were characterized by FTIR spectroscopy, Thermo-gravimetric (TGA) analysis, scanning electron microscope (SEM), and XRD analysis. The elemental and chemical composition of GSFP and BSFP were extensively evaluated using different methods. The value-added precursors, namely cellulose and lignin isolated from GSFP and BSFP. The cellulose content in GSFP and BSFP pods was found to be 35.28 ± 3.39% and 33.95 ± 4.49% and the lignin content was 17.37 ± 3.54% and 20.79 ± 8.78% respectively. The obtained cellulose from GSFP and BSFP was subjected to two-step acid hydrolysis on different SL ratio (1:10-5:10) to prepare fermentable sugars at different concentration (g/L). Based on the different sugar concentration, the bioethanol concentration (0.91 to 18.78 g/L; 0.23 to 12.23 g/L) and specific bioethanol yield (0.44 to 1.52 g/g; 0.13 to 1.55 g/g) increased for both BSFP and GSFP respectively.
Collapse
Affiliation(s)
- Saroja Pasupathi
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Sameeha Syed Abdul Rahman
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Sugumaran Karuppiah
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
2
|
Guan Y, Wu J, Gao Y, Zheng Y, Zheng J, Xia T, Li G, Zhang L, Shi Y, Huo M, Yang X, Wang X. Achieve full utilization of lignin, cellulose and hemicellulose from corn stover with amphiphilic polyoxometalate catalysts in a one-pot method. Int J Biol Macromol 2025; 309:142892. [PMID: 40203935 DOI: 10.1016/j.ijbiomac.2025.142892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The innovative utilization of lignin, cellulose, and hemicellulose from waste biomass, such as corn stover, represents a significant advancement in converting renewable biomass into aromatic compounds and reducing sugars. The lignin-first concept represents a pivotal advancement in using lignocellulose as a value-added chemical. However, the intricate bonding patterns among the three major components of lignocellulose, coupled with hydrogen bonding at both intramolecular and intermolecular levels, pose considerable challenges in achieving efficient catalytic conversion. Consequently, a series of (STAC)nH5-nPMo10V2O40(n = 1-5) (STAC = stearyl trimethyl ammonium chloride, C21H46NCl) catalysts with amphiphilic micellar structures were designed and employed for the catalytic oxidation of corn stover. The catalysts demonstrated efficacy in cleaving the CC and CO bonds of lignin, attributable to the V-based oxidation center of the polyoxometalates. Moreover, the amphiphilic structure further potentiates the generation of aromatic monomer products during the lignin depolymerization. The lignin monomer was isolated with a yield of 24.41 % in 10 h at 130 °C utilizing the catalyst (STAC)2H3PMo10V2O40. Furthermore, the catalysts were utilized to convert hemicellulose and cellulose into sugars, achieving a 39.29 % yield of carbohydrate compounds at 170 °C in water, thereby highlighting the broad applicability and versatility. The exceptional recyclability and stability of these micellar-type catalysts allow them to retain high activity over 10 consecutive reuse cycles. Utilizing a one-pot approach with a lignin-first strategy, mediated by these catalysts, enables the comprehensive utilization and conversion of corn stover. This research establishes a robust framework for the advancement of renewable resource utilization and sustainable chemical processes.
Collapse
Affiliation(s)
- Yue Guan
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Jinghui Wu
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Yidi Gao
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yiyun Zheng
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Jiemin Zheng
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Teng Xia
- Linyi Ecological Environment Monitoring Center of Shandong Province, Linyi 276000, China
| | - Guanqiao Li
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Leilei Zhang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yan Shi
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Mingxin Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xia Yang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China.
| | - Xianze Wang
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| |
Collapse
|
3
|
Yiakoumetti A, Green C, Reynolds M, Ward J, Stephens G, Conradie A. The generation game: Toward the generational genetic stability of continuous culture. iScience 2025; 28:111787. [PMID: 40034848 PMCID: PMC11872498 DOI: 10.1016/j.isci.2025.111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Fed-batch bioprocesses are typically deployed to convert renewable feedstocks to bio-based products using metabolically engineered microorganisms. However, for low-value chemicals, fed-batch cultures provide insufficient volumetric productivity to yield commercially viable products. The greater overall volumetric productivity of continuous culture holds techno-economic promise, but the genetic instability of engineered strains has prevented commercial deployment. This study demonstrated the continuous bioproduction of citramalate (CMA) for over 1,000 h at a productivity of 0.32 gCMA gDCW -1 h-1. Plasmid segregational stability was ensured via infA-complementation, and structural stability was obtained under phosphate limitation in the chemostat. By contrast, glucose limitation promoted structural plasmid instability. Cost-prohibitive inducers were also avoided by using a constitutive promoter for gene expression. Plasmid-borne expression of CMA synthase delivered enhanced productivity compared to a chromosomal integrant strain also developed in this study. This work advances the techno-economic feasibility of sustainable chemicals manufacturing from renewable feedstocks by engineered strains in microbial cell culture.
Collapse
Affiliation(s)
- Andrew Yiakoumetti
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charlotte Green
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mark Reynolds
- Mitsubishi Chemical Methacrylates, Wilton Centre, Wilton, Redcar TS10 4RF, UK
| | - John Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Gill Stephens
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alex Conradie
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
4
|
Queiroz SS, Campos IS, Silva TF, Felipe MDGA. Xylitol bioproduction by Candida tropicalis: effects of glucose/xylose ratio and pH on fermentation and gene expression. Braz J Microbiol 2025; 56:105-116. [PMID: 39562490 PMCID: PMC11885737 DOI: 10.1007/s42770-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Xylitol is a highly demanded polyol in the food, pharmaceutical, and chemical industries. However, its current production methods are considered energy-intensive, require the use of hazardous chemical catalysts, and depend on complex and costly equipment. The biotechnological route of xylitol production is proposed as a sustainable alternative, but it still requires process improvements, such as enhanced fermentation capabilities, to be economically competitive. This study examined Candida tropicalis yeast to improve xylose-to-xylitol conversion via glucose: xylose ratio and pH modulation. Key parameters evaluated included xylose consumption rate (rS), xylose-to-xylitol yield (YP/S), and xylitol volumetric productivity (QP). Conditions with 50 g/L xylose at pH 3.5 exhibited superior xylitol production: 29.81 g/L, QP of 0.52 g/L/h, and YP/S of 0.54 g/g at 48 h. The statistical model demonstrated that the maximum YP/S and QP values have not yet been achieved. This could present an opportunity to be explored through yeast genetic engineering approaches. Additionally, the quantitative expression of the xylose transporter genes (XUT1 and STL2) and the xylose reductase gene (XYL1), previously identified in C. tropicalis, was evaluated under all tested conditions. Upregulation of the XUT1 was correlated with higher xylose concentrations, while STL2 was favored at lower xylose concentrations. The expression of XYL1 showed upregulation over time with higher xylose ratios. The high transcription levels and expression profile suggest that Xut1p-mediated xylose transport occurs through a proton symport mechanism. The results indicate that the pH factor indirectly influences XUT1 gene transcription, possibly as a compensatory response to the reduced transporter efficiency under high pH conditions. The present work underscores the influence of glucose ratios and pH in xylitol production, as well as the gene expression of xylose transporters and the key enzyme xylose reductase. Leveraging these insights can significantly enhance xylitol production from hemicellulosic hydrolysates through biotechnological pathways.
Collapse
Affiliation(s)
- Sarah S Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Isabela S Campos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Tatiane F Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Maria das Graças A Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil.
| |
Collapse
|
5
|
Mutmainna I, Gareso PL, Suryani S, Tahir D. Can agriculture and food waste be a solution to reduce environmental impact of plastic pollution? zero-waste approach for sustainable clean environment. BIORESOURCE TECHNOLOGY 2025; 420:132130. [PMID: 39892585 DOI: 10.1016/j.biortech.2025.132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Agriculture and food waste, especially from fruits, vegetables, and plant byproducts like banana peels, avocado seeds, and durian seeds, have emerged as promising alternatives for bioplastic production. These materials, rich in polysaccharides and cellulose, offer a sustainable solution to reduce plastic pollution and mitigate the environmental impact of traditional plastics. This review focuses on the potential of utilizing agricultural and food waste to create starch-based bioplastics, emphasizing the importance of a zero-waste approach to enhance the economic value of these byproducts while promoting a cleaner environment. We include a SWOT analysis of this innovative approach, assess the environmental implications of bioplastic production, and highlight the potential for turning agricultural waste into a key player in the fight against plastic pollution. This review also explores the future prospects of harnessing agriculture and food waste as valuable resources for sustainable bioplastics, contributing to a greener, more sustainable world.
