1
|
Uddin M, Venkatesan SK, Pal SK, Vinu R, Sekar K, Kandasamy R. Accelerating biodegradation efficiency of low-density polyethylene and its hazardous dissolved organic matter using unexplored polyolefin-respiring bacteria: New insights on degradation characterization, biomolecule influence and biotransformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138144. [PMID: 40187246 DOI: 10.1016/j.jhazmat.2025.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 outbreak has significantly increased low-density polyethylene (LDPE) waste in landfills, posing new environmental risks due to the release of hazardous dissolved organic matter (DOM). Current LDPE degradation technologies are inadequate and are restricted by a limited understanding of the biotransformation pathway. This study aims to accelerate the biodegradability of LDPE and DOM using Morganella morganii PQ533186 isolated from LDPE-laden municipal landfill. The in-vitro LDPE biodegradation demonstrated a 42.18 % weight loss within 120 days. The accelerated biodegradability of LDPE by M. morganii is attributed to the concurrent production of biocatalysts and bio-amphiphiles, coupled with effective bacterial colonization on LDPE surfaces. The FT-IR analysis reveals oxidation with enhancement in O-H (11.29-folds), CO (17.65-folds), CC (6.70-folds), C-O (8.51-folds), and C-O-C (6.37-folds) indices. The DSC and XRD analyses divulge reduced crystallinity (33.57 %) and increased interplanar d-spacing of (110) and (200) reflections from 4.09 and 3.71 Å to 4.17 and 3.80 Å, respectively. The Raman, XPS, TG-DTG, and Contact-angle measurements demonstrate reduced density, carbon content, thermal stability, and hydrophobicity. The degradation was confirmed using 1H NMR, GC-MS, and Py/GC-MS analyses. Furthermore, DOM released from LDPE biodegradation, comprising monomers and additives was biodegraded with an 84.61 % COD reduction within 6 days. The mechanistic investigation elucidated a two-stage oxidoreductase and hydrolase-mediated LDPE biotransformation pathway involving biocatalytic oxidation and DOM release. Subsequently, the released DOM undergoes terminal biocatalytic oxidation, yielding simpler non-toxic end products. The present study is the first report to present novel insights into the degradation characterization, pivotal contribution of biomolecules, and in-depth biotransformation pathways which are responsible for the accelerated degradation of both LDPE and hazardous DOM.
Collapse
Affiliation(s)
- Maseed Uddin
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Swathi Krishnan Venkatesan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subhan Kumar Pal
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ravikrishnan Vinu
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Indo German Center for Sustainability, Indian Institute of Technology Madras, Chennai 600036, India
| | - Karthikeyan Sekar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ramani Kandasamy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Zhu R, Tan X, Ali I, Duan Z, Wei Y, Huang J, Liang J, Sun K. Eco-corona formation on aminated nanoplastics interacted with extracellular polymeric substances from bloom-forming cyanobacteria: Insightful mechanisms with DFT study. WATER RESEARCH 2025; 278:123394. [PMID: 40037098 DOI: 10.1016/j.watres.2025.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Nanoplastics (NPs) with amino functional groups have wide distribution and high toxicity; however, their environmental behaviors remain inadequately understood. This study investigated the mechanisms of eco-corona formation on pristine polystyrene NPs (PSNPs) and aminated PSNPs (PSNPs-NH2) by extracellular polymeric substances (EPS) from a bloom-forming cyanobacterium, Microcystis aeruginosa. Our results revealed that at the two tested concentrations of EPS (5.0 and 30.0 mg/L), the pristine PSNPs initially aggregated and subsequently repelled. In contrast, PSNPs-NH2 showed a more pronounced aggregation at the elevated EPS concentration of 30 mg/L. In addition, the elemental compositions and functional groups on both types of PSNPs were markedly altered after eco-corona formation. Combining with density functional theory, our findings indicated that electrostatic interaction, hydrogen bonding, and Van der Waals force served as the main binding forces between model EPS (polysaccharide) and PSNPs units. Furthermore, the binding energies of pristine PSNPs-, and PSNPs-NH2-polysaccharide were calculated to be -63.25 and -179.43 kJ/mol, respectively, suggesting a greater affinity of PSNPs-NH2 for polysaccharide. This outcome aligned with our experimental observation. Specifically, the xylose branch within polysaccharide was identified as an optimized binding site for interaction with PSNPs. Our research contributes to a deeper understanding of the environmental behaviors of aminated NPs in freshwater systems, particularly during periods of cyanobacterial blooms.
Collapse
Affiliation(s)
- Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yijia Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
3
|
Taxeidis G, Siaperas R, Foka K, Ponjavic M, Nikodinovic-Runic J, Zerva A, Topakas E. Elucidating the enzymatic response of the white rot basidiomycete Abortiporus biennis for the downgrade of polystyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126214. [PMID: 40189091 DOI: 10.1016/j.envpol.2025.126214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Plastic pollution is a growing global environmental concern, with polyolefins such as polyethylene and polypropylene, as well as polystyrene (PS) constituting a significant amount of plastic waste. Both polyolefins and PS, when inappropriately disposed of in the environment, contribute to environmental contamination since they degrade slowly, with both abiotic and biotic factors contributing to their downgrade. In terms of the microbial effect on plastics, in recent decades, several studies have focused on the biodeterioration and assimilation of polyolefins, while more comprehensive degradation of PS by diverse organisms, including bacteria, fungi, and even insect larvae, has been documented. The present study investigates the biocatalytic potential of the white-rot basidiomycete Abortiporus biennis LGAM 436 for PS degradation. Building on prior research, we examined the ability of this fungal strain to modify the structure of different PS forms, including commercial expanded polystyrene (EPS) foam and amorphous PS film. In addition, we explored the impact of olive oil mill wastewater (OOMW) effluent as an enzymatic inducer to enhance the degradation process. Through gel permeation chromatography (GPC), surface morphology changes, and FTIR-ATR analysis, we assessed the extent of PS degradation and identified relevant enzymatic activities via proteomics. The findings offer insights into the discovery of novel fungal biocatalysts for addressing plastic pollution, particularly through the action of high-redox oxidative enzymes.
Collapse
Affiliation(s)
- George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Marijana Ponjavic
- Eco-biotechnology and Drug Development Group, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Eco-biotechnology and Drug Development Group, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, Attiki, 11855 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Qiu Q, Sun X, Li H, Zhang F, Zhou D, Tian K, Zhang X, Huo H. Biodegradation of polystyrene and its mechanisms driven by a customized lignin-degrading microbial consortium and degrading bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125560. [PMID: 40311357 DOI: 10.1016/j.jenvman.2025.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Polystyrene (PS), being resistant to biodegradation, poses a significant environmental challenge. This study isolated highly effective lignin-degrading microbial consortia from samples collected at six sites rich in lignin-degrading bacteria. After 360 days of enrichment, a stable lignin-degrading microbial consortium, LQX-03, was successfully established. LQX-03 demonstrated notable degradation efficiency not only for lignin (21-day degradation rate of 54.6 %) but also for PS (21-day degradation rate of 13.1 %). Importantly, PS-induced LQX-03 communities overlapped with the original lignin communities in 13 genera, revealing a close relationship between the degrading microbial compositions of the two substrates.Additionally, Pseudomonas putida Q1, isolated from LQX-03, exhibited significant capability in simultaneously degrading lignin and PS, achieving degradation rates of 36.1 % and 4.4 %, respectively. The strain was also able to alter the functional groups of PS, increasing its hydrophilicity. Gene and enzyme expression analyses revealed that key lignin-degrading enzymes, such as laccase (CopA) and DyP peroxidase, were significantly upregulated when PS was the sole substrate. Laccase CopA expression increased by 1.76-fold and 1.41-fold, while DyP expression increased by 1.24-fold. These results indicate that these enzymes likely play a crucial role in PS depolymerization and biodegradation. Further molecular docking analysis confirmed that laccase CopA could bind to PS. In summary, this study provides preliminary insights into the potential links between lignin-degrading and plastic-degrading microorganisms and their enzymes. It suggests that the biodegradation of synthetic plastics may rely on ancient natural lignin-degrading enzymes. These findings offer a new perspective and valuable data for developing efficient plastic biodegradation strategies.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou, 571126, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
5
|
Srivastava P, Singh S, Soni M, Pratap JV, Subramanian S, Manickam N. Enzymatic degradation of PET by hydrolase from Brucella intermedia IITR130 and its genomic insights. Biodegradation 2025; 36:45. [PMID: 40381109 DOI: 10.1007/s10532-025-10141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Plastic pollution, particularly from polyethylene terephthalate (PET), has become a significant environmental concern, necessitating innovative and sustainable degradation strategies. The present study provides valuable perspectives on the genomic and functional characteristics of Brucella intermedia IITR130, a bacterium capable of degrading PET. Hybrid genome sequencing of IITR130 resulted in identification of two chromosomes combining 4.59 Mbp size. Genomic annotation revealed occurrence of key enzymes involved in the PET sheet biodegradation pathway, including hydrolases, ring hydroxylating dioxygenases, protocatechuate 3,4 dioxygenases, genes for metabolism of several other natural and synthetic plastic. A hydrolase gene Hy1 of 24 kDa, was identified, expressed, and characterized, demonstrating an optimal catalytic activity at 37 °C and pH 8.5. Scanning electron microscopy (SEM) and fourier-transform infrared spectroscopy (FTIR) confirmed substantial degradation of PET surfaces treated with Hy1 protein, resulted in surface erosion, crack formation, and functional group modifications in the range 2150-2550 cm⁻1 and 2950-3350 cm⁻1 suggestive of O=C=O stretching and O-H stretching respectively. Monomethyl terephthalate (MMT) and terephthalic acid (TPA) were identified as PET degradation metabolites formed by strain IITR130. Fluorescence quenching showed higher substrate affinity for bis(2-hydroxyethyl) terephthalate (BHET) (Kd = 148.2) than terephthalic acid (TPA) (Kd = 674). Moreover, phylogenetic analysis of Hy1 protein revealed that Hy1 containing conserved catalytic triad (Ser108, His188, Asp155) belonging to the family III of hydrolase enzyme sharing a clade with PET degrading hydrolase PETase from Ideonella sakaiensis. These results demonstrate the potential of B. intermedia IITR130 as an efficient biocatalyst for PET biodegradation which could be exploited appropriately for plastic waste management.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Environmental Biotechnology Laboratory, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saurabh Singh
- Environmental Biotechnology Laboratory, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - J Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srikrishna Subramanian
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Palit P, Minkara M, Abida M, Marwa S, Sen C, Roy A, Pasha MR, Mosae PS, Saha A, Ferdoush J. PlastiCRISPR: Genome Editing-Based Plastic Waste Management with Implications in Polyethylene Terephthalate (PET) Degradation. Biomolecules 2025; 15:684. [PMID: 40427577 PMCID: PMC12109117 DOI: 10.3390/biom15050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Plastic pollution has become a significant environmental issue worldwide, with global plastic production expected to reach 1800 million tons by 2050. One of the most commonly used plastics in the world is polyethylene terephthalate (PET), a synthetic polymer that is extremely durable but difficult to degrade. Thus, PET is dangerous to human health. To address this crisis, innovative approaches are being developed, including genome editing technologies. One of the recently advanced genome editing technologies is PlastiCRISPR, a novel concept that applies CRISPR-based genome editing to transform plastic waste management. PlastiCRISPR utilizes microorganisms to degrade plastic, generating valuable bioproducts like biofuels and biochemicals. Thus, this technology offers a sustainable solution because of its simple design, adequacy, and low cost, which can be integrated into existing waste management systems. Importantly, this review focuses on the PlastiCRISPR-based management of PET because it could drastically lower plastic waste, sustain natural resources by decreasing the requirement for plastic production, minimize energy intake, etc. Overall, this review provides an overview of the principles, applications, challenges, and future prospects of PlastiCRISPR in combating plastic pollution and shaping a more sustainable future.
