1
|
Liu X, Zhang X, He Q, Sun X, Wang W, Li S. Effects of increasing n3:n6 ratio by replacing extruded soybeans with extruded flaxseed on dry matter intake, rumen fluid bacteria, and liver lipid metabolism in transition cows. BMC Microbiol 2025; 25:138. [PMID: 40087566 PMCID: PMC11907948 DOI: 10.1186/s12866-024-03733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/23/2024] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The drop of dry matter intake (DMI) and rise of milk production in transitional dairy cows would mobilize reserved fat and disrupt lipid metabolism, eventually attributed to negative energy balance (NEB) and immune injury. The positive effect of n-3 polyunsaturated fatty acids (PUFA) on regulating energy metabolism and inflammation has been elucidated, however, the lack of regulatory mechanism of dairy cows deserves further investigation. In this study, 30 Holstein transition cows were divided into the control (CON) and HN3 groups based on the n-3: n-6 PUFA ratio in the diet. RESULTS The results showed that compared to the CON group, high n-3: n-6 PUFA ratio-supplemented cows in the prepartum phase reduced the relative abundance of gram-negative bacteria in the rumen, the concentration of lipopolysaccharide in the plasma and liver also significantly decreased (P < 0.05). Transcriptomic analysis of the liver showed that the NF-κB signaling pathway significantly down-regulated and the taste transduction pathway up-regulated (P < 0.05) in the HN3 group. In the postpartum phase, a high n-3/n-6 PUFA ratio in the diet increased the relative abundance of Prevotella, Succinimonas and Treponema in the rumen, at the same time, orexins in plasma were also changed (P < 0.05). Further, the insulin resistance pathway significantly down-regulated and the taste transduction pathway up-regulated (P < 0.05) in the liver. CONCLUSIONS Overall, these results showed that a high n-3: n-6 PUFA ratio in the diet attenuates inflammatory responses in the prepartum phase and increases milk protein in the postpartum phase of transitional dairy cows. Appropriate increase in the proportion of n-3: n-6 PUFA ratio in the diet may be an effective measure to alleviate postpartum metabolic disease in dairy cows.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinyue Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiongyu He
- Animal Genomics, ETH Zurich, Universitatstrasse 2, Zurich, 8092, Switzerland
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Department of the neurosurgery, Penn State College of Medicine, 700 HMC Cres Rd, Hummelstown, PA, 17036, USA.
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Guo Z, Ren J, Song C. Enhanced Thermal and Storage Stability of Glucose Oxidase via Encapsulation in Chitosan-Coated Alginate and Carboxymethyl Cellulose Gel Particles. Foods 2025; 14:664. [PMID: 40002107 PMCID: PMC11854346 DOI: 10.3390/foods14040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Glucose oxidase (GOD) is widely used as an important oxidoreductase in various fields. However, maintaining the vitality and stability of GOD under environmental stress is a challenge. To improve the thermal and storage stability of GOD, this study constructed sodium alginate-carboxymethyl cellulose sodium gel particles (SA/CMC) and chitosan-coated SA/CMC gel particles (CS/SA/CMC) of GOD. The encapsulation efficiency (EE), gel particle structure, stability, and release behavior of GOD were evaluated. The results showed that the thermal stability of GOD encapsulated in SA/CMC and CS/SA/CMC gel particles was improved by approximately 2.8-fold and 4.3-fold compared with the free enzyme at 85 °C, respectively. In addition, CS/SA/CMC gel particles enhanced the enzyme activity retention rate of GOD to over 80% during storage at 4 °C for four weeks. Both SA/CMC and CS/SA/CMC gel particles loaded with GOD had more than 70% of the enzymes released during the simulated gastrointestinal experiment. The results demonstrated that encapsulating GOD in SA/CMC and CS/SA/CMC gel particles could improve its thermal stability and storage stability, which is conducive to further expanding the application of GOD in food, pharmaceutical and feed industries.
Collapse
Affiliation(s)
- Zhihao Guo
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (Z.G.); (J.R.)
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China
| | - Jian Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (Z.G.); (J.R.)
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China
| | - Chunli Song
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (Z.G.); (J.R.)
- Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
3
|
Yu Y, Fu R, Jin C, Gao H, Han L, Fu B, Qi M, Li Q, Suo Z, Leng J. Regulation of Milk Fat Synthesis: Key Genes and Microbial Functions. Microorganisms 2024; 12:2302. [PMID: 39597692 PMCID: PMC11596427 DOI: 10.3390/microorganisms12112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Milk is rich in a variety of essential nutrients, including fats, proteins, and trace elements that are important for human health. In particular, milk fat has an alleviating effect on diseases such as heart disease and diabetes. Fatty acids, the basic units of milk fat, play an important role in many biological reactions in the body, including the involvement of glycerophospholipids and sphingolipids in the formation of cell membranes. However, milk fat synthesis is a complex biological process involving multiple organs and tissues, and how to improve milk fat of dairy cows has been a hot research issue in the industry. There exists a close relationship between milk fat synthesis, genes, and microbial functions, as a result of the organic integration between the different tissues of the cow's organism and the external environment. This review paper aims (1) to highlight the synthesis and regulation of milk fat by the first and second genomes (gastrointestinal microbial genome) and (2) to discuss the effects of ruminal microorganisms and host metabolites on milk fat synthesis. Through exploring the interactions between the first and second genomes, and discovering the relationship between microbial and host metabolite in the milk fat synthesis pathway, it may become a new direction for future research on the mechanism of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zhuo Suo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Estrada R, Romero Y, Figueroa D, Coila P, Hañari-Quispe RD, Aliaga M, Galindo W, Alvarado W, Casanova D, Quilcate C. Effects of Age in Fecal Microbiota and Correlations with Blood Parameters in Genetic Nucleus of Cattle. Microorganisms 2024; 12:1331. [PMID: 39065099 PMCID: PMC11279168 DOI: 10.3390/microorganisms12071331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to determine the impact of age on the fecal microbiota in the genetic nucleus of cattle, with a focus on microbial richness, composition, functional diversity, and correlations with blood parameters. Fecal and blood samples from 21 cattle were analyzed using 16S rRNA gene sequencing. Older cattle exhibited greater bacterial diversity and abundance, with significant changes in alpha diversity indices (p < 0.05). Beta diversity analysis revealed significant variations in microbial composition between age groups and the interaction of age and sex (p < 0.05). Correlations between alpha diversity, community composition, and hematological values highlighted the influence of microbiota on bovine health. Beneficial butyrate-producing bacteria, such as Ruminococcaceae, were more abundant in older cattle, suggesting a role in gut health. Functional diversity analysis indicated that younger cattle had significantly more abundant metabolic pathways in fermentation and anaerobic chemoheterotrophy. These findings suggest management strategies including tailored probiotic therapies, dietary adjustments, and targeted health monitoring to enhance livestock health and performance. Further research should include comprehensive metabolic analyses to better correlate microbiota changes with age-related variations, enhancing understanding of the complex interactions between microbiota, age, and reproductive status.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Renán Dilton Hañari-Quispe
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Mery Aliaga
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Walter Galindo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru;
| | - David Casanova
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| |
Collapse
|
5
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
6
|
Huang W, Zulkifli MYB, Chai M, Lin R, Wang J, Chen Y, Chen V, Hou J. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques. EXPLORATION (BEIJING, CHINA) 2023; 3:20220145. [PMID: 37933234 PMCID: PMC10624391 DOI: 10.1002/exp.20220145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 11/08/2023]
Abstract
The past few decades have seen increasingly rapid advances in the field of sustainable energy technologies. As a new bio- and eco-friendly energy source, enzymatic biofuel cells (EBFCs) have garnered significant research interest due to their capacity to power implantable bioelectronics, portable devices, and biosensors by utilizing biomass as fuel under mild circumstances. Nonetheless, numerous obstacles impeded the commercialization of EBFCs, including their relatively modest power output and poor long-term stability of enzymes. To depict the current progress of EBFC and address the challenges it faces, this review traces back the evolution of EBFC and focuses on contemporary advances such as newly emerged multi or single enzyme systems, various porous framework-enzyme composites techniques, and innovative applications. Besides emphasizing current achievements in this field, from our perspective part we also introduced novel electrode and cell design for highly effective EBFC fabrication. We believe this review will assist readers in comprehending the basic research and applications of EBFCs as well as potentially spark interdisciplinary collaboration for addressing the pressing issues in this field.