Collapse
Affiliation(s)
- Inayatul Mutmainna
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | - Paulus Lobo Gareso
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
6
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Cueto J, de la Calle D, Mar Alonso-Doncel MD, Giner EA, García-Muñoz RA, Serrano DP. Enhanced production of jet fuel precursors via furfural/cyclopentanone aldol condensation by synergistic pairing TiO 2 with nano-ZSM-5 zeolite. BIORESOURCE TECHNOLOGY 2025; 418:131877. [PMID: 39608420 DOI: 10.1016/j.biortech.2024.131877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/26/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Aldol condensation of biomass-derived compounds offers a sustainable route to jet fuel precursors. This study explores catalysts based on nanocrystalline ZSM-5 zeolite (n-ZSM-5) modified with various metals (Ca, Mg, Sn, Ti, Zr) for the aldol condensation of furfural (FFL) and cyclopentanone (CPO). While both reactants can enter the ZSM-5 micropores, the resulting C10 (FC) and C15 (F2C) adducts are too large to be formed within or to exit the microporosity, being instead produced over the external acid sites. Metal modification significantly impacts catalytic activity: Ca and Mg reduce conversion, Sn is neutral, whereas Zr and Ti leads to enhanced performance. The TiO2/n-ZSM-5 catalyst shows by far the best behavior, doubling FFL conversion and sharply increasing the FC + F2C yield, which is attributed to a synergistic effect arising from the generation of accessible weak Lewis acid sites by highly dispersed TiO2 that complement the external Brønsted acidity of ZSM-5.
Collapse
Affiliation(s)
- Jennifer Cueto
- Thermochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, E28935, Móstoles, Madrid, Spain.
| | - Daniel de la Calle
- Thermochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, E28935, Móstoles, Madrid, Spain; Group of Chemical and Environmental Engineering, Rey Juan Carlos University, C/ Tulipán s/n, E28933, Móstoles, Madrid, Spain.
| | - María Del Mar Alonso-Doncel
- Thermochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, E28935, Móstoles, Madrid, Spain.
| | - Elena A Giner
- Thermochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, E28935, Móstoles, Madrid, Spain.
| | - Rafael A García-Muñoz
- Group of Chemical and Environmental Engineering, Rey Juan Carlos University, C/ Tulipán s/n, E28933, Móstoles, Madrid, Spain.
| | - David P Serrano
- Thermochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, E28935, Móstoles, Madrid, Spain; Group of Chemical and Environmental Engineering, Rey Juan Carlos University, C/ Tulipán s/n, E28933, Móstoles, Madrid, Spain.
| |
Collapse
|
8
|
Schoofs L, Weidener D, Leitner W, Klose H, Grande PM. Lignocellulose Treatment Using a Flow-Through Variant of OrganoCat Process. CHEMSUSCHEM 2025; 18:e202401063. [PMID: 39319399 PMCID: PMC11789971 DOI: 10.1002/cssc.202401063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
This study adapts the biphasic OrganoCat system into a flow-through (FT) reactor, using a heated tubular setup where a mixture of oxalic acid and 2-methyltetrahydrofuran (2-MTHF) is pumped through beech wood biomass. This method minimizes solvent-biomass contact time, facilitating rapid product removal and reducing the risk of secondary reactions. A comparative analysis with traditional batch processes reveals that the FT system, especially under severe conditions, significantly enhances extraction efficiency, yielding higher amounts of lignin and sugars with reduced solid residue. Notably, the FT system shows partial hydrolysis of the cellulose, which increases with temperature while not producing significant amounts of furfural or 5-HMF, indicating more efficient depolymerization of polysaccharides without substantial sugar degradation. A statistical design of experiments (DOE) using a Box-Behnken design elucidates the influence of process variables (time, solvent flow rate, temperature) on the yield. Key findings highlight reactor temperature as the dominant factor affecting yields, with process time showing a significant but less pronounced impact. This study demonstrates the potential of the FT OrganoCat system for efficient lignocellulosic biomass fractionation and represents an advancement towards continuous lignocellulose processing, contributing to our knowledge of process optimization for improved biorefinery applications.
Collapse
Affiliation(s)
- Leonie Schoofs
- Institute for Bio and Geo SciencesPlant SciencesForschungszentrum Jülich GmbH52425JülichGermany
- RWTH Aachen University52074AachenGermany
- Bioeconomy Science Center (BioSC)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Dennis Weidener
- Institute for Bio and Geo SciencesPlant SciencesForschungszentrum Jülich GmbH52425JülichGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 152074AachenGermany
- Bioeconomy Science Center (BioSC)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 152074AachenGermany
- Max-Planck-Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Holger Klose
- Institute for Bio and Geo SciencesPlant SciencesForschungszentrum Jülich GmbH52425JülichGermany
- RWTH Aachen University52074AachenGermany
- Bioeconomy Science Center (BioSC)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Philipp M. Grande
- Institute for Bio and Geo SciencesPlant SciencesForschungszentrum Jülich GmbH52425JülichGermany
- Bioeconomy Science Center (BioSC)Forschungszentrum Jülich GmbH52425JülichGermany
| |
Collapse
|
9
|
Pereira LMS, Taveira IC, Maués DB, de Paula RG, Silva RN. Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production. Appl Microbiol Biotechnol 2025; 109:19. [PMID: 39841260 PMCID: PMC11754382 DOI: 10.1007/s00253-025-13408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways. The review also emphasizes the potential of genetic engineering to enhance the specificity and efficiency of these transporters, overcoming challenges such as substrate competition and limited pentose metabolism in industrial strains. By integrating the latest research findings, this work underscores the pivotal role of fungal STs in optimizing lignocellulosic bioethanol production and advancing the bioeconomy. Future prospects for engineering transport systems and their implications for industrial biotechnology are also discussed. KEY POINTS: STs present a conserved structure with different sugar affinities STs are involved in the signaling and transport of sugars derived from plant biomass Genetic engineering of STs can improve 2G bioethanol production.
Collapse
Affiliation(s)
- Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
10
|
Ntostoglou E, Martin V, Khatiwada D, Urban F. Path-dependencies in the transition to sustainable biowaste valorization: Lessons from a socio-technical analysis of Sweden and Greece. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 192:47-57. [PMID: 39586151 DOI: 10.1016/j.wasman.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Achieving sustainable biowaste management is a key challenge for cities worldwide. In this context, biowaste valorization is an indispensable option for managing unavoidable biowaste and reducing the associated methane emissions. Several innovations that enable biowaste valorization are technologically mature. However, their implementation is still limited in most cities around the world. Therefore, it is essential to better understand the different pathways towards implementing biowaste valorization. This paper presents a case-study of two countries at different phases in their transition to biowaste valorization: Sweden as a case at a mature phase and Greece as a case at a formative phase. We apply the Technological Innovation Systems framework to investigate how innovation systems for biowaste valorization develop and associated path-dependencies. Our findings show that various path-dependence lock-ins can occur at different transition phases. Our empirical insights suggest that a focus on the diffusion of certain mature innovations can support the growth of biowaste valorization systems. However, it can also lead to path-dependence lock-ins that influence the systems' resilience to shocks. We thus recommend decision-makers to pursue balance between the rapid diffusion of mature innovations for biowaste valorization and parallel support for experimenting with more radical innovations to harness the systems' resilience to shocks.
Collapse
Affiliation(s)
- Eftychia Ntostoglou
- Division of Energy Systems, Department of Energy Technology, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden.
| | - Viktoria Martin
- Division of Energy Systems, Department of Energy Technology, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden
| | - Dilip Khatiwada
- Division of Energy Systems, Department of Energy Technology, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden
| | - Frauke Urban
- Department of Industrial Economics and Management, KTH Royal Institute of Technology, Lindstedtsvägen 30, 11428 Stockholm, Sweden
| |
Collapse
|
11
|
Yildiz-Ozturk E, Secim-Karakaya P, Alptekin FM, Celiktas MS. Optimization of Green Extraction Techniques for Polyphenolics in Pinus brutia Bark Extract and Steam Gasification of the Remaining Fraction to Obtain Hydrogen-Rich Syngas and Activated Carbon. ACS OMEGA 2024; 9:50158-50174. [PMID: 39741869 PMCID: PMC11683633 DOI: 10.1021/acsomega.4c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 01/03/2025]
Abstract
Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in Pinus brutia bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon. The optimum process parameters for MAE were determined as 70 °C, 10 min, and 900 W, and 987.32 mg gallic acid equivalent (GAE), 23.7 mg quercetin/g extract, and 86.2% antioxidant activity were obtained. The optimum process parameters for UAE were determined as 70 °C, 20 min, and 50% power, and 811.84 mg gallic acid equivalent (GAE), 30.1 mg quercetin/g extract, and 90.8% antioxidant efficiency were obtained. The extracts obtained under optimized conditions were assessed for the bioactive phenolic compounds taxifolin, (-)-catechin, (-)-epicatechin, and (-)-epicatechin gallate by ultra performance liquid chromatography (UPLC). Especially in MAE (ethanol), taxifolin content was notable (34.0 mg/g extract), followed by UAE (ethanol) (23.5 mg/g extract). Compared to MAE (ethanol) and UAE (ethanol) with regards to catechin content, 1.05 mg/g extract and 0.81 mg/g extract were obtained, respectively. Catalytic and noncatalytic steam gasification of pine bark residue yielded 57.3 and 60.8 mol % H2, respectively. In addition, excellent tar reduction was achieved through utilizing a 10% boron-modified CaO alkali catalyst, and the obtained activated carbon exhibited 1358.32 m2/g Brunauer-Emmett-Teller (BET) surface area and 1.05 cm3/g total pore volume, which has potential use as an adsorbent for removing heavy metals and electrode material for supercapacitor application.