Collapse
Affiliation(s)
- Puja Palit
- Department of Biological Sciences, Asian University for Women, Chittagong 4000, Bangladesh; (P.P.); (M.A.); (S.M.); (C.S.); (A.R.)
| | - Maya Minkara
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA;
| | - Maisha Abida
- Department of Biological Sciences, Asian University for Women, Chittagong 4000, Bangladesh; (P.P.); (M.A.); (S.M.); (C.S.); (A.R.)
| | - Safa Marwa
- Department of Biological Sciences, Asian University for Women, Chittagong 4000, Bangladesh; (P.P.); (M.A.); (S.M.); (C.S.); (A.R.)
| | - Chandrima Sen
- Department of Biological Sciences, Asian University for Women, Chittagong 4000, Bangladesh; (P.P.); (M.A.); (S.M.); (C.S.); (A.R.)
| | - Ayan Roy
- Department of Biological Sciences, Asian University for Women, Chittagong 4000, Bangladesh; (P.P.); (M.A.); (S.M.); (C.S.); (A.R.)
| | - Md Ridoan Pasha
- Department of Physiology, Biochemistry, and Pharmacology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh;
| | | | - Ayan Saha
- Department of Biological Sciences, Asian University for Women, Chittagong 4000, Bangladesh; (P.P.); (M.A.); (S.M.); (C.S.); (A.R.)
| | - Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA;
| |
Collapse
|
7
|
Bai F, Fan J, Zhang X, Wang X, Liu S. Biodegradation of polyethylene with polyethylene-group-degrading enzyme delivered by the engineered Bacillus velezensis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137330. [PMID: 39862780 DOI: 10.1016/j.jhazmat.2025.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI). Polyethylene (PE) is the main type of microplastic pollution in vegetable growing soils in Harbin. In this study, the engineered Bacillus velezensis with polyethylene-group-degrading enzyme pathway (BCAv-PEase) was constructed to enhance the degradation of MPs of PE (PE-MPs). BCAv-PEase increased the biodegradation of PE-MPs, promoted weight loss of PE films, elevated surface tension, and decreased the surface hydrophobicity of PE through upregulating activities of depolymerases, dehydrogenase, and catalase. Mechanism analysis showed that BCAv-PEase degraded PE-MPs by promoting the secretion of PEase, thereby leading to the generation of new oxygenated functional groups within the PE-MPs substrate, which further accelerated the metabolic pathway of PE-MPs. The analysis of the microbial community during the PE-MPs degradation processes revealed that BCAv-PEase emerged as the principal bacterial player and stimulated the abundance of microbes and functional genes associated with the biodegradation of PE. In conclusion, this study provides a potential mechanism for biodegradation of PE-MPs mediated by BCAv-PEase via modulating substrate selectivity and optimizing biocatalytic pathways.
Collapse
Affiliation(s)
- Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China.
| | - Jie Fan
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xiangyu Zhang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xuemeng Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
8
|
Xu L, An X, Jiang H, Pei R, Li Z, Wen J, Pi W, Zhang Q. A novel Gordonia sp. PS3 isolated from the gut of Galleria mellonella larvae: Mechanism of polystyrene biodegradation and environmental toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137219. [PMID: 39893981 DOI: 10.1016/j.jhazmat.2025.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Plastic pollution is a global concern, with polystyrene (PS) being a major source of plastic waste. In this study, a PS-degrading bacterial strain, Gordonia sp. PS3, was isolated from the gut of Galleria mellonella larvae. After 40 days, strain PS3 exhibited a 33.59 ± 1.12 % degradation rate of PS-microplastics (PS-MPs). The biodegradation mechanism of PS by strain PS3 was investigated using genomics, molecular docking, and metabolomics. Degradation resulted in a significant decrease in molecular weight, disappearance of characteristic aromatic peaks, and the appearance of new functional groups (e.g., hydroxyl and carbonyl), indicating oxidative depolymerization and enhanced hydrophilicity. Four key enzymes involved in PS degradation were identified, with alkane 1-monooxygenase initiating cleavage of C-C bonds in PS and cytochrome P450 monooxygenase catalyzing oxidation of the aromatic ring. Metabolomics analysis revealed upregulation of proline, branched-chain amino acids, and polyamines, indicating oxidative stress response and energy acquisition during PS degradation. The PS degradation products showed no significant adverse effects on Arabidopsis thaliana growth, and PS residues were less harmful to G. mellonella larvae than untreated PS-MPs. This study presents a novel strain for PS biodegradation and provides new insights into the microbial degradation mechanism of PS and the safety of its degradation products.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huoyong Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui Pei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiehao Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjie Pi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
Hatwar N, Qureshi A. Comprehensive Review on Bio-Based Treatments for Polyvinyl Chloride Plastic. Appl Biochem Biotechnol 2025; 197:2769-2798. [PMID: 39820925 DOI: 10.1007/s12010-024-05174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Polyvinyl chloride (PVC) plastics are widespread around the globe, and each year, thousands of tons of PVC end up in the environment in the form of micro-/nanoplastics. Literature has reported extensively on the biodegradation of its PVC additives/plasticizers; however, bio-based treatment approaches for its polymers have been scanty. The current review has discussed elaborately all possible PVC degradation processes and the toxicity challenges faced during its mitigation. This review has also delineated and assessed all physical, chemical, and biological approaches reported for PVC treatments. All the biodeterioration, biocatalysis, and biodegradation mechanisms reported for PVC have been comprehensively discussed. Recent advances have also been highlighted like the direct application of invertebrate species and selective enzymes like peroxidases, alkane monooxygenase, and laccase during PVC treatment. Insights of functional genomes/genes and OMICS have been recommended, which might help predict and address any future issues during the mitigation of PVC pollution in the environment.
Collapse
Affiliation(s)
- Neha Hatwar
- Sustainable Environmental Processes - Environmental Bioprocesses (SEP-EB), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asifa Qureshi
- Sustainable Environmental Processes - Environmental Bioprocesses (SEP-EB), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Bayer T, Wu S, Snajdrova R, Baldenius K, Bornscheuer UT. An Update: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2025:e202505976. [PMID: 40241335 DOI: 10.1002/anie.202505976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Supported by rapid technological advancements, biocatalytic applications have matured into sustainable, scalable, and cost-competitive alternatives to established chemical catalysis. This review presents the most recent examples of enzyme-based solutions for the manufacturing of molecules with extended carbon-carbon frameworks and multiple stereogenic centers at commercial scale, including peptide building blocks, (rare) sugars, synthetic (oligo)nucleotides, and terpenoids, such as (-)-Ambrox®. Novel enzyme classes are highlighted along with their potential applications-the synthesis of DNA/RNA, the depolymerization of synthetic plastics, or fully enzymatic protection/deprotection schemes-pointing toward the diversification and broader industrial utilization of biocatalysis-based processes.
Collapse
Affiliation(s)
- Thomas Bayer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Kai Baldenius
- Baldenius Biotech Consulting, Hafenstr. 31, 68159, Mannheim, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
11
|
Liu X, Zhong B, Li N, Wu WM, Wang X, Li X, Yang Z, Mei X, Yi S, He Y. Notable ecological risks of microplastics to Minjiang River ecosystem over headwater to upstream in Eastern Qinghai-Tibetan Plateau. WATER RESEARCH 2025; 274:123137. [PMID: 39813893 DOI: 10.1016/j.watres.2025.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/27/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Microplastics (MPs) in aquatic environments has been observed globally. However, the ecological risks of MP pollution in riverhead prior to highly urbanized region remain poorly understood. This study investigated MP pollution related to microbiome in sediments, and ecological risks of MPs in riverhead prior to urbanized area over 291 km of Minjiang River (MJR) in Qinghai-Tibetan Plateau (QTP). MPs in river water and sediments were averagely 245±128 items/L and 124±67 items/kg, respectively, over the investigated river range. The MP distribution indicated that MP abundance is low in headwater section and elevated in middle section and down section with increase of urbanized area. The MPs were found mainly in film, fragments, and fiber morphotypes, with size < 500 μm in both river water and sediments. The polymers of MPs were contributed by polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polycarbonate (PC) at 41.7 %, 22.7 %, 17.9 %, 1.8 %, and 1.2 % in river water, and 32.6 %, 15.0 %, 29.3 %, 3.1 %, and 0.8 % in sediments, respectively. Microbiome analyses of sediments revealed that the majority of microorganisms were aerobic bacteria, which contained potential plastic-degrading bacterial genes. Ecological risk assessment indexes of pollution load, polymeric risk assessment and pollution risk indicated that MPs in MJR river water and sediments displayed noticeable pollution levels, i.e., river water exhibited medium to very high pollution risk levels, and sediments showed from low to very high pollution risk levels in riverhead. Monte Carlo simulation revealed that PVC and PC MPs were considered as priority control pollutants although they were not the most abundant polymers identified due to their intrinsic chemical toxicity. Compared with risk levels of global rivers, the results indicate prominent ecological risks caused by MPs in MJR riverhead areas, and thus raise a warning sign.
