1
|
Aarattuthodi S, Kang D, Gupta SK, Chen P, Redel B, Matuha M, Mohammed H, Sinha AK. Cryopreservation of biological materials: applications and economic perspectives. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01027-0. [PMID: 40266443 DOI: 10.1007/s11626-025-01027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/09/2025] [Indexed: 04/24/2025]
Abstract
Cryopreservation is a transformative technology that allows for the long-term storage of biological materials by cooling them to extremely low temperatures at which metabolic and biochemical processes are effectively slowed or halted. Cryopreservation utilizes various techniques to minimize ice crystal formation and cellular damage during freezing and thawing processes. This technology has broad applications in the fields of medicine, agriculture, and conservation, spanning across stem cell research, reproductive and regenerative medicine, organ transplantation, and cell-based therapies, each with significant economic implications. While current techniques and their associated costs present certain challenges, ongoing research advancements related to cryoprotectants, cooling methods, and automation promise to enhance efficiency and accessibility, potentially broadening the technology's impact across various sectors. This review focuses on the applications of cryopreservation, research advancements, and economic implications, emphasizing the importance of continued research to overcome the current limitations.
Collapse
Affiliation(s)
- Suja Aarattuthodi
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA.
| | - David Kang
- Biological Control of Insects Research Laboratory, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Sanjay Kumar Gupta
- Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, 834003, India
| | - Paula Chen
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Bethany Redel
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Moureen Matuha
- Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USA
| | - Haitham Mohammed
- Department of Rangeland, Wildlife and Fisheries Management, Texas a&M University, College Station, TX, 77843, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas Pine Bluff, Pine Bluff, AR, 71601, USA
| |
Collapse
|
2
|
Guerrero-Sánchez J, Fernández-Toribio A, Galiano-Cogolludo B, García-Martínez T, Mendoza L, Fernández-Blanco G, Ramos-Membrive J, Fidalgo J, Matthys L, Horcajadas JA, Munné S, Bermejo-Álvarez P. Kinetics of cell shrinkage and developmental competence of mouse zygotes vitrified following conventional or automated (DaVitri) protocols. F&S SCIENCE 2025:S2666-335X(25)00027-8. [PMID: 40158800 DOI: 10.1016/j.xfss.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE To test the developmental ability of murine zygotes vitrified using a novel vitrification device and microfluidic chip (DaVitri, Overture Life). DESIGN Murine zygotes were randomly allocated to 2 groups; one was vitrified using the vitrification device, and the other was following a conventional manual protocol. SUBJECTS Murine zygotes obtained in vivo. EXPOSURE Automatic vitrification was achieved by a linear exposure to cryoprotectants (CPAs) using the DaVitri device. Manual vitrification was conducted using Kitazato kit. MAIN OUTCOME MEASURES Morphokinetic behavior of the zygotes during the exposure to CPAs analyzed by microscopy, developmental rates after thawing, lineage development at the blastocyst stage assessed by immunohistochemistry and light-structured fluorescent microscopy, and survival rates and pup weight after embryo transfer. RESULTS Automated vitrification led to a gradual reduction in zygote volume during the equilibration steps preceding ultrafast cooling in liquid nitrogen, as opposed to the conventional manual protocol where sharp changes in zygote volume were observed as a result of exposure to static concentrations of CPAs. Survival rates of the automated procedure were comparable to those of the manual protocol, resulting in ∼95% blastocyst formation rates. Developmental analysis of the resulting blastocysts revealed comparable numbers of total, trophectoderm, and inner cell mass numbers in blastocysts developed from zygotes vitrified under the manual and automated protocols. No differences were found in survival to term or pup weight a D1 or D21. CONCLUSION Automated vitrification using DaVitri device diminished the osmotic stress caused by exposure to CPAs during the equilibration steps and resulted in comparable developmental competence in terms of development to blastocysts, lineage segregation, and survival to term.
Collapse
|
3
|
Lammers J, Reignier A, Loubersac S, Chaillot M, Freour T. Ultra-Fast Warming Procedure of Vitrified Blastocysts Results in Maintained Embryology and Clinical Outcomes. Reprod Sci 2025; 32:495-501. [PMID: 39786712 PMCID: PMC11825539 DOI: 10.1007/s43032-024-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Vitrification has revolutionized embryo cryopreservation, but represents a significant workload in the IVF lab. We evaluated here an ultrafast blastocyst warming procedure in order to improve workflow while maintaining clinical outcome. We first evaluated the expression of main markers of lineage specification in a subset of blastocysts donated to research warmed with ultrafast protocol. We then performed a prospective pseudo-randomized pilot study comparing blastocyst survival, reexpansion and live birth rates between standard (3 steps, 15 min), and ultrafast warming protocol (1 step, 2 min). Finally, survival, reexpansion and live birth rates (LBR) obtained with ultrafast warming protocol were prospectively collected during 3 months and compared with previous indicators. Immunofluorescence experiments showed that staining and spatial organization of cell fate markers were conserved with ultrafast protocol. Survival, reexpansion and LBR were strictly comparable between standard (n = 47 cycles) and ultrafast (n = 39 cycles) groups in the pilot study (100 vs 100%, 80 vs 76% and 29.8 vs 30.7% in standard and simplified groups respectively). Survival, expansion and LBR obtained with the ultrafast warming protocol over the next 3-month period (321 cycles, 336 embryos) were comparable with those obtained with the standard protocol throughout the 6 months (547 FBT cycles, 578 embryos) preceding shifting protocol (97.6 and 29.6% vs 97.8 and 28.3% respectively, p > 0.05 for both). In conclusion, using an ultrafast blastocyst warming procedure results in similar embryology and clinical outcomes compared with standard protocol, but significantly shortens the technical procedure, ultimately improving the overall lab's workflow.
Collapse
Affiliation(s)
- Jenna Lammers
- Service de Médecine Et Biologie de La Reproduction, Hôpital Mère Et Enfant, CHU de Nantes, 38 Boulevard Jean Monnet, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Arnaud Reignier
- Service de Médecine Et Biologie de La Reproduction, Hôpital Mère Et Enfant, CHU de Nantes, 38 Boulevard Jean Monnet, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Sophie Loubersac
- Service de Médecine Et Biologie de La Reproduction, Hôpital Mère Et Enfant, CHU de Nantes, 38 Boulevard Jean Monnet, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Maxime Chaillot
- Service de Médecine Et Biologie de La Reproduction, Hôpital Mère Et Enfant, CHU de Nantes, 38 Boulevard Jean Monnet, Nantes, France
| | - Thomas Freour
- Service de Médecine Et Biologie de La Reproduction, Hôpital Mère Et Enfant, CHU de Nantes, 38 Boulevard Jean Monnet, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France.
| |
Collapse
|
4
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Liu M, Liang L, Yu C, Guo B, Zhang H, Yao F, Zhang H, Li J. Enhancing cell cryopreservation with acidic polyamino acids integrated liquid marbles. Colloids Surf B Biointerfaces 2024; 241:114055. [PMID: 38936034 DOI: 10.1016/j.colsurfb.2024.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Cryopreservation is highly desired for long-term maintenance of the viability of living biosamples, while effective cell cryopreservation still relies heavily on the addition of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS). However, the intrinsic toxicity of DMSO is still a bottleneck, which could not only cause the clinical side effect but also induce cell genetic variants. In the meantime, the addition of FBS may bring potentially the risk of pathogenic microorganism contamination. The liquid marbles (LMs), a novel biotechnology tool for cell cryopreservation, which not only have a small volume system that facilitated recovery, but the hydrophobic shell also resisted the harm to cells caused by adverse environments. Previous LM-based cell cryopreservation relied heavily on the addition of FBS. In this work, we introduced acidic polyaspartic acid and polyglutamic acid as cryoprotectants to construct LM systems. LMs could burst in an instant to facilitate and achieve ultrarapid recovery process, and the hydrophilic carboxyl groups of the cryoprotectants could form hydrogen bonds with water molecules and further inhibit ice growth/formation to protect cells from cryoinjuries. The L929 cells could be well cryopreserved by acidic polyamino acid-based LMs. This new biotechnology platform is expected to be widely used for cell cryopreservation, which has the potential to propel LMs for the preservation of various functional cells in the future.
