1
|
Li L, Zhang J, Huang C, Li Y, Liu Z, Xu J, Chen Y, Zhao Y, Zhang P. Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics. Anal Chem 2025; 97:3404-3411. [PMID: 39869837 DOI: 10.1021/acs.analchem.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching. Here we present a surface-sensitive waveguide imaging technique that retains the advantages of SPR and can be easily integrated into standard SPR devices by depositing additional dielectric layers onto SPR sensor chips using conventional vacuum evaporation. This novel sensor provides a silica surface, a well-known biologically compatible surface, for cell attachment and produces a sharper resonance curve and a stronger surface electric field than SPR, leading to improved measurement precision. After incorporating amplitude modulation, this approach increases measurement precision by approximately eight times compared to traditional SPR with the same optical setup. This high-precision method enables in situ single-cell analysis, revealing cell-to-cell heterogeneity that provides fuel for drug resistance. We believe this technique provides a streamlined strategy to enhance SPR for expanding their applications in biochemical research and drug screening.
Collapse
Affiliation(s)
- Liangju Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jingbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yacong Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoyang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiying Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Pengfei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Huang C, Zhang J, Liu Z, Xu J, Zhao Y, Zhang P. In Situ and Label-Free Quantification of Membrane Protein-Ligand Interactions Using Optical Imaging Techniques: A Review. BIOSENSORS 2024; 14:537. [PMID: 39589996 PMCID: PMC11592237 DOI: 10.3390/bios14110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Membrane proteins are crucial for various cellular processes and are key targets in pharmacological research. Their interactions with ligands are essential for elucidating cellular mechanisms and advancing drug development. To study these interactions without altering their functional properties in native environments, several advanced optical imaging methods have been developed for in situ and label-free quantification. This review focuses on recent optical imaging techniques such as surface plasmon resonance imaging (SPRi), surface plasmon resonance microscopy (SPRM), edge tracking approaches, and surface light scattering microscopy (SLSM). We explore the operational principles, recent advancements, and the scope of application of these methods. Additionally, we address the current challenges and explore the future potential of these innovative optical imaging strategies in deepening our understanding of biomolecular interactions and facilitating the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Caixin Huang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiying Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Pengfei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li L, Zhang J, Li Y, Huang C, Xu J, Zhao Y, Zhang P. Dielectric Surface-Based Biosensors for Enhanced Detection of Biomolecular Interactions: Advances and Applications. BIOSENSORS 2024; 14:524. [PMID: 39589983 PMCID: PMC11592350 DOI: 10.3390/bios14110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Surface plasmon resonance (SPR) biosensors are extensively utilized for analyzing molecular interactions due to their high sensitivity and label-free detection capabilities. Recent innovations in surface-sensitive biosensors with dielectric surfaces address the inherent limitations associated with traditional gold surfaces, such as thermal effects and biocompatibility issues, which can impede broader applications. This review examines state-of-the-art biosensor configurations, including total internal reflection, optical waveguide, photonic crystal resonators, Bloch surface wave biosensors, and surface electrochemical biosensors, which can enhance analyte signals and augment the molecular detection efficiency at the sensor interface. These technological advancements not only improve the resolution of binding kinetics analysis and single-molecule detection but also extend the analytical capabilities of these systems. Additionally, this review explores prospective advancements in augmenting field enhancement and incorporating multimodal sensing functionalities, emphasizing the significant potential of these sophisticated biosensing technologies to profoundly enhance our understanding of molecular interactions.