Collapse
Affiliation(s)
- Xin Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Naying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Research Center, Stanford University, Stanford, California 94305-4020, United States
| | - Xiaofeng Wang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xianxiang Li
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Zao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xintong Mei
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shaoliang Yi
- International Centre for Integrated Mountain Development, Kathmandu 3226, Nepal
| | - Yixin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
12
|
Khumthong I, Siripornadulsil W, Siripornadulsil S. Bacteria isolated from soil degrade low-density polyethylene for growth and polyhydroxyalkanoate synthesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125072. [PMID: 40154256 DOI: 10.1016/j.jenvman.2025.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
The low-density polyethylene (LDPE) used in food packaging contributes significantly to the environmental accumulation of microplastics and plastic waste. The aim of this study was to identify and characterize bacteria from plastic waste-contaminated soils that degrade LDPEs. After 16 weeks of degradation, the greatest percentage of LDPE weight loss were achieved with the bacterial consortium and Chitinophaga oryzae NT1-2 (21.97 ± 8.81 % and 16.14 ± 0.46 %, respectively). After bacteria were exposed to LDPE, numerous new functional groups, including aldehydes, ketones, and carboxylic acids, were identified by Fourier transform infrared spectroscopy (FTIR) analysis, while field emission scanning electron microscopy showed that the treated LDPE film surface had more grooves and cracks and was rougher than the control LDPE film surface. The highest total (1781.20 ± 42 U/min/mL) and specific (2.53 ± 0.06 U/min/mg protein) activities of alkane hydroxylase were detected in Bothriochloa intermedia MK2-8, whereas the total and specific alcohol dehydrogenase activities of the MK2-8 strain were 95.57 ± 4.16 U/min/mL and 0.14 ± 0.01 U/min/mg protein, respectively. In Pseudomonas aeruginosa CB1-2, the highest total and specific lipase activities were 10.00 ± 0.20 U/min/mL and 0.10 ± 0.03 U/min/mg protein, respectively. These LDPE-degrading bacteria produced polyhydroxyalkanoate (PHA), with C. oryzae NT1-2 giving the highest yield of 26.27 ± 8.40 mg PHA/g-glucose. Thus, bacteria isolated from plastic contaminated soil possess the capability to enzymatically degrade LDPE and convert it into the PHA biopolymer, thereby contributing to environmental sustainability and resource efficiency.
Collapse
Affiliation(s)
- Intira Khumthong
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
13
|
Gheorghe Ş, Pătraşcu AM, Stoica C, Balas M, Feodorov L. Ecotoxicological Effects of Polystyrene Particle Mix (20, 200, and 430 µm) on Cyprinus carpio. TOXICS 2025; 13:246. [PMID: 40278562 PMCID: PMC12031100 DOI: 10.3390/toxics13040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Global consumption led to increased and persistent plastic pollution in aquatic environments, affecting aquatic biota. Polystyrene (PS) is a synthetic polymer and one of the most widely used plastics. This study aims to investigate the acute and chronic effects of PS microplastics on Cyprinus carpio using an adapted OECD methodology. For the acute test, PS was tested in different particle sizes (20, 200, and 430 µm), each at concentrations of 0, 1, 10, and 100 mg PS/L. Mortality and clinical signs were monitored after 96 h of exposure. No acute effects were recorded. In the chronic test, a mix of PS particles of different sizes (20, 200, and 430 µm) at a total concentration of 1.2 mg PS/L was used for a 75-day fish exposure. Mortality, biometric parameters, physiological indices, and antioxidant enzyme activities, including catalase (CAT), glutathione reductase (GRed), glutathione S-transferase (GST), 7-ethoxyresorufin-O-deethylase (EROD), lipid peroxidation (MDA), hepatic enzymes (alanine aminotransferase-ALT and aspartate aminotransferase-AST), vitellogenin (VTG), and acetylcholinesterase (ACh), were assessed. Fish exposed to the PS mix exhibited a 40% change in hepatosomatic indices after 75 days. Additionally, the PS mix induced oxidative stress in fish organs. CAT activity increased fourfold in the intestine, GRed activity increased thirtyfold in the gonads, and GST activity doubled in the brain. GRed activity also increased in the gills but was not statistically significant compared to the control. Lipid peroxidation was observed in the kidney (twofold increase) and was also detected in the gills and intestine; however, these changes were not statistically significant. EROD activity increased by 15% compared to the control group, indicating an amplification of stress enzyme expression. The activity of hepatic enzymes ALT and AST increased nine to tenfold compared to the control. VTG activity increased by 47%, and ACh activity showed more than 80% inhibition in the brain and muscle. Furthermore, an overall amplification of protein expression in the intestine and liver was observed compared to the control group. Our study revealed the incidence and severity of PS microplastic effects on freshwater fish and emphasized the urgent need for prevention, monitoring, and mitigation measures to combat microplastic pollution.
Collapse
Affiliation(s)
- Ştefania Gheorghe
- Control Pollution Department, National Research and Development Institute for Industrial Ecology ECOIND, 57-73, Drumul Podu Dambovitei Str., 060652 Bucharest, Romania; (A.-M.P.); (C.S.); (L.F.)
| | - Anca-Maria Pătraşcu
- Control Pollution Department, National Research and Development Institute for Industrial Ecology ECOIND, 57-73, Drumul Podu Dambovitei Str., 060652 Bucharest, Romania; (A.-M.P.); (C.S.); (L.F.)
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Polyethnic, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Catălina Stoica
- Control Pollution Department, National Research and Development Institute for Industrial Ecology ECOIND, 57-73, Drumul Podu Dambovitei Str., 060652 Bucharest, Romania; (A.-M.P.); (C.S.); (L.F.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Laura Feodorov
- Control Pollution Department, National Research and Development Institute for Industrial Ecology ECOIND, 57-73, Drumul Podu Dambovitei Str., 060652 Bucharest, Romania; (A.-M.P.); (C.S.); (L.F.)
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
| |
Collapse
|
14
|
Babkiewicz E, Nowakowska J, Zebrowski ML, Kunijappan S, Jarosińska K, Maciaszek R, Zebrowski J, Jurek K, Maszczyk P. Microplastic Passage through the Fish and Crayfish Digestive Tract Alters Particle Surface Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5693-5703. [PMID: 40085149 PMCID: PMC11948475 DOI: 10.1021/acs.est.4c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Most studies on the effects of organisms on microplastic characteristics have focused on microorganisms, while the impact of animal feeding behavior, particularly in aquatic species like fish and decapod crustaceans, has been less explored. This study examines how polyethylene spherical microplastics (275 μm in diameter) passing through the digestive tracts of crucian carp (Carassius carassius) and Australian crayfish (Cherax quadricarinatus) affect surface properties, particle size, and bacterial colonization. The species were fed diets with or without microplastics. The particles underwent two rounds of passage through the digestive tracts and were then exposed to known bacterial densities. Surface damage, size, and biofilm coverage were analyzed using scanning electron microscopy, while alterations in surface chemical composition were assessed through Fourier transform infrared spectroscopy with attenuated total reflectance, and the formation and penetration of nanoplastics in gut tissues and glands were determined using Py-GC/MS. Results show that the passage significantly altered surface properties and reduced microplastic size, without affecting chemical composition or nanoplastic penetration into tissues. These changes promoted bacterial colonization compared to controls. The findings suggest that animal feeding activity may play an important role in the mechanical fragmentation of microplastics in aquatic environments, potentially leading to their faster degradation.
Collapse
Affiliation(s)
- Ewa Babkiewicz
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Warsaw 02-089, Poland
| | - Julita Nowakowska
- Imaging
Laboratory, Faculty of Biology, University
of Warsaw, Warsaw 00-927, Poland
| | - Marcin L. Zebrowski
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Selvaraj Kunijappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, India
| | - Katarzyna Jarosińska
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Rafał Maciaszek
- Warsaw
University of Life Sciences, Institute of
Animal Science, Department of Animal Genetics and Conservation, Warsaw 02-787, Poland
| | - Jacek Zebrowski
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Krzysztof Jurek
- Faculty
of Geology, Geophysics and Environmental
Protection at the AGH University of Krakow, Kraków 30-059, Poland
| | - Piotr Maszczyk
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| |
Collapse
|
15
|
Lomwongsopon P, Martínez BM, Jiménez AB, Bardenstein AL, Kusano Y, de Claville Christiansen J, Varrone C. Enhancing biodegradation of polyolefins and real mixed plastic waste by combination of pretreatment and mixed microbial consortia. CHEMOSPHERE 2025; 373:144151. [PMID: 39884136 DOI: 10.1016/j.chemosphere.2025.144151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Polyolefins (PO)1 are the most common consumer plastics, constituting about half of plastic waste. This work investigated the process combining physicochemical pretreatment and PO-enriched mixed microbial consortia (MMCs) on biodegrading European real mixed plastic waste. The MMCs, acclimatized on PO powders, were enriched with strains that could use PO, primarily dominated by the genus Rhodanobacter. Several pretreatment methods were investigated on pure polyethylene (PE) and polypropylene (PP). UVC combined with Fenton's reagent was found to be the best pretreatment process for pure PO, increasing the total oxidative indices of PE and PP by 135 and 21 times, respectively, and decrease the total crystallinity of PP by 2.3 times (but not PE), compared to the untreated ones. Maximum 7.7% and 16.3% weight reductions were achieved after MMCs biodegradation of UVC-Fenton-treated PE and PP powders (80 μm), with a 4.3- and 27.2-times improvement from the untreated ones. Selected pretreatments and MMCs were then applied to real mixed plastic waste and post-consumer multilayers from 10 different streams. The highest weight reductions after 30-days biodegradation were obtained using mixed plastic reject from a biogas plant (MW2) followed by the unrecyclable mixed plastic waste from a Danish municipality (MW1), with a reduction of 36.8% and 30.0% using radio frequency (RF) oxygen plasma pretreatment, respectively. Integration of ultrasonic irradiation with atmospheric pressure plasma treatment increased the biodegradation of MW1 to 39.4%. This study addressed the bottleneck of slow biodegradation of recalcitrant plastics, laying down the basis for future development of biotechnological recycling of unrecyclable plastic fractions.