Collapse
Affiliation(s)
- Wengang Huang
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Muhammad Yazid Bin Zulkifli
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
- School of Chemical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - Milton Chai
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Rijia Lin
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Jingjing Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Yuelei Chen
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Vicki Chen
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Jingwei Hou
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| |
Collapse
|
7
|
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. MEMBRANES 2023; 13:membranes13050532. [PMID: 37233593 DOI: 10.3390/membranes13050532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes.
Collapse
Affiliation(s)
- Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jialong Shen
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sonja Salmon
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Khan RS, Rather AH, Wani TU, Rather SU, Amna T, Hassan MS, Sheikh FA. Recent trends using natural polymeric nanofibers as supports for enzyme immobilization and catalysis. Biotechnol Bioeng 2023; 120:22-40. [PMID: 36169115 DOI: 10.1002/bit.28246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.
Collapse
Affiliation(s)
- Rumysa S Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Anjum H Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Taha U Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
9
|
Liang Z, Zhang J, Du M, Ahmad AA, Wang S, Zheng J, Salekdeh GH, Yan P, Han J, Tong B, Ding X. Age-dependent changes of hindgut microbiota succession and metabolic function of Mongolian cattle in the semi-arid rangelands. Front Microbiol 2022; 13:957341. [PMID: 35935190 PMCID: PMC9354825 DOI: 10.3389/fmicb.2022.957341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Dietary changes have significant effects on gut microbiota and host health. Weaning is an important stage of dietary change in ruminants. The gastrointestinal tract (GIT) microbiota of calf in the early life undergo some changes, and the plasticity of the calf is beneficial to cope with these changes and challenges. However, the complex development of hindgut microorganisms in post-weaning ruminants is not fully understood. In this study, we used 16S rRNA sequencing and untargeted metabolomic analysis to determine the cecal and colonic bacterial community and associated metabolome of Mongolian cattle at age of the 5th (at weaning), 18th, and 36th months. Moreover, the maturation patterns of the hindgut bacterial community and the dynamic changes of metabolites were also explored. Sequencing results showed that Firmicutes and Bacteroidetes were the dominant phyla in the cecum and colon. The linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed bacterial features that were stage-specific in the cecum and colon. The relative abundance of Ruminococcaceae, a microbial family related to fiber degradation, gradually increased with age in the cecum, while the relative abundance of Bacteroides and Alistipes, which are related to immunity, gradually increased in the colon. The differential metabolites in the cecum and colon were mainly enriched in steroid hormone biosynthesis, primary bile acid biosynthesis, and arachidonic acid metabolism between different ages of Mongolian cattle after weaning. Consequently, this dual omics analysis provided important information on the changes in microbial and metabolite interactions in Mongolian cattle after weaning. The microorganisms and metabolites in the cecum and colon further enhanced the abiotic stress resistance of Mongolian cattle to the harsh environment. The information obtained in this study is of great significance for future strategies of cecum and colon microbiota regulation of post-weaning Mongolian cattle in the harsh Mongolian Plateau ecosystem.