Collapse
Affiliation(s)
- Liangju Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
| | - Jingbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yacong Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
| | - Caixin Huang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
| | - Jiying Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; (L.L.); (Y.L.); (C.H.)
| | - Pengfei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.Z.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Liu YN, Liu XW. Nanoscale Spatiotemporal Dynamics of Microbial Adhesion: Unveiling Stepwise Transitions with Plasmonic Imaging. ACS NANO 2024; 18:16002-16010. [PMID: 38837910 DOI: 10.1021/acsnano.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Understanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique. This method reveals the discontinuous nature of adhesion, emphasizing the complex interplay between bacterial extracellular polymeric substances (EPS) and substrates. Our findings not only deepen our understanding of bacterial adhesion but also have significant implications for the development of theoretical models for biofilm management. By elucidating these nanoscale step-like adhesion processes, our work provides avenues for the application of nanotechnology in biosensing, biofilm control, and the creation of biomimetic materials.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Dai S, Mi J, Dou J, Shi W, Zhang J, Zhao J. Label-free and dynamic monitoring of cell evolutions using wavelength-multiplexing surface plasmon resonance holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2028-2039. [PMID: 37206150 PMCID: PMC10191661 DOI: 10.1364/boe.486467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Dynamic characterizations of intracellular variations and cell-substrate interactions under different external environments are critical to study cell behaviors and exploring biological applications. However, techniques that are capable of dynamically and simultaneously measuring multiple parameters of living cells in a wide-field manner have rarely been reported. Here, we present a wavelength-multiplexing surface plasmon resonance holographic microscopy which allows wide-field, simultaneous, and dynamic measurements of cell parameters, including cell-substrate distance and cytoplasm refractive index (RI). We use two lasers of 632.8 nm and 690 nm as light sources. Two beam splitters are employed in the optical setup to separately adjust the incident angle of two light beams. Then, surface plasmon resonance (SPR) can be excited for each wavelength under SPR angles. We demonstrate the advances of the proposed apparatus by systematically studying the cell responses to osmotic pressure stimuli from the environmental medium at the cell-substrate interface. The SPR phase distributions of the cell are firstly mapped at two wavelengths, then the cell-substrate distance and cytoplasm RI are retrieved using a demodulation method. Based on phase response differences between two wavelengths and monotonic changes of SPR phase with cell parameters, cell-substrate distance, and cytoplasm RI can be determined simultaneously using an inverse algorithm. This work affords a new optical measurement technique to dynamically characterize cell evolutions and investigate cell properties in various cellular activities. It may become a useful tool in the bio-medical and bio-monitoring areas.
Collapse
Affiliation(s)
- Siqing Dai
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jingyu Mi
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jiazhen Dou
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wenpu Shi
- Key Lab of Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jiwei Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
6
|
Wang J, Wang Q, Tang YJ, Fu HM, Fang F, Guo JS, Yan P, Chen YP. Unraveling the structure and function of bacterioferritin in Candidatus Kuenenia stuttgartiensis: Iron storage sites maintain cellular iron homeostasis. WATER RESEARCH 2023; 238:120016. [PMID: 37146397 DOI: 10.1016/j.watres.2023.120016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu-Jiao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
7
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
8
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Han C, Dong T, Wang P, Zhou F. Microfluidically Partitioned Dual Channels for Accurate Background Subtraction in Cellular Binding Studies by Surface Plasmon Resonance Microscopy. Anal Chem 2022; 94:17303-17311. [PMID: 36454605 DOI: 10.1021/acs.analchem.2c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Unlike conventional surface plasmon resonance (SPR) using an antifouling film to anchor biomolecules and a reference channel for background subtraction, SPR microscopy for single-cell analysis uses a protein- or polypeptide-modified gold substrate to immobilize cells and a cell-free area as the reference. In this work, we show that such a substrate is prone to nonspecific adsorption (NSA) of species from the cell culture media, resulting in false background signals that cannot be correctly subtracted. To obtain accurate kinetic results, we patterned a dual-channel substrate using a microfluidic device, with one channel having poly-l-lysine deposited in situ onto a preformed polyethylene glycol (PEG) self-assembled monolayer for cell immobilization and the other channel remaining as PEG-covered for reference. The two 2.0 mm-wide channels are separated by a 75 μm barrier, and parts of the channels can be readily positioned into the field of view of an SPR microscope. The use of this dual-channel substrate for background subtraction is contrasted with the conventional approach through the following binding studies: (1) wheat germ agglutinin (WGA) attachment to the N-acetyl glucosamine and N-acetyl-neuraminic acid sites of glycans on HFF cells, and (2) the S1 protein of the COVID-19 virus conjugation with angiotensin-converting enzyme 2 (ACE2) on the HEK293 cells. Both studies revealed that interferences by NSA and the surface plasmon polariton wave diffracted by cells can be excluded with the dual-channel substrate, and the much smaller refractive index changes caused by the injected solutions can be correctly subtracted. Consequently, sensorgrams with higher signal-to-noise ratios and shapes predicted by the correct binding model can be obtained with accurate kinetic and affinity parameters that are more biologically relevant. The affinity between S1 protein and ACE2 is comparable to that measured with recombinant ACE2, yet the binding kinetics is different, suggesting that the cell membrane does impose a kinetic barrier to their interaction.