Collapse
Affiliation(s)
- Passanun Lomwongsopon
- Section of Bioresources and Process Engineering, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Belén Monje Martínez
- AIMPLAS, Instituto Technológico del Plástico, València Parc Tecnològic, C/Gustave Eiffel 4, 46980, Paterna, Valencia, Spain
| | - Alberto Barranca Jiménez
- AIMPLAS, Instituto Technológico del Plástico, València Parc Tecnològic, C/Gustave Eiffel 4, 46980, Paterna, Valencia, Spain
| | | | - Yukihiro Kusano
- Plastics and Packaging Technology, Danish Technological Institute, 2630, Taastrup, Denmark
| | | | - Cristiano Varrone
- Section of Bioresources and Process Engineering, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
16
|
Li Q, Li H, Tian L, Wang Y, Ouyang Z, Li L, Mao Y. Genomic insights and metabolic pathways of an enriched bacterial community capable of degrading polyethylene. ENVIRONMENT INTERNATIONAL 2025; 197:109334. [PMID: 39983413 DOI: 10.1016/j.envint.2025.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
In the face of mounting global plastic pollution, especially concerning microplastics, biodegradation must be a sustainable solution. The key factor driving this technology is to explore efficient plastic-biodegraders from different habitats, among which activated sludge (AS) may be an important option since it holds diverse microorganisms occupying various ecological niches. Here we intend to enrich the plastic-degrading microorganisms from AS by using polyethylene (PE) plastic as the carbon and energy source. After a 28-day incubation, the weight loss of PE films reached 3% and the hydrophobicity decreased, indicating physical biodegradation. Moreover, Fourier-transform infrared spectroscopy (FTIR) results showed the formation of several new oxygen-containing functional groups on PE. Microbial analysis extracted 26 metagenome-assembled genomes (MAGs) from the enriched microbial communities. Among them MAG10, MAG21 and MAG26 displayed the increased abundance upon PE addition and harbored abundant genes related to carbohydrate transport and metabolism, suggesting their potential to degrade PE. Additionally, functional analysis revealed 14 plastic degradation-related genes, including oxidase, laccase, and lipase, indicating the significant potential in plastic degradation. Furthermore, a pathway for synergistic biodegradation of PE was proposed based on the potential PE degradation genes retrieved from MAGs. This work offers a promising and sustainable solution to plastic pollution by enriching the potential biodegraders from AS.
Collapse
Affiliation(s)
- Qihao Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Huixin Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Li Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zeping Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Liguan Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China.
| |
Collapse
|
17
|
Fernandes CF, da Silva Iúdice TN, Bezerra NV, Pontes AN. Biodegradation of oil-derived hydrocarbons by marine actinobacteria: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125509. [PMID: 39667573 DOI: 10.1016/j.envpol.2024.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The intensive use of oil and its derivatives is related to a greater frequency of accidents involving the release of pollutants that cause harmful effects on ecosystems. Actinobacteria are cosmopolitan and saprophytic microorganisms of great commercial interest, but because they are predominantly found in soil, most research into the products of this phylum's metabolism has focused on this habitat. Marine actinobacteria exhibit unique metabolic characteristics in response to extreme conditions in their habitat, which distinguishes them from terrestrial actinobacteria. This systematic review aims to describe cultivable hydrocarbonoclastic marine actinobacteria, analyze their biodegradation rates, as well as discuss their respective potential for application in bioremediation techniques and their limitations. Twenty-one actinobacteria were found to be capable of degrading one or more hydrocarbons derived from petroleum. The majority of these bacteria belonged to the genera Rhodococcus, Gordonia, Pseudonocardia, Isoptericola, Microbacterium, Citricoccus, Kocuria, Brevibacterium, and Cellulosimicrobium. The highest degradation rate was obtained by the species R. ruber, which degraded 100 % of fluorene at a concentration of 100 mg/L. On the other hand, the species Streptomyces gougerotti and Micromonospora matsumotoense were able to degrade polyethylene and use the carbon derived from it to produce polylactic acid (PLA), which represents an excellent candidate for making safely degradable bioplastics, with a view to recycling and replacing conventional petroleum-based plastics. An approach that integrates physicochemical and biological methods, and optimized growth conditions can lead to greater success in decontaminating environments. Despite the number of bacteria found in the research, this number may be significantly higher. This review provides valuable information to support further studies.
Collapse
Affiliation(s)
- Caroline Ferreira Fernandes
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil.
| | - Tirça Naiara da Silva Iúdice
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil; Institute of Health Sciences, Federal University of Pará (UFPA), Av. Augusto Corrêa, Belém, Pará, Brazil
| | - Nilson Veloso Bezerra
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil
| | - Altem Nascimento Pontes
- Center of Natural Sciences and Technology., University of Pará State (UEPA), av. Eneas, 2626, Belém, Pará, Brazil
| |
Collapse
|
18
|
Nawaz F, Islam ZU, Ghori SA, Bahadur A, Ullah H, Ahmad M, Khan GU. Microplastic and nanoplastic pollution: Assessing translocation, impact, and mitigation strategies in marine ecosystems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70032. [PMID: 39927485 DOI: 10.1002/wer.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
The widespread presence of plastic debris in marine ecosystems was first highlighted as a serious concern in the United Nations Convention on the Law of the Sea (UNCLOS) and the 1972 London Convention. This realization identified plastic pollution as one of the major global environmental issues. Majorities of plastic debris are neither recycled nor incinerated, as a result, it eventually makes its way into lakes, rivers, and oceans. Analysis of water and sediment worldwide indicates that microplastics and nanoplastic are ubiquitous in soils, freshwater, and marine ecosystems. Microplastic and nanoplastics are distributed throughout marine environments via processes such as biofouling and chemical leaching, contaminating both pelagic and benthic species. Despite growing recognition of the hazards posed by microplastics and nanoplastics, regulatory efforts remain hampered by limited understanding of their broader ecological impacts, particularly how diverse factors translate into population declines and ecosystem disruptions. This review examines the pathways of microplastic and nanoplastic pollution, their interactions with other environmental stressors such as climate change and chemical pollution, and their effects on marine food webs. The review highlights the urgent need for further research into the behavior and fate of nanoplastics, which are the degradation product of microplastics, owing to their nano size they pose additional risks, unique properties, and potential for widespread ecological impacts. Studies have demonstrated that smaller microplastics and nanoplastics, particularly nanoplastics, are more toxic than larger microplastics. Additionally, microplastics and nanoplastics serve as vectors for contaminants such as heavy metals, exacerbating their toxicity. They also translocate through marine food chains, posing potential health risks. While evidence of their impact continues to grow, the chronic toxicity of microplastics and nanoplastics remains poorly understood, emphasizing the need for further research, particularly at the cellular level, to fully understand their effects on marine ecosystems and human health. This review also concludes with a call for standardized measurement methods, effective mitigation strategies, and enhanced international cooperation to combat this escalating threat. Future research should prioritize the complex interactions between microplastics and nanoplastics, other pollutants, and marine ecosystems, with the ultimate goal of developing holistic approaches to manage and mitigate the impact of plastic pollution. PRACTITIONER POINTS: Microplastic/nanoplastic translocate through marine food webs, affecting species and human health. Nanoplastics are more toxic than microplastics, exacerbating environmental risks. Nanoplastic aggregation influences their distribution and ecological interactions. Future research should focus on nanoplastic behavior, transport, and toxicity.
Collapse
Affiliation(s)
- Faheem Nawaz
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Zia Ul Islam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Sadaf Aslam Ghori
- Department of Environmental Science, Sardar Bahadur Khan Womens University, Quetta, Pakistan
| | - Anila Bahadur
- Department of Environmental Science, Sardar Bahadur Khan Womens University, Quetta, Pakistan
| | - Hamid Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Maqsood Ahmad
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghulam Ullah Khan
- Department of Chemical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| |
Collapse
|
19
|
Lera M, Ferrer JF, Borrás L, Martí N, Serralta J, Seco A. Mesophilic anaerobic digestion of mixed sludge in CSTR and AnMBR systems: A perspective on microplastics fate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124250. [PMID: 39879929 DOI: 10.1016/j.jenvman.2025.124250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Most microplastics (MPs) end up in the biosolids produced in wastewater treatment plants (WWTPs) and can pose contamination risks when the biosolids are applied to agriculture. This study evaluated the impact of mesophilic anaerobic digestion on the fate of MPs in WWTP sludge. For this, two laboratory-scale anaerobic digesters were operated in parallel, consisting of a continuous stirred tank reactor (CSTR) and a membrane bioreactor (AnMBR) equipped with an ultrafiltration membrane to decouple the hydraulic and sludge retention times. Both digesters were continuously fed with mixed sludge from a municipal WWTP. The results showed a significant reduction in the MP concentration, with the AnMBR having the higher MP removal efficiency (88.6% vs. 62.1%) and obtaining a higher percentage of biomethanisation (58.3% vs. 43.7%). Polypropylene (PP) and polyacrylonitrile were the main polymers in the mixed sludge, while PP and polyethylene were the dominant polymers in the digested samples. The MP particles in all the samples were predominantly in the 500-104 μm size range. Microbiological analysis indicates a greater species diversity in the microbial community of the AnMBR, the results also revealed a symbiotic relationship between the Firmicutes and Patescibacteria phyla in this digester.
Collapse
Affiliation(s)
- M Lera
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain.
| | - J F Ferrer
- AIMPLAS - Instituto Tecnológico del Plástico, València Parc Tecnològic, Carrer Gustave Eiffel 4, Paterna, Valencia, 46980, Spain
| | - L Borrás
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| | - N Martí
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| | - J Serralta
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022, Valencia, Spain
| | - A Seco
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
20
|
Katnic SP, Gupta RK. From biofilms to biocatalysts: Innovations in plastic biodegradation for environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124192. [PMID: 39842313 DOI: 10.1016/j.jenvman.2025.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The increase in plastic waste has evolved into a severe environmental crisis, which requires innovative recycling technologies to repurpose used plastic with adequate environmental protection. This review highlights the urgent need for innovative approaches to the treatment and degradation of post-use plastics. It investigates the promising role of biofilms in the biodegradation of polymers, especially for polymers such as polyethylene terephthalate (PET), polyurethane (PU), and polyethylene (PE). By examining biofilms, researchers can determine key enzymes involved in polymer degradation and improve their efficiency through genetic engineering. In addition, the review explores in detail the structure and development of biofilms on polymeric surfaces, elucidating the role of specific microbial strains necessary for biofilm formation and maintenance. Techniques for identifying enzymes within biofilms and improving their degradation ability are also discussed. The review concludes with recent discoveries in enzyme isolation and the key role of biofilms in the degradation and recycling of major plastic pollutants such as PET, PU, and PE. These findings highlight the potential of biofilm-derived enzymes to promote sustainable polymer recycling.