Collapse
Affiliation(s)
- Zeyi Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Du
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Bin Tong
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Chen X, Ma Y, Khan MZ, Xiao J, Alugongo GM, Li S, Wang Y, Cao Z. A Combination of Lactic Acid Bacteria and Molasses Improves Fermentation Quality, Chemical Composition, Physicochemical Structure, in vitro Degradability and Rumen Microbiota Colonization of Rice Straw. Front Vet Sci 2022; 9:900764. [PMID: 35754539 PMCID: PMC9213808 DOI: 10.3389/fvets.2022.900764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aims This study aims to evaluate the effect of lactic acid bacteria (LAB) and LAB-molasses (LAB + M) combination on the fermentation quality, chemical composition, physicochemical properties, in vitro degradability of rice straw and the characteristics of rumen microbial colonization on rice straw surface. Methods and Results There were three pretreatments, including control (not treated, Con), treated with LAB, or LAB + M. The results showed that both LAB and LAB + M treatments altered the physical and chemical structures of rice straw and were revealed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) spectroscopy, respectively. Moreover, both LAB and LAB + M pretreated rice straw increased the crude protein (CP) content, dry matter (DM) recovery, and in vitro digestibility and decreased the pH value, neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents. The LAB + M pretreated rice straw increased the gas production (GP72) and rumen microbial colonization on the rice straw surface. Conclusions It is observed that LAB + M treatment could increase digestibility and the rumen microbial colonization on the rice straw surface. Therefore, LAB + M treatment can provide an alternative strategy to improve the quality of rice straw. Significance and impact of the study: This study provides an optimal pretreatment to improve the rice straw digestibility and rumen microbial colonization.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Zhang X, Su C, Cao C, Gong G, Huang L, Wang Z, Song S, Zhu B. Gut Microbiota of Individuals Could Be Balanced by a 14-Day Supplementation With Laminaria japonica and Differed in Metabolizing Alginate and Galactofucan. Front Nutr 2022; 9:881464. [PMID: 35662929 PMCID: PMC9158320 DOI: 10.3389/fnut.2022.881464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Laminaria japonica is rich in alginate (Alg) and galactofucan (GF) which have both been reported to regulate gut microbiota composition. To reveal the effect of L. japonica on human gut microbiota, the fecal microbiota of 12 volunteers before and after 14-day L. japonica intake was sequenced and compared, and the capabilities of the gut microbiota to utilize Alg and GF were also investigated. The 16S rRNA gene sequencing results demonstrated that Firmicutes/Bacteroidetes ratio could be balanced by L. japonica supplementation. The ability of gut microbiota to utilize Alg was significantly enhanced by L. japonica supplementation. Furthermore, the multiple linear regression analysis suggested that bacteria from Bacteroidaceae and Ruminococcaceae were positively correlated with Alg utilization while those from Erysipelotrichaceae, Bacteroidaceae, and Prevotellaceae participated in GF degradation. Moreover, the production of acetic acid and the total short-chain fatty acids (SCFAs) in fermentation were consistent with the consumption of Alg or GF, and propionic acid content was positively correlated with Alg consumption. In addition, the percentage of monosaccharides in the consumed GF after the fermentation suggested that gut microbiota from individuals could consume GF with different monosaccharide preferences. These findings shed a light on the impacts of dietary L. japonica on human health.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Changyu Su
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Cui Cao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Guiping Gong
- College of Food Science and Technology, Northwest University, Xi'an, China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Linjuan Huang
- College of Food Science and Technology, Northwest University, Xi'an, China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- College of Food Science and Technology, Northwest University, Xi'an, China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, China
- *Correspondence: Zhongfu Wang
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
- Shuang Song
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Pragya, Sharma KK, Kumar A, Singh D, Kumar V, Singh B. Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Crit Rev Food Sci Nutr 2021; 63:5465-5487. [PMID: 34965785 DOI: 10.1080/10408398.2021.2020719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.
Collapse
Affiliation(s)
- Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Anil Kumar
- Department of Botany, Pt. N.R.S. Govt. College, Rohtak, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, India
| | - Vijay Kumar
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Department of Biotechnology, Central University of Haryana, Jant-Pali, India
| |
Collapse
|
13
|
Wang WK, Wang YL, Li WJ, Wu QC, Yang KL, Li SL, Yang HJ. In situ rumen degradation characteristics and bacterial colonization of whole cottonseed, cottonseed hull and cottonseed meal with different gossypol content. AMB Express 2021; 11:91. [PMID: 34156579 PMCID: PMC8218095 DOI: 10.1186/s13568-021-01244-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Regarding whole cottonseed (WCS), cottonseed meal (CSM), and cottonseed hull (CSH), in situ rumen incubation was applied to determine their nutrient and gossypol degradation characteristics and bacterial colonization profile in lactating Holstein cows. Nylon bags containing the cotton by-products were incubated for 0, 6, 12, 24, 36, 48 and 72 h in the rumen, respectively. The relationship between nutrient degradability and free gossypol (FG) content were examined, and the differences in the composition and inferred gene function of the colonized microbiota were studied. As a result, CSM presented highest effective degradability of dry matter, neutral detergent fibre and acid detergent fibre, but the highest effective degradability of crude protein was found in WCS. Free gossypol disappearance rate increased significantly in the first 6 h, and it reached approximately 94% at 72 h of incubation among all samples. The level of FG did not affect nutrient degradability of cotton by-products. Significant differences were noted in attached bacterial community structure among cotton by-products after 24 h rumen incubation. Among the most abundant taxa at genus level, a greater abundance of Cercis gigantea and Succiniclasticum was observed in WCS samples, whereas the CSH and CSM samples contained a greater proportion of Prevotella 1 and Rikenellaceae RC9 gut group. The redundancy analysis revealed that the level of neutral detergent fibre, ether extract, and FG in cotton by-products were significantly positive related with the composition of the attached bacteria. Collectively, our results revealed the dynamics of degradation characteristics, and the difference in the composition of bacterial colonization. These findings are of importance for the targeted improvement of cotton by-products nutrient use efficiency in ruminants and further understanding of the gossypol degradation mechanism in the rumen.
Collapse
|
14
|
Si H, Han Y, Liu H, Lou Y, Li Z. Effects of rumen-protected arginine supplementation on the plasma amino acids and gut microbiota of sika deer (Cervus nippon). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
16
|
Si H, Liu H, Nan W, Li G, Li Z, Lou Y. Effects of Arginine Supplementation on Serum Metabolites and the Rumen Bacterial Community of Sika Deer ( Cervus nippon). Front Vet Sci 2021; 8:630686. [PMID: 33614769 PMCID: PMC7892468 DOI: 10.3389/fvets.2021.630686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022] Open
Abstract
Velvet antler is a regeneration organ of sika deer (Cervus nippon) and an important Chinese medicine, and nutrient metabolism affects its growth. Here, we investigated the effects of arginine supplementation on antler growth, serum biochemical indices, and the rumen bacterial community of sika deer during the antler growth period. Fifteen male sika deer (6 years old) were randomly assigned to three dietary groups, which were supplemented with 0 (n = 5, CON), 2.5 (n = 5, LArg), or 5.0 g/d (n = 5, HArg) L-arginine. The IGF-1, ALT and AST concentrations in the serum of LArg sika deer were significantly higher than those in the serum of CON (P < 0.05) and HArg deer (P < 0.05). The phyla Bacteroidetes, Firmicutes, and Proteobacteria were dominant in the rumen of sika deer among the three groups. Comparison of alpha diversities showed that the ACE and Chao1 indices significantly increased in the LArg and HArg groups compared with those in the CON group. PCoA and ANOSIM results showed that the bacterial community was significantly changed between the CON and LArg groups. Moreover, the relative abundances of Fibrobacter spp. and Prevotellaceae UCG-003 increased, but those of Clostridium sensu stricto 1 and Corynebacterium 1 decreased in the LArg and HArg groups compared with those in the CON group. Additionally, the relative abundances of 19 OTUs were significantly different between the LArg and HArg groups. These results revealed that arginine supplementation affected the sika deer rumen bacterial community and serum biochemical indices.
