1
|
Chandra K, Dong CD, Chauhan AS, Chen CW, Patel AK, Singhania RR. Advancements in lipase immobilization: Enhancing enzyme efficiency with nanomaterials for industrial applications. Int J Biol Macromol 2025; 311:143754. [PMID: 40318715 DOI: 10.1016/j.ijbiomac.2025.143754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
One of the most widely utilized enzymes, lipase is crucial to many biotechnological and industrial processes, including those in the biodiesel, food, paper, and oleochemical sectors, as well as in applications related to medicine. However, its use is highly costly and challenging due to its instability and aqueous solubility. Immobilization is a commonly employed way to enhance lipase activity, and it has proven to be a successful approach. In comparison to free lipase, immobilized lipase on nanomaterials (NMs) as demonstrated superior properties, including greater pH and temperature stability, a longer stable duration, and the ability to be recycled. However, under specific circumstances, protein loading is comparatively decreased and lipase immobilization on NMs might also occasionally result in activity loss. The processes of immobilization, the kind of NM's being employed, and the physicochemical characteristics of the NMs (such as particle size, aggregation behaviour, NM dimension, and kind of coupling/modifying agents being used) all affect the overall performance of immobilized lipase on NM's. In recent years, innovative nanostructured forms such nanoflowers, carbon nanotubes, nanofibers, and metal-organic frameworks (MOFs) have been researched for numerous applications along with classic nanomaterials like nano silicon, magnetic nanoparticles, and nanometal particles. To use immobilized lipase on/in nanomaterials for large-scale industrial applications, a few issues still need to be resolved. This study addresses the current advancements and the impact of NMs on lipase immobilization and activity based on the unique characteristics of lipase and NM's.
Collapse
Affiliation(s)
- Kunal Chandra
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
2
|
Li J, Zhou S, Bai R, Fu Z. A 3D-printed integrated maneuverable device for sensitive colorimetry of Pseudomonas aeruginosa. J Pharm Biomed Anal 2025; 263:116934. [PMID: 40315595 DOI: 10.1016/j.jpba.2025.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Timely and sensitive monitoring of pathogens in clinical specimen is highly demanded for efficient control and precise treatment of infectious diseases. Herein, a 3D-printed maneuverable device integrating incubation, washing, and detection functions was manufactured for colorimetry of Pseudomonas aeruginosa (P. aeruginosa) using transparent resin. The device combined with magnetic beads (MBs) can achieve specific separation and efficient enrichment of P. aeruginosa. Furthermore, it can be directly fixed onto a 96-well plate holder for colorimetry. Specifically, a P. aeruginosa bacteriophage termed as JZ1 acquired from river water was applied as a recognition reagent to functionalize the separation vectors MBs. Then, a nanoconfinement MOFs material termed as PCN-222(Pt) with remarkable peroxidase-like activity was conjugated with polymyxin B to act as a signal tracer. With the formation of target bacterial complexes, the bound PCN-222(Pt) catalyzed the color reaction of 3,3',5,5'-tetramethylbenzidine to enable quantitative colorimetry of P. aeruginosa by the maneuverable device. With this device, P. aeruginosa can be quantified within 40 min, with a dynamic range of 1.9 × 102 ∼ 1.9 × 106 cfu mL-1. The results for colorimetry of P. aeruginosa in diverse sample matrixes demonstrated its satisfactory practicability. This work provides a facile, timely, and cost-effective technique for point-of-care testing of pathogens.
Collapse
Affiliation(s)
- Jizhou Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shiruoyu Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ruining Bai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Nyenhuis J, Heuer C, Bahnemann J. 3D Printing in Biocatalysis and Biosensing: From General Concepts to Practical Applications. Chem Asian J 2024; 19:e202400717. [PMID: 39340791 PMCID: PMC11639642 DOI: 10.1002/asia.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
3D printing has matured into a versatile technique that offers researchers many different printing methods and materials with varying properties. Nowadays, 3D printing is deployed within a myriad of different applications, ranging from chemistry to biotechnology -including bioanalytics, biocatalysis or biosensing. Due to its inherent design flexibility (which enables rapid prototyping) and ease of use, 3D printing facilitates the relatively quick and easy creation of new devices with unprecedented functions.. This review article describes how 3D printing can be employed for research in the fields of biochemistry and biotechnology, and specifically for biocatalysis and biosensor applications. We survey different relevant 3D printing techniques, as well as the surface activation and functionalization of 3D-printed materials. Finally, we show how 3D printing is used for the fabrication of reaction ware and enzymatic assays in biocatalysis research, as well as for the generation of biosensors using aptamers, antibodies, and enzymes as recognition elements.
Collapse
Affiliation(s)
- Jonathan Nyenhuis
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| | - Christopher Heuer
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
- Institute of PhysicsCentre for Advanced Analytics and Predictive SciencesUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| | - Janina Bahnemann
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
- Institute of PhysicsCentre for Advanced Analytics and Predictive SciencesUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| |
Collapse
|
4
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
6
|
Ali M, Namjoshi S, Phan K, Wu X, Prasadam I, Benson HAE, Kumeria T, Mohammed Y. 3D Printed Microneedles for the Transdermal Delivery of NAD + Precursor: Toward Personalization of Skin Delivery. ACS Biomater Sci Eng 2024; 10:7235-7255. [PMID: 39312410 DOI: 10.1021/acsbiomaterials.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
3D printing of microneedles (μNDs) for transdermal therapy has the potential to enable patient personalization based on the target disease, site of application, and dosage requirements. To convert this concept to reality, it is necessary that the 3D printing technology can deliver high resolution, an affordable cost, and large print volumes. With the introduction of benchtop 4K and 8K 3D printers, it is now possible to manufacture medical devices like μNDs at sufficient resolution and low cost. In this research, we systematically optimized the 3D printing design parameters such as resin viscosity, print angle, layer height, and curing time to generate customizable μNDs. We have also developed an innovative 3D coating microtank device to optimize the coating method. We have applied this to the development of novel μNDs to deliver an established NAD+ precursor molecule, nicotinamide mononucleotide (NMN). A methacrylate-based polymer photoresin (eSun resin) was diluted with methanol to adjust the resin viscosity. The 3D print layer height of 25 μm yielded a smooth surface, thus reducing edge-ridge mismatches. Printing μNDs at 90° to the print platform yielded 84.28 ± 2.158% (n = 5) of the input height thus increasing the tip sharpness (48.52 ± 10.43 μm, n = 5). The formulation containing fluorescein (model molecule), sucrose (viscosity modifier), and Tween-20 (surface tension modifier) was coated on the μNDs using the custom designed microtank setup, and the amount deposited was determined fluorescently. The dye-coated μND arrays inserted into human skin (in vitro) showed a fluorescence signal at a depth of 150 μm (n = 3) into the skin. After optimization of the 3D printing parameters and coating protocol using fluorescein, NMN was coated onto the μNDs, and its diffusion was assessed in full-thickness human skin in vitro using a Franz diffusion setup. Approximately 189 ± 34.5 μg (5× dipped coated μNDs) of NMN permeated through the skin and 41.2 ± 7.53 μg was left in the skin after 24 h. Multiphoton microscopy imaging of NMN-coated μND treated mouse ear skin ex vivo demonstrated significantly (p < 0.05) increased free-unbound NADPH and reduced fluorescence lifetime of NADPH, both of which are indicative of cellular metabolic rates. Our study demonstrates that low-cost benchtop 3D printers can be used to print high-fidelity μNDs with the ability to rapidly coat and release NMN which consequently caused changes in intracellular NAD+ levels.