Collapse
Affiliation(s)
- Slavica Porobic Katnic
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; University of Belgrade, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, 11000, Serbia
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
21
|
Kong Y, Wang R, Zhou Q, Li J, Fan Y, Chen Q. Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104499. [PMID: 39787878 DOI: 10.1016/j.jconhyd.2025.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Plastics pollution has become a serious threat to the people and environment due to the mass production, unreasonable disposal and continuous pollution. Polyethylene (PE), one of the most utilized plastics all over the world, is considered as a highly recalcitrant environmental destruction problem on account of strong hydrophobicity and high molecular weight. Therefore, it is urgently necessary to seek economical and efficient treatment and disposal methods for PE. Considering microorganisms can use various carbon sources for anabolism, they are recognized to have great potential in the biodegradation of microplastics including PE. From this point of view, the present review concentrates on providing information regarding the current status of PE biodegradation microorganisms (bacteria and fungi), and the influencing factors such as PE characteristics, cellular surface hydrophobicity, physical treatments, chemicals addition, as well as environmental conditions for biodegradation are thoroughly discussed. Furthermore, the possible biodegradation mechanisms for PE involve the biofilm formation, biodeterioration, fragmentation, assimilation, and mineralization are elucidated in detail. Finally, the future research directions and application prospects of microbial degradation are prospected in this review. It is expected to provide reference and guidance for PE biodegradation and their potential applications in real contaminated sites.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, Xi'an 710048, China
| | - Renjuan Wang
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Qingyun Zhou
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Jiamiao Li
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Yimeng Fan
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China
| | - Qi Chen
- College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China.
| |
Collapse
|
22
|
Yew M, Yang Y, Wang Q, Zhu L. High-throughput screening strategies for plastic-depolymerizing enzymes. Trends Biotechnol 2025:S0167-7799(24)00387-1. [PMID: 39843328 DOI: 10.1016/j.tibtech.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA). We discuss the application scope of the existing methods, as well as potential developments and integration of screening techniques to identify and enhance plastic depolymerases. The prospects for screening a wider range of plastic depolymerases with the advances in biotechnology tools such as droplet microfluidics and biosensors are highlighted.
Collapse
Affiliation(s)
- Maxine Yew
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yifan Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Leilei Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
23
|
Brouwer MT, Post W, van der Zee M, Reilink R, Boom R, Maaskant E. A predictive model to assess the accumulation of microplastics in the natural environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177503. [PMID: 39532184 DOI: 10.1016/j.scitotenv.2024.177503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The use of plastics inevitably leads to (micro-)plastics entering and accumulating in the natural environment, affecting biodiversity, food security and human health. Currently, a comprehensive and universally applicable methodology to quantify microplastic accumulation in the natural environment is lacking. This study proposes an integrated biodegradation model that provides the possibility to examine and compare the microplastic formation and accumulation of different polymer types in diverse natural environments. The proposed model derives carbon mass flow streams from experimental mineralisation curves (CO2 evolution) of polymers and predicts the concentrations and residence times of the different plastic states during their biodegradation processes. The model allows for the description of the accumulation potential of polymers, as the time-integrated concentration of microplastics present in the natural environment during a timeframe of 100 years after a polymer enters the natural environment. The model is applied to estimate the accumulation potential of three polymers with different biodegradation profiles in soil: polybutylene succinate (PBS), polylactic acid (PLA) and polyethylene (PE). It is demonstrated that the dimensionless accumulation potential of PBS in soil is near zero (between 3.0·10-4 and 0.002) which corresponds to a potentially very low level of accumulation. On the other hand PE shows a near maximum value of 1 which corresponds to the almost completely non-biodegradable character of this polymer in soil. PLA exhibits a wide range of values in between that of PBS and PE which reflects its reported relatively slow biodegradation in soil. The proposed model can be used to guide material selection in product design by quantifying the microplastic accumulation of these different polymer types. To demonstrate its use, plastic candy wrappers and agricultural mulch films were selected as case studies. Both case studies show that high biodegradation rates can limit or prevent microplastic accumulation in soil.
Collapse
Affiliation(s)
- Marieke T Brouwer
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Wouter Post
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Maarten van der Zee
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Rob Reilink
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Remko Boom
- Food Process Engineering Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Evelien Maaskant
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| |
Collapse
|
24
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
25
|
Zampolli J, Collina E, Lasagni M, Di Gennaro P. Insights into polyethylene biodegradative fingerprint of Pseudomonas citronellolis E5 and Rhodococcus erythropolis D4 by phenotypic and genome-based comparative analyses. Front Bioeng Biotechnol 2024; 12:1472309. [PMID: 39726982 PMCID: PMC11669507 DOI: 10.3389/fbioe.2024.1472309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Polyethylene (PE) is the most-produced polyolefin, and consequently, it is the most widely found plastic waste worldwide. PE biodegradation is under study by applying different (micro)organisms in order to understand the biodegradative mechanism in the majority of microbes. This study aims to identify novel bacterial species with compelling metabolic potential and strategic genetic repertoires for PE biodegradation. Pseudomonas citronellolis E5 is newly isolated from solid organic waste contaminated with plastic debris, and Rhodococcus erythropolis D4 was selected for its promising potential in biodegradable plastic determined by its genetic repertoire. P. citronellolis E5 was selected for its ability to grow on PE as the only carbon and energy source. Meaningful extracellular secreted laccase activity was also characterized for D4 during growth on PE (E5 and D4 strains have a laccase activity of (2 ± 1)×10-3 U mg-1 and (3 ± 1)×10-3 U mg-1, respectively). Despite the highest level of cell numbers recorded at 7 days of growth on PE for both strains, the patterns of the metabolic products obtained and degraded during 60 days on PE were dissimilar in the two bacteria at different sampling times. However, they mainly produced metabolites belonging to carboxylic acids and alkanes with varying numbers of carbons in the aliphatic chains. Whole-genome sequence analyses of P. citronellolis E5 compared to R. erythropolis D4 and genetic determinant prediction (by gene annotation and multiple sequence alignment with reference gene products) have been performed, providing a list of 16 and 42 gene products putatively related to different metabolic steps of PE biodegradation. Altogether, these results support insights into PE biodegradation by bacteria of the Pseudomonas and Rhodococcus genera from metabolic and genetic perspectives as a base to build up novel biotechnological platforms.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Collina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
Son JS, Lee S, Hwang S, Jeong J, Jang S, Gong J, Choi JY, Je YH, Ryu CM. Enzymatic oxidation of polyethylene by Galleria mellonella intestinal cytochrome P450s. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136264. [PMID: 39500186 DOI: 10.1016/j.jhazmat.2024.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Polyethylene is widely used but highly resistant to biodegradation, owing to its composition of only a hydrocarbon backbone. For biodegradation to occur, oxidation within the polymer needs to be initiated. Galleria mellonella was the first insect discovered to autonomously oxidize polyethylene without the aid of gut microbes. However, the specific enzyme remains unidentified. Here, we identified for the first time two polyethylene oxidation enzyme candidates of cytochrome P450 (CYP) 6B2-GP04 and CYP6B2-13G08 from the G. mellonella midgut. Both candidate clones oxidized polyethylene efficiently, generating short-chain aliphatic compounds, with CYP6B2-GP04 exhibiting higher activity than CYP6B2-13G08 in yeast and insect cells. In silico structural modeling approaches revealed that the CYP6B2-GP04 Phe118 was essential for interacting with hydrocarbons, which was further validated by mutating phenylalanine to glycine. Furthermore, directed enzyme evolution led to the identification of an enzyme variant with significantly increased oxidation efficiency. Our findings offer promising enzyme-based solutions for polyethylene biodegradation, potentially mitigating polyethylene-driven plastic pollution.
Collapse
Affiliation(s)
- Jin-Soo Son
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Sungbo Hwang
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon 34141 South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Seonghan Jang
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Jiyoung Gong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea; Department of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0380, USA.
| |
Collapse
|
27
|
Zhang J, Shao Y, Shao Y, Yang W, Xuan N, Geng Y, Bian F, Zhang Y, Chen G. Pretreated polystyrene is degraded by a microbial consortium enriched from wetland plastic waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136143. [PMID: 39423649 DOI: 10.1016/j.jhazmat.2024.136143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The biodegradation of polystyrene (PS), a type of plastic with aromatic rings in its polymer chain, is a critical environmental goal worldwide. Microbial degradation of PS has been reported, but the underlying mechanisms are poorly understood. Here, we constructed a microcosm wetland containing PS plastic. We isolated six highly efficient PS plastic-degrading bacterial strains and created a microbial consortium (MCs) consisting of these strains. After a 30-day incubation period, MCs-treated PS exhibited hallmarks of degradation, including -CO- formation, reduced hydrophobicity, surface porosity, and 20 % weight loss. The efficiency of PS degradation was enhanced by using a combination of physical-chemical pretreatment and biological methods, increasing the microbial degradation rate by 20 %. Antioxidant 2246 (C23H32O2) was detected in the culture supernatant via GC-MS. Metatranscriptomic sequencing analysis provided insight into the possible metabolic pathway of PS degradation by the composite bacteria. We identified 31 highly expressed genes encoding proteins that function in carbon metabolism pathways and 34 unique proteases which catalyze the cleavage of long polymer chains. The resulting small molecules are absorbed and further degraded intracellularly by enzymes such as coenzyme synthase, hydratase, transferase, carboxylase, and dehydrogenase. These findings lay the foundation for the efficient and sustainable degradation of PS.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yahui Shao
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Wenlong Yang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Ning Xuan
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Yun Geng
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Fei Bian
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Yingxin Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Gao Chen
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China.
| |
Collapse
|
28
|
Gorish BMT, Abdelmula WIY, Sethupathy S, Dar MA, Shahnawaz M, Zhu D. Microbial degradation of polyethylene polymer: current paradigms, challenges, and future innovations. World J Microbiol Biotechnol 2024; 40:399. [PMID: 39617798 DOI: 10.1007/s11274-024-04211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Polyethylene (PE) is the second most commonly used plastic worldwide, mainly used to produce single-use items such as bags and bottles. Its significant resistance to natural biodegradation results in the accumulation of PE in landfills, leading to various ecological and toxicological consequences. Despite extensive research on the microbial degradation of PE, achieving complete biodegradation remains a challenge. Comparing experimental outcomes is complicated by the diverse array of microbes involved in PE biodegradation, variations in culture conditions, and differences in assessment tools. This review discusses the critical hurdles in PE biodegradation experiments, including the chemical complexity of PE substrates and the challenges of isolating effective microbes and forming stable consortia. The review also delves into the difficulties in accurately assessing microbial metabolic activity and understanding the biochemical pathways involved in PE degradation. Furthermore, it addresses the pressing issues of metabolic byproducts, slow degradation rates, scalability concerns, and the challenges in measuring biodegradation levels effectively. In addition to outlining the technical challenges associated with PE experiments, this review offers recommendations for future research directions to enhance PE biodegradation outcomes. Overcoming these challenges and implementing the proposed future strategies will improve the reliability, comparability, and practicality of current PE biodegradation experiments, ultimately contributing to better comprehension and management of PE waste in the environment.