Collapse
Affiliation(s)
- Ece Yildiz-Ozturk
- Department
of Food Processing, Food Technology Programme, Yasar University, 35100 Bornova, Izmir, Turkey
| | - Pelin Secim-Karakaya
- Textile
and Apparel Research-Application Center, Ege University, 35040 Bornova, Izmir, Turkey
| | | | | |
Collapse
|
12
|
Freitas Paiva M, Sadula S, Vlachos DG, Wojcieszak R, Vanhove G, Bellot Noronha F. Advancing Lignocellulosic Biomass Fractionation through Molten Salt Hydrates: Catalyst-Enhanced Pretreatment for Sustainable Biorefineries. CHEMSUSCHEM 2024; 17:e202400396. [PMID: 38872421 DOI: 10.1002/cssc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Developing a process that performs the lignocellulosic biomass fractionation under milder conditions simultaneously with the depolymerization and/or the upgrading of all fractions is fundamental for the economic viability of future lignin-first biorefineries. The molten salt hydrates (MSH) with homogeneous or heterogeneous catalysts are a potential alternative to biomass pretreatment that promotes cellulose's dissolution and its conversion to different platform molecules while keeping the lignin reactivity. This review investigates the fractionation of lignocellulosic biomass using MSH to produce chemicals and fuels. First, the MSH properties and applications are discussed. In particular, the use of MSH in cellulose dissolution and hydrolysis for producing high-value chemicals and fuels is presented. Then, the biomass treatment with MSH is discussed. Different strategies for preventing sugar degradation, such as biphasic media, adsorbents, and precipitation, are contrasted. The potential for valorizing isolated lignin from the pretreatment with MSH is debated. Finally, challenges and limitations in utilizing MSH for biomass valorization are discussed, and future developments are presented.
Collapse
Affiliation(s)
- Mateus Freitas Paiva
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- UMR 8522 - PC2 A - Physicochimie des Processus de Combustion et de l'Atmosphère, Univ. Lille, CNRS, F-59000, Lille, France
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 150/221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 150/221 Academy Street, Newark, Delaware 19716, United States
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- L2CM UMR 7053, Université de Lorraine and CNRS, F-5400, Nancy, France
| | - Guillaume Vanhove
- UMR 8522 - PC2 A - Physicochimie des Processus de Combustion et de l'Atmosphère, Univ. Lille, CNRS, F-59000, Lille, France
| | - Fábio Bellot Noronha
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- National Institute of Technology, Catalysis, Biocatalysis and Chemical Processes Division, Rio de Janeiro, RJ 20081-312, Brazil
| |
Collapse
|
13
|
Shanmuganathan R, Sharma A, Alshehri MA, Kamarudin SK, Arivalagan P. Mesoporous SO 42- / kit-6-catalyzed hydrocracking of waste chicken oil. ENVIRONMENTAL RESEARCH 2024; 258:119482. [PMID: 38914252 DOI: 10.1016/j.envres.2024.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
In this study, we studied the hydrocracking of waste chicken oil (WCO) catalyzed by mesoporous SO42-/KIT-6. The study included WCO extraction, SO42-/KIT-6 catalyst synthesis, hydrocracking, and catalytic characterization. XRD patterns revealed intense peaks in the low-angle region, with shoulder peaks showing an increase in sulphate loading from 10% to 30%. The BET-specific surface area for the pure KIT-6 supports measured at 1003 m2/g, indicative of a well-defined mesoporous structure. Thermogravimetric analysis (TGA) showed a two-stage weight loss, attributed to the elimination of hydrated water (about 200 °C) and decomposition of sulphate ions (400-450 °C). SEM analysis highlighted the surface morphology of the active SK-2 catalyst. Hydrocatalytic and catalytic cracking reactions were performed, and about 99.8% conversion was achieved with 20 mL/H H2 flow, whereas higher production of bioliquids was observed at a flow of 15 mL/h. The hydrocracking mechanism was also studied to understand the formation of lower hydrocarbons. GC analyses of simulated distilled gasoline, kerosene, and diesel showed diverse hydrocarbon compositions. For engine testing, non-hydrocracked fuel rose to 28 kW at 3000 rpm and declined to 21 kW at 3500 rpm. Emission analysis revealed decreasing trends in NOX emissions of hydrogen-rich blends, with values of 65 ppm, 54 ppm, and 48 ppm for petrol, NHBL, and HBL, respectively. Similarly, SO2 emissions reduced from petrol to NHBL and HBL at 910 ppm, 800 ppm, and 600 ppm, respectively, suggesting reduced environmental impact. CO emissions exhibited a substantial reduction in NHBL (0.90%) and HBL (0.54%) compared to petrol (2.70%), emphasizing the cleaner combustion characteristics. Our results provide a comprehensive exploration of waste chicken oil hydrocracking, emphasizing catalyst synthesis, fuel characterization, engine performance, and environmental impact, thereby contributing valuable insights to the field of sustainable bioenergy.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | | | - S K Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Department of Chemical Engineering, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Pugazhendhi Arivalagan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
14
|
Srinivasan S, Venkatachalam S. One pot green process for facile fractionation of sorghum biomass to lignin, cellulose and hemicellulose nanoparticles using deep eutectic solvent. Int J Biol Macromol 2024; 277:134295. [PMID: 39098673 DOI: 10.1016/j.ijbiomac.2024.134295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Complete valorization of lignocellulosic biomass is crucial for bio-based biorefineries to fulfil the circular bioeconomy concept. However, the existence of lignin carbohydrate complexes (LCC) in biomass hinders the simultaneous fractionation of biomass components, such as lignin, hemicellulose and cellulose, for subsequent biorefining processes. This study explores for the first time a novel approach tailored for the deconstruction of sorghum biomass components through efficient breakdown of LCC. Selective targeting of the major LCC linkages binding xylan and lignin was performed using an ultrasound-assisted deep eutectic solvent under mild treatment conditions. This process yielded a maximum cellulose content of 98.3 %, hemicellulose content of 95.2 %, and lignin content of 94.6 %, with the highest purities of 99.43 %, 96.71 %, and 98.12 %, respectively. FTIR, 2D-HSQC NMR and XRD analyses confirmed that most of the structural properties of lignin, hemicellulose, cellulose are retained. The lignocellulosic components were successfully valorised to cellulose, hemicellulose, and lignin nanoparticles with mean sizes of 64.5 ± 6 nm, 72.8 ± 4 nm and 57.2 ± 8 nm respectively, with good thermal stability. The proposed green process enables the complete utilization of agro-residue feedstock for the preparation of biomass-derived nanoparticles, thereby accelerating the economic and industrial prospects of bio-based biorefineries.
Collapse
Affiliation(s)
- Shobana Srinivasan
- Food Process Engineering Lab, Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sivakumar Venkatachalam
- Food Process Engineering Lab, Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
15
|
Kumar V, Malyan SK, Apollon W, Verma P. Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach. RENEWABLE ENERGY 2024; 228:120566. [DOI: 10.1016/j.renene.2024.120566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Makepa DC, Chihobo CH. Barriers to commercial deployment of biorefineries: A multi-faceted review of obstacles across the innovation chain. Heliyon 2024; 10:e32649. [PMID: 39183827 PMCID: PMC11341323 DOI: 10.1016/j.heliyon.2024.e32649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
Realizing integrated biorefineries producing multiple fuels, chemicals and materials from sustainable biomass feedstocks holds promise for transitioning industries onto low-carbon trajectories. However, widespread commercial implementation remains elusive despite two decades of technological advancements. This review synthesizes current literature to provide a comprehensive analysis of key multi-dimensional barriers inhibiting the scale-up of biorefineries. The review discusses the technical challenges around biomass conversion processes. Economic viability concerns such as high capital costs and lack of market competitiveness are also assessed. The review also evaluates the regulatory and policy complexities that poses risks and uncertainties in the scaling up of biorefineries. Socio-political acceptance hurdles including community engagement and public perception are also reviewed. The interconnected nature of these challenges is emphasized and strategies are recommended to enable full potential realization, covering areas such as enhanced stakeholder collaboration, advanced process intensification, supportive policy frameworks, innovative financing models and strategic marketing initiatives. International pilots and cross-sectoral knowledge exchange are highlighted as priority enablers. In conclusion, this review synthesizes insights from extensive demonstration efforts to identify priorities and pathways for accelerating the global commercial transition towards sustainable biorefinery implementation. It aims to inform strategic decision-making and collaborative actions amongst stakeholders in research, industry and policy domains.
