1
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Wei X, Reddy VS, Gao S, Zhai X, Li Z, Shi J, Niu L, Zhang D, Ramakrishna S, Zou X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens Bioelectron 2024; 248:115947. [PMID: 38181518 DOI: 10.1016/j.bios.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Zhang H, Jin K, Xiong K, Jing W, Pang Z, Feng M, Cheng X. Disease-associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med 2023; 12:15720-15735. [PMID: 37260140 PMCID: PMC10417192 DOI: 10.1002/cam4.6194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in the colorectal cancer (CRC) process. Ectopic colonization of multiple oral bacteria is reportedly associated with CRC pathogenesis and progression, but the details remain unclear. METHODS We enrolled a cohort of 50 CRC patients and 52 healthy controls from an East China population. Taxonomic and functional analysis of the fecal microbiota were performed using 16S rDNA (50 + 52 samples) and shotgun metagenomic sequencing (8 + 6 samples), respectively, with particular attention paid to gut-colonized oral bacteria. RESULTS AND CONCLUSIONS The results showed more detected bacterial species but lower species evenness within the samples from CRC patients. To determine the specific bacteria enriched in each group, we analyzed their possible protective, carcinogenic, or opportunistic roles in the CRC process. Among the ectopic oral bacteria, we observed a significant increase in the abundance of Fusobacterium and decreased abundance of Prevotella and Ruminococcus in the CRC group. Main differences in the functional composition of these two groups were related to energy metabolism and biosynthesis, especially the glycolytic pathway. Furthermore, we validated the colonization of Fusobacterium nucleatum subsp. animalis within CRC tissues and studied its impact on the host intestinal epithelium and tumor cells. With high selectivity for cancerous tissues, this subspecies promoted CRC cell proliferation and induced potential DNA damage.
Collapse
Affiliation(s)
- Hongze Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Kai Jin
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Surgical Intensive Care UnitHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Kunlong Xiong
- Department of Respiratory and Critical MedicineNingbo First HospitalNingboChina
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zhen Pang
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Hand Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Guette-Marquet S, Basseguy R, Roques C, Bergel A. The electrochemical potential is a key parameter for cell adhesion and proliferation on carbon surface. Bioelectrochemistry 2022; 144:108045. [PMID: 35016068 DOI: 10.1016/j.bioelechem.2021.108045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023]
Abstract
The Nernst potential of the support/cell interface is suspected to play a key role in cell adhesion and proliferation. However, the studies that have addressed this topic have generally varied the electrochemical potential of the interface by comparing different materials or by varying the chemical composition of the surface coating. It is consequently hard to definitively separate the actual effect of the potential from possible side-effects due to differences in the surface composition or topography. Here, a 3-electrode set-up was used to apply different values of potential to identical carbon electrodes. Potentials were applied in the range -200 to 400 mV vs. silver pseudo-reference (SPR), i.e. 90 to 690 mV/SHE, to screen-printed carbon electrodes used to grow Vero or Raw 264.7 cell lines. Values up to 200 mV/SPR prohibited cell adhesion and even caused detachment of cells that were previously adhered. The value of 400 mV/DRP allowed cell adhesion and proliferation, leading to confluent and sometimes very compact mats. The zero charge potential, measured around 200 mV/DRP, showed that the drastic effect of the applied potential was probably due to the negative/positive switch of the surface charge.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, 35 chemin des maraîchers, 31062 Toulouse cedex 4, France
| | - Régine Basseguy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, 35 chemin des maraîchers, 31062 Toulouse cedex 4, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
5
|
El-Said WA, Yoon J, Lee SN, Choi JW. Electrochemical Cell Chips Based on Functionalized Nanometals. Front Chem 2021; 9:671922. [PMID: 34026732 PMCID: PMC8134750 DOI: 10.3389/fchem.2021.671922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/14/2022] Open
Abstract
The electrochemical technique is one of the most accurate, rapid, and sensitive analytical assays, which becomes promising techniques for biological assays at a single-cell scale. Nanometals have been widely used for modification of the traditional electrodes to develop highly sensitive electrochemical cell chips. The electrochemical cell chips based on the nanostructured surface have been used as label-free, simple, and non-destructive techniques for in vitro monitoring of the effects of different anticancer drugs at the cellular level. Here, we will provide the recent progress in fabrication of nanopatterned surface and cell-based nanoarray, and discuss their applications based on electrochemical techniques such as detection of cellular states and chemicals, and non-destructive monitoring of stem cell differentiation.