Collapse
Affiliation(s)
- Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hanlu Liu
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weixiao Nan
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
17
|
Liang J, Zheng W, Zhang H, Zhang P, Cai Y, Wang Q, Zhou Z, Ding Y. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116130. [PMID: 33261966 DOI: 10.1016/j.envpol.2020.116130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Rumen liquid can effectively degrade lignocellulosic biomass, in which rumen microorganisms play an important role. In this study, transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw was explored. Results showed that rice straw was efficiently hydrolyzed and acidified, and the degradation efficiency of cellulose, hemicellulose and lignin reached 46.2%, 60.4%, and 12.9%, respectively. The concentration of soluble chemical oxygen demand (SCOD) and total volatile fatty acid (VFA) reached 12.9 and 8.04 g L-1. The high-throughput sequencing results showed that structure of rumen bacterial community significantly changed in anaerobic digestion. The Shannon diversity index showed that rumen bacterial diversity decreased by 32.8% on the 5th day of anaerobic digestion. The relative abundance of Prevotella and Fibrobacter significantly increased, while Ruminococcus significantly decreased at the genus level. The Spearman correlation heatmap showed that pH and VFA were the critical factors affecting the rumen bacterial community structure. The function prediction found that rumen bacteria mainly functioned in carbohydrate transport and metabolism, which might contain a large number of lignocellulose degrading enzyme genes. These studies are conducive to the better application of rumen microorganisms in the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenge Zheng
- Beijing General Working Station of Soil and Water Conservation, Beijing, 100036, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiran Ding
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
18
|
Yan L, Ma P, Liu Y, Ma X, Chen F, Li M. 3D coral-like gold/carbon paper electrode modified with covalent and cross-linked enzyme aggregates for electrochemical sensing of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application. Int J Biol Macromol 2020; 161:573-586. [DOI: 10.1016/j.ijbiomac.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
|
21
|
Xue Y, Lin L, Hu F, Zhu W, Mao S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. MICROBIOME 2020; 8:138. [PMID: 32972462 PMCID: PMC7517653 DOI: 10.1186/s40168-020-00916-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/01/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Undernutrition is a prevalent and spontaneous condition in animal production which always affects microbiota-host interaction in gastrointestinal tract. However, how undernutrition affects crosstalk homeostasis is largely unknown. Here, we discover how undernutrition affects microbial profiles and subsequently how microbial metabolism affects the signal transduction and tissue renewal in ruminal epithelium, clarifying the detrimental effect of undernutrition on ruminal homeostasis in a pregnant sheep model. RESULTS Sixteen pregnant ewes (115 days of gestation) were randomly and equally assigned to the control (CON) and severe feed restriction (SFR) groups. Ewes on SFR treatment were restricted to a 30% level of ad libitum feed intake while the controls were fed normally. After 15 days, all ewes were slaughtered to collect ruminal digesta for 16S rRNA gene and metagenomic sequencing and ruminal epithelium for transcriptome sequencing. Results showed that SFR diminished the levels of ruminal volatile fatty acids and microbial proteins and repressed the length, width, and surface area of ruminal papillae. The 16S rRNA gene analysis indicated that SFR altered the relative abundance of ruminal bacterial community, showing decreased bacteria about saccharide degradation (Saccharofermentans and Ruminococcus) and propionate genesis (Succiniclasticum) but increased butyrate producers (Pseudobutyrivibrio and Papillibacter). Metagenome analysis displayed that genes related to amino acid metabolism, acetate genesis, and succinate-pathway propionate production were downregulated upon SFR, while genes involved in butyrate and methane genesis and acrylate-pathway propionate production were upregulated. Transcriptome and real-time PCR analysis of ruminal epithelium showed that downregulated collagen synthesis upon SFR lowered extracellular matrix-receptor interaction, inactivated JAK3-STAT2 signaling pathway, and inhibited DNA replication and cell cycle. CONCLUSIONS Generally, undernutrition altered rumen bacterial community and function profile to decrease ruminal energy retention, promoted epithelial glucose and fatty acid catabolism to elevate energy supply, and inhibited the proliferation of ruminal epithelial cells. These findings provide the first insight into the systemic microbiota-host interactions that are involved in disrupting the ruminal homeostasis under a malnutrition pattern. Video Abstract.
Collapse
Affiliation(s)
- Yanfeng Xue
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Limei Lin
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fan Hu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
22
|
Yang C, Tsedan G, Liu Y, Hou F. Shrub coverage alters the rumen bacterial community of yaks ( Bos grunniens) grazing in alpine meadows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:504-520. [PMID: 32803183 PMCID: PMC7416157 DOI: 10.5187/jast.2020.62.4.504] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Proliferation of shrubs at the expense of native forage in pastures has been
associated with large changes in dry-matter intake and dietary components for
grazing ruminants. These changes can also affect the animals’ physiology
and metabolism. However, little information is available concerning the effect
of pastoral-shrub grazing on the rumen bacterial community. To explore rumen
bacteria composition in grazing yaks and the response of rumen bacteria to
increasing shrub coverage in alpine meadows, 48 yak steers were randomly
assigned to four pastures with shrub coverage of 0%, 5.4%, 11.3%, and 20.1%
(referred as control, low, middle, and high, respectively), and ruminal fluid
was collected from four yaks from each pasture group after 85 days. Rumen
fermentation products were measured and microbiota composition determined using
Ion S5TM XL sequencing of the 16S rRNA gene. Principal coordinates
analysis (PCoA) and similarity analysis indicated that the degree of shrub
coverage correlated with altered rumen bacterial composition of yaks grazing in
alpine shrub meadows. At the phyla level, the relative abundance of
Firmicutes in rumen increased with increasing shrub
coverage, whereas the proportions of Bacteroidetes,
Cyanobacteria and Verrucomicrobia
decreased. Yaks grazing in the high shrub-coverage pasture had decreased species
of the genus Prevotellaceae UCG-001,
Lachnospiraceae XPB1014 group,
Lachnospiraceae AC2044 group,
Lachnospiraceae FCS020 group and
Fretibacterium, but increased species of