Collapse
Affiliation(s)
- Babbiker Mohammed Taher Gorish
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Waha Ismail Yahia Abdelmula
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Mohd Shahnawaz
- Department of Botany, Govt. Degree College Drass, A Constituent College of University of Ladakh, Drass, Ladakh, 194102, India
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
29
|
Hu Y, Tian Y, Zou C, Moon TS. The current progress of tandem chemical and biological plastic upcycling. Biotechnol Adv 2024; 77:108462. [PMID: 39395608 DOI: 10.1016/j.biotechadv.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Each year, millions of tons of plastics are produced for use in such applications as packaging, construction, and textiles. While plastic is undeniably useful and convenient, its environmental fate and transport have raised growing concerns about waste and pollution. However, the ease and low cost of producing virgin plastic have so far made conventional plastic recycling economically unattractive. Common contaminants in plastic waste and shortcomings of the recycling processes themselves typically mean that recycled plastic products are of relatively low quality in some cases. The high cost and high energy requirements of typical recycling operations also reduce their economic benefits. In recent years, the bio-upcycling of chemically treated plastic waste has emerged as a promising alternative to conventional plastic recycling. Unlike recycling, bio-upcycling uses relatively mild process conditions to economically transform pretreated plastic waste into value-added products. In this review, we first provide a précis of the general methodology and limits of conventional plastic recycling. Then, we review recent advances in hybrid chemical/biological upcycling methods for different plastics, including polyethylene terephthalate, polyurethane, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, and polyvinyl chloride. For each kind of plastic, we summarize both the pretreatment methods for making the plastic bio-available and the microbial chassis for degrading or converting the treated plastic waste to value-added products. We also discuss both the limitations of upcycling processes for major plastics and their potential for bio-upcycling.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Chenghao Zou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
30
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
31
|
Kim HR, Koh HY, Shin H, Suh DE, Lee S, Choi D. Enhancing the oxidation of polystyrene through a homogeneous liquid degradation system for effective microbial degradation. Front Microbiol 2024; 15:1509603. [PMID: 39669785 PMCID: PMC11636969 DOI: 10.3389/fmicb.2024.1509603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Plastics play a crucial role in modern industries; however, their resistance to natural degradation contributes to environmental pollution, and microplastics pose a health threat. The hydrophobic nature of microplastics poses a considerable challenge, rendering them resistant to dissolving in water. In this study, we conducted a comparative analysis of the microbial biodegradation capabilities of polystyrene in solid and liquid states. Polystyrene in its solid foam form, along with polystyrene converted into a liquid state using ethyl-ester oil, was biodegraded by microorganisms. Subsequently, the liquid plastic was re-extracted into its solid form, and the degree of degradation was assessed using weight loss measurement, XPS, FT-IR, GPC, and TGA. Liquid-state polystyrene exhibited a higher degradation rate than that reported previously. Furthermore, liquid polystyrene undergoes more pronounced oxidation than its solid counterpart, leading to an increased oxygen atom ratio. Chemical structure analysis highlighted the distinct formation of -OH and C=O functional groups in the liquid state compared to those in the solid state. Additionally, notable changes in the molecular weight and thermal stability of polystyrene were observed during biodegradation in the liquid state. This study suggests that a heterogeneous reaction (solid plastic-liquid medium) might impede plastic biodegradation, while indicating the potential to enhance the degradation efficiency through a homogeneous reaction (liquid plastic-liquid medium). The follow-up study identifies appropriate solvents and optimizes cultivation conditions, offering potential to enhance the efficiency of biological plastic degradation.
Collapse
Affiliation(s)
- Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hye Yeon Koh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hyeyoung Shin
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeonbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Donggeon Choi
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| |
Collapse
|
32
|
Jendrossek D. Polyethylene and related hydrocarbon polymers ("plastics") are not biodegradable. N Biotechnol 2024; 83:231-238. [PMID: 39182829 DOI: 10.1016/j.nbt.2024.08.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Research on the biodegradation of polyethylene (PE), polystyrene (PS) and related polymers has become popular and the number of publications on this topic is rapidly increasing. However, there is no convincing evidence that the frequently claimed biodegradability of these so-called "plastics" really exists. Rather, a diffuse definition of the term "biodegradability" has led to the publication of reports showing either marginal weight losses of hydrocarbon polymers by the action of isolated bacterial strains or mechanical disintegration and polymer surface modification in case of hydrocarbon polymer-consuming insect larvae. Most of the data can be alternatively explained by the utilization of polymer impurities/additives, by the utilization of low molecular weight oligomers, and/or by physical fragmentation and subsequent loss of small fragments. Evidence for a (partial) biotic and/or abiotic oxidation of the amorphous polymer fraction and of surface-exposed hydrocarbon side chains is not sufficient to claim that PE is biodegradable. To the best of my knowledge, no report has been so far published in which substantial biodegradation and mineralization of PE or related (long chain length) hydrocarbon polymers to carbon dioxide has been convincingly demonstrated by the determination of the fate of carbon atoms in isotope-labeled polymers. It is disappointing that publications with a critical view on biodegradation of hydrocarbon polymers are not cited in most of these reports. The possibility should be considered that the rapidly expanding research field of hydrocarbon polymer biodegradation is chasing rainbows.
Collapse
|
33
|
Cao Y, Zhang B, Chen B. Challenging plastic pollution with hydrocarbonoclastic lineages. Trends Biotechnol 2024:S0167-7799(24)00292-0. [PMID: 39510852 DOI: 10.1016/j.tibtech.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The hydrocarbonoclastic lineages that have existed for millennia are responsible for the degradation of diverse aliphatic and aromatic compounds, regulating the ocean hydrocarbon cycles. Given the metabolic similarities in breaking down plastics and hydrocarbons, a thorough understanding and leveraging of these processes can provide biotechnologically based solutions to tackle global plastic pollution.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada
| |
Collapse
|
34
|
Peltrini R, Cordell RL, Wilde M, Abuhelal S, Quek E, Zounemat-Kermani N, Ibrahim W, Richardson M, Brinkman P, Schleich F, Stefanuto PH, Aung H, Greening N, Dahlen SE, Djukanovic R, Adcock IM, Brightling C, Monks P, Siddiqui S. Discovery and Validation of a Volatile Signature of Eosinophilic Airway Inflammation in Asthma. Am J Respir Crit Care Med 2024; 210:1101-1112. [PMID: 38820123 PMCID: PMC11544360 DOI: 10.1164/rccm.202310-1759oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/31/2024] [Indexed: 06/02/2024] Open
Abstract
Rationale: Volatile organic compounds (VOCs) in asthmatic breath may be associated with sputum eosinophilia. We developed a volatile biomarker signature to predict sputum eosinophilia in asthma. Methods: VOCs emitted into the space above sputum samples (headspace) from patients with severe asthma (n = 36) were collected onto sorbent tubes and analyzed using thermal desorption gas chromatography-mass spectrometry (GC-MS). Elastic net regression identified stable VOCs associated with sputum eosinophilia ⩾ 3% and generated a volatile biomarker signature. This VOC signature was validated in breath samples from: 1) patients with acute asthma according to blood eosinophilia ⩾0.3 × 109cells/L or sputum eosinophilia of ⩾3% in the UK EMBER (East Midlands Breathomics Pathology Node) consortium (n = 65) and 2) U-BIOPRED-IMI (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes Innovative Medicines Initiative) consortium (n = 42). Breath samples were collected onto sorbent tubes (EMBER) or Tedlar bags (U-BIOPRED) and analyzed by GC-MS (GC × GC-MS for EMBER or GC-MS for U-BIOPRED). Measurements and Main Results: The in vitro headspace identified 19 VOCs associated with sputum eosinophilia, and the derived VOC signature yielded good diagnostic accuracy for sputum eosinophilia ⩾3% in headspace (area under the receiver operating characteristic curve [AUROC] 0.90; 95% confidence interval [CI], 0.80-0.99; P < 0.0001), correlated inversely with sputum eosinophil percentage (rs = -0.71; P < 0.0001), and outperformed fractional exhaled nitric oxide (AUROC 0.61; 95% CI, 0.35-0.86). Analysis of exhaled breath in replication cohorts yielded a VOC signature AUROC (95% CI) for acute asthma exacerbations of 0.89 (0.76-1.0) (EMBER cohort) with sputum eosinophilia and 0.90 (0.75-1.0) in U-BIOPRED, again outperforming fractional exhaled nitric oxide in U-BIOPRED (0.62 [0.33-0.90]). Conclusions: We have discovered and provided early-stage clinical validation of a volatile biomarker signature associated with eosinophilic airway inflammation. Further work is needed to translate our discovery using point-of-care clinical sensors.