Collapse
Affiliation(s)
- Min Liu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Liang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chaojie Yu
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingyan Guo
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haitao Zhang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fanglian Yao
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Junjie Li
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Li Y, Zhang J, Han W, Liu B, Zhai M, Li N, Wang Z, Zhao J. Multifunctional Laser-Induced Graphene-Based Microfluidic Chip for High-Performance Oocyte Cryopreservation with Low Concentration of Cryoprotectants. Adv Healthc Mater 2024; 13:e2400981. [PMID: 38885030 DOI: 10.1002/adhm.202400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Oocyte cryopreservation is essential in the field of assisted reproduction, but due to the large size and poor environmental tolerance of oocytes, cell freezing technology needs further improvement. Here, a Y-shaped microfluidic chip based on 3D graphene is ingeniously devised by combining laser-induced graphene (LIG) technology and fiber etching technology. The prepared LIG/PDMS microfluidic chip can effectively suppress ice crystal size and delay ice crystal freezing time by adjusting surface hydrophobicity. In addition, LIG endows the microfluidic chip with an outstanding photothermal effect, which allows to sharply increase its surface temperature from 25 to 71.8 °C with 10 s of low-power 808 nm laser irradiation (0.4 W cm-2). Notably, the LIG/PDMS microfluidic chip not only replaces the traditional cryopreservation carriers, but also effectively reduces the dosage of cryoprotectants (CPAs) needed in mouse oocyte cryopreservation. Even when the concentration of CPAs is cut in half (final concentration of 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO)), the survival rate of oocytes is still as high as 92.4%, significantly higher than the control group's 85.8%. Therefore, this work provides a novel design strategy to construct multifunctional microfluidic chips for high-performance oocytes cryopreservation.
Collapse
Affiliation(s)
- Yifang Li
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Han
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Bianhua Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Mengjie Zhai
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
7
|
Zhao R, Liu X, Ekpo MD, He Y, Tan S. Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation. ACS Biomater Sci Eng 2024; 10:4259-4268. [PMID: 38832439 DOI: 10.1021/acsbiomaterials.3c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
Collapse
Affiliation(s)
- Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Pilot Free Trade Zone Global Cell Bank, Changsha, Hunan 410000, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
| |
Collapse
|
8
|
Meseguer F, Giménez Rodríguez C, Rivera Egea R, Carrión Sisternas L, Remohí JA, Meseguer M. Can Microfluidics Improve Sperm Quality? A Prospective Functional Study. Biomedicines 2024; 12:1131. [PMID: 38791093 PMCID: PMC11118748 DOI: 10.3390/biomedicines12051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The same sperm selection techniques in assisted reproduction clinics have remained largely unchanged despite their weaknesses. Recently, microfluidic devices have emerged as a novel methodology that facilitates the sperm selection process with promising results. A prospective case-control study was conducted in two phases: 100 samples were used to compare the microfluidic device with Density Gradient, and another 100 samples were used to compare the device with the Swim-up. In the initial phase, a significant enhancement in progressive motility, total progressive motile sperm count, vitality, morphology, and sperm DNA fragmentation were obtained for the microfluidic group compared to Density Gradient. Nevertheless, no statistically significant differences were observed in sperm concentration and chromatin structure stability. In the subsequent phase, the microfluidic group exhibited significant increases in sperm concentration, total progressive motile sperm count, and vitality compared to Swim-up. However, non-significant differences were seen for progressive motility, morphology, DNA structure stability, and DNA fragmentation. Similar trends were observed when results were stratified into quartiles. In conclusion, in a comparison of microfluidics with standard techniques, an improvement in sperm quality parameters was observed for the microfluidic group. However, this improvement was not significant for all parameters.
Collapse
Affiliation(s)
- Fernando Meseguer
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain; (R.R.E.); (M.M.)
| | - Carla Giménez Rodríguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.G.R.); (L.C.S.)
| | - Rocío Rivera Egea
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain; (R.R.E.); (M.M.)
| | - Laura Carrión Sisternas
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.G.R.); (L.C.S.)
| | - Jose A. Remohí
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain; (R.R.E.); (M.M.)
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.G.R.); (L.C.S.)
| | - Marcos Meseguer
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de la Policía Local 3, 46015 Valencia, Spain; (R.R.E.); (M.M.)
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.G.R.); (L.C.S.)
| |
Collapse
|
9
|
Tam Le M, Van Nguyen T, Thanh Thi Nguyen T, Nhan Thi Dang H, Huy Vu Nguyen Q. Impact of cryoprotectant-free sperm vitrification in pulled-glass capillary on sperm parameters and DNA integrity: A lab trial study. Int J Reprod Biomed 2024; 22:305-316. [PMID: 39035634 PMCID: PMC11255465 DOI: 10.18502/ijrm.v22i4.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/23/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
Background Vitrification is a recently introduced yet widely applied assisted reproduction technique. So far, the effects of the chemicals and devices in vitrification on sperm motility and DNA integrity are still unclear. Objective This study aimed to examine sperm quality, as determined by semen analysis and sperm DNA integrity when vitrified with or without cryoprotectant agents (CPAs) using pulled-glass capillaries. Materials and Methods Between February and June 2020, 50 infertile men from the Hue Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Vietnam, were enrolled. Sperm samples, prepared using the swim-up technique, were divided into 2 groups: vitrification with CPAs (group 1) and without CPAs (group 2). Vitrified sperm samples were preserved in 10 µL pulled-glass capillaries. Motility, sperm membrane integrity, and the DNA fragmentation index were tested. Results Sperm motility in vitrified media with CPAs (54.4 ± 11%) was statistically higher than in media without CPAs (51.14 ± 10.6%, p < 0.05). CPAs did not affect sperm membrane integrity or large halo ratio (71.34 ± 8.47 vs. 70.38 ± 8.11 and 50.84 ± 18.92 vs. 51.98 ± 19.44, respectively). Group 2 exhibited a lower DNA fragmentation index than group 1 after vitrification (14.2 ± 8.47 vs. 12.60 ± 9.03, p = 0.021). Conclusion Using a pulled-glass capillary for sperm vitrification, the presence of CPAs in the vitrification medium resulted in higher progressive motility and lower DNA fragmentation index than the medium without CPAs.