Collapse
Affiliation(s)
- Denzel Christopher Makepa
- Department of Fuels and Energy Engineering, Chinhoyi University of Technology, Private Bag, 7724, Chinhoyi, Zimbabwe
| | - Chido Hermes Chihobo
- Department of Fuels and Energy Engineering, Chinhoyi University of Technology, Private Bag, 7724, Chinhoyi, Zimbabwe
| |
Collapse
|
17
|
Gugel I, Marchetti F, Costa S, Gugel I, Baldini E, Vertuani S, Manfredini S. 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation. Appl Microbiol Biotechnol 2024; 108:379. [PMID: 38888798 PMCID: PMC11189319 DOI: 10.1007/s00253-024-13217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.
Collapse
Affiliation(s)
- Irene Gugel
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Filippo Marchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Ilenia Gugel
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
18
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
19
|
Izydorczyk G, Skrzypczak D, Mironiuk M, Mikula K, Samoraj M, Gil F, Taf R, Moustakas K, Chojnacka K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171343. [PMID: 38438048 DOI: 10.1016/j.scitotenv.2024.171343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The growing focus on sustainable agriculture and optimal resource utilization has spurred investigations into lignocellulosic biomass as a potential source for producing environmentally friendly fertilizers. This paper reviews recent advancements in the production and application of innovative fertilizers derived from lignocellulose. It highlights potential in enhancing agricultural productivity and reducing environmental impacts such as carbon footprint and water pollution. The paper outlines various methods for conversion, highlighting the unique advantages of chemical, enzymatic, and microbiological processes, for converting lignocellulosic biomass into nutrient-rich fertilizers. The study compares the efficacy of lignocellulosic fertilizers to traditional fertilizers in promoting crop growth, enhancing soil health, and reducing nutrient losses. The results demonstrate the potential of lignocellulosic biomass-derived fertilizers in promoting resource efficiency and sustainable agriculture. While this research significantly contributes to the existing body of knowledge, further studies on long-term impacts and scalability are recommended for the development of innovative and sustainable agricultural practices.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland.
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Mateusz Samoraj
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Filip Gil
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Rafał Taf
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| |
Collapse
|
20
|
Salzano F, Aulitto M, Fiorentino G, Cannella D, Peeters E, Limauro D. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. Int J Biol Macromol 2024; 264:130550. [PMID: 38432267 DOI: 10.1016/j.ijbiomac.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
Collapse
Affiliation(s)
- Flora Salzano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Martina Aulitto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - David Cannella
- PhotoBiocatalysis Unit, Biomass Transformation lab - BTL, and Crop production and Biostimulation Lab - CPBL, Universitè libre de Brussels, ULB, Belgium
| | - Eveline Peeters
- Department of Bioengineering Sciences Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
21
|
Nisar S, Raza ZA. Corn straw lignin - A sustainable bioinspired finish for superhydrophobic and UV-protective cellulose fabric. Int J Biol Macromol 2024; 257:128393. [PMID: 38013073 DOI: 10.1016/j.ijbiomac.2023.128393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Hydrophobic textiles have been considered extensively for self-cleaning, phase-separating, and biomedical curing applications. We focused on preparing an eco-friendly lignin-based bio-finish to develop superhydrophobic cellulose fabric under mild conditions. The mass spectroscopic analysis expressed that the lignin comprised the major constituents of p-coumaryl alcohol, ferulic acid, coniferyl alcohol, and sinapyl alcohol. The surface morphological analysis indicated the formation of a regular lignin coating on the cellulose fabric. The bio-finished cellulose fabric prepared (at 2 %, w/v, lignin) expressed the maximum water contact angle (WCA) of 157.2° and remained in the hydrophobic range (119°) after ten standard washes. The treated fabric expressed the WCA values of 135.0 and 133.0° after exposure to pH 2 and 12 aqueous media, respectively. The infrared spectroscopic analysis indicated the functional chemistry of the precursors involved and possible alteration in their chemical interactions during processing. The lignin-treated cellulose was observed to be less crystalline as compared to the untreated one. Such fabric expressed acceptable comfort, sensorial properties, and thermal stability up to 333 °C. The treated fabrics could block up to 92.24 % UV-A and 98.62 % UV-B radiations. Consequently, the lignin-based finish sourced from wasted corn straw was found cost-effective and efficient for producing superhydrophobic cellulose fabric.
Collapse
Affiliation(s)
- Sabeen Nisar
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| |
Collapse
|
22
|
Chandrasekar M, Collins JL, Habibi S, Ong RG. Microfluidic reactor designed for time-lapsed imaging of pretreatment and enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 393:129989. [PMID: 37931765 DOI: 10.1016/j.biortech.2023.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The effect of tissue-specific biochemical heterogeneities of lignocellulosic biomass on biomass deconstruction is best understood through confocal laser scanning microscopy (CLSM) combined with immunohistochemistry. However, this process can be challenging, given the fragility of plant materials, and is generally not able to observe changes in the same section of biomass during both pretreatment and enzymatic hydrolysis. To overcome this challenge, a custom polydimethylsiloxane (PDMS) microfluidic imaging reactor was constructed using standard photolithographic techniques. As proof of concept, CLSM was performed on 60 μm-thick corn stem sections during pretreatment and enzymatic hydrolysis using the imaging reactor. Based on the fluorescence images, the less lignified parenchyma cell walls were more susceptible to pretreatment than the lignin-rich vascular bundles. During enzymatic hydrolysis, the highly lignified protoxylem cell wall was the most resistant, remaining unhydrolyzed even after 48 h. Therefore, imaging thin whole biomass sections was useful to obtain tissue-specific changes during biomass deconstruction.
Collapse
Affiliation(s)
- Meenaa Chandrasekar
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Jeana L Collins
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Rebecca G Ong
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA.
| |
Collapse
|
23
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
24
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
25
|
Rodrigues Reis CE, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnol Adv 2023; 68:108209. [PMID: 37467868 DOI: 10.1016/j.biotechadv.2023.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.
Collapse
Affiliation(s)
| | - Thais Suzane Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Márcio Daniel Nicodemos Ramos
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
26
|
Palaniswamy S, Ashoor S, Eskasalam SR, Jang YS. Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives. Front Bioeng Biotechnol 2023; 11:1272429. [PMID: 37954017 PMCID: PMC10634440 DOI: 10.3389/fbioe.2023.1272429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density. Sustainable management of lignocellulosic biomass waste and its utilization in fermentation are viable alternatives to produce butanol via the promising microbial catalyst clostridia. This review provides an overview of lignocellulosic biomass waste management, focusing on recent advances in strain development for butanol production from renewable biomass with an emphasis on future perspectives.
Collapse
Affiliation(s)
- Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Selim Ashoor
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Syafira Rizqi Eskasalam
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
27
|
Shikh Zahari SMSN, Che Sam NFI, Elzaneen KMH, Ideris MS, Harun FW, Azman HH. Understanding the cation exchange affinity in modified-MMT catalysts for the conversion of glucose to lactic acid. RSC Adv 2023; 13:31263-31272. [PMID: 37901855 PMCID: PMC10603823 DOI: 10.1039/d3ra05071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
This study investigated the exchange affinity of Fe3+, Cu2+, and Zn2+ cations in sulfuric acid-purified montmorillonite (S-MMT) to enhance Lewis acid sites and subsequently improve the catalytic conversion of glucose to lactic acid. XRD analysis suggested the successful cation exchange process, leading to structural expansion of the resultant cation exchanged-MMTs (CE-MMTs). XRF and TGA indicated that Zn2+ had the highest exchange affinity, followed by Cu2+ and then Fe3+. This finding was further supported by the results of TPD-NH3 analysis and pyridine-adsorption test, which demonstrated that Zn-MMT had the highest total acid sites (TAS) and the ratio of Lewis acid-to-Brønsted acid surface site (LA/BA). These results indicated dominant presence of Lewis acid sites in Zn-MMT due to the higher amount of exchanged Zn2+ cations. Consistently, time-dependent catalytic studies conducted at 170 °C showed that a 7 h-reaction generated the highest lactic acid yield, with the catalytic performance increasing in the order of Fe-MMT < Cu-MMT < Zn-MMT. The study also observed the impact of adding alcohols as co-solvents with water at various ratios on the conversion of glucose to lactic acid catalysed by Zn-MMT. The addition of ethanol enhanced lactic acid yield, while methanol and propanol inhibited lactic acid formation. Notably, a water-to-ethanol ratio of 30 : 70 v/v% emerged as the optimal solvent condition, resulting in ca. 35 wt% higher lactic acid yield compared to using water alone. Overall, this study provides valuable insights into the cation exchange affinity of different cations in MMT catalysts and their relevance to the conversion of glucose to lactic acid. Furthermore, the incorporation of alcohol co-solvent presents a promising way of enhancing the catalytic activity of CE-MMTs.