Collapse
Affiliation(s)
- Masood Ali
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Khanh Phan
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
7
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
8
|
Taghdi MH, Muttiah B, Chan AML, Fauzi MB, Law JX, Lokanathan Y. Exploring Synergistic Effects of Bioprinted Extracellular Vesicles for Skin Regeneration. Biomedicines 2024; 12:1605. [PMID: 39062178 PMCID: PMC11275222 DOI: 10.3390/biomedicines12071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, known for their role as potent mediators of intercellular communication through the exchange of proteins, genetic material, and other biological components. The integration of 3D bioprinting technology with EVs offers a novel approach to tissue engineering, enabling the precise deposition of EV-loaded bioinks to construct complex three-dimensional (3D) tissue architectures. Unlike traditional cell-based approaches, bioprinted EVs eliminate the need for live cells, thereby mitigating regulatory and financial obstacles associated with cell therapy. By leveraging the synergistic effects of EVs and bioprinting, researchers aim to enhance the therapeutic outcomes of skin regeneration while addressing current limitations in conventional treatments. This review explores the evolving landscape of bioprinted EVs as a transformative approach for skin regeneration. Furthermore, it discusses the challenges and future directions in harnessing this innovative therapy for clinical applications, emphasizing the need for interdisciplinary collaboration and continued scientific inquiry to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Manal Hussein Taghdi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
- Department of Anaesthesia and Intensive Care, Faculty of Medical Technology, University of Tripoli, Tripoli P.O. Box 13932, Libya
| | - Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| |
Collapse
|
9
|
Nian L, Li W, Zhang C, Li L, Zhang G, Xiao J. 3D-Printed SERS Chips for Highly Specific Detection of Denatured Type I and IV Collagens in Blood for Early Hepatic Fibrosis Diagnosis. ACS Sens 2024; 9:3272-3281. [PMID: 38836565 DOI: 10.1021/acssensors.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hepatic fibrosis, the insidious progression of chronic liver scarring leading to life-threatening cirrhosis and hepatocellular carcinoma, necessitates the urgent development of noninvasive and precise diagnostic methodologies. Denatured collagen emerges as a critical biomarker in the pathogenesis of hepatic fibrosis. Herein, we have for the first time developed 3D-printed collagen capture chips for highly specific surface-enhanced Raman scattering (SERS) detection of denatured type I and type IV collagen in blood, facilitating the early diagnosis of hepatic fibrosis. Employing a novel blend of denatured collagen-targeting peptide-modified silver nanoparticle probes (Ag@DCTP) and polyethylene glycol diacrylate (PEGDA), we engineered a robust ink for the 3D fabrication of these collagen capture chips. The chips are further equipped with specialized SERS peptide probes, Ag@ICTP@R1 (S-I) and Ag@IVCTP@R2 (S-IV), tailored for the targeted detection of type I and IV collagen, respectively. The SERS chip platform demonstrated exceptional specificity and sensitivity in capturing and detecting denatured type I and IV collagen, achieving detection limits of 3.5 ng/mL for type I and 3.2 ng/mL for type IV collagen within a 10-400 ng/mL range. When tested on serum samples from hepatic fibrosis mouse models across a spectrum of fibrosis stages (S0-S4), the chips consistently measured denatured type I collagen and detected a progressive increase in type IV collagen concentration, which correlated with the severity of fibrosis. This novel strategy establishes a benchmark for the multiplexed detection of collagen biomarkers, enhancing our capacity to assess the stages of hepatic fibrosis.
Collapse
Affiliation(s)
- Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunxia Zhang
- Tianjin Baogang Rare Earth Research Institute Company, Limited, Beijing 100022, P. R. China
| | - Lu Li
- Tianjin Baogang Rare Earth Research Institute Company, Limited, Beijing 100022, P. R. China
| | - Guangrui Zhang
- Tianjin Baogang Rare Earth Research Institute Company, Limited, Beijing 100022, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Crapnell RD, Banks CE. Electroanalysis overview: additive manufactured biosensors using fused filament fabrication. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2625-2634. [PMID: 38639065 DOI: 10.1039/d4ay00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
11
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Zhang H, Xue Y, Jiang C, Liu D, Zhang L, Lang G, Mao T, Effrem DB, Iimaa T, Surenjav U, Liu M. 3-Dimentional printing of polysaccharides for water-treatment: A review. Int J Biol Macromol 2024; 265:131117. [PMID: 38522684 DOI: 10.1016/j.ijbiomac.2024.131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Biological polysaccharides such as cellulose, chitin, chitosan, sodium alginate, etc., serve as excellent substrates for 3D printing due to their inherent advantages of biocompatibility, biodegradability, non-toxicity, and absence of secondary pollution. In this review we comprehensively overviewed the principles and processes involved in 3D printing of polysaccharides. We then delved into the diverse application of 3D printed polysaccharides in wastewater treatment, including their roles as adsorbents, photocatalysts, biological carriers, micro-devices, and solar evaporators. Furthermore, we assessed the technical superiority and future potential of polysaccharide 3D prints, envisioning its widespread application. Lastly, we remarked the challenging scientific and engineering aspects that require attention in the scientific research, industrial production, and engineering utilization. By addressing these key points, we aimed to advance the field and facilitate the practical implementation of polysaccharide-based 3D printing technologies in wastewater treatment and beyond.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongjun Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenyu Jiang
- Suzhou Key Laboratory of Biophotonics, School of Optical and Electrical Information, Suzhou City University, Suzhou, Jiangsu Province 215104, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Lu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Gaoyuan Lang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tingting Mao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dally Bozi Effrem
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tuyajargal Iimaa
- Department of Science and Bio-Innovation, National Center for Public Health, Ministry of Health, Ulaanbaatar 13381, Mongolia
| | - Unursaikhan Surenjav
- Department of Science and Bio-Innovation, National Center for Public Health, Ministry of Health, Ulaanbaatar 13381, Mongolia
| | - Ming Liu
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Dessau-Rosslau 06844, Germany
| |
Collapse
|
13
|
Elhassan MM, Glasco DL, Sheelam A, Mahmoud AM, Hegazy MA, Mowaka S, Bell JG. Potentiometric detection of apomorphine in human plasma using a 3D printed sensor. Biosens Bioelectron 2024; 248:115971. [PMID: 38154328 DOI: 10.1016/j.bios.2023.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Apomorphine is a dopamine agonist that is used for the management of Parkinson's disease and has been proven to effectively decrease the off-time duration, where the symptoms recur, in Parkinson's disease patients. This paper describes the design and fabrication of the first potentiometric sensor for the determination of apomorphine in bulk and human plasma samples. The fabrication protocol involves stereolithographic 3D printing, which is a unique tool for the rapid fabrication of low-cost sensors. The solid-contact apomorphine ion-selective electrode combines a carbon-mesh/thermoplastic composite as the ion-to-electron transducer and a 3D printed ion-selective membrane, doped with the ionophore calix[6]arene. The sensor selectively measures apomorphine in the presence of other biologically present cations - sodium, potassium, magnesium, and calcium - as well as the commonly prescribed Parkinson's pharmaceutical, levodopa (L-Dopa). The sensor demonstrated a linear, Nernstian response, with a slope of 58.8 mV/decade over the range of 5.0 mM-9.8 μM, which covers the biologically (and pharmaceutically) relevant ranges, with a limit of detection of 2.51 μM. Moreover, the apomorphine sensor exhibited good stability (minimal drift of just 188 μV/hour over 10 h) and a shelf-life of almost 4 weeks. Experiments performed in the presence of albumin, the main plasma protein to which apomorphine binds, demonstrate that the sensor responds selectively to free-apomorphine (i.e., not bound or complexed forms). The utility of the sensor was confirmed through the successful determination of apomorphine in spiked human plasma samples.