Collapse
Affiliation(s)
- Minh Tam Le
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Trung Van Nguyen
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thai Thanh Thi Nguyen
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hong Nhan Thi Dang
- Center for Reproductive Endocrinology and Infertility, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Quoc Huy Vu Nguyen
- Department of Obstetrics and Gynecology, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| |
Collapse
|
10
|
Han H, Zhan T, Guo N, Cui M, Xu Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J 2024; 19:e2300543. [PMID: 38403430 DOI: 10.1002/biot.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Organoid technology has demonstrated unique advantages in multidisciplinary fields such as disease research, tumor drug sensitivity, clinical immunity, drug toxicology, and regenerative medicine. It will become the most promising research tool in translational research. However, the long preparation time of organoids and the lack of high-quality cryopreservation methods limit the further application of organoids. Although the high-quality cryopreservation of small-volume biological samples such as cells and embryos has been successfully achieved, the existing cryopreservation methods for organoids still face many bottlenecks. In recent years, with the development of materials science, cryobiology, and interdisciplinary research, many new materials and methods have been applied to cryopreservation. Several new cryopreservation methods have emerged, such as cryoprotectants (CPAs) of natural origin, ice-controlled biomaterials, and rapid rewarming methods. The introduction of these technologies has expanded the research scope of cryopreservation of organoids, provided new approaches and methods for cryopreservation of organoids, and is expected to break through the current technical bottleneck of cryopreservation of organoids. This paper reviews the progress of cryopreservation of organoids in recent years from three aspects: damage factors of cryopreservation of organoids, new protective agents and loading methods, and new technologies of cryopreservation and rewarming.
Collapse
Affiliation(s)
- Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Ning Guo
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
11
|
Mokbel K, Kodresko A, Ghazal H, Mokbel R, Trembley J, Jouhara H. Cryogenic Media in Biomedical Applications: Current Advances, Challenges, and Future Perspectives. In Vivo 2024; 38:1-39. [PMID: 38148045 PMCID: PMC10756490 DOI: 10.21873/invivo.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 12/28/2023]
Abstract
This paper explores the crucial role of cryogenic mediums in driving breakthroughs within the biomedical sector. The objective was to investigate, critically discuss, and present the current knowledge and state-of-the-art practices, along with the challenges and perspectives of the most common applications. Through an extensive literature review, this work aims to supplement existing research, offering a comprehensive and up-to-date understanding of the subject. Biomedical research involving cryogenic mediums is advancing on multiple fronts, including the development of advanced medical technologies, clinical treatments for life-threatening conditions, high-quality biospecimen preservation, and antimicrobial interventions in industrial food processing. These advances open new horizons and present cutting-edge opportunities for research and the medical community. While the current body of evidence showcases the impressive impact of cryogenic mediums, such as nitrogen, helium, argon, and oxygen, on revolutionary developments, reaching definitive conclusions on their efficiency and safety remains challenging due to process complexity and research scarcity with a moderate certainty of evidence. Knowledge gaps further underline the need for additional studies to facilitate cryogenic research in developing innovative technological processes in biomedicine. These advancements have the potential to reshape the modern world and significantly enhance the quality of life for people worldwide.
Collapse
Affiliation(s)
- Kefah Mokbel
- The London Breast Institute, Princess Grace Hospital, London, U.K
| | - Alevtina Kodresko
- Heat Pipe and Thermal Management Research Group, College of Engineering, Design and Physical Sciences, Brunel University, London, U.K
| | - Heba Ghazal
- Kingston University, School of Pharmacy and Chemistry, Kingston Upon Thames, U.K
| | - Ramia Mokbel
- The Princess Grace Hospital, part of HCA Healthcare UK, London, U.K
| | - Jon Trembley
- Air Products PLC, Hersham Place Technology Park, Surrey, U.K
| | - Hussam Jouhara
- Heat Pipe and Thermal Management Research Group, College of Engineering, Design and Physical Sciences, Brunel University, London, U.K.;
- Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
12
|
Cabral JV, Smorodinová N, Voukali E, Balogh L, Kučera T, Kolín V, Studený P, Vacík T, Jirsová K. Effect of Cryoprotectants on Long-Term Storage of Oral Mucosal Epithelial Cells: Implications for Stem Cell Preservation and Proliferation Status. Folia Biol (Praha) 2024; 70:209-218. [PMID: 39692575 DOI: 10.14712/fb2024070040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In this study, we tested a method for long-term storage of oral mucosal epithelial cells (OMECs) so that the cells could be expanded in vitro after cryopreservation and used for the treatment of bilateral limbal stem cell deficiency. The ability of suspended primary OMECs to proliferate in vitro after cryopreservation was compared to that of OMEC cultures that had undergone the same process. Both were preserved in standard complex medium (COM) with or without cryoprotective agents (CPAs) (gly-cerol at 5 % or 10 % or dimethyl sulphoxide at 10 %). We found that after cryopreservation, primary OMECs could form a confluent cell sheet only in a few samples after 22 ± 2.9 (mean ± SD) days of cultivation with 72.4 % ± 12.9 % overall viability. Instead, all ex vivo OMEC cultures could re-expand after cryopreservation with a comparable viability of 78.6 ± 13.8 %, like primary OMECs, but with significantly faster growth rate (adj. P < 001), forming a confluent cell sheet at 13.7 ± 3.9 days. Gene expression analyses of the ex vivo expansion of OMEC cultures showed that the stemness, proliferation and differentiation-related gene expression was similar before and after cryopreservation, except for KRT13 expres-sion, which significantly decreased after the second passage (adj. P < 0.05). The addition of CPAs had no effect on these outcomes. In conclusion, the optimal strategy for OMEC preservation is to freeze the cells that have been previously cultured, in order to maintain cell viability and the capacity to create a sizable graft even without CPAs.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Natálie Smorodinová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukáš Balogh
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Kolín
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kateřina Jirsová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
13
|
Ding L, Oh S, Shrestha J, Lam A, Wang Y, Radfar P, Warkiani ME. Scaling up stem cell production: harnessing the potential of microfluidic devices. Biotechnol Adv 2023; 69:108271. [PMID: 37844769 DOI: 10.1016/j.biotechadv.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Stem cells are specialised cells characterised by their unique ability to both self-renew and transform into a wide array of specialised cell types. The widespread interest in stem cells for regenerative medicine and cultivated meat has led to a significant demand for these cells in both research and practical applications. Despite the growing need for stem cell manufacturing, the industry faces significant obstacles, including high costs for equipment and maintenance, complicated operation, and low product quality and yield. Microfluidic technology presents a promising solution to the abovementioned challenges. As an innovative approach for manipulating liquids and cells within microchannels, microfluidics offers a plethora of advantages at an industrial scale. These benefits encompass low setup costs, ease of operation and multiplexing, minimal energy consumption, and the added advantage of being labour-free. This review presents a thorough examination of the prominent microfluidic technologies employed in stem cell research and explores their promising applications in the burgeoning stem cell industry. It thoroughly examines how microfluidics can enhance cell harvesting from tissue samples, facilitate mixing and cryopreservation, streamline microcarrier production, and efficiently conduct cell separation, purification, washing, and final cell formulation post-culture.
Collapse
Affiliation(s)
- Lin Ding
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia.
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Alan Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Yaqing Wang
- School of Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Payar Radfar
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia..
| |
Collapse
|
14
|
Lv X, Ma Z, Guo L. Freezing and thawing of cells on a microfluidic device: a simple and time-saving experimental procedure. Biosci Biotechnol Biochem 2023; 87:1478-1484. [PMID: 37660248 DOI: 10.1093/bbb/zbad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Developing cell cryopreservation methods on chips is not only crucial for biomedical science but also represents an innovative approach for preserving traditional cell samples. This study presents a simple method for direct cell freezing and thawing on chip, allowing for long-term storage of cells. During the freezing process, cells were injected into the microchannel along with a conventional cell cryopreservation solution, and the chip was packed using a self-sealing bag containing isopropyl alcohol and then stored in a -80°C refrigerator until needed. During the thawing process, microcolumn arrays with a spacing of 8 µm were strategically incorporated into the microfluidic chip design to effectively inhibit cells from the channel. The breast cancer cell lines MDA-MB-231 and B47D demonstrated successful thawing and growth after cryopreservation for 1 month to 1 year. These findings offer a direct cell freezing and thawing method on a microfluidic chip for subsequent experiments.