Collapse
Affiliation(s)
- S M Shahrul Nizan Shikh Zahari
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
- Department of Chemical Engineering, South Kensington Campus, Imperial College London London SWZ 2AZ UK
| | - Nur Fatin Izzati Che Sam
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Kholoud M H Elzaneen
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Mahfuzah Samirah Ideris
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Farah Wahida Harun
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Hazeeq Hazwan Azman
- Department of Science Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor Jalan Timur Tambahan, 45600 Bestari Jaya Selangor Malaysia
| |
Collapse
|
28
|
Rocha Balbino T, Sánchez-Muñoz S, Díaz-Ruíz E, Moura Rocha T, Mier-Alba E, Custódio Inácio S, Jose Castro-Alonso M, de Carvalho Santos-Ebinuma V, Fernando Brandão Pereira J, César Santos J, Silvério da Silva S. Lignocellulosic biorefineries as a platform for the production of high-value yeast derived pigments - A review. BIORESOURCE TECHNOLOGY 2023; 386:129549. [PMID: 37499926 DOI: 10.1016/j.biortech.2023.129549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lignocellulosic byproducts, mainly generated by the agro-industrial sector, have great potential as cost-effective feedstocks for bioprocesses because of their abundant availability and high content of sugar-rich and nutrient-rich elements. This biomass can be employed as a carbon source to produce various molecules using several microorganisms. Yeast strains have shown their capability to metabolize diverse C5 and C6 carbon sources, thereby facilitating their use in the bioprocessing of lignocellulosic biomass. Furthermore, yeasts can produce a wide range of valuable products, including biofuels, enzymes, proteins, and pigments, making them attractive for use in integrated biorefineries. Yeast-derived pigments have versatile applications and are environmentally friendly alternatives to their synthetic counterparts. This review emphasizes the potential of lignocellulosic biomass as a feedstock for producing yeast-derived products with a focus on pigments as valuable molecules. It also proposes a yeast-derived pigment platform utilizing lignocellulosic byproducts and explores its potential integration in biorefineries.
Collapse
Affiliation(s)
- Thercia Rocha Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil.
| | - Salvador Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Erick Díaz-Ruíz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Thiago Moura Rocha
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Edith Mier-Alba
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Stephanie Custódio Inácio
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Maria Jose Castro-Alonso
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Araraquara, São Paulo 14801-902, Brazil
| | - Jorge Fernando Brandão Pereira
- University of Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra 30-790, Portugal
| | - Júlio César Santos
- Laboratory of Biopolymers, Bioreactors and Process Simulation, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| |
Collapse
|
29
|
Li Q, Gao R, Li Y, Fan B, Ma C, He YC. Improved biotransformation of lignin-valorized vanillin into vanillylamine in a sustainable bioreaction medium. BIORESOURCE TECHNOLOGY 2023; 384:129292. [PMID: 37295479 DOI: 10.1016/j.biortech.2023.129292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Lignin is a critical biopolymer for creating a large number of highly valuable biobased compounds. Vanillin, one of lignin-derived aromatics, can be used to synthesize vanillylamine that is a key fine chemical and pharmaceutical intermediate. To produce vanillylamine, a productive whole-cell-catalyzed biotransformation of vanillin was developed in deep eutectic solvent - surfactant - H2O media. One newly created recombinant E. coli 30CA cells expressing ω-transaminase and L-alanine dehydrogenase was employed to transform 50 mM and 60 mM vanillin into vanillylamine in the yield of 82.2% and 8.5% under 40 °C, respectively. The biotransamination efficiency was enhanced by introducing surfactant PEG-2000 (40 mM) and deep eutectic solvent ChCl:LA (5.0 wt%, pH 8.0), and the highest vanillylamine yield reached 90.0% from 60 mM vanillin. Building an effective bioprocess was utilized for transamination of lignin-derived vanillin to vanillylamine with newly created bacteria in an eco-friendly medium, which had potential application for valorization of lignin to value-added compounds.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Ruiying Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yucheng Li
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Bo Fan
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
30
|
Kim S, Lee KH, Lee J, Lee SK, Chun Y, Lee JH, Yoo HY. Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules. Int J Mol Sci 2023; 24:12366. [PMID: 37569741 PMCID: PMC10419010 DOI: 10.3390/ijms241512366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Peanut shells (PSs) generated from agricultural waste contain valuable compounds with bioactive properties such as anti-aging, antimicrobial, and antioxidant properties, making it desirable to recycle them as a sustainable resource. The aim of this study is to design an effective luteolin recovery process as the first step of an integrated biorefinery utilizing PSs as raw material. The major extraction variables and their ranges for luteolin recovery from PSs were determined (0-60 °C, 1-5 h, 0-100% MeOH concentration) and a predictive model was derived through a response surface methodology (RSM). Based on the predictive model, the equation determined for the maximal extraction of luteolin at 1 h was as follows: y = -1.8475x + 159.57, and the significant range of variables was as follows: 33.8 °C ≤ temperature (x) ≤ 48.5 °C and 70.0% ≤ MeOH concentration (y) ≤ 97.5%, respectively. High antioxidant and elastase inhibitory activities of PS extracts were confirmed, and these results support their potential to be used as functional materials. In addition, 39.2% of the solid residue after extraction was carbohydrate, which has potential as a carbon source for fermentation. This study provides a useful direction on an integrated biorefinery approach for sustainable agricultural waste valorization.
Collapse
Affiliation(s)
- Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| | - Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| | - Soo Kweon Lee
- Fermentation Team, Lotte R&D Center, 210 Magokjungang-Ro, Gangseo-Gu, Seoul 07594, Republic of Korea;
| | - Youngsang Chun
- Department of Advanced Materials Engineering, Shinhan University, Uijeongbu 11644, Republic of Korea;
| | - Ja Hyun Lee
- Department of Convergence Bio-Chemical Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; (S.K.); (K.H.L.); (J.L.)
| |
Collapse
|
31
|
Wu J, Li L, Wang W. Greater Importance of Structural Changes Over Lignin Removal in Impacting the Enzymatic Hydrolysis of Crop Straws. ACS OMEGA 2023; 8:26556-26560. [PMID: 37521611 PMCID: PMC10373177 DOI: 10.1021/acsomega.3c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
The importance of structural changes and lignin removal in influencing the enzymatic hydrolysis of crop straws was investigated. Alkaline pretreatment of corn stover (CS) and rice straw (RS) was conducted to remove lignin. It was found that alkaline pretreatment caused more lignin removal from CS than RS under the same condition, and CS and RS treated at 40 °C (CS40 and RS40) attained less lignin removal than those treated at 80 °C (CS80 and RS80). However, CS40 achieved glucan conversion efficiency of 70.77% which was 11.85% less than that of RS40, and similar glucan conversion efficiencies were obtained for RS 40 and RS80. Structural observation showed that the connection among single fiber bundle of CS40 was tighter than that of RS40, while those of RS40 and RS80 were loose. It meant that structural changes might be more important than lignin removal to influence enzymatic hydrolysis of crop straws.
Collapse
Affiliation(s)
- Jianli Wu
- Huanghe
S&T University, Zhengzhou, Henan Province 450063, China
| | - Le Li
- Huanghe
S&T University, Zhengzhou, Henan Province 450063, China
| | - Wen Wang
- Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510640, China
| |
Collapse
|
32
|
Martín M, Taifouris M, Galán G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. BIORESOURCE TECHNOLOGY 2023:129397. [PMID: 37380036 DOI: 10.1016/j.biortech.2023.129397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Biomass can become the source for chemicals towards a sustainable production system. However, the challenges it presents such as the variety of species, their widespread and sparse availability, and the expensive transportation claims for an integrated approach to design the novel production system. Multiscale approaches have not been properly extended to biorefineryes design and deployment, due to the comprehensive experimental and modelling work they require. A systems perspective provides the systematic framework to analyze the availability and composition of raw materials across regions, how that affects process design, the portfolio of products that can be obtained by evaluating the strong link between the biomass features and the process design. The use of lignocellulosic materials requires for a multidisciplinary work, that must lead to new process engineers with technical competences in biology, biotechnology but also process engineering, mathematics, computer science and social sciences towards a sustainable process/chemical industry.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain.
| | - Manuel Taifouris
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| | - Guillermo Galán
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
33
|
Xiao LP, Lv YH, Yang YQ, Zou SL, Shi ZJ, Sun RC. Unraveling the Lignin Structural Variation in Different Bamboo Species. Int J Mol Sci 2023; 24:10304. [PMID: 37373449 DOI: 10.3390/ijms241210304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The structure of cellulolytic enzyme lignin (CEL) prepared from three bamboo species (Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii) has been characterized by different analytical methods. The chemical composition analysis revealed a higher lignin content, up to 32.6% of B. lapidea as compared to that of N. affinis (20.7%) and D. brandisii (23.8%). The results indicated that bamboo lignin was a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin associated with p-coumarates and ferulates. Advanced NMR analyses displayed that the isolated CELs were extensively acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate groups). Moreover, a predominance of S over G lignin moieties was found in CELs of N. affinis and B. lapidea, with the lowest S/G ratio observed in D. brandisii lignin. Catalytic hydrogenolysis of lignin demonstrated that 4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived from β-O-4' moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units were identified as the six major monomeric products. We anticipate that the insights of this work could shed light on the sufficient understanding of lignin, which could open a new avenue to facilitate the efficient utilization of bamboo.