Collapse
Affiliation(s)
- Manar M Elhassan
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Anjaiah Sheelam
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Shereen Mowaka
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
14
|
Georgiev P, Belka M, Kroll D, Bączek T, Opiełka M, Rutkowska A, Ulenberg S. 3D-printed extraction devices fabricated from silica particles suspended in acrylate resin. J Chromatogr A 2024; 1717:464671. [PMID: 38278133 DOI: 10.1016/j.chroma.2024.464671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
In recent years, there has been an increasing worldwide interest in the use of alternative sample preparation methods. Digital light processing (DLP) is a 3D printing technique based on using UV light to form photo-curable resin layer upon layer, which results in a printed shape. This study explores the application of this technique for the development of novel drug extraction devices in analytical chemistry. A composite material consisting of a photocurable resin and C18-modified silica particles was employed as a sorbent device, demonstrating its effectiveness in pharmaceutical analysis. Apart from estimating optimal printing parameters, microscopic examination of the material surface, and sorbent powder to resin ratio, the extraction procedure was also optimised. Optimisation included the type and amount of sample matrix additives, desorption solvent, sorption and desorption times, and proper number of sorbent devices needed in extraction protocol. To demonstrate this method's applicability for sample analysis, the solid-phase extraction followed by gas chromatography coupled with mass spectrometry (SPE-GC-MS) method was validated for its ability to quantify benzodiazepine-type drugs. This evaluation confirmed good linearity in the concentration range of 50-1000 ng/mL, with R2 values being 0.9932 and 0.9952 for medazepam and diazepam, respectively. Validation parameters proved that the presented method is precise (with values ranging in-between 2.98 %-7.40 %), and accurate (88.81 % to 110.80 %). A negative control was also performed to investigate possible sorption properties of the resin itself, proving that the addition of C18-modified silica particles significantly increases the extraction efficiency and repeatability. The cost-effectiveness of this approach makes it particularly advantageous for single-use scenarios, eliminating the need for time-consuming sorbent-cleaning procedures, common in traditional solid-phase extraction techniques. Future optimisation opportunities include refining sorbent size, shape, and geometry to achieve lower limits of quantification. As a result of these findings, 3D-printed extraction devices can serve as a viable alternative to commercially available SPE or solid-phase microextraction (SPME) protocols for studying new sample preparation approaches.
Collapse
Affiliation(s)
- Paweł Georgiev
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Dagmara Kroll
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aleksandra Rutkowska
- Department of Anatomy, Division of Anatomy and Neurobiology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland; Brain Diseases Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
15
|
Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology 2024; 22:57. [PMID: 38341585 PMCID: PMC10858484 DOI: 10.1186/s12951-024-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
16
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
17
|
Deka M, Sinha N, Das R, Hazarika NK, Das H, Daurai B, Gogoi M. A review on the surface modification of materials for 3D-printed diagnostic devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:485-495. [PMID: 38167879 DOI: 10.1039/d3ay01742g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Three-dimensional (3D) printing in tissue engineering and biosensing of analytes by using biocompatible materials or modifying surface structures is an upcoming area of study. This review discusses three common surface modification techniques, viz. alkaline hydrolysis, UV light photografting, and plasma treatment. Alkaline hydrolysis involves the reaction of an alkaline solution with the surface of a material, causing the surface to develop carboxyl and hydroxyl groups. This technique can enhance the biocompatibility, surface wettability, adhesion, printability, and dyeability of materials, such as acrylonitrile butadiene styrene (ABS), polycarbonate, and polylactic acid (PLA). This review also mentions details about some of the surface-modified 3D-printed diagnostic devices. Although most of the devices are modified using chemical processes, there are always multiple techniques involved while designing a diagnostic device. We have, therefore, mentioned some of the devices based on the materials used instead of categorising them as per modification techniques. 3D printing helps in the design of sophisticated shapes and structures using multiple materials. They can, therefore be used even in the design of microfluidic devices that are very useful for biosensing. We have also mentioned a few materials for printing microfluidic devices.
Collapse
Affiliation(s)
- Mridupaban Deka
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Nibedita Sinha
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Rajkamal Das
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Nihal Kumar Hazarika
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Hrishikesh Das
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Bethuel Daurai
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India.
| |
Collapse
|
18
|
Paul AA, Aladese AD, Marks RS. Additive Manufacturing Applications in Biosensors Technologies. BIOSENSORS 2024; 14:60. [PMID: 38391979 PMCID: PMC10887193 DOI: 10.3390/bios14020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics. However, this technology has an untapped potential for biotechnological applications, such as sensor and biosensor development. By exploring these avenues, the scope of 3D printing technology can be expanded and pave the way for groundbreaking innovations in the biotechnology field. Indeed, new printing materials and printers would offer new possibilities for seamlessly incorporating biological functionalities within the growing 3D scaffolds. Herein, we review the additive manufacturing applications in biosensor technologies with a particular emphasis on extrusion-based 3D printing modalities. We highlight the application of natural, synthetic, and composite biomaterials as 3D-printed soft hydrogels. Emphasis is placed on the approach by which the sensing molecules are introduced during the fabrication process. Finally, future perspectives are provided.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
| | - Adedamola D. Aladese
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152, USA;
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
- Ilse Katz Centre for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
19
|
Anzillotti G, Guazzoni E, Conte P, Di Matteo V, Kon E, Grappiolo G, Loppini M. Using Three-Dimensional Printing Technology to Solve Complex Primary Total Hip Arthroplasty Cases: Do We Really Need Custom-Made Guides and Templates? A Critical Systematic Review on the Available Evidence. J Clin Med 2024; 13:474. [PMID: 38256607 PMCID: PMC10816635 DOI: 10.3390/jcm13020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The burden of osteoarthritis (OA) is around 300 million people affected worldwide, with the hip representing a commonly affected joint. Total hip arthroplasty (THA) has been used with notable success as a definitive treatment to improve pain and function in hip OA patients. The recent advent of new technologies, such as 3D printing, has pushed the application of these new concepts toward applications for the well-known THA. Currently, the evidence on the use of 3D printing to aid complex primary THA cases is still scarce. METHODS An extensive literature review was conducted to retrieve all articles centered on the use of 3D printing in the setting of primary THA. RESULTS A total of seven studies were included in the present systematic review. Four studies investigated the use of 3D-printed surgical guides to be used during surgery. The remaining three studies investigated the benefit of the use of 3D-printed templates of the pelvis to simulate the surgery. CONCLUSIONS The use of 3D printing could be a promising aid to solve difficult primary total hip arthroplasty cases. However, the general enthusiasm in the field is not supported by high-quality studies, hence preventing us from currently recommending its application in everyday practice.