Christensenellaceae R-7 group,
Ruminococcaceae NK4A214 group,
Ruminococcus 1, Ruminococcaceae UCG-002,
Ruminococcaceae UCG-005 and
Lachnospiraceae UCG-008. These variations can enhance the
animals’ utilization efficiencies of cellulose and hemicellulose from
native forage. Meanwhile, yaks grazed in the high shrub-coverage pasture had
increased concentrations of ammonia nitrogen (NH3-N) and
branched-chain volatile fatty acids (isobutyrate and isovalerate) in rumen
compared with yaks grazing in the pasture without shrubs. These results indicate
that yaks grazing in a high shrub-coverage pasture may have improved dietary
energy utilization and enhanced resistance to cold stress during the winter. Our
findings provide evidence for the influence of shrub coverage on the rumen
bacterial community of yaks grazing in alpine meadows as well as insights into
the sustainable production of grazing yaks on lands with increasing shrub
coverage on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Chuntao Yang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guru Tsedan
- Animal Husbandry Science and Technology Demonstration Park of Maqu County, Gannan 743000, China
| | - Yang Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
23
|
Polyaniline-nanofiber-modified screen-printed electrode with intermediate dye amplification for detection of endocrine disruptor bisphenol A. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Thangaraj B, Solomon PR. Immobilization of Lipases – A Review. Part II: Carrier Materials. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baskar Thangaraj
- Jiangsu UniversitySchool of Food and Biological Engineering 301 Xuefu road 212013 Zhenjiang Jiangsu Province China
| | - Pravin Raj Solomon
- SASTRA Deemed UniversitySchool of Chemical & Biotechnology, Tirumalaisamudram 613401 Thanjavur Tamil Nadu India
| |
Collapse
|
25
|
Song Y, Wang C. High-power biofuel cells based on three-dimensional reduced graphene oxide/carbon nanotube micro-arrays. MICROSYSTEMS & NANOENGINEERING 2019; 5:46. [PMID: 31636935 PMCID: PMC6799826 DOI: 10.1038/s41378-019-0081-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/05/2019] [Accepted: 06/20/2019] [Indexed: 06/01/2023]
Abstract
Miniaturized enzymatic biofuel cells (EBFCs) with high cell performance are promising candidates for powering next-generation implantable medical devices. Here, we report a closed-loop theoretical and experimental study on a micro EBFC system based on three-dimensional (3D) carbon micropillar arrays coated with reduced graphene oxide (rGO), carbon nanotubes (CNTs), and a biocatalyst composite. The fabrication process of this system combines the top-down carbon microelectromechanical systems (C-MEMS) technique to fabricate the 3D micropillar array platform and bottom-up electrophoretic deposition (EPD) to deposit the reduced rGO/CNTs/enzyme onto the electrode surface. The Michaelis-Menten constant KM of 2.1 mM for glucose oxidase (GOx) on the rGO/CNTs/GOx bioanode was obtained, which is close to the KM for free GOx. Theoretical modelling of the rGO/CNT-based EBFC system via finite element analysis was conducted to predict the cell performance and efficiency. The experimental results from the developed rGO/CNT-based EBFC showed a maximum power density of 196.04 µW cm-2 at 0.61 V, which is approximately twice the maximum power density obtained from the rGO-based EBFC. The experimental power density is noted to be 71.1% of the theoretical value.
Collapse
Affiliation(s)
- Yin Song
- Department of Mechanical and Materials Science Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 USA
| | - Chunlei Wang
- Department of Mechanical and Materials Science Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 USA
| |
Collapse
|
26
|
Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications. Sci Rep 2019; 9:10872. [PMID: 31350441 PMCID: PMC6659637 DOI: 10.1038/s41598-019-47392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 01/12/2023] Open
Abstract
A glucose-reactive enzyme-based biofuel cell system (EBFC) was recently introduced in the scientific community for biomedical applications, such as implantable artificial organs and biosensors for drug delivery. Upon direct contact with tissues or organs, an implanted EBFC can exert effects that damage or stimulate intact tissue due to its byproducts or generated electrical cues, which have not been investigated in detail. Here, we perform a fundamental cell culture study using a glucose dehydrogenase (GDH) as an anode enzyme and bilirubin oxidase (BOD) as a cathode enzyme. The fabricated EBFC had power densities of 15.26 to 38.33 nW/cm2 depending on the enzyme concentration in media supplemented with 25 mM glucose. Despite the low power density, the GDH-based EBFC showed increases in cell viability (~150%) and cell migration (~90%) with a relatively low inflammatory response. However, glucose oxidase (GOD), which has been used as an EBFC anode enzyme, revealed extreme cytotoxicity (~10%) due to the lethal concentration of H2O2 byproducts (~1500 µM). Therefore, with its cytocompatibility and cell-stimulating effects, the GDH-based EBFC is considered a promising implantable tool for generating electricity for biomedical applications. Finally, the GDH-based EBFC can be used for introducing electricity during cell culture and the fabrication of organs on a chip and a power source for implantable devices such as biosensors, biopatches, and artificial organs.
Collapse
|
27
|
The Ruminal Microbiome and Metabolome Alterations Associated with Diet-Induced Milk Fat Depression in Dairy Cows. Metabolites 2019; 9:metabo9070154. [PMID: 31340604 PMCID: PMC6680951 DOI: 10.3390/metabo9070154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 02/01/2023] Open
Abstract
Milk fat depression (MFD) syndrome represents a significant drawback to the dairy industry. The aim of this study was to unravel the ruminal metabolome-microbiome interaction in response to diet-induced MFD in dairy cows. Twelve healthy second parity Holstein dairy cows (days in milk (DIM) = 119 ± 14) were randomly assigned into control (CON, n = 6) group and treatment (TR, n = 6) group. Cows in TR group received a high-starch total mixed ration (TMR) designed to induce an MFD syndrome. Decreased milk fat yield and concentration in TR cows displayed the successful development of MFD syndrome. TR diet increased the relative abundance of Prevotella and decreased the relative abundance of unclassified Lachnospiraceae, Oribacterium, unclassified Veillonellaceae and Pseudobutyrivibrio in ruminal fluid. Metabolomics analysis revealed that the ruminal fluid content of glucose, amino acids and amines were significantly increased in TR cows compared with CON cows. Correlation analysis revealed that the concentration of amines and amino acids were highly correlated with the abundance of Oribacterium, Pseudobutyrivibrio, RC9_gut_group, unclassified BS11_gut_group and Selenomonas. In general, these findings revealed that TR diet reduced the rumination time and altered rumen fermentation type, which led to changes in the composition of ruminal microbiota and metabolites, and caused MFD.