Collapse
Affiliation(s)
- Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue-Qin Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang-Lin Zou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng-Jun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
34
|
Rodríguez-Quesada L, Ramírez-Sánchez K, León-Carvajal S, Sáenz-Arce G, Vásquez-Sancho F, Avendaño-Soto E, Montero-Rodríguez JJ, Starbird-Perez R. Evaluating the Effect of Iron(III) in the Preparation of a Conductive Porous Composite Using a Biomass Waste-Based Starch Template. Polymers (Basel) 2023; 15:polym15112560. [PMID: 37299358 DOI: 10.3390/polym15112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, the effect of iron(III) in the preparation of a conductive porous composite using a biomass waste-based starch template was evaluated. Biopolymers are obtained from natural sources, for instance, starch from potato waste, and its conversion into value-added products is highly significant in a circular economy. The biomass starch-based conductive cryogel was polymerized via chemical oxidation of 3,4-ethylenedioxythiophene (EDOT) using iron(III) p-toluenesulfonate as a strategy to functionalize porous biopolymers. Thermal, spectrophotometric, physical, and chemical properties of the starch template, starch/iron(III), and the conductive polymer composites were evaluated. The impedance data of the conductive polymer deposited onto the starch template confirmed that at a longer soaking time, the electrical performance of the composite was improved, slightly modifying its microstructure. The functionalization of porous cryogels and aerogels using polysaccharides as raw materials is of great interest for applications in electronic, environmental, and biological fields.
Collapse
Affiliation(s)
- Laria Rodríguez-Quesada
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos (CEQIATEC), Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Sebastián León-Carvajal
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Giovanni Sáenz-Arce
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Heredia 86-3000, Costa Rica
- Centro de Investigación en Óptica y Nanofísica, Departamento de Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Fabián Vásquez-Sancho
- Materials Research Science and Engineering Center (CICIMA), University of Costa Rica, San José 11501-2060, Costa Rica
- School of Physics, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Esteban Avendaño-Soto
- Materials Research Science and Engineering Center (CICIMA), University of Costa Rica, San José 11501-2060, Costa Rica
- School of Physics, University of Costa Rica, San José 11501-2060, Costa Rica
| | | | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos (CEQIATEC), Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
35
|
Yadav A, Sharma V, Tsai ML, Chen CW, Sun PP, Nargotra P, Wang JX, Dong CD. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2023; 381:129145. [PMID: 37169207 DOI: 10.1016/j.biortech.2023.129145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The idea of environment friendly and affordable renewable energy resources has prompted the industry to focus on the set up of biorefineries for sustainable bioeconomy. Lignocellulosic biomass (LCB) is considered as an abundantly available renewable feedstock for the production of biofuels which can potentially reduce the dependence on petrochemical refineries. By utilizing various conversion technologies, an integrated biorefinery platform of LCB can be created, embracing the idea of the 'circular bioeconomy'. The development of effective pretreatment methods and biocatalytic systems by various bioengineering and machine learning approaches could reduce the bioprocessing costs, thereby making biomass-based biorefinery more sustainable. This review summarizes the development and advances in the lignocellulosic biorefineries from the LCB to the final product stage using various different state-of-the-art approaches for the progress of circular bioeconomy. The life cycle assessment which generates knowledge on the environmental impacts related to biofuel production chains is also summarized.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Jia-Xiang Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
36
|
Timofeev KL, Kulinich SA, Kharlamova TS. NH 2-Modified UiO-66: Structural Characteristics and Functional Properties. Molecules 2023; 28:molecules28093916. [PMID: 37175325 PMCID: PMC10180438 DOI: 10.3390/molecules28093916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The development of new functional materials based on metal-organic frameworks (MOFs) for adsorption and catalytic applications is one of the promising trends of modern materials science. The Zr-based MOFs, specifically UiO-66, are considered as the supports for metallic catalysts for the 5-hydroxymethylfurfural platform molecule reduction into valuable products. The present work focused on the effect of NH2 modification of UiO-66 on its structure and functional properties. The samples were prepared by a solvothermal method. The structure of the obtained materials was studied by X-ray diffraction, IR spectroscopy, UV-visible spectroscopy, and low-temperature nitrogen adsorption. Basic properties were investigated by HCl and CH3COOH adsorption, and electrokinetic properties were studied by electrophoretic light scattering. UiO-66-NH2 samples with different contents of aminoterephthalate linkers were successfully prepared. A gradual decrease in the specific surface area and the fraction of micropores with a diameter of ~0.9 nm was observed with an increase in the aminoterephthalate content. A proportional increase in the total number of basic sites in UiO-66-NH2 samples was established with an increase in the aminoterephthalate content up to 75%. At the same time, a noticeable decrease in the total number of basic sites and an increase in their strength with higher aminoterephthalate content was observed.
Collapse
Affiliation(s)
| | - Sergei A Kulinich
- Research Institute of Science & Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
| | - Tamara S Kharlamova
- Laboratory of Catalytic Research, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
37
|
Koubová A, Lorenc F, Horváthová T, Chroňáková A, Šustr V. Millipede gut-derived microbes as a potential source of cellulolytic enzymes. World J Microbiol Biotechnol 2023; 39:169. [PMID: 37186294 DOI: 10.1007/s11274-023-03620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Lignocellulose biomass has recently been considered a cost-effective and renewable energy source within circular economy management. Cellulases are important key enzymes for simple, fast, and clean biomass decomposition. The intestinal tract of millipedes is the environment which can provide promising microbial strains with cellulolytic potential. In the present study, we used the tropical millipede Telodeinopus aoutii as an experimental organism. Within a feeding test in which millipedes were fed with oak and maple leaf litter, we focused on isolating culturable cellulolytic microbiota from the millipede gut. Several growth media selecting for actinobacteria, bacteria, and fungi have been used to cultivate microbial strains with cellulolytic activities. Our results showed that oak-fed millipedes provided a higher number of culturable bacteria and a more diversified microbial community than maple-fed ones. The screening for cellulolytic activity using Congo red revealed that about 30% of bacterial and fungal phylotypes isolated from the gut content of T. aoutii, produced active cellulases in vitro. Actinobacteria Streptomyces and Kitasatospora were the most active cellulolytic genera on Congo red test. In contrast, fungi Aspergillus, Penicillium, Cheatomium, Clonostachys, and Trichoderma showed the highest protein-specific cellulase activity quantified by 4-Methylumbelliferyl β-D-cellobioside (4-MUC). Our findings provide a basis for future research on the enzyme activities of microbes isolated from the digestive tracts of invertebrates and their biocatalytic role in biomass degradation.