Collapse
Affiliation(s)
- Giuseppe Anzillotti
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Edoardo Guazzoni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Fondazione Livio Sciutto Onlus, Campus Savona, Università Degli Studi di Genova, 17100 Savona, Italy
| | - Pietro Conte
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Vincenzo Di Matteo
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Department of Traumatology, Orthopaedics and Disaster Surgery, Sechenov University, Moscow 119991, Russia
| | - Guido Grappiolo
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Fondazione Livio Sciutto Onlus, Campus Savona, Università Degli Studi di Genova, 17100 Savona, Italy
| | - Mattia Loppini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (G.A.); (E.G.); (P.C.); (V.D.M.); (E.K.); (G.G.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Fondazione Livio Sciutto Onlus, Campus Savona, Università Degli Studi di Genova, 17100 Savona, Italy
| |
Collapse
|
20
|
Cikalleshi K, Nexha A, Kister T, Ronzan M, Mondini A, Mariani S, Kraus T, Mazzolai B. A printed luminescent flier inspired by plant seeds for eco-friendly physical sensing. SCIENCE ADVANCES 2023; 9:eadi8492. [PMID: 37967177 PMCID: PMC10651124 DOI: 10.1126/sciadv.adi8492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Continuous and distributed monitoring of environmental parameters may pave the way for developing sustainable strategies to tackle climate challenges. State-of-the-art technologies, made with electronic systems, are often costly, heavy, and generate e-waste. Here, we propose a new generation of self-deployable, biocompatible, and luminescent artificial flying seeds for wireless, optical, and eco-friendly monitoring of environmental parameters (i.e., temperature). Inspired by natural Acer campestre plant seeds, we developed three-dimensional functional printed luminescent seed-like fliers, selecting polylactic acid as a biocompatible matrix and temperature as a physical parameter to be monitored. The artificial seeds mimic the aerodynamic and wind dispersal performance of the natural ones. The sensing properties are given by the integration of fluorescent lanthanide-doped particles, whose photoluminescence properties depend on temperature. The luminescent artificial flying seeds can be optically read from a distance using eye-safe near-infrared wavelengths, thus acting as a deployable sensor for distributed monitoring of topsoil environmental temperatures.
Collapse
Affiliation(s)
- Kliton Cikalleshi
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56025 Pontedera, Italy
| | - Albenc Nexha
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Thomas Kister
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Marilena Ronzan
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessio Mondini
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Mariani
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123, Saarbrücken, Germany
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
21
|
Li N, Khan SB, Chen S, Aiyiti W, Zhou J, Lu B. Promising New Horizons in Medicine: Medical Advancements with Nanocomposite Manufacturing via 3D Printing. Polymers (Basel) 2023; 15:4122. [PMID: 37896366 PMCID: PMC10610836 DOI: 10.3390/polym15204122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Three-dimensional printing technology has fundamentally revolutionized the product development processes in several industries. Three-dimensional printing enables the creation of tailored prostheses and other medical equipment, anatomical models for surgical planning and training, and even innovative means of directly giving drugs to patients. Polymers and their composites have found broad usage in the healthcare business due to their many beneficial properties. As a result, the application of 3D printing technology in the medical area has transformed the design and manufacturing of medical devices and prosthetics. Polymers and their composites have become attractive materials in this industry because of their unique mechanical, thermal, electrical, and optical qualities. This review article presents a comprehensive analysis of the current state-of-the-art applications of polymer and its composites in the medical field using 3D printing technology. It covers the latest research developments in the design and manufacturing of patient-specific medical devices, prostheses, and anatomical models for surgical planning and training. The article also discusses the use of 3D printing technology for drug delivery systems (DDS) and tissue engineering. Various 3D printing techniques, such as stereolithography, fused deposition modeling (FDM), and selective laser sintering (SLS), are reviewed, along with their benefits and drawbacks. Legal and regulatory issues related to the use of 3D printing technology in the medical field are also addressed. The article concludes with an outlook on the future potential of polymer and its composites in 3D printing technology for the medical field. The research findings indicate that 3D printing technology has enormous potential to revolutionize the development and manufacture of medical devices, leading to improved patient outcomes and better healthcare services.
Collapse
Affiliation(s)
- Nan Li
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- School of Education (Normal School), Dongguan University of Technology, Dongguan 523808, China
| | - Sadaf Bashir Khan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shenggui Chen
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China;
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| | - Jianping Zhou
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| | - Bingheng Lu
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| |
Collapse
|
22
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
23
|
Chen J, Zhou H, Fan Y, Gao G, Ying Y, Li J. 3D printing for bone repair: Coupling infection therapy and defect regeneration. CHEMICAL ENGINEERING JOURNAL 2023; 471:144537. [DOI: 10.1016/j.cej.2023.144537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
24
|
Maihemuti A, Zhang H, Lin X, Wang Y, Xu Z, Zhang D, Jiang Q. 3D-printed fish gelatin scaffolds for cartilage tissue engineering. Bioact Mater 2023; 26:77-87. [PMID: 36875052 PMCID: PMC9974427 DOI: 10.1016/j.bioactmat.2023.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Knee osteoarthritis is a chronic disease caused by the deterioration of the knee joint due to various factors such as aging, trauma, and obesity, and the nonrenewable nature of the injured cartilage makes the treatment of osteoarthritis challenging. Here, we present a three-dimensional (3D) printed porous multilayer scaffold based on cold-water fish skin gelatin for osteoarticular cartilage regeneration. To make the scaffold, cold-water fish skin gelatin was combined with sodium alginate to increase viscosity, printability, and mechanical strength, and the hybrid hydrogel was printed according to a pre-designed specific structure using 3D printing technology. Then, the printed scaffolds underwent a double-crosslinking process to enhance their mechanical strength even further. These scaffolds mimic the structure of the original cartilage network in a way that allows chondrocytes to adhere, proliferate, and communicate with each other, transport nutrients, and prevent further damage to the joint. More importantly, we found that cold-water fish gelatin scaffolds were nonimmunogenic, nontoxic, and biodegradable. We also implanted the scaffold into defective rat cartilage for 12 weeks and achieved satisfactory repair results in this animal model. Thus, cold-water fish skin gelatin scaffolds may have broad application potential in regenerative medicine.
Collapse
Affiliation(s)
- Abudureheman Maihemuti
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Han Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Zhihong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Corresponding author. Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China.