Collapse
Affiliation(s)
| | - Rebecca L. Cordell
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Michael Wilde
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
- School of Geography, Earth, and Environmental Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Shahd Abuhelal
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Eleanor Quek
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Wadah Ibrahim
- Institute for Lung Health, National Institute for Health and Care Research (NIHR), Leicester Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, United Kingdom
| | | | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Florence Schleich
- Respiratory Medicine, GIGA Research Centre, Liege University Hospital, Sart-Tilman, Liege, Belgium
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group, MolSys Research, University of Liege, Liege, Belgium
| | - Hnin Aung
- Department of Respiratory Sciences and
| | | | - Sven Erik Dahlen
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; and
| | | | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Paul Monks
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Salman Siddiqui
- Department of Respiratory Sciences and
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
35
|
Liu S, Huang X, Han J, Yao L, Li H, Xin G, Ho SH, Zhao J, Xing B. Genome-Wide Molecular Adaptation in Algal Primary Productivity Induced by Prolonged Exposure to Environmentally Realistic Concentration of Nanoplastics. ACS NANO 2024; 18:29820-29831. [PMID: 39425676 DOI: 10.1021/acsnano.4c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Little information is known about the long-term effects of nanoplastics (NPs) in aquatic environments, especially under environmental-related scenarios. Herein, three differently charged NPs (nPS, nPS-NH2, and nPS-COOH) were exposed at an environmentally realistic concentration (10 μg/L) for 100 days to explore the variation of primary productivity (i.e., algae) in aquatic ecosystems. Our results demonstrated that the algae adapted to all three types of NPs by enhancing the algal number (by 10.34-16.52%), chlorophyll a (by 11.28-17.65%), and carbon-fixing enzyme activity (by 49.19-68.33%), which were further confirmed by the exposure results from natural water culturing experiments. Based on the algal chloroplast number and biovolume at the individual level, only nPS caused algal differentiation into two heterogeneous subpopulations (54.92 vs 45.08%), while nPS-NH2 and nPS-COOH did not cause the differentiation of the algal population. Moreover, the molecular adaptation mechanisms of algae to NPs were unraveled by integrating epigenomics and transcriptomics. Mean methylation rates of algae on exposure to nPS, nPS-NH2, and nPS-COOH were significantly elevated. In addition, the direction of gene expression regulation via differentially methylated regions associated with genes when exposed to nPS-COOH was distinct from those of nPS and nPS-NH2. Our results highlight the importance of assessing the long-term ecotoxicity of NPs and provide useful information for understanding the effect of NPs on aquatic ecosystems.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Linjie Yao
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Huijun Li
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jian Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, P. R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
36
|
Martínez Rodríguez A, Kratina P, Jones JI. Microplastic pollution and nutrient enrichment shift the diet of freshwater macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124540. [PMID: 39004208 DOI: 10.1016/j.envpol.2024.124540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Microplastic pollution poses a global threat to freshwater ecosystems, with laboratory experiments indicating potential toxic impacts through chemical toxicity, physical abrasion, and false satiation. Bioplastics have emerged as a potential greener alternative to traditional oil-based plastics. Yet, their environmental effects remain unclear, particularly at scales relevant to the natural environment. Additionally, the interactive impacts of microplastics with other environmental stressors, such as nutrient enrichment, are poorly understood and rarely studied. Under natural conditions organisms might be able to mitigate the toxic effects of microplastics by shifting their diet, but this ability may be compromised by other stressors. This study combines an outdoor mesocosm experiment and stable isotope analysis to determine changes in the trophic niches of three freshwater invertebrate species exposed to conventional (HDPE) and bio-based biodegradable (PLA) microplastics at two concentrations, both independently and combined with nutrient enrichment. Exposure to microplastics altered the isotopic niches of two of the invertebrate species, with nutrient enrichment mediating this effect. Moreover, the effects of microplastics were consistent regardless of their type or concentration. Under enriched conditions, two of the species exposed to microplastics shifted to a specialised diet compared with controls, whereas little difference was observed between the isotopic niches of those exposed to microplastic and controls under ambient nutrient conditions. Additionally, PLA was estimated to support 24 % of the diet of one species, highlighting the potential assimilation of bioplastics by biota and possible implications. Overall, these findings suggest that the toxic effects of microplastics suggested from laboratory studies might not manifest under real-world conditions. However, this study does demonstrate that subtle sublethal effects occur even at environmentally realistic microplastic concentrations. The crucial role of nutrient enrichment in mediating microplastic effects underscores the importance of considering microplastic pollution in the context of other environmental stressors.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
37
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
38
|
Oiffer T, Leipold F, Süss P, Breite D, Griebel J, Khurram M, Branson Y, de Vries E, Schulze A, Helm CA, Wei R, Bornscheuer UT. Chemo-Enzymatic Depolymerization of Functionalized Low-Molecular-Weight Polyethylene. Angew Chem Int Ed Engl 2024:e202415012. [PMID: 39317657 DOI: 10.1002/anie.202415012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Polyethylene (PE) is the most commonly used plastic type in the world, contributing significantly to the plastic waste crisis. Microbial degradation of PE in natural environments is unlikely due to its inert saturated carbon-carbon backbones, which are difficult to break down by enzymes, challenging the development of a biocatalytic recycling method for PE waste. Here, we demonstrated the depolymerization of low-molecular-weight (LMW) PE using an enzyme cascade that included a catalase-peroxidase, an alcohol dehydrogenase, a Baeyer Villiger monooxygenase, and a lipase after the polymer was chemically pretreated with m-chloroperoxybenzoic acid (mCPBA) and ultrasonication. In a preparative experiment with gram-scale pretreated polymers, GC-MS and weight loss determinations confirmed ~27 % polymer conversion including the formation of medium-size functionalized molecules such as ω-hydroxycarboxylic acids and α,ω-carboxylic acids. Additional analyses of LMWPE-nanoparticles using AFM showed that enzymatic depolymerization reduced the sizes of these mCPBA- and enzyme-treated LMWPE-nanoparticles. This multi-enzyme catalytic concept with distinct chemical steps represents a unique starting point for future development of bio-based recycling methods for polyolefin waste.
Collapse
Affiliation(s)
- Thomas Oiffer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | | | - Philipp Süss
- Enzymicals AG, Walther-Rathenau-Straße 49b, 17489, Greifswald, Germany
| | - Daniel Breite
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Jan Griebel
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Muhammad Khurram
- Institute of Physics, Dept. of Soft Matter and Biophysics, University of Greifswald, Felix-Hausdorff Str. 6, 17487, Greifswald, Germany
| | - Yannick Branson
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Erik de Vries
- Enzymicals AG, Walther-Rathenau-Straße 49b, 17489, Greifswald, Germany
| | - Agnes Schulze
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christiane A Helm
- Institute of Physics, Dept. of Soft Matter and Biophysics, University of Greifswald, Felix-Hausdorff Str. 6, 17487, Greifswald, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
39
|
Retnadhas S, Ducat DC, Hegg EL. Nature-Inspired Strategies for Sustainable Degradation of Synthetic Plastics. JACS AU 2024; 4:3323-3339. [PMID: 39328769 PMCID: PMC11423324 DOI: 10.1021/jacsau.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Synthetic plastics have become integral to our daily lives, yet their escalating production, limited biodegradability, and inadequate waste management contribute to environmental contamination. Biological plastic degradation is one promising strategy to address this pollution. The inherent chemical and physical properties of synthetic plastics, however, pose challenges for microbial enzymes, hindering the effective degradation and the development of a sustainable biological recycling process. This Perspective explores alternative, nature-inspired strategies designed to overcome some key limitations in currently available plastic-degrading enzymes. Nature's refined degradation pathways for natural polymers, such as cellulose, present a compelling framework for the development of efficient technologies for enzymatic plastic degradation. By drawing insights from nature, we propose a general strategy of employing substrate binding domains to improve targeting and multienzyme scaffolds to overcome enzymatic efficiency limitations. As one potential application, we outline a multienzyme pathway to upcycle polyethylene into alkenes. Employing nature-inspired strategies can present a path toward sustainable solution to the environmental impact of synthetic plastics.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
40
|
Mirzaei Aminiyan M, Shorafa M, Pourbabaee AA. Mitigating the detrimental impacts of low- and high-density polyethylene microplastics using a novel microbial consortium on a soil-plant system: Insights and interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116805. [PMID: 39096689 DOI: 10.1016/j.ecoenv.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
The accumulation of polyethylene microplastics (PE-MPs) in soil has raised considerable concerns; however, the effects of their persistence and mitigation on agroecosystems have not been explored. This study aimed to assess the detrimental effects of PE-MPs on a soil-plant system and evaluate their mitigation using a novel microbial consortium (MC). We incorporated low-density polyethylene (LDPE) and high-density polyethylene (HDPE) at two different concentrations, along with a control (0 %, 1 %, and 2 % w/w) into the sandy loam soil for a duration of 135 days. The samples were also treated with a novel MC and incubated for 135 days. The MC comprised three bacterial strains (Ralstonia pickettii (MW290933) strain SHAn2, Pseudomonas putida strain ShA, and Lysinibacillus xylanilyticus XDB9 (T) strain S7-10F), and a fungal strain (Aspergillus niger strain F1-16S). Sunflowers were subsequently cultivated, and physiological growth parameters were measured. The results showed that adding 2 % LDPE significantly decreased soil pH by 1.06 units compared to the control. Moreover, adding 2 % HDPE resulted in a more significant decrease in soil electrical conductivity (EC) relative to LDPE and the control. A dose-dependent increase in dissolved organic carbon (DOC) was observed, with the highest DOC found in 2 % LDPE. The addition of higher dosages of LDPE reduced soil bulk density (BD) more than HDPE. The addition of 2 % HDPE increased the water drop penetration time (WDPT) but decreased the mean weight diameter of soil aggregates (MWD) and water-stable aggregates (WSA) compared to LDPE. The results also revealed that higher levels of LDPE enhanced soil basal respiration (BR) and microbial carbon biomass (MBC). The interaction of MC and higher MP percentages considerably reduced soil pH, EC, BD, and WDPT but significantly increased soil DOC, MWD, WSA, BR, and MBC. Regarding plant growth, incorporating 2 % PE-MPs significantly reduced physiological responses of sunflower: chlorophyll content (Chl; -15.2 %), Fv/Fm ratio (-25.3 %), shoot dry weight (ShD; -31.3 %), root dry weight (RD; -40 %), leaf area (LA; -38.4 %), and stem diameter (StemD; -25 %) compared to the control; however, the addition of novel MC considerably reduced and ameliorated the harmful effects of 2 % PE-MPs on the investigated plant growth responses.
Collapse
Affiliation(s)
- Milad Mirzaei Aminiyan
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Mahdi Shorafa
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| |
Collapse
|
41
|
Zeng B, Fu Y, Ye J, Yang P, Cui S, Qiu W, Li Y, Wu T, Zhang H, Wang Y, Du G, Liu S. Ancestral sequence reconstruction of the prokaryotic three-domain laccases for efficiently degrading polyethylene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135012. [PMID: 38944993 DOI: 10.1016/j.jhazmat.2024.135012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Biodegradation of polyethylene (PE) plastics is environmentally friendly. To obtain the laccases that can efficiently degrade PE plastics, we generated 9 ancestral laccases from 23 bacterial three-domain laccases through ancestral sequence reconstruction. The optimal temperatures of the ancestral laccases were between 60 °C-80 °C, while their optimal pHs were at 3.0 or 4.0. Without substrate pretreatment and mediator addition, all the ancestral laccases can degrade low-density polyethylene (LDPE) films at pH 7.0 and 60 °C. Among them, Anc52, which shared low sequence identity (18 %-41.7 %) with the reported PE-degrading laccases, was the most effective for LDPE degradation. After the catalytic reactions at 90 °C for 14 h, Anc52 (0.2 mg/mL) induced clear wrinkles and deep pits on the PE film surface detected by scanning electron microscope, and its carbonyl and hydroxyl indices reached 2.08 and 2.42, respectively. Then, we identified the residues 203 and 288 critical for PE degradation through site-directed mutation on Anc52. Moreover, Anc52 be activated by heat treatment (60 °C and 90 °C) at pH 7.0, which gave it a high catalytic efficiency (kcat/Km= 191.73 mM-1·s-1) and thermal stability (half-life at 70 °C = 13.70 h). The ancestral laccases obtained here could be good candidates for PE biodegradation.