Collapse
Affiliation(s)
- Xiaoqing Lv
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Zhengtai Ma
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Guo
- Department of Genetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Wang X, Wang E, Zhao G. Advanced cryopreservation engineering strategies: the critical step to utilize stem cell products. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:28. [PMID: 37528321 PMCID: PMC10393932 DOI: 10.1186/s13619-023-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
With the rapid development of stem cell-related therapies and regenerative medicine, the clinical application of stem cell products is on the rise. However, ensuring the effectiveness of these products after storage and transportation remains a challenge in the transformation to clinical trials. Cryopreservation technology allows for the long-term storage of cells while ensuring viability, making it a top priority for stem cell preservation. The field of cryopreservation-related engineering technologies is thriving, and this review provides an overview of the background and basic principles of cryopreservation. It then delves into the main bioengineering technologies and strategies used in cryopreservation, including photothermal and electromagnetic rewarming, microencapsulation, and synergetic ice inhibition. Finally, the current challenges and future prospects in the field of efficient cryopreservation of stem cells are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Enyu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
16
|
Huang Z, Liu W, Ma T, Zhao H, He X, Liu B. Slow Cooling and Controlled Ice Nucleation Enabling the Cryopreservation of Human T Lymphocytes with Low-Concentration Extracellular Trehalose. Biopreserv Biobank 2023; 21:417-426. [PMID: 36001824 DOI: 10.1089/bio.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of human T lymphocytes has become a key strategy for supporting cell-based immunotherapy. However, the effects of ice seeding on the cryopreservation of cells under relatively slow cooling have not been well researched. The cryopreservation strategy with a nontoxic, single-ingredient, and injectable cryoprotective solution remains to be developed. We conducted ice seeding for the cells in a solution of normal saline with 1% (v/v) dimethyl sulfoxide (Me2SO), 0.1 M trehalose, and 4% (w/v) human serum albumin (HSA) under different slow cooling rates. With the positive results, we further applied seeding in the solution of 0.2 M trehalose and 4% (w/v) HSA under the same cooling rates. The optimal concentration of trehalose in the Me2SO-free solutions was then investigated under the optimized cooling rate with seeding, with control groups without seeding, and in a freezing container. In vitro toxicity of the cryoprotective solutions to the cells was also tested. We found that the relative viability of cells (1% [v/v] Me2SO, 0.1 M trehalose and 4% [w/v] HSA) was improved significantly from 88.6% to 94.1% with ice seeding, compared with that without seeding (p < 0.05). The relative viability of cells (0.2 M trehalose and 4% [w/v] HSA) with seeding was significantly higher than that without seeding, 96.3% and 92.0%, respectively (p < 0.05). With no significant difference in relative viability between the solutions of 0.2 M trehalose or 0.3 M trehalose with 4% (w/v) HSA (92.4% and 94.6%, respectively, p > 0.05), the solution of 0.2 M trehalose and 4% (w/v) HSA was selected as the optimized Me2SO-free solution. This strategy could cryopreserve human T lymphocytes without any toxic cryoprotectant and boost the application of cell products in humans by intravenous injection, with the osmolality of the low-concentration cryoprotective solution close to that of human plasma.
Collapse
Affiliation(s)
- Zhiyong Huang
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | - Xiaowen He
- Origincell Technology Group Co., Shanghai, China
| | - Baolin Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Zhang W, Liu X, Hu Y, Tan S. Incorporate delivery, warming and washing methods into efficient cryopreservation. Front Bioeng Biotechnol 2023; 11:1215591. [PMID: 37397963 PMCID: PMC10309563 DOI: 10.3389/fbioe.2023.1215591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
|
18
|
Piasecka-Belkhayat A, Skorupa A. Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2186. [PMID: 36984066 PMCID: PMC10058769 DOI: 10.3390/ma16062186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This paper presents the numerical modelling of heat transfer and changes proceeding in the homogeneous sample, caused by the crystallisation phenomenon during cryopreservation by vitrification. Heat transfer was simulated in a microfluidic system in which the working fluid flowed in micro-channels. The analysed process included single-phase flow during warming, and two-phase flow during cooling. In the model under consideration, interval parameters were assumed. The base of the mathematical model is given by the Fourier equation, with a heat source including the degree of ice crystallisation. The formulated problem has been solved using the interval version of the finite difference method, with the rules of the directed interval arithmetic. The fourth order Runge-Kutta algorithm has been applied to determine the degree of crystallisation. In the final part of this paper, examples of numerical computations are presented.
Collapse
|
19
|
Daily MI, Whale TF, Kilbride P, Lamb S, John Morris G, Picton HM, Murray BJ. A highly active mineral-based ice nucleating agent supports in situ cell cryopreservation in a high throughput format. J R Soc Interface 2023; 20:20220682. [PMID: 36751925 PMCID: PMC9905984 DOI: 10.1098/rsif.2022.0682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Cryopreservation of biological matter in microlitre scale volumes of liquid would be useful for a range of applications. At present, it is challenging because small volumes of water tend to supercool, and deep supercooling is known to lead to poor post-thaw cell viability. Here, we show that a mineral ice nucleator can almost eliminate supercooling in 100 µl liquid volumes during cryopreservation. This strategy of eliminating supercooling greatly enhances cell viability relative to cryopreservation protocols with uncontrolled ice nucleation. Using infrared thermography, we demonstrate a direct relationship between the extent of supercooling and post-thaw cell viability. Using a mineral nucleator delivery system, we open the door to the routine cryopreservation of mammalian cells in multiwell plates for applications such as high throughput toxicology testing of pharmaceutical products and regenerative medicine.
Collapse
Affiliation(s)
- Martin I. Daily
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas F. Whale
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | | | | - Helen M. Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J. Murray
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
20
|
Solenov EI, Baturina GS, Katkova LE, Yang B, Zarogiannis SG. Methods to Measure Water Permeability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:343-361. [PMID: 36717506 DOI: 10.1007/978-981-19-7415-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water permeability is a key feature of the cell plasma membranes, and it has seminal importance for several cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels, aquaporins. Aquaporins have very important function in physiological and pathophysiological states. Due to the above, the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the last three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells and in tissues with a focus in the first category.