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210002, PR China
- Corresponding author.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
25
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
26
|
Płatek P, Daniel N, Cieplak K, Sarzyński M, Siemiński P, Sadownik B, Andruszkiewicz P, Wróblewski Ł. 3D Printing in the Fight Against Covid-19. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2023; 16:167-182. [PMID: 37435359 PMCID: PMC10332420 DOI: 10.2147/mder.s406757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2023] Open
Abstract
Purpose The paper describes the design concept and findings from technological and initial clinical trials conducted to develop a helmet for non-invasive oxygen therapy using positive pressure, known as hCPAP (Helmet Continuous Positive Airway Pressure). Methods The study utilized PET-G filament, a recommended material for medical applications, along with the FFF 3D printing technique. Additional technological investigations were performed for the production of fitting components. The authors proposed a parameter identification method for 3D printing, which reduced the time and cost of the study while ensuring high mechanical strength and quality of the manufactured elements. Results The proposed 3D printing technique facilitated the rapid development of an ad hoc hCPAP device, which was utilized in preclinical testing and treatment of Covid-19 patients, and yielded positive results. Based on the promising outcomes of the preliminary tests, further development of the hCPAP device's current version was pursued. Conclusion The proposed approach offered a crucial benefit by significantly reducing the time and costs involved in developing customized solutions to aid in the fight against the Covid-19 pandemic.
Collapse
Affiliation(s)
- Paweł Płatek
- Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland
| | - Natalia Daniel
- Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland
| | - Kamil Cieplak
- Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland
| | - Marcin Sarzyński
- Faculty of Mechatronics, Armament and Aviation, Military University of Technology, Warsaw, Poland
| | - Przemysław Siemiński
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Bartosz Sadownik
- 2nd Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Central Teaching Hospital, Central Teaching Hospital, Warsaw, Poland
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Andruszkiewicz
- 2nd Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Central Teaching Hospital, Central Teaching Hospital, Warsaw, Poland
| | - Łukasz Wróblewski
- 2nd Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Central Teaching Hospital, Central Teaching Hospital, Warsaw, Poland
| |
Collapse
|
27
|
Vaupel S, Mau R, Kara S, Seitz H, Kragl U, Meyer J. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured via digital light processing. J Mater Chem B 2023. [PMID: 37325953 DOI: 10.1039/d3tb00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogels are three-dimensional hydrophilic polymeric networks absorbing up to and even more than 90 wt% of water. These superabsorbent polymers retain their shape during the swelling process while enlarging their volume and mass. In addition to their swelling behavior, hydrogels can possess other interesting properties, such as biocompatibility, good rheological behavior, or even antimicrobial activity. This versatility qualifies hydrogels for many medical applications, especially drug delivery systems. As recently shown, polyelectrolyte-based hydrogels offer beneficial properties for long-term and stimulus-responsive applications. However, the fabrication of complex structures and shapes can be difficult to achieve with common polymerization methods. This obstacle can be overcome by the use of additive manufacturing. 3D printing technology is gaining more and more attention as a method of producing materials for biomedical applications and medical devices. Photopolymerizing 3D printing methods offer superior resolution and high control of the photopolymerization process, allowing the fabrication of complex and customizable designs while being less wasteful. In this work, novel synthetic hydrogels, consisting of [2-(acryloyloxy) ethyl]trimethylammonium chloride (AETMA) as an electrolyte monomer and poly(ethylene glycol)-diacrylate (PEGDA) as a crosslinker, 3D printed via Digital Light Processing (DLP) using a layer height of 100 μm, are reported. The hydrogels obtained showed a high swelling degree q∞m,t ∼ 12 (24 h in PBS; pH 7; 37 °C) and adjustable mechanical properties with high stretchability (εmax ∼ 300%). Additionally, we embedded the model drug acetylsalicylic acid (ASA) and investigated its stimulus-responsive drug release behaviour in different release media. The stimulus responsiveness of the hydrogels is mirrored in their release behavior and could be exploited in triggered as well as sequential release studies, demonstrating a clear ion exchange behavior. The received 3D-printed drug depots could also be printed in complex hollow geometry, exemplarily demonstrated via an individualized frontal neo-ostium implant prototype. Consequently, a drug-releasing, flexible, and swellable material was obtained, combining the best of both worlds: the properties of hydrogels and the ability to print complex shapes.
Collapse
Affiliation(s)
- Sonja Vaupel
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Robert Mau
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Microfluidics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Selin Kara
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Hermann Seitz
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Microfluidics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Udo Kragl
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Johanna Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
28
|
Garmasukis R, Hackl C, Charvat A, Mayr SG, Abel B. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace. Curr Opin Biotechnol 2023; 81:102948. [PMID: 37163825 DOI: 10.1016/j.copbio.2023.102948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/12/2023]
Abstract
Rapid prototyping of microfluidic chips is a key enabler for controlled biotechnology applications in microspaces, as it allows for the efficient design and production of microfluidic systems. With rapid prototyping, researchers and engineers can quickly create and test new microfluidic chip designs, which can then be optimized for specific applications in biotechnology. One of the key advantages of microfluidic chips for biotechnology is the ability to manipulate and control biological samples in a microspace, which enables precise and controlled experiments under well-defined conditions. This is particularly useful for applications such as cell culture, drug discovery, and diagnostic assays, where precise control over the biological environment is crucial for obtaining accurate results. Established methods, for example, soft lithography, 3D printing, injection molding, as well as other recently highlighted innovative approaches, will be compared and challenges as well as limitations will be discussed. It will be shown that rapid prototyping of microfluidic chips enables the use of advanced materials and technologies, such as smart materials and digital sensors, which can further enhance the capabilities of microfluidic systems for biotechnology applications. Overall, rapid prototyping of microfluidic chips is an important enabling technology for controlled biotechnology applications in microspaces, as well as for upscaling it into macroscopic bioreactors, and its continued development and improvement will play a critical role in advancing the field. The review will highlight recent trends in terms of materials and competing approaches and shed light on current challenges on the way toward integrated microtechnologies. Also, the possibility to easy and direct implementation of novel functions (membranes, functionalization of interfaces, etc.) is discussed.
Collapse
Affiliation(s)
- Rokas Garmasukis
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany; Helmholtz-Centre for Environmental Research (UFZ), Permoserstr.15, 04318 Leipzig, Germany
| | - Claudia Hackl
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ales Charvat
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Stefan G Mayr
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| |
Collapse
|
29
|
Erdem A, Yildiz E, Senturk H, Maral M. Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis. J Pharm Biomed Anal 2023; 230:115385. [PMID: 37054602 DOI: 10.1016/j.jpba.2023.115385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Three-dimensional (3D) printing technology has been applied in many areas. In recent years, new generation biosensorshave been emerged with the progress on 3D printing technology (3DPT) . Especially in the development of optical and electrochemical biosensors, 3DPT provides many advantages such as low cost, easy to manufacturing, being disposable and allow point of care testing. In this review, recent trends in the development of 3DPT based electrochemical and optical biosensors with their applications in the field of biomedical and pharmaceutical are examined. In addition, the advantages, disadvantages and future opportunities of 3DPT are discussed.