Collapse
Affiliation(s)
- Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| |
Collapse
|
10
|
Yang F, Qu J, Huang X, Chen Y, Yan P, Guo J, Fang F. Phosphorus deficiency leads to the loosening of activated sludge: The role of exopolysaccharides in aggregation. CHEMOSPHERE 2022; 290:133385. [PMID: 34942214 DOI: 10.1016/j.chemosphere.2021.133385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Whether phosphorus deficiency in influent will affect the aggregation and sedimentation of activated sludge needs to be further clarified. This paper systematically studied the structure, aggregation and settlement of activated sludge, and the composition, properties and chemical structure of extracellular polymers and microbial community structure of sludge under different influent phosphorus contents to determine the causes of sludge aggregation and structural deterioration. The results show that phosphorus deficiency in influent leads to a decrease in the aggregation capacity and a loose structure of activated sludge, and the reduction of hydrophobic interactions is the main factor of sludge aggregation and structural deterioration. The content, functional groups and protein secondary structure of extracellular protein were almost unchanged. An increase in the content and hydrophilicity of extracellular polysaccharide (PS) results in a decrease in sludge hydrophobicity. Under phosphorus deficiency, the changes in microbial species related to PS secretion were the reasons for the increase in PS content and hydrophilicity. The negative effects of PS content and hydrophilicity on sludge aggregation and structure are important findings of this work and are expected to be useful for better understanding the restoration of activated sludge performance in the treatment of phosphorus-deficient wastewater.
Collapse
Affiliation(s)
- Fan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jianwei Qu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxiao Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
11
|
Guo Y, Li B, Ma T, Moore ER, Xie H, Wu C, Li L. Unraveling the binding microprocess of individual Streptococcus mutans cells via sucrose-dependent adhesion based on surface plasmon resonance imaging. J Oral Microbiol 2022; 14:2038906. [PMID: 35186213 PMCID: PMC8856052 DOI: 10.1080/20002297.2022.2038906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yuhao Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Public Experimental Center of the National Bioindustry Base (Chongqing), Chongqing University, Chongqing, China
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Emily R. Moore
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
13
|
Yang X, Zhang Z, Su M, Song Y. Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Critical angle reflection imaging for quantification of molecular interactions on glass surface. Nat Commun 2021; 12:3365. [PMID: 34099717 PMCID: PMC8185113 DOI: 10.1038/s41467-021-23730-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Quantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR′s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry. Here, the authors present a method for quantifying molecular interactions on a glass surface, based on measuring surface refractive index changes via the reflectivity near the critical angle. They demonstrate tunable sensitivity and dynamic range, deep vertical sensing range, also for intracellular signals.