Collapse
Affiliation(s)
- Evgeniy I Solenov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State Technical University, Novosibirsk, Russia.
| | | | | | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
21
|
Gao S, Niu Q, Wang Y, Ren L, Chong J, Zhu K, Yuan X. A Dynamic Membrane-Active Glycopeptide for Enhanced Protection of Human Red Blood Cells against Freeze-Stress. Adv Healthc Mater 2022; 12:e2202516. [PMID: 36548128 DOI: 10.1002/adhm.202202516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Intracellular delivery of freezing-tolerant trehalose is crucial for cryopreservation of red blood cells (RBCs) and previous strategies based on membrane-disruptive activity usually generate severe hemolysis. Herein, a dynamic membrane-active glycopeptide is developed by grafting with 25% maltotriose and 50% p-benzyl alcohol for the first time to effectively facilitate entry of membrane-impermeable trehalose in human RBCs with low hemolysis. Results of the mechanism acting on cell membranes suggest that reversible adsorption of such benzyl alcohol-grafted glycopeptide on cell surfaces upon weak perturbation with phospholipids and dynamic transition toward membrane stabilization are essential for keeping cellular biofunctions. Furthermore, the functionalized glycopeptide is indicative of typical α-helical/β-sheet structure-driven regulations of ice crystals during freeze-thaw, thereby strongly promoting efficient cryopreservation. Such all-in-one glycopeptide enables achieving both high cell recovery post-thaw >85% and exceptional cryosurvival >95% in direct freezing protocols. The rationally designed benzyl alcohol-modified glycopeptide permits the development of a competent platform with high generality for protection of blood cells against freeze-stress.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | | | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
22
|
Liu M, Chen C, Yu J, Zhang H, Liang L, Guo B, Qiu Y, Yao F, Zhang H, Li J. The gelatin-based liquid marbles for cell cryopreservation. Mater Today Bio 2022; 17:100477. [DOI: 10.1016/j.mtbio.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
23
|
Cui M, Liu L, Chen L, Han H, Zhan T, Dang H, Yang G, Xu Y. New Cryoprotectant Loading Method for Cell Droplet Vitrification with Continuous Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14129-14139. [PMID: 36351304 DOI: 10.1021/acs.langmuir.2c02082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Droplet-based vitrification is considered to be a promising cryopreservation method, which achieves high cell viability through high cooling rates and low concentrations of cryoprotective agents (CPAs). However, the droplet vitrification cryopreservation process needs in-depth research, such as the balance of the CPA concentration and the cooling rate, the CPA loading process, and the droplet encapsulation method. Here, we developed a chip with a high cooling rate for vitrification droplet encapsulation and provided a new method for continuous loading of low-concentration CPA droplets by evaporation. The results showed that the CPA droplet volume decreased exponentially with the evaporation time, and the larger the initial droplet size, the longer the evaporation time to achieve the critical vitrification concentration. There was no significant difference in the viability of MSCs, NHEK, and A549 cells between the evaporation loading vitrification method and the traditional slow freezing method, but the former was easier to operate and can balance the cooling rate and concentration by controlling the evaporation time. Moreover, a theoretical model was proposed to predict the CPA concentration inside the microdroplets dependent on the evaporation time. The current work provides a potential method to load low-concentration CPAs for cell vitrification preservation, which is more beneficial for cell therapy and other regenerative medicine applications.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Liang Chen
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
24
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
25
|
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int J Mol Sci 2022; 23:ijms232012487. [PMID: 36293340 PMCID: PMC9603853 DOI: 10.3390/ijms232012487] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.
Collapse
Affiliation(s)
- George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wang Qian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| |
Collapse
|
26
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
27
|
Hu Q, Wang Z, Shen L, Zhao G. Label-Free and Noninvasive Single-Cell Characterization for the Viscoelastic Properties of Cryopreserved Human Red Blood Cells Using a Dielectrophoresis-On-a-Chip Approach. Anal Chem 2022; 94:10245-10255. [DOI: 10.1021/acs.analchem.2c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qianqian Hu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Zirui Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
28
|
Xiao Y, Huang P, Huang Z, Yu K, Song Y, Guo N, Dai H, Jiang M, Xu Y, Wang D, Wei Q. Influencing factors on the preservation of lytic bacteriophage VP3. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Karcz A, Van Soom A, Smits K, Verplancke R, Van Vlierberghe S, Vanfleteren J. Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs. LAB ON A CHIP 2022; 22:1852-1875. [PMID: 35510672 DOI: 10.1039/d1lc01160j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrical stimulation of gametes and embryos and on-chip manipulation of microdroplets of culture medium serve as promising tools for assisted reproductive technologies (ARTs). Thus far, dielectrophoresis (DEP), electrorotation (ER) and electrowetting on dielectric (EWOD) proved compatible with most laboratory procedures offered by ARTs. Positioning, entrapment and selection of reproductive cells can be achieved with DEP and ER, while EWOD provides the dynamic microenvironment of a developing embryo to better mimic the functions of the oviduct. Furthermore, these techniques are applicable for the assessment of the developmental competence of a mammalian embryo in vitro. Such research paves the way towards the amelioration and full automation of the assisted reproduction methods. This article aims to provide a summary on the recent developments regarding electrically stimulated lab-on-chip devices and their application for the manipulation of gametes and embryos in vitro.
Collapse
Affiliation(s)
- Adriana Karcz
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Reproductive Biology Unit (RBU), Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133 D4 entrance 4, 9820 Merelbeke, Belgium
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Campus Sterre, building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
30
|
Ravanbakhsh H, Luo Z, Zhang X, Maharjan S, Mirkarimi HS, Tang G, Chávez-Madero C, Mongeau L, Zhang YS. Freeform Cell-Laden Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage. MATTER 2022; 5:573-593. [PMID: 35695821 PMCID: PMC9173715 DOI: 10.1016/j.matt.2021.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
One significant drawback of existing bioprinted tissues is their lack of shelf-availability caused by complications in both fabrication and storage. Here, we report a cryobioprinting strategy for simultaneously fabricating and storing cell-laden volumetric tissue constructs through seamlessly combining extrusion bioprinting and cryopreservation. The cryobioprinting performance was investigated by designing, fabricating, and storing cell-laden constructs made of our optimized cryoprotective gelatin-based bioinks using a freezing plate with precisely controllable temperature. The in situ freezing process further promoted the printability of cell-laden hydrogel bioinks to achieve freeform structures otherwise inconvenient with direct extrusion bioprinting. The effects of bioink composition on printability and cell viability were evaluated. The functionality of the method was finally investigated using cell differentiation and chick ex ovo assays. The results confirmed the feasibility and efficacy of cryobioprinting as a single-step method for concurrent tissue biofabrication and storage.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiang Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hengameh S. Mirkarimi
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, H3C1K3, Canada
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carolina Chávez-Madero
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Departamento de Ingeniería Mecatrónica y Electrónica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Abstract
Increased demand for in vitro fertilization (IVF) due to socio-demographic trends, and supply facilitated by new technologies, converged to transform the way a substantial proportion of humans reproduce. The purpose of this article is to describe the societal and demographic trends driving increased worldwide demand for IVF, as well as to provide an overview of emerging technologies that promise to greatly expand IVF utilization and lower its cost.