Collapse
|
30
|
Zhao Y, Zhong J, Wang Y, Chen Q, Yin J, Wang J, Zhao H, Li Y, Gong H, Huang W. Photocurable and elastic polyurethane based on polyether glycol with adjustable hardness for 3D printing customized flatfoot orthosis. Biomater Sci 2023; 11:1692-1703. [PMID: 36626200 DOI: 10.1039/d2bm01538b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Orthopedic insoles is the most commonly used nonsurgical treatment method for the flatfoot. Polyurethane (PU) plays a crucial role in the manufacturing of orthopedic insoles due to its high wear resistance and elastic recovery. However, preparing orthopedic insoles with adjustable hardness, high-accuracy, and matches the plantar morphology is challenging. Herein, a liquid crystal display (LCD) three-dimensional (3D) printer was used to prepare the customized arch-support insoles based on photo-curable and elastic polyurethane acrylate (PUA) composite resins. Two kinds of photo-curable polyurethanes (DL1000-PUA and DL2000-PUA) were successfully synthesized, and a series of fast-photocuring polyurethane acrylate (PUA) composite resins for photo-polymerization 3D printing were developed. The effects of different acrylate monomers on the Shore hardness, viscosity, and mechanical properties of the PUA composite resins were evaluated. The PUA-3-1 composite resin exhibited low viscosity, optimal hardness, and mechanical properties. A deviation analysis was conducted to assess the accuracy of printed insole. Furthermore, the stress conditions of the PUA composite resin and ethylene vinyl acetate (EVA) under the weight load of healthy adults were compared by finite element analysis (FEA) simulation. The results demonstrated that the stress of the PUA composite resin and EVA were 0.152 MPa and 0.285 MPa, and displacement were 0.051 mm and 3.449 mm, respectively. These results indicate that 3D-printed arch-support insole based on photocurable PUA composite resin are high-accuracy, and can reduce plantar pressure and prevent insoles premature deformation, which show great potential in the physiotherapeutic intervention for foot disorders.
Collapse
Affiliation(s)
- Yanyan Zhao
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yilin Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qiwei Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Junfeiyang Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jiejie Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hong Zhao
- Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanbing Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haihuan Gong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Stomatology, Affiliated Hospital of Guangdong Medical University, Guangdong medical university, Zhanjiang, 524000, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
31
|
de Souza A, Martignago CCS, Santo GDE, Sousa KDSJ, Cruz MA, Amaral GO, Parisi JR, Estadella D, Ribeiro DA, Granito RN, Renno ACM. 3D printed wound constructs for skin tissue engineering: A systematic review in experimental animal models. J Biomed Mater Res B Appl Biomater 2023; 111:1419-1433. [PMID: 36840674 DOI: 10.1002/jbm.b.35237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Wound dressings are one of the most used treatments for chronic wounds. Moreover, 3D printing has been emerging as a promising strategy for printing 3D printed wound constructs, being able of manufacturing multi layers, with a solid 3D structure. Although all these promising effects of 3D printed wound constructs, there is still few studies and limited understanding of the interaction of these dressings with skin tissue and their effect on the process of skin wound healing. In this context, the aim of this work was to perform a systematic review of the literature to examine the effects of 3D printed wound constructs on the process of skin wound healing in animal models. The articles were selected from three databases following Medical Subject Headings (MeSH) descriptors "3D printing," "skin," "wound," and "in vivo." After the selection, exclusion and inclusion criteria, nine articles were analyzed. This review confirms the significant benefits of using 3D printed wound constructs for skin repair and regeneration. All the used inks demonstrated the ability of mimicking the structure of skin tissue and promoting cell adhesion, proliferation, migration, and mobility. Furthermore, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | | | | | - Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
32
|
Uchida DT, Bruschi ML. 3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech 2023; 24:41. [PMID: 36698047 PMCID: PMC9876655 DOI: 10.1208/s12249-023-02503-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Wound healing is a dynamic process which involves stages of hemostasis, inflammation, proliferation and remodeling. Any error in this process results in abnormal wound healing, generating financial burdens for health systems and even affecting the physical and mental health of the patient. Traditional dressings do not meet the complexities of ideal treatment in all types of wounds. For this reason, in the last decades, different materials for drug delivery and for the treatment of wounds have been proposed reaching novel level of standards, such as 3D printing techniques. The use of natural or synthetic polymers, and the correct design of these printed products loaded with cells and/or combined with active compounds, can generate an effective system for the treatment of wounds, improving the healing process and generating customized dressings according to the patient needs. This manuscript provides a comprehensive review of different types of 3D printing techniques, as well as its use in wound healing and its different stages, including the advantages and limitations of additive manufacturing and future perspectives.
Collapse
Affiliation(s)
- Denise Tiemi Uchida
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil.
| |
Collapse
|
33
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
34
|
Ouyang X, Feng C, Zhu X, Liao Y, Zhou Z, Fan X, Zhang Z, Chen L, Tang L. 3D printed bionic self-powered sensing device based on fern-shaped nitrogen doped BiVO4 photoanode with enriched oxygen vacancies. Biosens Bioelectron 2022; 220:114817. [DOI: 10.1016/j.bios.2022.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
35
|
Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Szychlinska MA, Bucchieri F, Fucarino A, Ronca A, D’Amora U. Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources. J Funct Biomater 2022; 13:118. [PMID: 35997456 PMCID: PMC9397043 DOI: 10.3390/jfb13030118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organization by further enhancing its biological cues. However, there are still some limitations that need to be overcome before 3D bioprinting may be globally used for scaffolds' development and their clinical translation. One of them is represented by the poor availability of appropriate, biocompatible and eco-friendly biomaterials, which should present a series of specific requirements to be used and transformed into a proper bioink for CTE. In this scenario, considering that, nowadays, the environmental decline is of the highest concerns worldwide, exploring naturally-derived hydrogels has attracted outstanding attention throughout the scientific community. For this reason, a comprehensive review of the naturally-derived hydrogels, commonly employed as bioinks in CTE, was carried out. In particular, the current state of art regarding eco-friendly and natural bioinks' development for CTE was explored. Overall, this paper gives an overview of 3D bioprinting for CTE to guide future research towards the development of more reliable, customized, eco-friendly and innovative strategies for CTE.
Collapse
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
37
|
Khan SB, Li N, Liang J, Xiao C, Sun X, Chen S. Influence of Exposure Period and Angle Alteration on the Flexural Resilience and Mechanical Attributes of Photosensitive Resin. NANOMATERIALS 2022; 12:nano12152566. [PMID: 35893532 PMCID: PMC9332362 DOI: 10.3390/nano12152566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Despite the large number of studies addressing the effect of acrylic resin polymerization concerning flexural properties, limited research has been conducted on the manufacturing impact on a polymer’s mechanical properties. Photosensitive resinous materials are used in various engineering applications where they may be exposed to multiple detrimental environments during their lifetime. Therefore, there is a need to understand the impact of an environment on the service life of resins. Thus, flexural tests were conducted to study the effects of exposure time and angle on the flexural strength of resins. Herein, the main objective was to explore the strength, stability, and flexural durability of photosensitive resin (EPIC-2000ST) fabricated at different exposure times (E) and angle deviation varying from 0° to 85° with a 5° increment. The samples in circular rings were manufactured and divided into five groups according to their exposure time (E): 10 s, 20 s, 30 s, 40 s, and 50 s. In each exposure time, we designed rings via SolidWorks software and experimentally fabricated at different oblique angles (OA) varying from 0° to 85° with a 5° increment during each fabrication, i.e., OA = 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, and 85°. Flexural strength was evaluated using a three-point bending test. Optical electron microscopy was used to examines the samples’ exterior, interior, and ruptured surfaces. Our experimental analysis shows that flexural strength was significantly enhanced by increasing exposure time and at higher oblique angles. However, at lower angles and less exposure time, mechanical flexural resilience declines.