Collapse
Affiliation(s)
- Waleed Ahmed El-Said
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.,Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| |
Collapse
|
6
|
Hur W, Son SE, Kim SN, Seong GH. Cell-based electrochemical cytosensor for rapid and sensitive evaluation of the anticancer effects of saponin on human malignant melanoma cells. Bioelectrochemistry 2021; 140:107813. [PMID: 33848876 DOI: 10.1016/j.bioelechem.2021.107813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Discovering new anticancer agents and analyzing their activities is a vital part of drug development, but it requires a huge amount of time and resources, leading to the increasing demands for more-effective techniques. Herein, a novel and simple cell-based electrochemical biosensor, referred to as a cytosensor, was proposed to investigate the electrochemical behavior of human skin malignant melanoma (SK-MEL28) cells and the anticancer effect of saponin on cell viability. To enhance both electrocatalytic properties and biocompatibility, gold nanoparticles were electrochemically deposited onto a conductive substrate, and poly-L-lysine was further added to the electrode surface. Electric signals from SK-MEL28 cells on the electrodes were obtained from cyclic voltammetry and differential pulse voltammetry. The cathodic peak current was proportional to the cell viability and showed a detection range of 2,880-40,000 cells per device with an excellent linear cell number-intensity relationship (R2= 0.9952). Furthermore, the anticancer effect of saponin on SK-MEL28 cells was clearly established at concentrations higher than 20 μM, which was highly consistent with conventional assays. Moreover, the developed electrochemical cytosensor for evaluating anticancer effects enabled rapid (<2 min), sensitive (LOQ: 2,880cells/device), and non-invasive measurements, thus providing a new avenue for assessing the anticancer drugs in vitro.
Collapse
Affiliation(s)
- Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Nyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
7
|
Wei K, Sun J, Gao Q, Yang X, Ye Y, Ji J, Sun X. 3D "honeycomb" cell/carbon nanofiber/gelatin methacryloyl (GelMA) modified screen-printed electrode for electrochemical assessment of the combined toxicity of deoxynivalenol family mycotoxins. Bioelectrochemistry 2021; 139:107743. [PMID: 33524655 DOI: 10.1016/j.bioelechem.2021.107743] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
A "honeycomb" electrochemical biosensor based on 3D printing was developed to noninvasively monitor the viability of 3D cells and evaluate the individual or combined toxicity of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). Carbon nanofiber (CN)/gelatin methacryloyl (GelMA) conductive composite hydrogel with strong processability was printed on 8-channel screen-printed carbon electrodes (SPCEs) to maintain cell viability and form tight cell-to-cell contacts. A "3D honeycomb" printing infill pattern was selected in the construction of the biosensors to improve conductivity. Based on 3D printing technology, the electrochemical biosensor can prevent manual error and provide for high-throughput detection. Electrochemical impedance spectroscopy (EIS) was used to evaluate mycotoxin toxicity. The EIS response decreased with the concentration of DON, 3-ADON and 15-ADON in the range of 0.1-10, 0.05-100, and 0.1-10 μg/mL, respectively, with a limit of detection of 0.07, 0.10 and 0.06 μg/mL, respectively. Mycotoxin interactions were analyzed using the isobologram-combination index (CI) method. The electrochemical cytotoxicity evaluation result was confirmed by biological assays. Therefore, a novel method for evaluating the combined toxicity of mycotoxins is proposed, which exhibits potential for application to food safety and evaluation.