Collapse
|
32
|
Gao S, Zhu K, Zhang Q, Niu Q, Chong J, Ren L, Yuan X. Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes. Biomacromolecules 2021; 23:530-542. [PMID: 34965723 DOI: 10.1021/acs.biomac.1c01372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ice formation and recrystallization exert severe impairments to cellular cryopreservation. In light of cell-damaging washing procedures in the current glycerol approach, many researches have been devoted to the development of biocompatible cryoprotectants for optimal bioprotection of human erythrocytes. Herein, we develop a novel ACTIVE glycopeptide of saccharide-grafted ε-poly(L-lysine), that can be credited with adsorption on membrane surfaces, cryopreservation with trehalose, and icephilicity for validity of human erythrocytes. Then, by Borch reductive amination or amidation, glucose, lactose, maltose, maltotriose, or trehalose was tethered to ε-polylysine. The synthesized ACTIVE glycopeptides with intrinsic icephilicity could localize on the membrane surface of human erythrocytes and improve cryopreservation with trehalose, so that remarkable post-thaw cryosurvival of human erythrocytes was achieved with a slight variation in cell morphology and functions. Human erythrocytes (∼50% hematocrit) in cryostores could maintain high cryosurvival above 74%, even after plunged in liquid nitrogen for 6 months. Analyses of differential scanning calorimetry, Raman spectroscopy, and dynamic ice shaping suggested that this cryopreservation protocol combined with the ACTIVE glycopeptide and trehalose could enhance the hydrogen bond network in nonfrozen solutions, resulting in inhibition of recrystallization and growth of ice. Therefore, the ACTIVE glycopeptide can be applied as a trehalose-associated "chaperone", providing a new way to serve as a candidate in glycerol-free human erythrocyte cryopreservation.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, China
| | - Qifa Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
33
|
Içli S, Soleimani M, Oldenhof H, Sieme H, Wriggers P, Wolkers WF. Loading equine oocytes with cryoprotective agents captured with a finite element method model. Sci Rep 2021; 11:19812. [PMID: 34615933 PMCID: PMC8494918 DOI: 10.1038/s41598-021-99287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Cryopreservation can be used to store equine oocytes for extended periods so that they can be used in artificial reproduction technologies at a desired time point. It requires use of cryoprotective agents (CPAs) to protect the oocytes against freezing injury. The intracellular introduction of CPAs, however, may cause irreversible osmotic damage. The response of cells exposed to CPA solutions is governed by the permeability of the cellular membrane towards water and the CPAs. In this study, a mathematical mass transport model describing the permeation of water and CPAs across an oocyte membrane was used to simulate oocyte volume responses and concomitant intracellular CPA concentrations during the exposure of oocytes to CPA solutions. The results of the analytical simulations were subsequently used to develop a phenomenological finite element method (FEM) continuum model to capture the response of oocytes exposed to CPA solutions with spatial information. FEM simulations were used to depict spatial differences in CPA concentration during CPA permeation, namely at locations near the membrane surface and towards the middle of the cell, and to capture corresponding changes in deformation and hydrostatic pressure. FEM simulations of the multiple processes occurring during CPA loading of oocytes are a valuable tool to increase our understanding of the mechanisms underlying cryopreservation outcome.
Collapse
Affiliation(s)
- Sercan Içli
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, NIFE, Stadtfelddamm 34, 30625, Hannover, Germany
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Meisam Soleimani
- Institute of Continuum Mechanics, Leibniz University Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University Hannover, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, NIFE, Stadtfelddamm 34, 30625, Hannover, Germany.
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
34
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
35
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
36
|
Dimethyl Sulfoxide-Free Cryopreservation of Human Umbilical Cord Mesenchymal Stem Cells Based on Zwitterionic Betaine and Electroporation. Int J Mol Sci 2021; 22:ijms22147445. [PMID: 34299064 PMCID: PMC8306716 DOI: 10.3390/ijms22147445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The effective cryopreservation of mesenchymal stem cells (MSCs) is indispensable to the operation of basic research and clinical transplantation. The prevalent protocols for MSC cryopreservation utilize dimethyl sulfoxide (DMSO), which is easily permeable and able to protect MSCs from cryo-injuries, as a primary cryoprotectant (CPA). However, its intrinsic toxicity and adverse effects on cell function remain the bottleneck of MSC cryopreservation. In this work, we cryopreserved human umbilical cord mesenchymal stem cells (UCMSCs) using zwitterionic betaine combined with electroporation without any addition of DMSO. Betaine was characterized by excellent compatibility and cryoprotective properties to depress the freezing point of pure water and balance the cellular osmotic stress. Electroporation was introduced to achieve intracellular delivery of betaine, intending to further provide comprehensive cryoprotection on UCMSCs. Compared with DMSO cryopreservation, UCMSCs recovered from the protocol we developed maintained the normal viability and functions and reduced the level of reactive oxygen species (ROS) that are harmful to cell metabolism. Moreover, the in vivo distribution of thawed UCMSCs was consistent with that of fresh cells monitored by a bioluminescence imaging (BLI) system. This work opens a new window of opportunity for DMSO-free MSC cryopreservation using zwitterionic compounds like betaine combined with electroporation.
Collapse
|
37
|
Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol 2021; 40:93-106. [PMID: 34238601 DOI: 10.1016/j.tibtech.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Cryopreservation can help to meet the demand for biosamples of high medical value. However, it remains difficult to effectively cryopreserve some sensitive cells, tissues, and reproductive organs. A coordinated effort from the perspective of the whole frozen biological system is necessary to advance cryopreservation technology. Animals that survive in cold temperatures, such as hibernators and cold-tolerant insects, offer excellent natural models. Their anti-cold strategies, such as programmed suppression of metabolism and the synthesis of cryoprotectants (CPAs), warrant systematic study. Furthermore, the discovery and synthesis of metabolism-regulating and cryoprotective biomaterials, combined with biotechnological breakthroughs, can also promote the development of cryopreservation. Further advances in the quality and duration of biosample storage inspired by nature will promote the application of cryopreserved biosamples in clinical therapy.
Collapse
Affiliation(s)
- Mengjia Dou
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China
| | - Chennan Lu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Piasecka-Belkhayat A, Skorupa A. Numerical Study of Heat and Mass Transfer during Cryopreservation Process with Application of Directed Interval Arithmetic. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2966. [PMID: 34072730 PMCID: PMC8198271 DOI: 10.3390/ma14112966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
In the present paper, numerical modelling of heat and mass transfer proceeding in a two-dimensional axially symmetrical articular cartilage sample subjected to a cryopreservation process is presented. In the model under consideration, interval parameters were assumed. The heat transfer process is described using the Fourier interval equation, while the cryoprotectant transport (DMSO) across the cell membrane is analyzed using a two-parameter model taking into account the simulation of the water volume in the chondrocytes and the change in DMSO concentration over time. The liquidus tracking (LT) protocol introduced by Pegg et al. was used to model the cryopreservation process. This procedure divides the heating and cooling phases into eight and seven steps, respectively, allowing precise regulation of temperature and cryoprotectant (CPA) concentration of bathing solutions. This protocol protects chondrocytes from ice crystal, osmotic stress, and electrolyte damage. The obtained interval concentrations of cryoprotectant in chondrocytes were compared with previous simulations obtained using the deterministic model and they are mostly in agreement with the simulation data.
Collapse
Affiliation(s)
| | - Anna Skorupa
- Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland;
| |
Collapse
|
39
|
Tirgar P, Sarmadi F, Najafi M, Kazemi P, AzizMohseni S, Fayazi S, Zandi G, Ziaie N, Shoushtari Zadeh Naseri A, Ehrlicher A, Dashtizad M. Toward embryo cryopreservation-on-a-chip: A standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries. BIOMICROFLUIDICS 2021; 15:034104. [PMID: 34025896 PMCID: PMC8133792 DOI: 10.1063/5.0047185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 05/31/2023]
Abstract
Embryo vitrification is a fundamental practice in assisted reproduction and fertility preservation. A key step of this process is replacing the internal water with cryoprotectants (CPAs) by transferring embryos from an isotonic to a hypertonic solution of CPAs. However, this applies an abrupt osmotic shock to embryos, resulting in molecular damages that have long been a source of concern. In this study, we introduce a standalone microfluidic system to automate the manual process and minimize the osmotic shock applied to embryos. This device provides the same final CPA concentrations as the manual method but with a gradual increase over time instead of sudden increases. Our system allows the introduction of the dehydrating non-permeating CPA, sucrose, from the onset of CPA-water exchange, which in turn reduced the required time of CPA loading for successful vitrification without compromising its outcomes. We compared the efficacy of our device and the conventional manual procedure by studying vitrified-warmed mouse blastocysts based on their re-expansion and hatching rates and transcription pattern of selected genes involved in endoplasmic reticulum stress, oxidative stress, heat shock, and apoptosis. While both groups of embryos showed comparable re-expansion and hatching rates, on-chip loading reduced the detrimental gene expression of cryopreservation. The device developed here allowed us to automate the CPA loading process and push the boundaries of cryopreservation by minimizing its osmotic stress, shortening the overall process, and reducing its molecular footprint.
