1
|
Bakhshi Sichani S, Khorshid M, Yongabi D, Urbán CT, Schreurs M, Verstrepen KJ, Lettinga MP, Schöning MJ, Lieberzeit P, Wagner P. Design of a Multiparametric Biosensing Platform and Its Validation in a Study on Spontaneous Cell Detachment from Temperature Gradients. ACS Sens 2024; 9:3967-3978. [PMID: 39079008 DOI: 10.1021/acssensors.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously. The probed parameters are distinctly different, so that one may speak about multiparametric or "orthogonal" sensing without crosstalk between the sensing circuits. Hence, this sensor allows one to identify which of these label-free sensing principles performs best for a given bioanalytical application in terms of a high signal amplitude and signal-to-noise ratio. As a proof-of-concept, the three-parameter sensor was validated by studying the spontaneous, collective detachment of eukaryotic cells in the presence of a temperature gradient between the QCM chip and the supernatant liquid. In addition to heat transfer, detachment can also be monitored by the impedance- and QCM-related signals. These features allow for the distinguishing between different yeast strains that differ in their flocculation genes, and the sensor device enables proliferation monitoring of yeast colonies over time.
Collapse
Affiliation(s)
- Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Derick Yongabi
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Csongor Tibor Urbán
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Michiel Schreurs
- Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Biomolecular Systems and Processes IBI-4, Institute of Biological Information Processing, Research Center Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Michael J Schöning
- Institute for Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, D-52428 Jülich, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Währinger Strasse 42, AT-1090 Vienna, Austria
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
3
|
Aliazizi F, Özsoylu D, Bakhshi Sichani S, Khorshid M, Glorieux C, Robbens J, Schöning MJ, Wagner P. Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures. MICROMACHINES 2024; 15:755. [PMID: 38930725 PMCID: PMC11205323 DOI: 10.3390/mi15060755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.
Collapse
Affiliation(s)
- Fereshteh Aliazizi
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.); (S.B.S.); (M.K.); (C.G.); (P.W.)
| | - Dua Özsoylu
- Institute of Nano- and Biotechnologies INB, Aachen University of Applied Sciences, Heinrich-Mussmann-Strasse 1, D-52428 Jülich, Germany;
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.); (S.B.S.); (M.K.); (C.G.); (P.W.)
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.); (S.B.S.); (M.K.); (C.G.); (P.W.)
| | - Christ Glorieux
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.); (S.B.S.); (M.K.); (C.G.); (P.W.)
| | - Johan Robbens
- Cell Blue Biotech and Food Integrity, Fisheries and Food ILVO, Flanders Research Institute for Agriculture, Jacobsenstraat 1, B-8400 Oostende, Belgium;
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies INB, Aachen University of Applied Sciences, Heinrich-Mussmann-Strasse 1, D-52428 Jülich, Germany;
- Institute of Biological Information Processing (IBI-3), Research Centre Jülich, D-52425 Jülich, Germany
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.); (S.B.S.); (M.K.); (C.G.); (P.W.)
| |
Collapse
|
4
|
Wagner P, Bakhshi Sichani S, Khorshid M, Lieberzeit P, Losada-Pérez P, Yongabi D. Bioanalytical sensors using the heat-transfer method HTM and related techniques. TECHNISCHES MESSEN : TM 2023; 90:761-785. [PMID: 38046181 PMCID: PMC10690833 DOI: 10.1515/teme-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 12/05/2023]
Abstract
This review provides an overview on bio- and chemosensors based on a thermal transducer platform that monitors the thermal interface resistance R th between a solid chip and the supernatant liquid. The R th parameter responds in a surprisingly strong way to molecular-scale changes at the solid-liquid interface, which can be measured thermometrically, using for instance thermocouples in combination with a controllable heat source. In 2012, the effect was first observed during on-chip denaturation experiments on complementary and mismatched DNA duplexes that differ in their melting temperature. Since then, the concept is addressed as heat-transfer method, in short HTM, and numerous applications of the basic sensing principle were identified. Functionalizing the chip with bioreceptors such as molecularly imprinted polymers makes it possible to detect neurotransmitters, inflammation markers, viruses, and environmental pollutants. In combination with aptamer-type receptors, it is also possible to detect proteins at low concentrations. Changing the receptors to surface-imprinted polymers has opened up new possibilities for quantitative bacterial detection and identification in complex matrices. In receptor-free variants, HTM was successfully used to characterize lipid vesicles and eukaryotic cells (yeast strains, cancer cell lines), the latter showing spontaneous detachment under influence of the temperature gradient inherent to HTM. We will also address modifications to the original HTM technique such as M-HTM, inverted HTM, thermal wave transport analysis TWTA, and the hot-wire principle. The article concludes with an assessment of the possibilities and current limitations of the method, together with a technological forecast.