Collapse
Affiliation(s)
- Kaimin Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
8
|
Damiati S, Schuster B. Electrochemical Biosensors Based on S-Layer Proteins. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1721. [PMID: 32204503 PMCID: PMC7147708 DOI: 10.3390/s20061721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023]
Abstract
Designing and development of electrochemical biosensors enable molecule sensing and quantification of biochemical compositions with multitudinous benefits such as monitoring, detection, and feedback for medical and biotechnological applications. Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms for (e.g., point-of-care testing). The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. This review aims to highlight on exploiting S-layer proteins in biosensor technology for various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
- Current address: Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 21 Solna, Stockholm, Sweden
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
9
|
Microwave Enthrakometric Labs-On-A-Chip and On-Chip Enthrakometric Catalymetry: From Non-Conventional Chemotronics Towards Microwave-Assisted Chemosensors. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A unique chemical analytical approach is proposed based on the integration of chemical radiophysics with electrochemistry at the catalytically-active surface. This approach includes integration of: radiofrequency modulation polarography with platinum electrodes, applied as film enthrakometers for microwave measurements; microwave thermal analysis performed on enthrakometers as bolometric sensors; catalytic measurements, including registration of chemical self-oscillations on the surface of a platinum enthrakometer as the chemosensor; measurements on the Pt chemosensor implemented as an electrochemical chip with the enthrakometer walls acting as the chip walls; chemotron measurements and data processing in real time on the surface of the enthrakometric chip; microwave electron paramagnetic resonance (EPR) measurements using an enthrakometer both as a substrate and a microwave power meter; microwave acceleration of chemical reactions and microwave catalysis оn the Pt surface; chemical generation of radio- and microwaves, and microwave spin catalysis; and magnetic isotope measurements on the enthrakometric chip. The above approach allows one to perform multiparametric physical and electrochemical sensing on a single active enthrakometric surface, combining the properties of the selective electrochemical sensor and an additive physical detector.
Collapse
|
10
|
Arvand M, Dehsaraei M, Esmaili S. Electrochemical study on the natural and chemical preservatives antibacterial effect against S. aureus PTCC 1112 and its determination at low levels. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Khayamian MA, Baniassadi M, Abdolahad M. Monitoring the effect of sonoporation on the cells using electrochemical approach. ULTRASONICS SONOCHEMISTRY 2018; 41:619-625. [PMID: 29137794 DOI: 10.1016/j.ultsonch.2017.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sonoporation is applied to enhance the permeability of the cell to bioactive materials by employing the acoustic cavitation of microbubbles. This phenomena would be helpful in molecular biology, delivery of large molecules into the cells and gene therapy. Many methods have been applied to monitor the biological effects and trace of sonoporation on the cells such as scanning/transmission electron microscopy, confocal imaging and flow cytometry. Here, we monitored the effect of sonoporation on the cells using electrochemical method with an integrated three electrode system. Electrochemical responses of stimulated cells, compared to flow cytometry and electron microscopy results, presented different patterns of sonoporation in the cells detectable by cyclic voltammetry. In addition, confocal microscopy from actin stress fibers and young's modulus measured by AFM revealed the correlation of cell mechanics and amount of induced sonopores in the cells. This method could be applied as a new trend in cellular mechanochemical studies.
Collapse
Affiliation(s)
- Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
| |
Collapse
|
12
|
El-Said WA, Yoon J, Choi JW. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools. NANO CONVERGENCE 2018; 5:11. [PMID: 29721403 PMCID: PMC5913382 DOI: 10.1186/s40580-018-0143-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/12/2018] [Indexed: 05/22/2023]
Abstract
Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.
Collapse
Affiliation(s)
- Waleed A. El-Said
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04375 Republic of Korea
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04375 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04375 Republic of Korea
| |
Collapse
|
13
|
Kafi MA, Cho HY, Choi JW. Engineered peptide-based nanobiomaterials for electrochemical cell chip. NANO CONVERGENCE 2016; 3:17. [PMID: 28191427 PMCID: PMC5271568 DOI: 10.1186/s40580-016-0077-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/11/2016] [Indexed: 05/17/2023]
Abstract
Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.
Collapse
Affiliation(s)
- Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensigh, 2202 Bangladesh
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107 South Korea
| | - Hyeon-Yeol Cho
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 South Korea
| | - Jeong-Woo Choi
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107 South Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 South Korea
| |
Collapse
|
14
|
Waiwijit U, Maturos T, Pakapongpan S, Phokharatkul D, Wisitsoraat A, Tuantranont A. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells. J Biomater Appl 2016; 31:230-40. [DOI: 10.1177/0885328216656477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3–6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing.