Collapse
|
15
|
Ma TF, Chen YP, Yan P, Fang F, Shen Y, Mao Z, Guo JS, Zhao B, Feng L. Adaptation mechanism of aerobic denitrifier Enterobacter cloacae strain HNR to short-term ZnO nanoparticle stresses. ENVIRONMENTAL RESEARCH 2021; 197:111178. [PMID: 33865818 DOI: 10.1016/j.envres.2021.111178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The adaptation mechanism of a wild type (WT) and resistant type (Re) strain of the aerobic denitrifier Enterobacter cloacae strain HNR to short-term ZnO nanoparticle (NP) stresses was investigated. The results showed that Re maintained higher nitrite reductase (NIR) and nitrate reductase (NR) activities and showed lower increment of reactive oxygen species (ROS) than WT, under ZnO NP stresses. The affinity constant (KA) of WT to Zn2+ was 5.06 times that of Re, indicating that Re was more repulsive to Zn2+ released by ZnO NPs. Transcriptomic analysis revealed that the up-regulation of the nitrogen metabolism of Re helped maintain NIR and NR activities, that the enhancement of purine metabolism lowered the intracellular ROS increment, and that the up-regulation of cationic antimicrobial peptide resistance contributed to the lower KA of Re to Zn2+. These findings provided new insights into the adaptation mechanism of aerobic denitrifying bacteria to ZnO NPs.
Collapse
Affiliation(s)
- Teng-Fei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Environmental Engineering Technology Research Center, Chongqing Academy of Ecological and Environmental Sciences, Chongqing, 401147, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400069, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Li Feng
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecological and Environmental Sciences, Chongqing, 401147, China
| |
Collapse
|
16
|
Liu YN, Lv ZT, Yang SY, Liu XW. Optical Tracking of the Interfacial Dynamics of Single SARS-CoV-2 Pseudoviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4115-4122. [PMID: 33566596 PMCID: PMC7885801 DOI: 10.1021/acs.est.0c06962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
The frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in healthcare environments, accommodations, and wastewater has attracted great attention to the risk of viral transmission by environmental fomites. However, the process of SARS-CoV-2 adsorption to exposed surfaces in high-risk environments remains unclear. In this study, we investigated the interfacial dynamics of single SARS-CoV-2 pseudoviruses with plasmonic imaging technology. Through the use of this technique, which has high spatial and temporal resolution, we tracked the collision of viruses at a surface and differentiated their stable adsorption and transient adsorption. We determined the effect of the electrostatic force on virus adhesion by correlating the solution and surface chemistry with the interfacial diffusion velocity and equilibrium position. Viral adsorption was found to be enhanced in real scenarios, such as in simulated saliva. This work not only describes a plasmonic imaging method to examine the interfacial dynamics of a single virus but also provides direct measurements of the factors that regulate the interfacial adsorption of SARS-CoV-2 pseudovirus. Such information is valuable for understanding virus transport and environmental transmission and even for designing anticontamination surfaces.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Zhen-Ting Lv
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Si-Yu Yang
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
- Department of Applied Chemistry,
University of Science and Technology of China, Hefei 230026,
China
| |
Collapse
|
17
|
Wang B, Park B. Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12927-12939. [PMID: 32816471 DOI: 10.1021/acs.jafc.0c02295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Surface plasmon resonance imaging (SPRi) has been increasingly used in the label-free detections of various biospecies, such as organic toxins, proteins, and bacteria. In combination with the well-developed microarray immunoassay, SPRi has the advantages of rapid detection in tens of minutes and multiplex detection of different targets with the same biochip. Both prism-based and prism-free configurations of SPRi have been developed for highly integrated portable immunosensors, which have shown great potential on pathogen detection and living cell imaging. This review summarizes the recent advances in immunoassay biosensing with SPRi, with special emphasis on the multiplex detections of foodborne pathogens. Additionally, various spotting techniques, surface modification protocols, and signal amplification methods have been developed to improve the specificity and sensitivity of the SPRi biochip. The challenges in multiplex detections of foodborne pathogens in real-world samples are addressed, and future perspectives of miniaturizing SPRi immunosensors with nanotechnologies are discussed.