Collapse
Affiliation(s)
- Bo Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yishan Fu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiacai Ye
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Penghui Yang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shixiu Cui
- JiaXing Institute of Future Food, Jiaxing, Zhejiang 314000, China
| | - Wenxuan Qiu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taoxu Wu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiyun Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yachan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
42
|
Qiu Q, Li H, Sun X, Tian K, Gu J, Zhang F, Zhou D, Zhang X, Huo H. Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135031. [PMID: 38943889 DOI: 10.1016/j.jhazmat.2024.135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou 571126, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
43
|
Ramamurthy K, Thomas NP, Gopi S, Sudhakaran G, Haridevamuthu B, Namasivayam KR, Arockiaraj J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A critical review of current progress, challenges, and future prospects. Int J Biol Macromol 2024; 276:133971. [PMID: 39032890 DOI: 10.1016/j.ijbiomac.2024.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - N Paul Thomas
- Department of Biochemistry, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Instituite of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Instituite of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
44
|
González-Márquez A, Andrade-Alvarado AD, González-Mota R, Sánchez C. Enhanced degradation of phototreated recycled and unused low-density polyethylene films by Pleurotus ostreatus. World J Microbiol Biotechnol 2024; 40:309. [PMID: 39179751 DOI: 10.1007/s11274-024-04116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Polyethylene, one of the most used petroleum-derived polymers, causes serious environmental pollution. The ability of Pleurotus ostreatus to degrade UV-treated and untreated recycled and unused (new) low-density polyethylene (LDPE) films was studied. We determined the fungal biomass production, enzyme production, and enzyme yield. Changes in the chemical structure and surface morphology of the LDPE after fungal growth were analyzed using FTIR spectroscopy and SEM. Functional group indices and contact angles were also evaluated. In general, the highest Lac (6013 U/L), LiP (2432 U/L), MnP (995 U/L) and UP (6671 U/L) activities were observed in irradiated recycled LDPE (IrRPE). The contact angle of all samples was negatively correlated with fermentation time; the smaller the contact angle, the longer the fermentation time, indicating effective biodegradation. The IrRPE samples exhibited the smallest contact angle (49°) at 4 weeks, and the samples were fragmented (into two pieces) at 5 weeks. This fungus could degrade unused (new) LDPE significantly within 6 weeks. The biodegradation of LDPE proceeded faster in recycled than in unused samples, which can be enhanced by exposing LDPE to UV radiation. Enzymatic production during fungal growth suggest that LDPE degradation is initiated by laccase (Lac) followed by lignin peroxidase (LiP), whereas manganese peroxidase (MnP) and unspecific peroxygenase (UP) are involved in the final degradation process. This is the first experimental study on the fungal growth and its main enzymes involved in LDPE biodegradation. This fungus has great promise as a safe, efficient, and environmentally friendly organism capable of degrading LDPE.
Collapse
Affiliation(s)
- Angel González-Márquez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Autonomous University of Tlaxcala, Ixtacuixtla, Tlaxcala, 90120, Mexico
| | | | - Rosario González-Mota
- Laboratory of Optoelectronics, Technological Institute of Aguascalientes, Aguascalientes, 20256, Mexico
| | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Autonomous University of Tlaxcala, Ixtacuixtla, Tlaxcala, 90120, Mexico.
| |
Collapse
|
45
|
Xiang Q, Stryhanyuk H, Schmidt M, Kümmel S, Richnow HH, Zhu YG, Cui L, Musat N. Stable isotopes and nanoSIMS single-cell imaging reveals soil plastisphere colonizers able to assimilate sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124197. [PMID: 38782163 DOI: 10.1016/j.envpol.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The presence and accumulation of both, plastics and antibiotics in soils may lead to the colonization, selection, and propagation of soil bacteria with certain metabolic traits, e.g., antibiotic resistance, in the plastisphere. However, the impact of plastic-antibiotic tandem on the soil ecosystem functioning, particularly on microbial function and metabolism remains currently unexplored. Herein, we investigated the competence of soil bacteria to colonize plastics and degrade 13C-labeled sulfamethoxazole (SMX). Using single-cell imaging, isotope tracers, soil respiration and SMX mineralization bulk measurements we show that microbial colonization of polyethylene (PE) and polystyrene (PS) surfaces takes place within the first 30 days of incubation. Morphologically diverse microorganisms were colonizing both plastic types, with a slight preference for PE substrate. CARD-FISH bacterial cell counts on PE and PS surfaces formed under SMX amendment ranged from 5.36 × 103 to 2.06 × 104, and 2.06 × 103 to 3.43 × 103 hybridized cells mm-2, respectively. Nano-scale Secondary Ion Mass Spectrometry measurements show that 13C enrichment was highest at 130 days with values up to 1.29 atom%, similar to those of the 13CO2 pool (up to 1.26 atom%, or 22.55 ‰). Independent Mann-Whitney U test showed a significant difference between the control plastisphere samples incubated without SMX and those in 13C-SMX incubations (P < 0.001). Our results provide direct evidence demonstrating, at single-cell level, the capacity of bacterial colonizers of plastics to assimilate 13C-SMX from contaminated soils. These findings expand our knowledge on the role of soil-seeded plastisphere microbiota in the ecological functioning of soils impacted by anthropogenic stressors.
Collapse
Affiliation(s)
- Qian Xiang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Niculina Musat
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany; Department of Biology, Section for Microbiology, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
46
|
Wu J, Wang J, Zeng Y, Sun X, Yuan Q, Liu L, Shen X. Biodegradation: the best solution to the world problem of discarded polymers. BIORESOUR BIOPROCESS 2024; 11:79. [PMID: 39110313 PMCID: PMC11306678 DOI: 10.1186/s40643-024-00793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The widespread use of polymers has made our lives increasingly convenient by offering a more convenient and dependable material. However, the challenge of efficiently decomposing these materials has resulted in a surge of polymer waste, posing environment and health risk. Currently, landfill and incineration treatment approaches have notable shortcomings, prompting a shift towards more eco-friendly and sustainable biodegradation approaches. Biodegradation primarily relies on microorganisms, with research focusing on both solitary bacterial strain and multi-strain communities for polymer biodegradation. Furthermore, directed evolution and rational design of enzyme have significantly contributed to the polymer biodegradation process. However, previous reviews often undervaluing the role of multi-strain communities. In this review, we assess the current state of these three significant fields of research, provide practical solutions to issues with polymer biodegradation, and outline potential future directions for the subject. Ultimately, biodegradation, whether facilitated by single bacteria, multi-strain communities, or engineered enzymes, now represents the most effective method for managing waste polymers.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yicheng Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
47
|
Lee YM, Choi KM, Mun SH, Yoo JW, Jung JH. Gut microbiota composition of the isopod Ligia in South Korea exposed to expanded polystyrene pollution. PLoS One 2024; 19:e0308246. [PMID: 39110709 PMCID: PMC11305568 DOI: 10.1371/journal.pone.0308246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024] Open
Abstract
Plastics pose a considerable challenge to aquatic ecosystems because of their increasing global usage and non-biodegradable properties. Coastal plastic debris can persist in ecosystems; however, its effects on resident organisms remain unclear. A metagenomic analysis of the isopoda Ligia, collected from clean (Nae-do, ND) and plastic-contaminated sites (Maemul-do, MD) in South Korea, was conducted to clarify the effects of microplastic contamination on the gut microbiota. Ligia gut microbiota's total operational taxonomic units were higher in ND than in MD. Alpha diversity did not differ significantly between the two Ligia gut microbial communities collected from ND and MD, although richness (Observed species) was lower in MD than in ND. Proteobacteria (67.47%, ND; 57.30%, MD) and Bacteroidetes (13.63%, ND; 20.76%, MD) were the most abundant phyla found at both sites. Significant different genera in Ligia from EPS-polluted sites were observed. Functional gene analysis revealed that 19 plastic degradation-related genes, including those encoding hydrogenase, esterase, and carboxylesterase, were present in the gut microbes of Ligia from MD, indicating the potential role of the Ligia gut microbiota in plastic degradation. This study provides the first comparative field evidence of the gut microbiota dynamics of plastic detritus consumers in marine ecosystems.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Kwang-Min Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Seong Hee Mun
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
- Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
48
|
Srivastava P, Saji J, Manickam N. Biodegradation of polyethylene terephthalate (PET) by Brucella intermedia IITR130 and its proposed metabolic pathway. Biodegradation 2024; 35:671-685. [PMID: 38459363 DOI: 10.1007/s10532-024-10070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/18/2024] [Indexed: 03/10/2024]
Abstract
Accumulation of polyethylene terephthalate (PET) polyester in ecosystems across the globe is a major pollution of concern. Microbial degradation recently generated novel insights into the biodegradation of varieties of plastics. In this study, a PET degrading bacterium Brucella intermedia IITR130 was isolated from a contaminated lake ecosystem at Pallikaranai, Chennai, India. Incubation of the bacterium along with the PET sheet (0.1 mm thickness) for 60 days resulted in 26.06% degradation, indicating a half-life of 137.8 days. Considerable changes in the surface morphology of the PET sheet were found as holes, pits, and cracks on incubation with strain IITR130, as revealed by scanning electron microscopy (SEM). After bacterial treatment of PET, the formation of new functional groups, most notably in the area of 3326 cm-1 suggestive of O-H stretch, leading to carboxylic acid and alcohol as products were suggested by fourier transform infrared (FTIR) analysis. Monomethyl terephthalate (MMT) and terephthalic acid (TPA) were identified by gas chromatography-mass spectrometry (GC-MS) analysis as PET degradation metabolites. Tributyrin clearance assay confirmed the presence of a lipase/esterase enzyme in the strain IITR130. In this study, a degradation pathway for PET by an isolated and identified bacterium Brucella intermedia IITR130 was characterized in detail.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Joel Saji
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
49
|
Peng BY, Wang WX. Microplastics Biofragmentation and Degradation Kinetics in the Plastivore Insect Tenebrio molitor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39028927 DOI: 10.1021/acs.est.4c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.
Collapse
Affiliation(s)
- Bo-Yu Peng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
50
|
Matyakubov B, Lee TJ. Optimizing polystyrene degradation, microbial community and metabolite analysis of intestinal flora of yellow mealworms, Tenebrio molitor. BIORESOURCE TECHNOLOGY 2024; 403:130895. [PMID: 38801953 DOI: 10.1016/j.biortech.2024.130895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
This study explored a direct feeding of expanded polystyrene as the sole diet for breeding Tenebrio molitor larvae. Temperature and relative humidity were manipulated to evaluate polystyrene biodegradation efficiency, survival rate, and formation of micro-polystyrene residue. Efficient conditions were at temperature of 25 °C with a humidity of 65 ± 5 %. Comparative metabolomic and metabolic-metabolic network analyses was performed for visualizing detailed pathway. Possibility of forming 4 (p)-hydroxyphenylacetic acid from phenylacetic acid with further conversion to 4-methylphenol, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate could be seen as a side chain route for further biodegrading process. Key species identified in the gut of T. molitor larvae included Citrobacter sp., Serratia marcescens, Klebsiella aerogenes, and Klebsiella oxytoca. Pseudomonas aeruginosa was detected only under an anaerobic condition whereas Acinetobacter sp. was present only under an aerobic condition. These results demonstrate the potential to decrease micro-polystyrene by optimizing breeding conditions and biodegradation process of polystyrene.
Collapse
Affiliation(s)
- Behzad Matyakubov
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Tae-Jin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|