Collapse
Affiliation(s)
- Uraiwan Waiwijit
- Thai Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thitima Maturos
- Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Saithip Pakapongpan
- Thai Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Ditsayut Phokharatkul
- Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anurat Wisitsoraat
- Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Adisorn Tuantranont
- Thai Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
15
|
Zhao W, Wang B, Wang W. Biochemical sensing by nanofluidic crystal in a confined space. LAB ON A CHIP 2016; 16:2050-2058. [PMID: 27098158 DOI: 10.1039/c6lc00416d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrokinetics at nanoscale has attracted broad attention as a promising conductivity based biochemical sensing principle with a good selectivity. The nanoparticle crystal, formed by self-assembling nanoparticles inside a microstructure, has been utilized to fulfill a nanoscale electrokinetics based biochemical sensing platform, named nanofluidic crystal in our previous works. This paper introduces a novel nanofluidic crystal scheme by packing nanoparticles inside a well-designed confined space to improve the device-to-device readout consistency. A pair of electrodes was patterned at the bottom of this tunnel-shaped confined space for ionic current recording. The readout from different chips (n = 16) varied within 8.4% under the same conditions, which guaranteed a self-calibration-free biochemical sensing. Biotin and Pb(2+) were successfully detected by using nanofluidic crystal devices packed with streptavidin and DNAzyme modified nanoparticles, respectively. The limits of detection (LODs) were both 1 nM. This electrically readable nanofluidic crystal sensing approach may find applications in low cost and fast disease screening in limited resource environments.
Collapse
Affiliation(s)
- Wenda Zhao
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Baojun Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China. and National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China and Innovation Center for Micro-Nano-electronics and Integrated System, Beijing, 100871, China
| |
Collapse
|
16
|
McKeating KS, Aubé A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 2016; 141:429-49. [DOI: 10.1039/c5an01861g] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Review of different biosensors and nanobiosensors increasingly used in therapeutic drug monitoring (TDM) for pharmaceutical drugs with dosage limitations or toxicity issues and for therapeutic response monitoring.
Collapse
Affiliation(s)
| | - Alexandra Aubé
- Département de chimie
- Université de Montréal
- Montreal
- Canada
| | - Jean-Francois Masson
- Département de chimie
- Université de Montréal
- Montreal
- Canada
- Centre for self-assembled chemical structures (CSACS)
| |
Collapse
|
17
|
In situ label-free quantification of human pluripotent stem cells with electrochemical potential. Biomaterials 2016; 75:250-259. [DOI: 10.1016/j.biomaterials.2015.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
|
18
|
Kafi MA, Cho HY, Choi JW. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1181-1199. [PMID: 28347059 PMCID: PMC5304640 DOI: 10.3390/nano5031181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022]
Abstract
Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)₄ ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.
Collapse
Affiliation(s)
- Md Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensigh-2202, Bangladesh.
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea.
| | - Hyeon-Yeol Cho
- Department of Chemical and Bimolecular Engineering, Sogang University, Seoul 121-742, Korea.
| | - Jeong Woo Choi
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea.
- Department of Chemical and Bimolecular Engineering, Sogang University, Seoul 121-742, Korea.
| |
Collapse
|
19
|
El-Said WA, Kim TH, Chung YH, Choi JW. Fabrication of new single cell chip to monitor intracellular and extracellular redox state based on spectroelectrochemical method. Biomaterials 2014; 40:80-7. [PMID: 25433609 DOI: 10.1016/j.biomaterials.2014.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
Probing the local environment of target cells has been considered a challenging task due to the complexity of living cells. Here, we developed new single cell-based chip to investigate the intracellular and extracellular redox state of PC12 cells using spectroelectrochemical tool that combined surface-enhanced Raman scattering (SERS) and linear sweep voltammetry (LSV) techniques. PC12 cells immobilized on gold nanodots/ITO surface were subjected to LSV and their intracellular biochemical changes were successfully monitored by SERS simultaneously. Moreover, paired gold microelectrodes with micrometer-sized gap containing hexagonal array of gold nanodots were fabricated to detect electrochemical activity and changes in the redox environment of single PC12 cell based on SERS-LSV tool. This showed very effective detecting method. The used technology included the utilization of gold nanodots array inside micro-gap to enhance the Raman signals and the electrochemical activity of single cell. This could be used as an effective research tool to analyze cellular processes.