Collapse
Affiliation(s)
- Bin Wang
- United States National Poultry Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 950 College Station Road, Athens, Georgia 30605, United States
| | - Bosoon Park
- United States National Poultry Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 950 College Station Road, Athens, Georgia 30605, United States
| |
Collapse
|
18
|
Forzani ES, He H, Hihath J, Lindsay S, Penner RM, Wang S, Xu B. Moving Electrons Purposefully through Single Molecules and Nanostructures: A Tribute to the Science of Professor Nongjian Tao (1963-2020). ACS NANO 2020; 14:12291-12312. [PMID: 32940998 PMCID: PMC7718722 DOI: 10.1021/acsnano.0c06017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemistry intersected nanoscience 25 years ago when it became possible to control the flow of electrons through single molecules and nanostructures. Many surprises and a wealth of understanding were generated by these experiments. Professor Nongjian Tao was among the pioneering scientists who created the methods and technologies for advancing this new frontier. Achieving a deeper understanding of charge transport in molecules and low-dimensional materials was the first priority of his experiments, but he also succeeded in discovering applications in chemical sensing and biosensing for these novel nanoscopic systems. In parallel with this work, the investigation of a range of phenomena using novel optical microscopic methods was a passion of his and his students. This article is a review and an appreciation of some of his many contributions with a view to the future.
Collapse
Affiliation(s)
- Erica S Forzani
- Biodesign Center for Bioelectronics and Biosensors, Departments of Chemical Engineering and Mechanical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Huixin He
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Stuart Lindsay
- Biodesign Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Bingqian Xu
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Zhou XL, Yang Y, Wang S, Liu XW. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew Chem Int Ed Engl 2020; 59:1776-1785. [PMID: 31531917 PMCID: PMC7020607 DOI: 10.1002/anie.201908806] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance microscopy (SPRM) is a versatile platform for chemical and biological sensing and imaging. Great progress in exploring its applications, ranging from single-molecule sensing to single-cell imaging, has been made. In this Minireview, we introduce the principles and instrumentation of SPRM. We also summarize the broad and exciting applications of SPRM to the analysis of single entities. Finally, we discuss the challenges and limitations associated with SPRM and potential solutions.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Zhou X, Yang Y, Wang S, Liu X. Surface Plasmon Resonance Microscopy: From Single‐Molecule Sensing to Single‐Cell Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Li Zhou
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science & Technology of China Hefei 230026 China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign InstituteArizona State University Tempe AZ 85287 USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign InstituteArizona State University Tempe AZ 85287 USA
| | - Xian‐Wei Liu
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science & Technology of China Hefei 230026 China
| |
Collapse
|
21
|
Bocková M, Slabý J, Špringer T, Homola J. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:151-176. [PMID: 30822102 DOI: 10.1146/annurev-anchem-061318-115106] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Surface plasmon resonance microscopy and imaging are optical methods that enable observation and quantification of interactions of nano- and microscale objects near a metal surface in a temporally and spatially resolved manner. This review describes the principles of surface plasmon resonance microscopy and imaging and discusses recent advances in these methods, in particular, in optical platforms and functional coatings. In addition, the biological applications of these methods are reviewed. These include the detection of a broad variety of analytes (nucleic acids, proteins, bacteria), the investigation of biological systems (bacteria and cells), and biomolecular interactions (drug-receptor, protein-protein, protein-DNA, protein-cell).
Collapse
Affiliation(s)
- Markéta Bocková
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| |
Collapse
|
22
|
Hassani H, Kreysing E. Noninvasive measurement of the refractive index of cell organelles using surface plasmon resonance microscopy. OPTICS LETTERS 2019; 44:1359-1362. [PMID: 30874650 DOI: 10.1364/ol.44.001359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The health of a eukaryotic cell depends on the proper functioning of its cell organelles. Characterizing these nanometer- to micrometer-scaled specialized subunits without disturbing the cell is challenging but can also provide valuable insights regarding the state of a cell. We show that objective-based scanning surface plasmon resonance microscopy can be used to analyze the refractive index of cell organelles quantitatively in a noninvasive and label-free manner with a lateral resolution at the diffraction limit.