Collapse
|
28
|
Sharifi M, Karim AY, Mustafa Qadir Nanakali N, Salihi A, Aziz FM, Hong J, Khan RH, Saboury AA, Hasan A, Abou-Zied OK, Falahati M. Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. J Biomol Struct Dyn 2019; 38:2746-2762. [DOI: 10.1080/07391102.2019.1643787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Majid Sharifi
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdulkarim Yasin Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Research Center, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Science, Cihan University, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Jun Hong
- School of Life Sciences, Henan University, China
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Akbar Saboury
- Inistitute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Osama K. Abou-Zied
- Department of Chemistry, Faculty of Science,Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mojtaba Falahati
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
Xin J, Chai Z, Zhang C, Zhang Q, Zhu Y, Cao H, Zhong J, Ji Q. Comparing the Microbial Community in Four Stomach of Dairy Cattle, Yellow Cattle and Three Yak Herds in Qinghai-Tibetan Plateau. Front Microbiol 2019; 10:1547. [PMID: 31354656 PMCID: PMC6636666 DOI: 10.3389/fmicb.2019.01547] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Yak (Bos grunniens) is an unique ruminant species in the Qinghai-Tibetan Plateau (QTP). The ruminant gastrointestinal tract (GIT) microbiota is not only associated with the nutrients metabolism, but also contributes to the host’s local adaptation. Examining the microbiota between cattle and yak in different geography could improve our understanding about the role of microbiota in metabolism and adaptation. To this end, we compared the microbiota in rumen, reticulum, omasum, and abomasum of dairy cattle, yellow cattle, and three yak herds (WQ yak, SZ yak, and ZB yak) lived in different altitude, based on sequencing the bacterial 16S rRNA gene on Illumina Miseq. The bacterial diversity was significantly different among five breeds, whereas the difference among four stomach regions is limited. The phyla Bacteroidetes and Firmicutes were the dominated bacteria regardless of breeds and regions. The nonmetric multidimensional scaling (NMDS) results showed that the microbiota in dairy cattle, yellow cattle and WQ yak significantly differed from that in SZ yak and ZB yak for all four stomach compartments. Canonical correlation analysis revealed that Prevotella and Succiniclasticum spp. were abundant in dairy cattle, yellow cattle and WQ yak, whereas the Christensenellaceae R7 group and the Lachnospiraceae UCG 008 group were prevalent in SZ yak and ZB yak. Moreover, the microbiota in WQ yak was significantly different from that in SZ yak and ZB yak, which were characterized by the higher relative abundance Romboutsia spp., Eubacterium coprostanoligenes, Acetobacter spp., Mycoplasma spp., and Rikenellaceae RC9 group. Overall, these results improves our knowledge about the GIT microbiota composition of QTP ruminant.
Collapse
Affiliation(s)
- Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chengfu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hanwen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiumei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
30
|
Xue MY, Sun HZ, Wu XH, Guan LL, Liu JX. Assessment of rumen bacteria in dairy cows with varied milk protein yield. J Dairy Sci 2019; 102:5031-5041. [PMID: 30981485 DOI: 10.3168/jds.2018-15974] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
The present study was conducted to assess rumen bacteria in lactating cows with different milk protein yield, aiming to understand the role of rumen bacteria in this trait. Cows with high milk protein yield (high milk yield and high milk protein content, HH; n = 20) and low milk protein yield (low milk yield and low milk protein content, LL; n = 20) were selected from 374 mid-lactation Holstein dairy cows fed a high-grain diet. Measurement of the rumen fermentation products showed that the concentrations of ruminal total volatile fatty acids, propionate, butyrate, and valerate and the proportion of isobutyrate were higher in the HH cows than in the LL cows. Amplicon sequencing analysis of the rumen bacterial community revealed that the richness (Chao 1 index) of rumen microbiota was higher in the LL cows than in the HH cows. Among the 10 predominant bacterial phyla (relative abundance being >0.10%, present in >60% of animals within each group), the relative abundance of Proteobacteria was 1.36-fold higher in the HH cows than in the LL cows. At the genus level, the relative abundance of Succinivibrio was significantly higher and that of Clostridium tended to be higher in the LL cows than in the HH cows. Sharpea was 2.28-fold enriched in the HH cows compared with the LL cows. Different relationships between the relative abundances of rumen microbial taxa and volatile fatty acid concentrations were observed in the HH and the LL animals, respectively. Succinivibrio and Prevotella were positively correlated with acetate, propionate, and valerate in the LL cows, whereas Sharpea was positively correlated with propionate and valerate concentrations in the HH cows. Collectively, our results revealed that rumen bacterial richness and the relative abundances of several bacterial taxa significantly differed between dairy cows with high and low milk protein yields, suggesting the potential roles of rumen microbiota contributing to milk protein yield in dairy cows.
Collapse
Affiliation(s)
- M Y Xue
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - H Z Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - X H Wu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - J X Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Qian W, Ao W, Jia C, Li Z. Bacterial colonisation of reeds and cottonseed hulls in the rumen of Tarim red deer (Cervus elaphus yarkandensis). Antonie van Leeuwenhoek 2019; 112:1283-1296. [PMID: 30941531 DOI: 10.1007/s10482-019-01260-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
The rumen microbiome contributes greatly to the degradation of plant fibres to volatile fatty acids and microbial products, affecting the health and productivity of ruminants. In this study, we investigated the dynamics of colonisation by bacterial communities attached to reeds and cottonseed hulls in the rumen of Tarim red deer, a native species distributed in the desert of the Tarim Basin. The reed and cottonseed hull samples incubated in nylon bags for 1, 6, 12, and 48 h were collected and used to examine the bacterial communities by next-generation sequencing of the bacterial 16S rRNA gene. Prevotella1 and Rikenellaceae RC9 were the most abundant taxa in both the reed and cottonseed hull groups at various times, indicating a key role of these organisms in rumen fermentation in Tarim red deer. The relative abundances of cellulolytic bacteria, such as members of Fibrobacter, Treponema 2, Ruminococcaceae NK4A214 and Succiniclasticum increased, while that of the genus Prevotella 1 decreased, with increasing incubation time in both reeds and cottonseed hulls. Moreover, the temporal changes in bacterial diversity between reeds and cottonseed hulls were different, as demonstrated by the variations in the taxa Ruminococcaceae UCG 010 and Papillibacter in the reed group and Sphaerochaeta and Erysipelotrichaceae UCG 004 in the cottonseed hull group; the abundances of these bacteria first decreased and then increased. In conclusion, our results reveal the dynamics of bacterial colonisation of reeds and cottonseed hulls in the rumen of Tarim red deer.