Collapse
Affiliation(s)
- Anna Koubová
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - František Lorenc
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05, České Budějovice, Czech Republic
| | - Terézia Horváthová
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Alica Chroňáková
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
38
|
Kumar V, Vangnai AS, Sharma N, Kaur K, Chakraborty P, Umesh M, Singhal B, Utreja D, Carrasco EU, Andler R, Awasthi MK, Taherzadeh MJ. Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment. CHEMOSPHERE 2023; 319:138005. [PMID: 36731660 DOI: 10.1016/j.chemosphere.2023.138005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The inevitable need for waste valorisation and management has revolutionized the way in which the waste is visualised as a potential biorefinery for various product development rather than offensive trash. Biowaste has emerged as a potential feedstock to produce several value-added products. Bioenergy generation is one of the potential applications originating from the valorisation of biowaste. Bioenergy production requires analysis and optimization of various parameters such as biowaste composition and conversion potential to develop innovative and sustainable technologies for most effective utilization of biowaste with enhanced bioenergy production. In this context, feedstocks, such as food, agriculture, beverage, and municipal solid waste act as promising resources to produce renewable energy. Similarly, the concept of microbial fuel cells employing biowaste has clearly gained research focus in the past few decades. Despite of these potential benefits, the area of bioenergy generation still is in infancy and requires more interdisciplinary research to be sustainable alternatives. This review is aimed at analysing the bioconversion potential of biowaste to renewable energy. The possibility of valorising underutilized biowaste substrates is elaborately presented. In addition, the application and efficiency of microbial fuel cells in utilizing biowaste are described in detail taking into consideration of its great scope. Furthermore, the review addresses the significance bioreactor development for energy production along with major challenges and future prospects in bioenergy production. Based on this review it can be concluded that bioenergy production utilizing biowaste can clearly open new avenues in the field of waste valorisation and energy research. Systematic and strategic developments considering the techno economic feasibilities of this excellent energy generation process will make them a true sustainable alternative for conventional energy sources.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed to Be) University, Whitefield, Bangalore-66, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de Los Recursos Naturales (Cenbio), Universidad Católica Del Maule, Chile
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | | |
Collapse
|
39
|
Duan C, Tian C, Tian G, Wang X, Shen M, Yang S, Ni Y. Simultaneous microwave-assisted phosphotungstic acid catalysis for rapid improvements on the accessibility and reactivity of Kraft-based dissolving pulp. Int J Biol Macromol 2023; 227:214-221. [PMID: 36549608 DOI: 10.1016/j.ijbiomac.2022.12.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Improving the cellulose accessibility and reactivity in an efficient and convenient way has become the focused issue in the field of dissolving pulp manufacturing. We herein demonstrate a simple yet efficient strategy, namely a simultaneous microwave (MW)-assisted phosphotungstic acid (PTA) catalysis (MW-PTAsim). The MW-PTAsim treatment was efficient to improve Fock reactivity from 49.1 % to 85.8 % and decrease viscosity from 561 to 360 mL/g within 10 min, which was superior to the single MW treatment and the sequential MW-PTAseq treatment. Besides, the MW-PTAsim treated fiber had rougher and more fibrillated surfaces with an enhanced fiber accessibility, showing increased specific surface area (SSA) from 1.43 to 6.31 m2/g, mean pore diameter (MPD) from 6.92 to 11.20 nm and water retention value (WRV) from 101 % to 172 %. These positive enhancements are mainly due to a synergy that MW-enhanced rotation of PTA mediums was served as "spinning cutters" to attack the fibers, plus MW-accelerated PTA transfer and catalytic hydrolysis further improved the fiber accessibility. Moreover, PTA also demonstrates a high reusability and chemical stability. This process offers an effective and sustainable alternative for manufacturing a premium dissolving pulp.
Collapse
Affiliation(s)
- Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chaochao Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guodong Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xinqi Wang
- China Textile Academy, State Key Laboratory of Bio-based Fiber Manufacturing Technology, Beijing, 100025, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yonghao Ni
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, New Brunswick, Canada
| |
Collapse
|
40
|
Foong SY, Chan YH, Lock SSM, Chin BLF, Yiin CL, Cheah KW, Loy ACM, Yek PNY, Chong WWF, Lam SS. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges, and future prospects. BIORESOURCE TECHNOLOGY 2023; 369:128478. [PMID: 36513306 DOI: 10.1016/j.biortech.2022.128478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The valorization and conversion of biomass into various value-added products and bioenergy play an important role in the realization of sustainable circular bioeconomy and net zero carbon emission goals. To that end, microwave technology has been perceived as a promising solution to process and manage oil palm waste due to its unique and efficient heating mechanism. This review presents an in-depth analysis focusing on microwave-assisted torrefaction, gasification, pyrolysis and advanced pyrolysis of various oil palm wastes. In particular, the products from these thermochemical conversion processes are energy-dense biochar (that could be used as solid fuel, adsorbents for contaminants removal and bio-fertilizer), phenolic-rich bio-oil, and H2-rich syngas. However, several challenges, including (1) the lack of detailed study on life cycle assessment and techno-economic analysis, (2) limited insights on the specific foreknowledge of microwave interaction with the oil palm wastes for continuous operation, and (3) effects of tunable parameters and catalyst's behavior/influence on the products' selectivity and overall process's efficiency, remain to be addressed in the context of large-scale biomass valorization via microwave technology.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kin Wai Cheah
- Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
| | | | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, Sibu, Sarawak, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
41
|
Duan C, Tian C, Feng X, Tian G, Liu X, Ni Y. Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp. BIORESOURCE TECHNOLOGY 2023; 370:128543. [PMID: 36581230 DOI: 10.1016/j.biortech.2022.128543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Viscosity control and reactivity enhancement are critical to produce high-quality cellulose products, such as dissolving pulp, yet remain challenging. In this work, an ultrafast process, namely microwave-assisted deep eutectic solvent (MW-DES), is proposed for this purpose. It is based on the hypothesis that the MW-DES process can deliver an enhanced synergy: a simultaneous fiber swelling and cellulose depolymerization via hydrogen-bonding break-up and acid hydrolysis from the actions of polar and acidic DES further boosted under MW irradiation. Results showed that after the MW-DES (Choline chloride- oxalic acid, ChCl-OA) treatment for only 40 s, the pulp viscosity decreased from 715 to 453 mL/g, and the reactivity increased from 43.0 % to 84.6 %, which is ultrafast in comparison with those reported work. Furthermore, DES in the process shows a high reusability and chemical stability, thus offering a simple, sustainable and effective alternative for upgrading of dissolving pulp, particularly, using non-wood materials of bamboo.
Collapse
Affiliation(s)
- Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Chaochao Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaomeng Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guodong Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoshuang Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
42
|
Zhang W, Chen Q, Chen J, Xu D, Zhan H, Peng H, Pan J, Vlaskin M, Leng L, Li H. Machine learning for hydrothermal treatment of biomass: A review. BIORESOURCE TECHNOLOGY 2023; 370:128547. [PMID: 36584720 DOI: 10.1016/j.biortech.2022.128547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Hydrothermal treatment (HTT) (i.e., hydrothermal carbonization, liquefaction, and gasification) is a promising technology for biomass valorization. However, diverse variables, including biomass compositions and hydrothermal processes parameters, have impeded in-depth mechanistic understanding on the reaction and engineering in HTT. Recently, machine learning (ML) has been widely employed to predict and optimize the production of biofuels, chemicals, and materials from HTT by feeding experimental data. This review comprehensively analyzed the application of ML for HTT of biomass and systematically illustrated basic ML procedure and descriptors for inputs and outputs of ML models (e.g., biomass compositions, operation conditions, yield and physicochemical properties of derived products) that could be applied in HTT. Moreover, this review summarized ML-aided HTT prediction of yield, compositions, and physicochemical properties of HTT hydrochar or biochar, bio-oil, syngas, and aqueous phase. Ultimately, future prospects were proposed to enhance predictive performance, mechanistic interpretation, process optimization, data sharing, and model application during ML-aided HTT.
Collapse
Affiliation(s)
- Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qingyue Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiefeng Chen
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Hao Zhan
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jian Pan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Mikhail Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
43
|
Iyyappan J, Baskar G, Deepanraj B, Anand AV, Saravanan R, Awasthi MK. Promising strategies of circular bioeconomy using heavy metal phytoremediated plants - A critical review. CHEMOSPHERE 2023; 313:137097. [PMID: 36334740 DOI: 10.1016/j.chemosphere.2022.137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is an excellent method for removing harmful heavy metals from the environment since it is eco-friendly, uses little energy, and is inexpensive. However, as phytoremediated plants can turn into secondary sources for heavy metals, complete heavy metal removal from phytoremediated plants is necessary. Elimination of toxic heavy metals from phytoremediated plants should be considered with foremost care. This review highlights about important sources of heavy metal contamination, health effects caused by heavy metal contamination and technological breakthroughs of phytoremediation. This review critically emphasis about promising strategies to be engaged for absolute reutilization of heavy metals and spectacular approaches of production of commercially imperative products from phytoremediated plants through circular bioeconomy with key barriers. Thus, phytoremediation combined with circular bioeconomy can create a new platform for the eco-friendly life.