Collapse
|
23
|
Kamuri MF, Zainal Abidin Z, Yaacob MH, Hamidon MN, Md Yunus NA, Kamarudin S. Separation and Detection of Escherichia coli and Saccharomyces cerevisiae Using a Microfluidic Device Integrated with an Optical Fibre. BIOSENSORS 2019; 9:E40. [PMID: 30875829 PMCID: PMC6468503 DOI: 10.3390/bios9010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2⁻24 s and a flow rate range of 1.2⁻9.6 μ L min - 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μ L min - 1 at a constant frequency, voltage, and a low conductivity.
Collapse
Affiliation(s)
- Mohd Firdaus Kamuri
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Mohd Hanif Yaacob
- Department of Computer and Communications Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Mohd Nizar Hamidon
- Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Nurul Amziah Md Yunus
- Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Suryani Kamarudin
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| |
Collapse
|
24
|
Ma TF, Chen YP, Guo JS, Wang W, Fang F. Cellular analysis and detection using surface plasmon resonance imaging. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Su YW, Wang W. Surface plasmon resonance sensing: from purified biomolecules to intact cells. Anal Bioanal Chem 2018; 410:3943-3951. [DOI: 10.1007/s00216-018-1008-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/03/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
|
26
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
27
|
Abstract
Chemical activity of single nanoparticles can be imaged and determined by monitoring the optical signal of each individual during chemical reactions with advanced optical microscopes. It allows for clarifying the functional heterogeneity among individuals, and for uncovering the microscopic reaction mechanisms and kinetics that could otherwise be averaged out in ensemble measurements.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
28
|
Syal K, Shen S, Yang Y, Wang S, Haydel SE, Tao N. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells. ACS Sens 2017; 2:1231-1239. [PMID: 28741927 DOI: 10.1021/acssensors.7b00392] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To combat antibiotic resistance, a rapid antibiotic susceptibility testing (AST) technology that can identify resistant infections at disease onset is required. Current clinical AST technologies take 1-3 days, which is often too slow for accurate treatment. Here we demonstrate a rapid AST method by tracking sub-μm scale bacterial motion with an optical imaging and tracking technique. We apply the method to clinically relevant bacterial pathogens, Escherichia coli O157: H7 and uropathogenic E. coli (UPEC) loosely tethered to a glass surface. By analyzing dose-dependent sub-μm motion changes in a population of bacterial cells, we obtain the minimum bactericidal concentration within 2 h using human urine samples spiked with UPEC. We validate the AST method using the standard culture-based AST methods. In addition to population studies, the method allows single cell analysis, which can identify subpopulations of resistance strains within a sample.
Collapse
Affiliation(s)
- Karan Syal
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Simon Shen
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shelley E. Haydel
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
29
|
Yuan L, Tao N, Wang W. Plasmonic Imaging of Electrochemical Impedance. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:183-200. [PMID: 28301751 DOI: 10.1146/annurev-anchem-061516-045150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) measures the frequency spectrum of an electrochemical interface to resist an alternating current. This method allows label-free and noninvasive studies on interfacial adsorption and molecular interactions and has applications in biosensing and drug screening. Although powerful, traditional EIS lacks spatial resolution or imaging capability, hindering the study of heterogeneous electrochemical processes on electrodes. We have recently developed a plasmonics-based electrochemical impedance technique to image local electrochemical impedance with a submicron spatial resolution and a submillisecond temporal resolution. In this review, we provide a systematic description of the theory, instrumentation, and data analysis of this technique. To illustrate its present and future applications, we further describe several selected samples analyzed with this method, including protein microarrays, two-dimensional materials, and single cells. We conclude by summarizing the technique's unique features and discussing the remaining challenges and new directions of its application.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| |
Collapse
|
30
|
Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N. Current and emerging techniques for antibiotic susceptibility tests. Theranostics 2017; 7:1795-1805. [PMID: 28638468 PMCID: PMC5479269 DOI: 10.7150/thno.19217] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Infectious diseases caused by bacterial pathogens are a worldwide burden. Serious bacterial infection-related complications, such as sepsis, affect over a million people every year with mortality rates ranging from 30% to 50%. Crucial clinical microbiology laboratory responsibilities associated with patient management and treatment include isolating and identifying the causative bacterium and performing antibiotic susceptibility tests (ASTs), which are labor-intensive, complex, imprecise, and slow (taking days, depending on the growth rate of the pathogen). Considering the life-threatening condition of a septic patient and the increasing prevalence of antibiotic-resistant bacteria in hospitals, rapid and automated diagnostic tools are needed. This review summarizes the existing commercial AST methods and discusses some of the promising emerging AST tools that will empower humans to win the evolutionary war between microbial genes and human wits.