Collapse
Affiliation(s)
| | | | - Mojgan Najafi
- Embryo Biotechnology Laboratory (EmBio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | | | | | - Samaneh Fayazi
- Embryo Biotechnology Laboratory (EmBio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ghazaleh Zandi
- Embryo Biotechnology Laboratory (EmBio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Nikta Ziaie
- Embryo Biotechnology Laboratory (EmBio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Aida Shoushtari Zadeh Naseri
- Embryo Biotechnology Laboratory (EmBio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec H3A0B9, Canada
| | - Mojtaba Dashtizad
- Embryo Biotechnology Laboratory (EmBio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| |
Collapse
|
40
|
Huang J, Guo J, Zhou L, Zheng G, Cao J, Li Z, Zhou Z, Lei Q, Brinker CJ, Zhu W. Advanced Nanomaterials-Assisted Cell Cryopreservation: A Mini Review. ACS APPLIED BIO MATERIALS 2021; 4:2996-3014. [PMID: 35014388 DOI: 10.1021/acsabm.1c00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cryopreservation is of vital significance both for transporting and storing cells before experimental/clinical use. Cryoprotectants (CPAs) are necessary additives in the preserving medium in cryopreservation, preventing cells from freeze-thaw injuries. Traditional organic solvents have been widely used in cell cryopreservation for decades. Given the obvious damage to cells due to their undesirable cytotoxicity and the burdensome post-thaw washing cycles before use, traditional CPAs are more and more likely to be replaced by modern ones with lower toxicity, less processing, and higher efficiency. As materials science thrives, nanomaterials are emerging to serve as potent vehicles for delivering nontoxic CPAs or inherent CPAs comparable to or even superior to conventional ones. This review will introduce some advanced nanomaterials (e.g., organic/inorganic nanoCPAs, nanodelivery systems) utilized for cell cryopreservation, providing broader insights into this developing field.
Collapse
Affiliation(s)
- Junda Huang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhuang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
41
|
Xia Y, Huang LX, Chen H, Li J, Chen KK, Hu H, Wang FB, Ding Z, Guo SS. Acoustic Droplet Vitrification Method for High-Efficiency Preservation of Rare Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12950-12959. [PMID: 33703892 DOI: 10.1021/acsami.1c01452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryopreservation is a key step for current translational medicine including reproductive medicine, regenerative medicine, and cell therapy. However, it is challenging to preserve rare cells for practical applications due to the difficulty in handling low numbers of cells as well as the lack of highly efficient and biocompatible preservation protocols. Here, we developed an acoustic droplet vitrification method for high-efficiency handling and preservation of rare cells. By employing an acoustic droplet ejection device, we can encapsulate rare cells into water-in-air droplets with a volume from ∼pL to ∼nL and deposit these cell-containing droplets into a droplet array onto a substrate. By incorporating a cooling system into the droplet array substrate, we can vitrify hundreds to thousands of rare cells at an ultrafast speed (about ∼2 s) based on the high surface to volume ratio of the droplets. By optimizing this method with three different cell lines (a human lung cancer cell line, A549 cells, a human liver cell line, L02 cells, and a mouse embryonic fibroblast cell line, 3T3-L1 cells), we developed an effective protocol with excellent cell viability (e.g., >85% for days, >70% for months), proliferation, and adhesion. As a proof-of-concept application, we demonstrated that our method can rapidly handle and efficiently preserve rare cells, highlighting its broad applications in species diversity, basic research, and clinical medicine.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lan-Xiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Hui Chen
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Juan Li
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ke-Ke Chen
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hang Hu
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Chang T, Moses OA, Tian C, Wang H, Song L, Zhao G. Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003387. [PMID: 33747736 PMCID: PMC7967066 DOI: 10.1002/advs.202003387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Despite recent advances in controlling ice formation and growth, it remains a challenge to design anti-icing materials in various fields from atmospheric to biological cryopreservation. Herein, tungsten diselenide (WSe2)-polyvinyl pyrrolidone (PVP) nanoparticles (NPs) are synthesized through one-step solvothermal route. The WSe2-PVP NPs show synergetic ice regulation ability both in the freezing and thawing processes. Molecularly speaking, PVP containing amides group can form hydrogen bonds with water molecules. At a macro level, the WSe2-PVP NPs show adsorption-inhibition and photothermal conversation effects to synergistically restrict ice growth. Meanwhile, WSe2-PVP NPs are for the first time used for the cryopreservation of human umbilical vein endothelial cell (HUVEC)-laden constructs based on rapid freezing with low concentrations of cryoprotectants (CPAs), the experimental results indicate that a minimal concentration (0.5 mg mL-1) of WSe2-PVP NPs can increase the viabilities of HUVECs in the constructs post cryopreservation (from 55.8% to 83.4%) and the cryopreserved constructs can also keep good condition in vivo within 7 days. Therefore, this work provides a novel strategy to synergistically suppress the formation and growth of the ice crystalsfor the cryopreservation of cells, tissues, or organs.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Road JinzhaiHefeiAnhui230027China
| | - Oyawale Adetunji Moses
- National Synchrotron Radiation LaboratoryCAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiAnhui230029China
| | - Conghui Tian
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Road JinzhaiHefeiAnhui230027China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Song
- National Synchrotron Radiation LaboratoryCAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiAnhui230029China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaNo. 96 Road JinzhaiHefeiAnhui230027China
- School of Biomedical EngineeringAnhui Medical UniversityHefeiAnhui230032China
| |
Collapse
|
43
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
44
|
Özsoylu D, Isık T, Demir MM, Schöning MJ, Wagner T. Cryopreservation of a cell-based biosensor chip modified with elastic polymer fibers enabling ready-to-use on-site applications. Biosens Bioelectron 2021; 177:112983. [PMID: 33535119 DOI: 10.1016/j.bios.2021.112983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
An efficient preservation of a cell-based biosensor chip to achieve a ready-to-use on-site system is still very challenging as the chip contains a living component such as adherent mammalian cells. Herein, we propose a strategy called on-sensor cryopreservation (OSC), which enables the adherent cells to be preserved by freezing (-80 °C) on a biosensor surface, such as the light-addressable potentiometric sensor (LAPS). Adherent cells on rigid surfaces are prone to cryo-injury; thus, the surface was modified to enhance the cell recovery for OSC. It relies on i) the integration of elastic electrospun fibers composed of polyethylene vinyl acetate (PEVA), which has a high thermal expansion coefficient and low glass-transition temperature, and ii) the treatment with O2 plasma. The modified sensor is integrated into a microfluidic chip system not only to decrease the thermal mass, which is critical for fast thawing, but also to provide a precisely controlled micro-environment. This novel cryo-chip system is effective for keeping cells viable during OSC. As a proof-of-concept for the applicability of a ready-to-use format, the extracellular acidification of cancer cells (CHO-K1) was evaluated by differential LAPS measurements after thawing. Results show, for the first time, that the OSC strategy using the cryo-chip allows label-free and quantitative measurements directly after thawing, which eliminates additional post-thaw culturing steps. The freezing of the chips containing cells at the manufacturing stage and sending them via a cold-chain transport could open up a new possibility for a ready-to-use on-site system.