Collapse
Affiliation(s)
- Waleed Ahmed El-Said
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea; Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Tae-Hyung Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Yong-Ho Chung
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Jeong-Woo Choi
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 121-742, Republic of Korea; Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
20
|
Two-signal electrochemical method for evaluation suppression and proliferation of MCF-7 cells based on intracellular purine. Anal Biochem 2014; 456:1-5. [DOI: 10.1016/j.ab.2014.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/10/2023]
|
21
|
Nano-p–n junction heterostructures enhanced TiO2 nanobelts biosensing electrode. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2524-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Yu C, Zhu Z, Wang L, Wang Q, Bao N, Gu H. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test. Biosens Bioelectron 2014; 53:142-7. [DOI: 10.1016/j.bios.2013.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022]
|
23
|
El-Said WA, Cho HY, Yea CH, Choi JW. Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:910-918. [PMID: 24338869 DOI: 10.1002/adma.201303699] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/08/2013] [Indexed: 06/03/2023]
Abstract
Intracellular and extracellular formation of Au and Ag NPs with different sizes and shapes using human cells has been developed as green method, which does not require the use of any reducing agents. Also, the cell lysis is used for production of different metal NPs. Our results demonstrate that treatment of human cells with various metal ions cause cell fixation.
Collapse
Affiliation(s)
- Waleed A El-Said
- Interdisciplinary program of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Republic of Korea; Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | | | | |
Collapse
|
24
|
Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells. Biosens Bioelectron 2014; 51:97-102. [DOI: 10.1016/j.bios.2013.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/06/2013] [Accepted: 07/12/2013] [Indexed: 12/26/2022]
|
25
|
Meucci S, Travagliati M, Vittorio O, Cirillo G, Masini L, Voliani V, Picci N, Beltram F, Tredicucci A, Cecchini M. Tubeless biochip for chemical stimulation of cells in closed-bioreactors: anti-cancer activity of the catechin–dextran conjugate. RSC Adv 2014. [DOI: 10.1039/c4ra05496b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we introduce a tubeless microbioreactor for chemically stimulation of cells in microchambers, based on automatic cell valving, hydrostatic-pressure pumping and on-chip liquid reservoirs.
Collapse
Affiliation(s)
- Sandro Meucci
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
- Center for Nanotechnology Innovation@NEST
- Istituto Italiano di Tecnologia
| | - Marco Travagliati
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
- Center for Nanotechnology Innovation@NEST
- Istituto Italiano di Tecnologia
| | - Orazio Vittorio
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- I-87036 Rende (CS), Italy
- Leibniz Institute for Solid State and Materials Research Dresden
| | - Luca Masini
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
- Center for Nanotechnology Innovation@NEST
- Istituto Italiano di Tecnologia
| | - Valerio Voliani
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
- Center for Nanotechnology Innovation@NEST
- Istituto Italiano di Tecnologia
| | - Nevio Picci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- I-87036 Rende (CS), Italy
| | - Fabio Beltram
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
- Center for Nanotechnology Innovation@NEST
- Istituto Italiano di Tecnologia
| | | | - Marco Cecchini
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- Pisa 56127, Italy
| |
Collapse
|
26
|
Cell chip with a thiolated chitosan self-assembled monolayer to detect the effects of anticancer drugs on breast normal and cancer cells. Colloids Surf B Biointerfaces 2013; 112:387-92. [PMID: 24036200 DOI: 10.1016/j.colsurfb.2013.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
Cell-based chips are an effective in vitro analysis tool; however, the sensitivity of the cell chip to biomaterials is high, which is crucial for immobilizing cells on the electrode surface without conductivity. In this study, we report on a cell chip with a thiolated chitosan monolayer that was easy to fabricate, highly adhesive to cells, and enhanced electrochemical signals. Thiolated chitosan containing thiol groups was synthesized and self-assembled on a gold electrode to immobilize cells, and showed superior electrochemical performance to that of poly-l-lysine and collagen. Cyclic voltammetry (CV) was performed to distinguish the redox characteristics of normal (HMEC) and breast cancer cells (MCF-7); then, two anticancer drugs (doxorubicin and cyclophosphamide) were added to the cell cultures to analyze their effects on the redox environment of normal and cancer cells derived from the same origin. As a result, the CV cathode peaks decreased differently with respect to the cell line (normal and cancer) and anticancer drug, which was validated by a conventional MTT viability assay. Hence, the proposed cell chip with a thiolated chitosan modified layer could be used in various fields, including discriminating normal from cancer cells, to evaluating the efficiency of newly developed drugs, and to assessing cytotoxicity of various chemicals.