Collapse
Affiliation(s)
- Karan Syal
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Manni Mo
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hui Yu
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Rafael Iriya
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wenwen Jing
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Sui Guodong
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, USA
| | - Shelley E. Haydel
- Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
31
|
Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta 2017; 162:474-478. [DOI: 10.1016/j.talanta.2016.10.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022]
|
32
|
Fang Y, Wang H, Yu H, Liu X, Wang W, Chen HY, Tao NJ. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles. Acc Chem Res 2016; 49:2614-2624. [PMID: 27662069 DOI: 10.1021/acs.accounts.6b00348] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electrochemical reactions are involved in many natural phenomena, and are responsible for various applications, including energy conversion and storage, material processing and protection, and chemical detection and analysis. An electrochemical reaction is accompanied by electron transfer between a chemical species and an electrode. For this reason, it has been studied by measuring current, charge, or related electrical quantities. This approach has led to the development of various electrochemical methods, which have played an essential role in the understanding and applications of electrochemistry. While powerful, most of the traditional methods lack spatial and temporal resolutions desired for studying heterogeneous electrochemical reactions on electrode surfaces and in nanoscale materials. To overcome the limitations, scanning probe microscopes have been invented to map local electrochemical reactions with nanometer resolution. Examples include the scanning electrochemical microscope and scanning electrochemical cell microscope, which directly image local electrochemical reaction current using a scanning electrode or pipet. The use of a scanning probe in these microscopes provides high spatial resolution, but at the expense of temporal resolution and throughput. This Account discusses an alternative approach to study electrochemical reactions. Instead of measuring electron transfer electrically, it detects the accompanying changes in the reactant and product concentrations on the electrode surface optically via surface plasmon resonance (SPR). SPR is highly surface sensitive, and it provides quantitative information on the surface concentrations of reactants and products vs time and electrode potential, from which local reaction kinetics can be analyzed and quantified. The plasmonic approach allows imaging of local electrochemical reactions with high temporal resolution and sensitivity, making it attractive for studying electrochemical reactions in biological systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.
Collapse
Affiliation(s)
- Yimin Fang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hui Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hui Yu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xianwei Liu
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wei Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - N. J. Tao
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
33
|
Ju HX, Zhuang QK, Long YT. The Preface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Rostova E, Ben Adiba C, Dietler G, Sekatskii SK. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor. BIOSENSORS-BASEL 2016; 6:bios6040052. [PMID: 27727183 PMCID: PMC5192372 DOI: 10.3390/bios6040052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022]
Abstract
Optical biosensors based on photonic crystal surface waves (PC SWs) offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b) against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor.
Collapse
Affiliation(s)
- Ekaterina Rostova
- Laboratoire de Physique de la Matière Vivante, IPHYS, École Polytechnique Fédérale de Lausanne (EPFL); Rte de la Sorge, 1015 Lausanne, Switzerland.
| | - Carine Ben Adiba
- Laboratoire de Physique de la Matière Vivante, IPHYS, École Polytechnique Fédérale de Lausanne (EPFL); Rte de la Sorge, 1015 Lausanne, Switzerland.