Collapse
Affiliation(s)
- Wenxi Qian
- College of Animal Science, Tarim University, Alar, 843300, China.,Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar, 843300, China
| | - Weiping Ao
- College of Animal Science, Tarim University, Alar, 843300, China.,Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar, 843300, China
| | - Cunhui Jia
- College of Animal Science, Tarim University, Alar, 843300, China.,Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar, 843300, China
| | - Zhipeng Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 130112, Changchun, China.
| |
Collapse
|
32
|
Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens Bioelectron 2019; 132:279-285. [PMID: 30884314 DOI: 10.1016/j.bios.2019.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/20/2022]
Abstract
Highly sensitive phenol biosensor was developed by using well-dispersed carbon nanotubes (CNTs) in enzyme solution and adding CNTs in enzyme electrodes. First, the intact CNTs were dispersed in aqueous tyrosinase (TYR) solution, and TYR molecules were precipitated and crosslinked to prepare the sample of enzyme adsorption, precipitation and crosslinking (EAPC). EAPC exhibited 10.5- and 5.4-fold higher TYR activity per mg of CNTs as compared to enzyme adsorption (EA) and enzyme adsorption/crosslinking (EAC), respectively. EAPC retained 29% of its initial activity after incubation at 40 °C for 128 h, while EA and EAC showed no residual activities, respectively. In biosensing a model phenolic compound of catechol, the sensitivities of EA, EAC and EAPC electrodes on glassy carbon electrode (GCE) were 34, 281 and 675 µA/mM/cm2, respectively. When 90 w/w% CNTs were added to the enzyme electrodes, the sensitivities of EA, EAC, and EAPC electrodes were 146, 427, and 1160 µA/mM/cm2, respectively, and the EAPC electrode showed a 2.3-fold increase in sensitivity upon CNT addition. Catechol and phenol could also be detected by EAPC on the screen-printed electrode (SPE), with sensitivities of 1340 and 1170 µA/mM/cm2, respectively. The sensitivity of EAPC-SPE for phenol detection in the effluent from real municipal wastewater treatment plant was 1100 µA/mM/cm2. The sensitivity of EAPC-SPE retained 74% of its initial sensitivity after incubation at 40 °C for 12 h. The combination of EAPC immobilization and CNT addition has great potential for application in the development of sensitive enzyme biosensors for various analytes and phenols in water environments.
Collapse
|
33
|
Li Y, Li Y, Jin W, Sharpton TJ, Mackie RI, Cann I, Cheng Y, Zhu W. Combined Genomic, Transcriptomic, Proteomic, and Physiological Characterization of the Growth of Pecoramyces sp. F1 in Monoculture and Co-culture With a Syntrophic Methanogen. Front Microbiol 2019; 10:435. [PMID: 30894845 PMCID: PMC6414434 DOI: 10.3389/fmicb.2019.00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, the effects of a syntrophic methanogen on the growth of Pecoramyces sp. F1 was investigated by characterizing fermentation profiles, as well as functional genomic, transcriptomic, and proteomic analysis. The estimated genome size, GC content, and protein coding regions of strain F1 are 106.83 Mb, 16.07%, and 23.54%, respectively. Comparison of the fungal monoculture with the methanogen co-culture demonstrated that during the fermentation of glucose, the co-culture initially expressed and then down-regulated a large number of genes encoding both enzymes involved in intermediate metabolism and plant cell wall degradation. However, the number of up-regulated proteins doubled at the late-growth stage in the co-culture. In addition, we provide a mechanistic understanding of the metabolism of this fungus in co-culture with a syntrophic methanogen. Further experiments are needed to explore this interaction during degradation of more complex plant cell wall substrates.
Collapse
Affiliation(s)
- Yuanfei Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Thomas J Sharpton
- Department of Microbiology - Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Roderick I Mackie
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Mugo SM, Berg D, Bharath G. Integrated Microcentrifuge Carbon Entrapped Glucose Oxidase Poly (N-Isopropylacrylamide) (pNIPAm) Microgels for Glucose Amperometric Detection. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1499027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Darren Berg
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - G. Bharath
- Department of Chemical Engineering, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
Nano-Immobilized Biocatalysts for Biodiesel Production from Renewable and Sustainable Resources. Catalysts 2018. [DOI: 10.3390/catal8020068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic), carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.
Collapse
|
36
|
Jin W, Wang Y, Li Y, Cheng Y, Zhu W. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen. Anaerobe 2018; 50:1-8. [PMID: 29330119 DOI: 10.1016/j.anaerobe.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 01/26/2023]
Abstract
This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community.
Collapse
Affiliation(s)
- Wei Jin
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ying Wang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanfei Li
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yanfen Cheng
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Weiyun Zhu
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
37
|
Perveen R, Inamuddin, Nasar A, Beenish, Asiri AM. Synthesis and characterization of a novel electron conducting biocomposite as biofuel cell anode. Int J Biol Macromol 2018; 106:755-762. [DOI: 10.1016/j.ijbiomac.2017.08.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
38
|
Perveen R, Inamuddin, Ul Haque S, Nasar A, Asiri AM, Md Ashraf G. Electrocatalytic Performance of Chemically Synthesized PIn-Au-SGO Composite toward Mediated Biofuel Cell Anode. Sci Rep 2017; 7:13353. [PMID: 29042654 PMCID: PMC5645452 DOI: 10.1038/s41598-017-13539-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
The proposed work intended to make an intellectual contribution to the domain of green nanotechnology which emphasizes the chemical synthesis of a conducting nanocomposite based on the incorporation of gold nanoparticles (Au) into the redox matrix of polyindole (PIn) along with the subsequent improvement in the overall properties of the composite by the addition of sulfonated graphene oxide (SGO). The bioanode was developed by the deposition of the PIn-Au-SGO nanocomposite with subsequent immobilization of ferritin (Frt) and glucose oxidase (GOx) on the glassy carbon electrode (GC). The successful application of the PIn-Au-SGO nanocomposite toward the development of a ferritin-mediated glucose biofuel cell anode was studied by the electrochemical characterization of the constructed bioanode (GC-PIn-Au-SGO/Frt/GOx) for the bioelectrocatalytic oxidation of glucose. The maximum current density obtained by the modified bioanode was found to be 17.8 mA cm−2 at the limiting glucose concentration of 50 mM in 0.1 M K4Fe(CN)6 at a scan rate of 100 mVs−1. The lifetime of the concerned bioelectrode when stored at 4 °C was estimated to be 53 days approximately. The appreciable results of the structural and electrochemical characterization of the PIn-Au-SGO based bioelectrode reveal its potential applications exclusively in implantable medical devices.