Collapse
Affiliation(s)
- Sadaf Bashir Khan
- Dongguan University of Technology, Dongguan 523808, China; (S.B.K.); (N.L.); (C.X.)
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China;
| | - Nan Li
- Dongguan University of Technology, Dongguan 523808, China; (S.B.K.); (N.L.); (C.X.)
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China;
| | - Jiahua Liang
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China;
| | - Chuang Xiao
- Dongguan University of Technology, Dongguan 523808, China; (S.B.K.); (N.L.); (C.X.)
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China;
| | - Xiaohong Sun
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Correspondence: (X.S.); (S.C.)
| | - Shenggui Chen
- Dongguan University of Technology, Dongguan 523808, China; (S.B.K.); (N.L.); (C.X.)
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China;
- Correspondence: (X.S.); (S.C.)
| |
Collapse
|
38
|
Barczewski BF, Junqueira LDA, Raposo FJ, Brandão MAF, Raposo NRB. Aplicações da manufatura aditiva em oftalmologia. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022. [DOI: 10.37039/1982.8551.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Shukla SK. Century Impact of Macromolecules for Advances of Sensing Sciences. CHEMISTRY AFRICA 2022. [PMCID: PMC8995417 DOI: 10.1007/s42250-022-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impact of macro molecular theory on the progress of sensing sciences and technology has been presented in the light of materials developments, advances in physical and chemical properties. The chronological advances in the properties of macromolecules have significantly improved the sensing performances towards gases, heavy metals, biomolecules, hydrocarbon, and energetic compounds in terms of unexplored sensing parameters, durability, and working lifetime. In this review article, efforts have been made to correlate the advances in structure and interactivity of macro-molecules with their sensing behavior and working performances. The significant findings on the macromolecules towards advancing the sensing sciences are highlighted with the suitable illustration and schemes to establish it as a potential “microanalytical technique” along with existing challenges.
Collapse
|
40
|
Liu G, Bhat MP, Kim CS, Kim J, Lee KH. Improved 3D-Printability of Cellulose Acetate to Mimic Water Absorption in Plant Roots through Nanoporous Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gaoshuang Liu
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mahesh P. Bhat
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
41
|
Abstract
Recent advances in 3D printing technologies and materials have enabled rapid development of innovative sensors for applications in different aspects of human life. Various 3D printing technologies have been adopted to fabricate biosensors or some of their components thanks to the advantages of these methodologies over the traditional ones, such as end-user customization and rapid prototyping. In this review, the works published in the last two years on 3D-printed biosensors are considered and grouped on the basis of the 3D printing technologies applied in different fields of application, highlighting the main analytical parameters. In the first part, 3D methods are discussed, after which the principal achievements and promising aspects obtained with the 3D-printed sensors are reported. An overview of the recent developments on this current topic is provided, as established by the considered works in this multidisciplinary field. Finally, future challenges on the improvement and innovation of the 3D printing technologies utilized for biosensors production are discussed.
Collapse
|
42
|
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022; 8:449-477. [PMID: 34541413 PMCID: PMC8429475 DOI: 10.1016/j.bioactmat.2021.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guannan Wang
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
43
|
Hong S, Song JM. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater 2022; 138:228-239. [PMID: 34718182 DOI: 10.1016/j.actbio.2021.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Drug-resistant cancer spheroids were fabricated by three-dimensional (3D) bioprinting for the quantitative evaluation of drug resistance of cancer cells, which is a very important issue in cancer treatment. Cancer spheroids have received great attention as a powerful in vitro model to replace animal experiments because of their ability to mimic the tumor microenvironment. In this work, the extrusion printing of gelatin-alginate hydrogel containing MCF-7 breast cancer stem cells successfully provided 3D growth of many single drug-resistant breast cancer spheroids in a cost-effective 3D-printed mini-well dish. The drug-resistant MCF-7 breast cancer spheroids were able to maintain their drug-resistant phenotype of CD44high/CD24low/ALDH1high in the gelatin-alginate media during 3D culture and exhibited higher expression levels of drug resistance markers, such as GRP78 chaperon and ABCG2 transporter, than bulk MCF-7 breast cancer spheroids. Furthermore, the effective concentration 50 (EC50) values for apoptotic and necrotic spheroid death could be directly determined from the 3D printed-gelatin-alginate gel matrix based on in situ 3D fluorescence imaging of cancer spheroids located out of the focal point and on the focal point. The EC50 values of anti-tumor agents (camptothecin and paclitaxel) for apoptotic and necrotic drug-resistant cancer spheroid death were higher than those for bulk cancer spheroid death, indicating a greater drug resistance. STATEMENT OF SIGNIFICANCE: This study proposed a novel 3D bioprinting-based drug screening model, to quantitatively evaluate the efficacy of anticancer drugs using drug-resistant MCF-7 breast cancer spheroids formed within a 3D-printed hydrogel. Quantitative determination of anticancer drug efficacy using EC50, which is extremely important in drug discovery, was achieved by 3D printing that enables concurrent growth of many single spheroids efficiently. This study verified whether drug-resistant cancer spheroids grown within 3D-printed gelatin-alginate hydrogel could maintain and present drug resistance. Also, the EC50 values of the apoptotic and necrotic cell deaths were directly acquired in 3D-embedded spheroids based on in situ fluorescence imaging. This platform provides a single-step straightforward strategy to cultivate and characterize drug-resistant spheroids to facilitate anticancer drug screening.
Collapse
|
44
|
Li Y, Ma Z, Ren Y, Lu D, Li T, Li W, Wang J, Ma H, Zhao J. Tissue Engineering Strategies for Peripheral Nerve Regeneration. Front Neurol 2021; 12:768267. [PMID: 34867754 PMCID: PMC8635143 DOI: 10.3389/fneur.2021.768267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
A peripheral nerve injury (PNI) has severe and profound effects on the life of a patient. The therapeutic approach remains one of the most challenging clinical problems. In recent years, many constructive nerve regeneration schemes are proposed at home and abroad. Nerve tissue engineering plays an important role. It develops an ideal nerve substitute called artificial nerve. Given the complexity of nerve regeneration, this review summarizes the pathophysiology and tissue-engineered repairing strategies of the PNI. Moreover, we discussed the scaffolds and seed cells for neural tissue engineering. Furthermore, we have emphasized the role of 3D printing in tissue engineering.