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, IPHYS, École Polytechnique Fédérale de Lausanne (EPFL); Rte de la Sorge, 1015 Lausanne, Switzerland.
| | - Sergey K Sekatskii
- Laboratoire de Physique de la Matière Vivante, IPHYS, École Polytechnique Fédérale de Lausanne (EPFL); Rte de la Sorge, 1015 Lausanne, Switzerland.
| |
Collapse
|
35
|
Kogermann K, Putrinš M, Tenson T. Single-cell level methods for studying the effect of antibiotics on bacteria during infection. Eur J Pharm Sci 2016; 95:2-16. [PMID: 27577009 DOI: 10.1016/j.ejps.2016.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Considerable evidence about phenotypic heterogeneity among bacteria during infection has accumulated during recent years. This heterogeneity has to be considered if the mechanisms of infection and antibiotic action are to be understood, so we need to implement existing and find novel methods to monitor the effects of antibiotics on bacteria at the single-cell level. This review provides an overview of methods by which this aim can be achieved. Fluorescence label-based methods and Raman scattering as a label-free approach are discussed in particular detail. Other label-free methods that can provide single-cell level information, such as impedance spectroscopy and surface plasmon resonance, are briefly summarized. The advantages and disadvantages of these different methods are discussed in light of a challenging in vivo environment.
Collapse
Affiliation(s)
- Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
36
|
Yuan L, Wang X, Fang Y, Liu C, Jiang D, Wo X, Wang W, Chen HY. Digitizing Gold Nanoparticle-Based Colorimetric Assay by Imaging and Counting Single Nanoparticles. Anal Chem 2016; 88:2321-6. [DOI: 10.1021/acs.analchem.5b04244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xian Wang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yimin Fang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chenbin Liu
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dan Jiang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiang Wo
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
37
|
Syal K, Iriya R, Yang Y, Yu H, Wang S, Haydel SE, Chen HY, Tao N. Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale. ACS NANO 2016; 10:845-52. [PMID: 26637243 DOI: 10.1021/acsnano.5b05944] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.
Collapse
Affiliation(s)
- Karan Syal
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Rafael Iriya
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| | - Hui Yu
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Shelley E Haydel
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- School of Life Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
- School of Electrical, Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
38
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
39
|
Shen S, Syal K, Tao N, Wang S. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:126104. [PMID: 26724085 DOI: 10.1063/1.4937479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.
Collapse
Affiliation(s)
- Simon Shen
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, USA
| | - Karan Syal
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, USA
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
40
|
Zhang F, Wang S, Yin L, Yang Y, Guan Y, Wang W, Xu H, Tao N. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging. Anal Chem 2015; 87:9960-5. [PMID: 26368334 PMCID: PMC4836855 DOI: 10.1021/acs.analchem.5b02572] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is a membrane bound protein that has been associated with a variety of solid tumors and the control of cell survival, proliferation, and metabolism. Quantification of the EGFR expression level in cell membranes and the interaction kinetics with drugs are thus important for cancer diagnosis and treatment. Here we report mapping of the distribution and interaction kinetics of EGFR in their native environment with the surface plasmon resonance imaging (SPRi) technique. The monoclonal anti-EGFR antibody was used as a model drug in this study. The binding of the antibody to EGFR overexpressed A431 cells was monitored in real time, which was found to follow the first-order kinetics with an association rate constant (ka) and dissociation rate constant (kd) of (2.7 ± 0.6) × 10(5) M(-1) s(-1) and (1.4 ± 0.5) × 10(-4) s(-1), respectively. The dissociation constant (KD) was determined to be 0.53 ± 0.26 nM with up to seven-fold variation among different individual A431 cells. In addition, the averaged A431 cell surface EGFR density was found to be 636/μm(2) with an estimation of 5 × 10(5) EGFR per cell. Additional measurement also revealed that different EGFR positive cell lines (A431, HeLa, and A549) show receptor density dependent anti-EGFR binding kinetics. The results demonstrate that SPRi is a valuable tool for direct quantification of membrane protein expression level and ligand binding kinetics at single cell resolution. Our findings show that the local environment affects the drug-receptor interactions, and in situ measurement of membrane protein binding kinetics is important.
Collapse
Affiliation(s)
- Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Linliang Yin
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunze Yang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yan Guan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093. China
| | - Han Xu
- Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093. China
| |
Collapse
|