Collapse
Affiliation(s)
- Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Soroush Bakhshi Sichani
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Peter Lieberzeit
- Department of Physical Chemistry, University of Vienna, Währingerstrasse 42, A-1090Wien, Austria
| | - Patricia Losada-Pérez
- Physique Expérimentale Thermique et de la Matière Molle, Université Libre de Bruxelles, Campus de la Plaine – CP 223, Boulevard du Triomphe, ACC.2, B-1050Bruxelles, Belgium
| | - Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| |
Collapse
|
5
|
Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:613. [PMID: 36679407 PMCID: PMC9860941 DOI: 10.3390/s23020613] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions.
Collapse
Affiliation(s)
- Stella Givanoudi
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Tom Depuydt
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Johan Robbens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Hui Y, Huang Z, Alahi MEE, Nag A, Feng S, Mukhopadhyay SC. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. BIOSENSORS 2022; 12:bios12070551. [PMID: 35884353 PMCID: PMC9313366 DOI: 10.3390/bios12070551] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 05/06/2023]
Abstract
The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.
Collapse
Affiliation(s)
- Yun Hui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Zhaoling Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Md Eshrat E. Alahi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: (M.E.E.A.); (S.F.)
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany;
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (M.E.E.A.); (S.F.)
| | | |
Collapse
|
7
|
Influence of design and material characteristics on 3D printed flow-cells for heat transfer-based analytical devices. Mikrochim Acta 2022; 189:73. [PMID: 35075499 PMCID: PMC8786792 DOI: 10.1007/s00604-022-05163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/26/2021] [Indexed: 11/13/2022]
Abstract
Redesigning 3D-printed flow cells is reported used for heat transfer based detection of biomolecules from a flow-through system to an addition-type measurement cell. The aim of this study is to assess the performance of this new measurement design and critically analyse the influence of material properties and 3D printing approach on thermal analysis. Particular attention is paid to reduce the time to stabilisation, the sample volume in order to make the technique suitable for clinical applications, and improving the sensitivity of the platform by decreasing the noise and interference of air bubbles. The three different approaches that were studied included a filament polylactic acid cell using only fused filament fabrication (FFF), a resin cell printed using stereolitography (SLA), and finally a design made of copper, which was manufactured by combining metal injection moulding (MIM) with fused filament fabrication (FFF). Computational fluid dynamic (CFD) modelling was undertaken using ANSYS Fluent V18.1 to provide insight into the flow of heat within the measurement cell, facilitating optimisation of the system and theoretical response speed. It was shown that the measurement cells using SLA had the lowest noise (~ 0.6%) and shortest measurement time (15 min), whereas measurement cells produced using other approaches had lower specificity or suffered from voiding issues. Finally, we assessed the potential of these new designs for detection of biomolecules and amoxicillin, a commonly used beta lactam antibiotic, to demonstrate the proof of concept. It can be concluded that the resin addition-type measurement cells produced with SLA are an interesting affordable alternative, which were able to detect amoxicillin with high sensitivity and have great promise for clinical applications due to the disposable nature of the measurement cells in addition to small sample volumes.
Collapse
|
8
|
Jiang H, Xi H, Juhas M, Zhang Y. Biosensors for Point Mutation Detection. Front Bioeng Biotechnol 2021; 9:797831. [PMID: 34976987 PMCID: PMC8714947 DOI: 10.3389/fbioe.2021.797831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hanlin Jiang
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | - Hui Xi
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Yang Zhang,
| |
Collapse
|