Collapse
Affiliation(s)
- Yin Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Ren
- Southwest JiaoTong University College of Medicine, Chengdu, China
| | - Dezhi Lu
- School of Medicine, Shanghai University, Shanghai, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures. BIOSENSORS-BASEL 2021; 11:bios11100395. [PMID: 34677351 PMCID: PMC8534087 DOI: 10.3390/bios11100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
We demonstrate a novel way of creating three-dimensional microfluidic channels capable of following complex topographies. To this end, substrates with open channels and different geometries were 3D-printed, and the open channels were consecutively closed with a thermoplastic using a low-resolution vacuum-forming approach. This process allows the sealing of channels that are located on the surface of complex multiplanar topographies, as the thermoplastic aligns with the surface-shape (the macrostructure) of the substrate, while the microchannels remain mostly free of thermoplastic as their small channel size resists thermoplastic inflow. This new process was analyzed for its capability to consistently close different substrate geometries, which showed reliable sealing of angles >90°. Furthermore, the thermoplastic intrusion into channels of different widths was quantified, showing a linear effect of channel width and percentage of thermoplastic intrusion; ranging from 43.76% for large channels with 2 mm width to only 5.33% for channels with 500 µm channel width. The challenging sealing of substrate ‘valleys’, which are created when two large protrusions are adjacent to each other, was investigated and the correlation between protrusion distance and height is shown. Lastly, we present three application examples: a serpentine mixer with channels spun around a cuboid, increasing the usable surface area; a cuvette-inspired flow cell for a 2-MXP biosensor based on molecular imprinted polymers, fitting inside a standard UV/Vis-Spectrophotometer; and an adapter system that can be manufactured by one-sided injection molding and is self-sealed before usage. These examples demonstrate how this novel technology can be used to easily adapt microfluidic circuits for application in biosensor platforms.
Collapse
|
46
|
A QbD Approach for Evaluating the Effect of Selective Laser Sintering Parameters on Printability and Properties of Solid Oral Forms. Pharmaceutics 2021; 13:pharmaceutics13101701. [PMID: 34683997 PMCID: PMC8539463 DOI: 10.3390/pharmaceutics13101701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work was to investigate the effect of process parameters on the printability of a formulation containing copovidone and paracetamol, and on the properties of solid oral forms 3D-printed through selective laser sintering. Firstly, the influence of the heating temperature was evaluated individually, and it was revealed that this parameter was critical for printability, as a sufficiently high temperature (100 °C) is necessary to avoid curling. Secondly, the effects of laser power, scan speed, and layer thickness were determined using a Box-Behnken design. The measured responses, printing yield, height, weight, hardness, disintegration time, and percentage of drug release at 10 min showed the following ranges of values: 55.6-100%, 2.92-3.96 mm, 98.2-187.2 mg, 9.2-83.4 N, 9.7-997.7 s, and 25.8-99.9%, respectively. Analysis of variance (ANOVA) proved that the generated quadratic models and the effect of the three-process parameters were significant (p < 0.05). Yield improved at high laser power, low scan speed, and increased layer thickness. Height was proportional to laser power, and inversely proportional to scan speed and layer thickness. Variations in the other responses were related to the porosity of the SOFs, which were dependent on the value of energy density. Low laser power, fast scan speed, and high layer thickness values favored a lower energy density, resulting in low weight and hardness, rapid disintegration, and a high percentage of drug release at 10 min. Finally, an optimization was performed, and an additional experiment validated the model. In conclusion, by applying a Quality by Design approach, this study demonstrates that process parameters are critical for printability, but also offer a way to personalize the properties of the SOFs.
Collapse
|
47
|
Abstract
The market for industrial enzymes has witnessed constant growth, which is currently around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts, with wide application in a broad range of industries. However, these biocatalytic processes are usually limited by the low stability of the enzyme, the half-life time, and the processes required to solve these problems are complex and lack application feasibility at the industrial scale. Emerging technologies create new materials for enzyme carriers and sophisticate the well-known immobilization principles to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the trending studies and industrial applications of the materials and protocols for lipase immobilization, analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and potential alternatives for lipases at the industrial level.
Collapse
|
48
|
Zhang R, Lin J, Chen F, Liu W, Chen M. Clinical and radiological outcomes in three-dimensional printing assisted revision total hip and knee arthroplasty: a systematic review. J Orthop Surg Res 2021; 16:495. [PMID: 34389036 PMCID: PMC8362243 DOI: 10.1186/s13018-021-02646-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study investigates whether three-dimensional (3D) printing-assisted revision total hip/knee arthroplasty could improve its clinical and radiological outcomes and assess the depth and breadth of research conducted on 3D printing-assisted revision total hip and knee arthroplasty. METHODS A literature search was carried out on PubMed, Web of Science, EMBASE, and the Cochrane Library. Only studies that investigated 3D printing-assisted revision total hip and knee arthroplasty were included. The author, publication year, study design, number of patients, patients' age, the time of follow-up, surgery category, Coleman score, clinical outcomes measured, clinical outcomes conclusion, radiological outcomes measured, and radiological outcomes conclusion were extracted and analyzed. RESULTS Ten articles were included in our review. Three articles investigated the outcome of revision total knee arthroplasty, and seven investigated the outcome of revision total hip arthroplasty. Two papers compared a 3D printing group with a control group, and the other eight reported 3D printing treatment outcomes alone. Nine articles investigated the clinical outcomes of total hip/knee arthroplasty, and eight studied the radiological outcomes of total hip/knee arthroplasty. CONCLUSION 3D printing is being introduced in revision total hip and knee arthroplasty. Current literature suggests satisfactory clinical and radiological outcomes could be obtained with the assistance of 3D printing. Further long-term follow-up studies are required, particularly focusing on cost-benefit analysis, resource availability, and, importantly, the durability and biomechanics of customized prostheses using 3D printing compared to traditional techniques.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopaedics, Fujian Medical University Union Hospital, Xinquan Road No.29, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Jiajun Lin
- Department of Orthopaedics, Fujian Medical University Union Hospital, Xinquan Road No.29, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Fenyong Chen
- Department of Orthopaedics, Fujian Medical University Union Hospital, Xinquan Road No.29, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Wenge Liu
- Department of Orthopaedics, Fujian Medical University Union Hospital, Xinquan Road No.29, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Min Chen
- Department of Orthopaedics, Fujian Medical University Union Hospital, Xinquan Road No.29, Gulou District, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
49
|
A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems. MICROMACHINES 2021; 12:mi12080947. [PMID: 34442569 PMCID: PMC8398763 DOI: 10.3390/mi12080947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Recently published studies have shown that microfluidic devices fabricated by in-house three-dimensional (3D) printing, computer numerical control (CNC) milling and laser engraving have a good quality of performance. The 3-in-1 3D printers, desktop machines that integrate the three primary functions in a single user-friendly set-up are now available for computer-controlled adaptable surface processing, for less than USD 1000. Here, we demonstrate that 3-in-1 3D printer-based micromachining is an effective strategy for creating microfluidic devices and an easier and more economical alternative to, for instance, conventional photolithography. Our aim was to produce plastic microfluidic chips with engraved microchannel structures or micro-structured plastic molds for casting polydimethylsiloxane (PDMS) chips with microchannel imprints. The reproducability and accuracy of fabrication of microfluidic chips with straight, crossed line and Y-shaped microchannel designs were assessed and their microfluidic performance checked by liquid stream tests. All three fabrication methods of the 3-in-1 3D printer produced functional microchannel devices with adequate solution flow. Accordingly, 3-in-1 3D printers are recommended as cheap, accessible and user-friendly tools that can be operated with minimal training and little starting knowledge to successfully fabricate basic microfluidic devices that are suitable for educational work or rapid prototyping.
Collapse
|
50
|
Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021; 42:745-757. [PMID: 34238624 DOI: 10.1016/j.tips.2021.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare.
Collapse
|