Collapse
|
27
|
Zhang LL, Chen X, Wei HT, Li H, Sun JH, Cai HY, Chen JL, Cui DF. An electrochemical surface plasmon resonance imaging system targeting cell analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:085005. [PMID: 24007100 DOI: 10.1063/1.4819027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.
Collapse
Affiliation(s)
- L L Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
In situ electrochemical detection of embryonic stem cell differentiation. J Biotechnol 2013; 166:1-5. [DOI: 10.1016/j.jbiotec.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/07/2013] [Accepted: 04/07/2013] [Indexed: 01/09/2023]
|
29
|
Seo YN, Lee YJ, Lee MY. Differential gene expression by chrysotile in human bronchial epithelial cells. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.628696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
30
|
Chalenko Y, Shumyantseva V, Ermolaeva S, Archakov A. Electrochemistry of Escherichia coli JM109: Direct electron transfer and antibiotic resistance. Biosens Bioelectron 2012; 32:219-23. [DOI: 10.1016/j.bios.2011.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 11/30/2022]
|
31
|
Highly sensitive electrochemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip. Biosens Bioelectron 2012; 32:266-72. [DOI: 10.1016/j.bios.2011.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/14/2011] [Accepted: 12/20/2011] [Indexed: 01/26/2023]
|
32
|
Uslu B, Ozkan SA. Electroanalytical Methods for the Determination of Pharmaceuticals: A Review of Recent Trends and Developments. ANAL LETT 2011. [DOI: 10.1080/00032719.2011.553010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: Recent developments. Talanta 2011; 85:28-34. [DOI: 10.1016/j.talanta.2011.04.069] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022]
|
34
|
Kafi MA, Kim TH, An JH, Choi JW. Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells. Biosens Bioelectron 2011; 26:3371-5. [DOI: 10.1016/j.bios.2010.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/02/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
35
|
El-Said WA, Kim TH, Kim H, Choi JW. Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering. PLoS One 2011; 6:e15836. [PMID: 21390213 PMCID: PMC3044723 DOI: 10.1371/journal.pone.0015836] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/28/2010] [Indexed: 11/18/2022] Open
Abstract
Near-infrared surface-enhanced Raman spectroscopy (SERS) is a powerful technique for analyzing the chemical composition within a single living cell at unprecedented resolution. However, current SERS methods employing uncontrollable colloidal metal particles or non-uniformly distributed metal particles on a substrate as SERS-active sites show relatively low reliability and reproducibility. Here, we report a highly-ordered SERS-active surface that is provided by a gold nano-dots array based on thermal evaporation of gold onto an ITO surface through a nanoporous alumina mask. This new combined technique showed a broader distribution of hot spots and a higher signal-to-noise ratio than current SERS techniques due to the highly reproducible and uniform geometrical structures over a large area. This SERS-active surface was applied as cell culture system to study living cells in situ within their culture environment without any external preparation processes. We applied this newly developed method to cell-based research to differentiate cell lines, cells at different cell cycle stages, and live/dead cells. The enhanced Raman signals achieved from each cell, which represent the changes in biochemical compositions, enabled differentiation of each state and the conditions of the cells. This SERS technique employing a tightly controlled nanostructure array can potentially be applied to single cell analysis, early cancer diagnosis and cell physiology research.