Collapse
Affiliation(s)
- Ruma Perveen
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
39
|
Pakapongpan S, Tuantranont A, Poo-Arporn RP. Magnetic Nanoparticle-Reduced Graphene Oxide Nanocomposite as a Novel Bioelectrode for Mediatorless-Membraneless Glucose Enzymatic Biofuel Cells. Sci Rep 2017; 7:12882. [PMID: 29018210 PMCID: PMC5635112 DOI: 10.1038/s41598-017-12417-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
In this work, an enzymatic biofuel cell (EBC) based on a membraneless and mediatorless glucose enzymatic fuel cell system was constructed for operation in physiological conditions (pH 7.0 and temperature 37 °C). The new platform EBC made of nanocomposite, including magnetic nanoparticles (Fe3O4 NPs) and reduced graphene oxide (RGO), was used for the immobilization of glucose oxidase (GOD) as bioanode and bilirubin oxidase (BOD) as biocathode. The EBC bioelectrodes were fabricated without binder or adhesive agents for immobilized enzyme and the first EBC using superparamagnetic properties with Fe3O4 NPs has been reported. The performance of the EBC was evaluated with promising results. In EBC tests, the maximum power density of the EBC was 73.7 μW cm−2 and an open circuit voltage (OCV) as +0.63 V with 5 mM of glucose concentration for the physiological condition of humans. The Fe3O4-RGO nanocomposite offers remarkable enhancement in large surface areas, is a favorable environment for enzyme immobilization, and facilitates electron transfer between enzymes and electrode surfaces. Fe3O4 and RGO have been implied as new promising composite nanomaterials for immobilizing enzymes and efficient platforms due to their superparamagnetism properties. Thus, glucose EBCs could potentially be used as self-powered biosensors or electric power sources for biomedical device applications.
Collapse
Affiliation(s)
- Saithip Pakapongpan
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.,Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Adisorn Tuantranont
- Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
40
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
41
|
Rodríguez-deLuna SE, Moreno-Cortez IE, Garza-Navarro MA, Lucio-Porto R, López Pavón L, González-González VA. Thermal stability of the immobilization process of horseradish peroxidase in electrospun polymeric nanofibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.44811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofía E. Rodríguez-deLuna
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Iván E. Moreno-Cortez
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - M. A. Garza-Navarro
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Raúl Lucio-Porto
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Luis López Pavón
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Virgilio A. González-González
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| |
Collapse
|
42
|
Liu J, Zhang M, Xue C, Zhu W, Mao S. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J Dairy Sci 2016; 99:9668-9681. [PMID: 27692708 DOI: 10.3168/jds.2016-11398] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Abstract
Three ruminally cannulated Holstein cows were used to characterize the dynamics of bacterial colonization of rice straw and alfalfa hay and to assess the differences in the composition and inferred gene function of the colonized microbiota between these 2 forages. Nonincubated (0h) rice straw and alfalfa hay samples and residues in nylon bags incubated for 0.5, 2, 6, 16, and 48h were analyzed for dry matter and were used for DNA extraction and MiSeq (Illumina Inc., San Diego, CA) sequencing of the 16S rRNA gene. The microbial communities that colonized the air-dried and nonincubated (0h) rice straw and alfalfa hay were both dominated by members of the Proteobacteria (contributing toward 70.47% of the 16S RNA reads generated). In situ incubation of the 2 forages revealed major shifts in the community composition: Proteobacteria were replaced within 30min by members belonging to the Bacteroidetes and Firmicutes, contributing toward 51.9 and 36.6% of the 16S rRNA reads generated, respectively. A second significant shift was observed after 6h of rumen incubation, when members of the Spirochaetes and Fibrobacteria phyla became abundant in the forage-adherent community. During the first 30min of rumen incubation, ~20.7 and 36.1% of the rice straw and alfalfa hay, respectively, were degraded, whereas little biomass degradation occurred between 30min and 2h after the rice straw or alfalfa hay was placed in the rumen. Significant differences were noted in attached bacterial community structure between the 2 forage groups, and the abundances of dominant genera Anaeroplasma, Butyrivibrio, Fibrobacter, and Prevotella were affected by the forage types. Real-time PCR results showed that the 16S rRNA copies of total bacteria attached to these 2 forages were affected by the forage types and incubation time, and higher numbers of attached bacterial 16S rRNA were observed in the alfalfa hay samples than in the rice straw from 0.5 to 16h of incubation. The metagenomes predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) revealed that the forage types significantly affected 21 metabolic pathways identified in the Kyoto Encyclopedia of Genes and Genomes, and 33 were significantly changed over time. Collectively, our results reveal a difference in the dynamics of bacterial colonization and the inferred gene function of microbiota associated with rice straw and alfalfa hay within the rumen. These findings are of great importance for the targeted improvement of forage nutrient use efficiency in ruminants.
Collapse
Affiliation(s)
- Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengling Zhang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunxu Xue
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0373-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Wen D, Eychmüller A. Enzymatic Biofuel Cells on Porous Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4649-4661. [PMID: 27377976 DOI: 10.1002/smll.201600906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. The latest advances in EBFCs based on porous nanoarchitectures over the past 5 years are detailed here. Porous matrices from carbon, noble metals, and polymers promote the development of EBFCs through the electron transfer and mass transport benefits. Some key issues regarding how these nanostructured porous media improve the performance of EBFCs are also discussed.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | | |
Collapse
|
45
|
Glucose oxidase immobilization onto Au/poly[anthranilic acid-co-3-carboxy-N-(2-thenylidene)aniline]/PVAc electrospun nanofibers. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1786-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Entrapping cross-linked glucose oxidase aggregates within a graphitized mesoporous carbon network for enzymatic biofuel cells. Enzyme Microb Technol 2016; 90:26-34. [DOI: 10.1016/j.enzmictec.2016.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022]
|
47
|
Ding Y, Zheng J, Xia X, Ren T, Kan J. Box–Behnken design for the optimization of nanoscale retrograded starch formation by high-power ultrasonication. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Kim SB, Kim DS, Yang JH, Lee J, Kim SW. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system. Enzyme Microb Technol 2016; 85:32-7. [DOI: 10.1016/j.enzmictec.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/16/2022]
|
49
|
Lee SH, Kim YS, Chu CH, Na IC, Lee JH, Park KP. Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.2.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Ji Y, Lai L, Yau Li SF. Vapor grown carbon fiber combined with polyaniline and gold nanoparticles in composite bioelectrodes and their application in glucose fuel cells. RSC Adv 2016. [DOI: 10.1039/c6ra09140g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, novel VGCF-based composite bioelectrodes PANI/VGCF/GOx and AuNPsNGCF/GOx are fabricated and compared to CNT-based bioelectrodes.
Collapse
Affiliation(s)
- Ya Ji
- Department of Chemistry
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| | - Linke Lai
- NUS Graduate School for Integrative Sciences and Engineering
- National University of Singapore
- Singapore 119077
- Singapore
| | - Sam Fong Yau Li
- Department of Chemistry
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|