Collapse
Affiliation(s)
- J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, Tamil Nadu, India.
| | - B Deepanraj
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - A Vivek Anand
- Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India.
| | - R Saravanan
- Departamento de Ingeniería Mecanica, Facultad de Ingeniería, Universidad de Tarapaca, Avda. General Velasquez, 1775, Arica, Chile
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| |
Collapse
|
44
|
Zhao ZM, Yu W, Huang C, Xue H, Li J, Zhang D, Li G. Steam explosion pretreatment enhancing enzymatic digestibility of overground tubers of tiger nut ( Cyperus esculentus L.). Front Nutr 2023; 9:1093277. [PMID: 36687667 PMCID: PMC9852858 DOI: 10.3389/fnut.2022.1093277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Tiger nut (TN) is recognized as a high potential plant which can grow in well-drained sandy or loamy soils and provide food nutrients. However, the overground tubers of TN remain unutilized currently, which limits the value-added utilization and large-area cultivation of this plant. Methods In the present study, the overground tubers of TN were subjected to enzymatic hydrolysis to produce fermentable sugars for biofuels production. Steam explosion (SE) was applied to modify the physical-chemical properties of the overground tubers of TN for enhancing its saccharification. Results and discussion Results showed that SE broke the linkages of hemicellulose and lignin in the TN substrates and increased cellulose content through removal of hemicellulose. Meanwhile, SE cleaved inner linkages within cellulose molecules, reducing the degree of polymerization by 32.13-77.84%. Cellulose accessibility was significantly improved after SE, which was revealed visibly by the confocal laser scanning microscopy imaging techniques. As a result, enzymatic digestibility of the overground tubers of TN was dramatically enhanced. The cellulose conversion of the SE treated TN substrates reached 38.18-63.97%, which was 2.5-4.2 times higher than that without a SE treatment. Conclusion Therefore, SE pretreatment promoted saccharification of the overground tubers of TN, which paves the way for value-added valorization of the TN plants.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wenqing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Caitong Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Juan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dejian Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China,Dejian Zhang ✉
| | - Guanhua Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China,*Correspondence: Guanhua Li ✉
| |
Collapse
|
45
|
Velvizhi G, Nair R, Goswami C, Arumugam SK, Shetti NP, Aminabhavi TM. Carbon credit reduction: A techno-economic analysis of "drop-in" fuel production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120507. [PMID: 36341830 DOI: 10.1016/j.envpol.2022.120507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The current study elucidates the fundamentals of technical, financial, and environmental viability of the processes used for sustainable "drop-in" fuel generation. At present, the price of producing "drop-in" fuels is around two times as costly (5-6 USD/gallon) as the cost of fossil fuels (3 USD/gallon), especially when using second-generation feedstocks. Hence, this necessitates a comprehensive techno-economic understanding of the current technologies with respect to "drop-in"-fuel. This entitles technical-economic viability, and environmental sustainability to make the processes involved commercially viable. In this context, the present review addresses unique contrasts among the various processes involved in "drop-in" fuel production. Furthermore, principles and process flow of techno-economic analysis as well as environmental implications in terms of reduced carbon footprint and carbon credit are elucidated to discuss fundamentals of techno-economic analysis in terms of capital and operational expenditure, revenue, simulation, cash flow analysis, mass and energy balances with respect to evidence-based practices. Case specific techno-economic studies with current developments in this field of research with emphasis on software tools viz., Aspen Plus, Aspen HYSIS, Aspen Plus Economic Analyser (APEC) Aspen Icarus Process Evaluator (AIPE) are also highlighted. The study also emphasis on the carbon foot print of biofuels and its carbon credits (Carbon Offset Credits (COCs) and Carbon Reduction Credits (CRCs)) by leveraging a deep technical and robust business-oriented insights about the techno-economic analysis (TEA) exclusively for the biofuel production.
Collapse
Affiliation(s)
- G Velvizhi
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Rishika Nair
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Chandamita Goswami
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | | | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab, 140413, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
46
|
Djellabi R, Aboagye D, Galloni MG, Vilas Andhalkar V, Nouacer S, Nabgan W, Rtimi S, Constantí M, Medina Cabello F, Contreras S. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species - A review. BIORESOURCE TECHNOLOGY 2023; 368:128333. [PMID: 36403911 DOI: 10.1016/j.biortech.2022.128333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
Collapse
Affiliation(s)
- Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Melissa Greta Galloni
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | | | - Sana Nouacer
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba BP12 2300, Algeria; École Nationale Supérieure des Mines et Métallurgie, ENSMM, Ex CEFOS Chaiba BP 233 RP Annaba, Sidi Amar W129, Algeria
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, Geneva 1201, Switzerland
| | - Magda Constantí
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | | | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| |
Collapse
|
47
|
Optimization and Determination of Kinetic Parameters of the Synthesis of 5-Lauryl-hydroxymethylfurfural Catalyzed by Lipases. Catalysts 2022. [DOI: 10.3390/catal13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydroxymethylfurfural esters (HMF-esters) have great potential for additive development; for this reason, the goal of this work was to study the optimization of the esterification conversion of HFM and lauric acid using two lipases: the Novozym 435® biocatalyst and immobilized lipase from Thermomyces lanuginosus (TL). For the optimization of conversion, a three-level three-factorial Box–Behnken experimental design was used. The models achieved a good fit (R2 over 90%) for reactions catalyzed with Novozym 435® and immobilized TL lipase. The best conversion, 78.4%, was achieved with immobilized TL lipase using 30 mM HMF, 16 U of biocatalytic activity, and 50 °C. The kinetic parameters without inhibition by the substrate were determined using the Michaelis–Menten mechanism, whereby VMax for both biocatalysts reached the highest values at 50 °C, and the highest enzyme–substrate affinities (low Km) were reached at temperatures of 30 °C and 40 °C. It can be concluded that immobilized TL lipase has the potential to catalyze this reaction since, under optimal reaction conditions, an 80.6% conversion (value predicted) could be achieved.
Collapse
|
48
|
Li J, Zeng Y, Wang WB, Wan QQ, Liu CG, den Haan R, van Zyl WH, Zhao XQ. Increasing extracellular cellulase activity of the recombinant Saccharomyces cerevisiae by engineering cell wall-related proteins for improved consolidated processing of carbon neutral lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 365:128132. [PMID: 36252752 DOI: 10.1016/j.biortech.2022.128132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bioproduction usingcarbon neutral feedstocks, especially lignocellulosic biomass, has attracted increasing attention due to concern over climate change and carbon reduction. Consolidated bioprocessing (CBP) of lignocellulosic biomass using recombinantyeast of Saccharomyces cerevisiaeis a promising strategy forlignocellulosic biorefinery. However, the economic viability is restricted by low enzyme secretion levels.For more efficient CBP, MIG1spsc01isolated from the industrial yeast which encodes the glucose repression regulator derivative was overexpressed. Increased extracellular cellobiohydrolase (CBH) activity was observed with unexpectedly decreased cell wall integrity. Further studies revealed that disruption ofCWP2, YGP1, andUTH1,which are functionally related toMIG1spsc01, also enhanced CBH secretion. Subsequently, improved cellulase production was achieved by simultaneous disruption ofYGP1and overexpression ofSED5, which remarkably increased extracellular CBH activity of 2.2-fold over the control strain. These results provide a novel strategy to improve the CBP yeast for bioconversion of carbon neutral biomass.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Qing Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
49
|
Guo Q, Liu MM, Zheng SH, Zheng LJ, Ma Q, Cheng YK, Zhao SY, Fan LH, Zheng HD. Methanol-Dependent Carbon Fixation for Irreversible Synthesis of d-Allulose from d-Xylose by Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14255-14263. [PMID: 36286250 DOI: 10.1021/acs.jafc.2c06616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
d-Allulose is a rare hexose with great application potential, owing to its moderate sweetness, low energy, and unique physiological functions. The current strategies for d-allulose production, whether industrialized or under development, utilize six-carbon sugars such as d-glucose or d-fructose as a substrate and are usually based on the principle of reversible Izumoring epimerization. In this work, we designed a novel route that coupled the pathways of methanol reduction, pentose phosphate (PP), ribulose monophosphate (RuMP), and allulose monophosphate (AuMP) for Escherichia coli to irreversibly synthesize d-allulose from d-xylose and methanol. After improving the expression of AlsE by SUMO fusion and regulating the carbon fluxes by knockout of FrmRAB, RpiA, PfkA, and PfkB, the titer of d-allulose in fed-batch fermentation reached ≈70.7 mM, with a yield of ≈0.471 mM/mM on d-xylose or ≈0.512 mM/mM on methanol.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Mei-Ming Liu
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shang-He Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qian Ma
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ying-Kai Cheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Su-Ying Zhao
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| |
Collapse
|
50
|
Rivas S, Santos V, Parajó JC. Effects of Hydrothermal Processing on Miscanthus × giganteus Polysaccharides: A Kinetic Assessment. Polymers (Basel) 2022; 14:4732. [PMID: 36365725 PMCID: PMC9657454 DOI: 10.3390/polym14214732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/27/2023] Open
Abstract
Miscanthus × giganteus samples were characterized for composition and treated with hot compressed water (hydrothermal or autohydrolysis treatments) at temperatures in the range of 190-240 °C. The liquid phases from treatments were analyzed to assess the breakdown of susceptible polysaccharides into a scope of soluble intermediates and reaction products. The experimental concentration profiles determined for the target compounds (monosaccharides, higher saccharides, acetic acid and sugar-decomposition products) were interpreted using a pseudohomogeneous kinetic mechanism involving 27 reactions, which were governed by kinetic coefficients showing an Arrhenius-type temperature dependence. The corresponding activation energies were calculated and compared with data from the literature. The kinetic equations allowed a quantitative assessment of the experimental results, providing key information for process simulation and evaluation.
Collapse
Affiliation(s)
- Sandra Rivas
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Valentín Santos
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Juan Carlos Parajó
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| |
Collapse
|