Collapse
Affiliation(s)
- Waleed Ahmed El-Said
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Hyuncheol Kim
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Kafi MA, Kim TH, An JH, Choi JW. Fabrication of Cell Chip for Detection of Cell Cycle Progression Based on Electrochemical Method. Anal Chem 2011; 83:2104-11. [DOI: 10.1021/ac102895b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md. Abdul Kafi
- Interdisciplinary Program of Integrated Biotechnology and ‡Department of Chemical & Biomolecular Engineering, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Tae-Hyung Kim
- Interdisciplinary Program of Integrated Biotechnology and ‡Department of Chemical & Biomolecular Engineering, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Jeung Hee An
- Interdisciplinary Program of Integrated Biotechnology and ‡Department of Chemical & Biomolecular Engineering, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Jeong-Woo Choi
- Interdisciplinary Program of Integrated Biotechnology and ‡Department of Chemical & Biomolecular Engineering, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
37
|
El-Said WA, Kim TH, Kim H, Choi JW. Detection of effect of chemotherapeutic agents to cancer cells on gold nanoflower patterned substrate using surface-enhanced Raman scattering and cyclic voltammetry. Biosens Bioelectron 2010; 26:1486-92. [DOI: 10.1016/j.bios.2010.07.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/12/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
38
|
Kafi MA, Kim TH, Yea CH, Kim H, Choi JW. Effects of nanopatterned RGD peptide layer on electrochemical detection of neural cell chip. Biosens Bioelectron 2010; 26:1359-65. [DOI: 10.1016/j.bios.2010.07.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
|
39
|
El-Said WA, Kim TH, Kim H, Choi JW. Three-dimensional mesoporous gold film to enhance the sensitivity of electrochemical detection. NANOTECHNOLOGY 2010; 21:455501. [PMID: 20947947 DOI: 10.1088/0957-4484/21/45/455501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cell-cell and cell-extracellular matrix (ECM) adhesion are fundamental and important in the development of a cell-based chip. In this study, a novel, simple, rapid, and one-step technique was developed for the fabrication of a uniform three-dimensional mesoporous gold thin film (MPGF) onto a gold (Au) coated glass plate based on an electrochemical deposition method. Scanning electron microscopy images demonstrated that the resulting MPGF electrode had uniformly distributed pores with diameters of about 20 nm. The cyclic voltammetric behavior of [Fe(CN)(6)](4-/3-) coupled onto MPGF and Au electrodes demonstrated that the MPGF electrode had a higher electrocatalytic sensitivity and reversibility than the bare Au electrode. The Arg-Gly-Asp (RGD) sequence containing the peptide was immobilized on the MPGF and bare Au substrates. HeLa cancer cells were then cultured on the RGD peptide layer. The successful immobilization of the peptide and cells was confirmed by atomic force microscopy. The cell proliferation and viability were evaluated by cyclic voltammetry and Trypan blue dyeing assay. These results indicated that the RGD/MPGF modified electrodes showed an electrochemical sensitivity in the detection of cancer cells which is approximately three times higher, especially at low cell density, than RGD/Au electrodes. This much improved sensitivity of the MPGF modified electrode demonstrates the potential for the fabrication of a highly sensitive and low-cost cell-based chip for rapid cancer detection.
Collapse
Affiliation(s)
- Waleed Ahmed El-Said
- Department Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A. Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 2010; 398:227-38. [PMID: 20623273 DOI: 10.1007/s00216-010-3933-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 12/15/2022]
Abstract
It has been estimated that over a billion dollars in resources can be consumed to obtain clinical approval, and only a few new chemical entities are approved by the US Food and Drug Administration (FDA) each year. Therefore it is of utmost importance to obtain the maximum amount of information about biological activity, toxicological profile, biochemical mechanisms, and off-target interactions of drug-candidate leads in the earliest stages of drug discovery. Cell-based assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of the drug-discovery process. Nevertheless, cellular screening, relying on different strategies ranging from reporter gene technology to protein fragment complementation assays, still presents a variety of challenges. This review focuses on main advantages and limitations of different cell-based approaches, and future directions and trends in this fascinating field.
Collapse
Affiliation(s)
- Elisa Michelini
- Department of Pharmaceutical Sciences, University of Bologna, Via Mentana, 7, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor. Biosens Bioelectron 2010; 25:1548-52. [DOI: 10.1016/j.bios.2009.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 11/08/2009] [Indexed: 11/20/2022]
|