Collapse
Affiliation(s)
- Dua Özsoylu
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Tuğba Isık
- Department of Materials Science and Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey; School of Chemistry, University of Bristol, Bristol, UK
| | - Mustafa M Demir
- Department of Materials Science and Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Biological Information Processing (IBI-3), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Biological Information Processing (IBI-3), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
45
|
Wolkers WF, Oldenhof H. Principles Underlying Cryopreservation and Freeze-Drying of Cells and Tissues. Methods Mol Biol 2021; 2180:3-25. [PMID: 32797407 DOI: 10.1007/978-1-0716-0783-1_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryopreservation and freeze-drying can be used to preserve cells or tissues for prolonged periods. Vitrification, or ice-free cryopreservation, is an alternative to cryopreservation that enables cooling cells to cryogenic temperatures in the absence of ice. The processing pathways involved in (ice-free) cryopreservation and freeze-drying of cells and tissues, however, can be very damaging. In this chapter, we describe the principles underlying preservation of cells for which freezing and drying are normally lethal processes as well as for cells that are able to survive in a reversible state of suspended animation. Freezing results in solution effects injury and/or intracellular ice formation, whereas drying results in removal of (non-freezable) water normally bound to biomolecules, which is generally more damaging. Cryopreservation and freeze-drying require different types of protective agents. Different mechanistic modes of action of cryoprotective and lyoprotective agents are described including minimizing ice formation, preferential exclusion, water replacement, and vitrification. Furthermore, it is discussed how protective agents can be introduced into cells avoiding damage due to too large cell volume excursions, and how knowledge of cell-specific membrane permeability properties in various temperature regimes can be used to rationally design (ice-free) cryopreservation and freeze-drying protocols.
Collapse
Affiliation(s)
- Willem F Wolkers
- Unit for Reproductive Medicine-Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany. .,Biostabilization Laboratory-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine-Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
46
|
Numerical Modeling of Heat and Mass Transfer during Cryopreservation Using Interval Analysis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the paper, the numerical analysis of heat and mass transfer proceeding in an axially symmetrical articular cartilage sample subjected to the cryopreservation process is presented. In particular, a two-dimensional (axially symmetrical) model with imprecisely defined parameters is considered. The base of the heat transfer model is given by the interval Fourier equation and supplemented by initial boundary conditions. The phenomenon of cryoprotectant transport (Me2SO) through the extracellular matrix is described by the interval mass transfer equation. The liquidus-tracking (LT) method is used to control the temperature, which avoids the formation of ice regardless of the cooling and warming rates. In the LT process, the temperature decreases/increases gradually during addition/removal of the cryoprotectant, and the articular cartilage remains on or above the liquidus line so that no ice forms, independent of the cooling/warming rate. The discussed problem is solved using the interval finite difference method with the rules of directed interval arithmetic. Examples of numerical computations are presented in the final part of the paper. The obtained results of the numerical simulation are compared with the experimental results, realized for deterministically defined parameters.
Collapse
|
47
|
Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren't pregnancy rates greater and what can we do about it? J Anim Sci 2020; 98:skaa288. [PMID: 33141879 PMCID: PMC7608916 DOI: 10.1093/jas/skaa288] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Typically, bovine embryos are transferred into recipient females about day 7 after estrus or anticipated ovulation, when the embryo has reached the blastocyst stage of development. All the biological and technical causes for failure of a female to produce a blastocyst 7 d after natural or artificial insemination (AI) are avoided when a blastocyst-stage embryo is transferred into the female. It is reasonable to expect, therefore, that pregnancy success would be higher for embryo transfer (ET) recipients than for inseminated females. This expectation is not usually met unless the recipient is exposed to heat stress or is classified as a repeat-breeder female. Rather, pregnancy success is generally similar for ET and AI. The implication is that either one or more of the technical aspects of ET have not yet been optimized or that underlying female fertility that causes an embryo to die before day 7 also causes it to die later in pregnancy. Improvements in pregnancy success after ET will depend upon making a better embryo, improving uterine receptivity, and forging new tools for production and transfer of embryos. Key to accelerating progress in improving pregnancy rates will be the identification of phenotypes or phenomes that allow the prediction of embryo competence for survival and maternal capacity to support embryonic development.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
48
|
Raju R, Bryant SJ, Wilkinson BL, Bryant G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj 2020; 1865:129749. [PMID: 32980500 DOI: 10.1016/j.bbagen.2020.129749] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cryopreservation is a key method of preservation of biological material for both medical treatments and conservation of endangered species. In order to avoid cellular damage, cryopreservation relies on the addition of a suitable cryoprotective agent (CPA). However, the toxicity of CPAs is a serious concern and often requires rapid removal on thawing which is time consuming and expensive. SCOPE OF REVIEW The principles of Cryopreservation are reviewed and recent advances in cryopreservation methods and new CPAs are described. The importance of understanding key biophysical properties to assess the cryoprotective potential of new non-toxic compounds is discussed. MAJOR CONCLUSIONS Knowing the biophysical properties of a particular cell type is crucial for developing new cryopreservation protocols. Similarly, understanding how potential CPAs interact with cells is key for optimising protocols. For example, cells with a large osmotically inactive volume may require slower addition of CPAs. Similarly, a cell with low permeability may require a longer incubation time with the CPA to allow adequate penetration. Measuring these properties allows efficient optimisation of cryopreservation protocols. GENERAL SIGNIFICANCE Understanding the interplay between cells and biophysical properties is important not just for developing new, and better optimised, cryopreservation protocols, but also for broader research into topics such as dehydration and desiccation tolerance, chilling and heat stress, as well as membrane structure and function.
Collapse
Affiliation(s)
- Rekha Raju
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Brendan L Wilkinson
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
49
|
Xiang X, Liu Z, Zhao G. Sodium Alginate as a Novel Cryoprotective Agent for Cryopreservation of Endothelial Cells in a Closed Polytetrafluoroethylene Loop. Biopreserv Biobank 2020; 18:321-328. [PMID: 32552032 DOI: 10.1089/bio.2020.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human umbilical vein endothelial cells (HUVECs) have wide applications in tissue engineering, drug delivery, and other fields due to their low antigenicity. Therefore, it is of great significance to effectively cryopreserve HUVECs for subsequent use (i.e., transport, long-term storage of cell banks). However, many commonly used cryoprotective agents (CPAs) are cytotoxic, so finding ideal CPAs to reduce the damage will pave the way for the application of HUVEC's cryopreservation. In this study, sodium alginate (SA) was employed as one of the main CPAs in a closed polytetrafluoroethylene (PTFE) loop used for cryopreservation with fast freezing of HUVECs. The ice crystal growth process was observed and the thermal enthalpy changes and osmolality of different solutions were tested. Moreover, the effects on cell viability and recovery were examined. The results showed that the addition of SA delayed the growth of ice crystals and decreased the number of ice crystals. Specifically, when 0.5% (w/v) SA was added to the CPAs, the cell survival increased by 10%. It is proved in this study that SA can be used as a novel CPA in combination with PTFE for the fast freezing of HUVECs, which is expected to improve the survival rate of cells and promote the exploration of protectants and cryopreservation in the future.
Collapse
Affiliation(s)
- Xingxue Xiang
- Department of Thermal Science and Energy Engineering and University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhifeng Liu
- Department of Thermal Science and Energy Engineering and University of Science and Technology of China, Hefei, People's Republic of China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
50
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|