1
|
DeVirgiliis L, Goode NJ, McDowell KW, English KL, Novo R, Botros V, Agwu G, Scott JM, Ploutz-Snyder LL. Spaceflight and sport science: Physiological monitoring and countermeasures for the astronaut-athlete on Mars exploration missions. Exp Physiol 2025. [PMID: 40198226 DOI: 10.1113/ep091595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Long-duration spaceflight impacts essentially every system in the human body, resulting in multisystem deconditioning that might impair the health and performance of crewmembers, particularly on long-duration exploration missions to Mars. In this review, we apply the sport science model of athlete monitoring, testing and training to astronauts; tactical athletes, whose occupation includes physically demanding tasks. We discuss exploration-specific physiological monitoring modalities and provide a brief historical overview of physiological countermeasures to spaceflight. Finally, we suggest countermeasures to protect exploration crew health and performance, including targeted preflight and in-flight exercise training, in-flight exercise hardware and adjunct individualized nutrition and sleep considerations. Mars exploration missions will be exemplars of the astronaut-athlete paradigm. An integrated approach to physiological monitoring and countermeasures will maximize the likelihood of exploration mission success.
Collapse
Affiliation(s)
- Luke DeVirgiliis
- Department of Exercise Science and Sport Science, East Tennessee State University, Johnson City, Tennessee, USA
| | - Nicholas J Goode
- Department of Exercise Science and Sport Science, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kurt W McDowell
- Department of Exercise Science and Sport Science, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kirk L English
- Department of Sport and Exercise Science, Milligan University, Milligan, Tennessee, USA
| | - Robert Novo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Virina Botros
- Albert Dorman Honors College, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ginika Agwu
- Department of Medicine, CUNY School of Medicine, New York, New York, USA
| | - Jessica M Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
2
|
Echevarria-Cruz E, McMillan DW, Reid KF, Valderrábano RJ. Spinal Cord Injury Associated Disease of the Skeleton, an Unresolved Problem with Need for Multimodal Interventions. Adv Biol (Weinh) 2024:e2400213. [PMID: 39074256 DOI: 10.1002/adbi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Spinal cord injury is associated with skeletal unloading, sedentary behavior, decreases in skeletal muscle mass, and exercise intolerance, which results in rapid and severe bone loss. To date, monotherapy with physical interventions such as weight-bearing in standing frames, computer-controlled electrically stimulated cycling and ambulation exercise, and low-intensity vibration are unsuccessful in maintaining bone density after SCI. Strategies to maintain bone density with commonly used osteoporosis medications also fail to provide a significant clinical benefit, potentially due to a unique pathology of bone deterioration in SCI. In this review, the available data is discussed on evaluating and monitoring bone loss, fracture, and physical and pharmacological therapeutic approaches to SCI-associated disease of the skeleton. The treatment of SCI-associated disease of the skeleton, the implications for clinical management, and areas of need are considered for future investigation.
Collapse
Affiliation(s)
- Evelyn Echevarria-Cruz
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, 1611 NW 12th ave, Office 2.141, Miami, FL, 33136, USA
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kieran F Reid
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
- Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Finlay M, Hill LA, Neag G, Patel B, Chipara M, Lamont HC, Frost K, Patrick K, Lewis JW, Nicholson T, Edwards J, Jones SW, Grover LM, Naylor AJ. A detailed methodology for a three-dimensional, self-structuring bone model that supports the differentiation of osteoblasts towards osteocytes and the production of a complex collagen-rich mineralised matrix. F1000Res 2024; 12:357. [PMID: 38778815 PMCID: PMC11109547 DOI: 10.12688/f1000research.130779.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background There are insufficient in vitro bone models that accommodate long-term culture of osteoblasts and support their differentiation to osteocytes. The increased demand for effective therapies for bone diseases, and the ethical requirement to replace animals in research, warrants the development of such models.Here we present an in-depth protocol to prepare, create and maintain three-dimensional, in vitro, self-structuring bone models that support osteocytogenesis and long-term osteoblast survival (>1 year). Methods Osteoblastic cells are seeded on a fibrin hydrogel, cast between two beta-tricalcium phosphate anchors. Analytical methods optimised for these self-structuring bone model (SSBM) constructs, including RT-qPCR, immunofluorescence staining and XRF, are described in detail. Results Over time, the cells restructure and replace the initial matrix with a collagen-rich, mineralising one; and demonstrate differentiation towards osteocytes within 12 weeks of culture. Conclusions Whilst optimised using a secondary human cell line (hFOB 1.19), this protocol readily accommodates osteoblasts from other species (rat and mouse) and origins (primary and secondary). This simple, straightforward method creates reproducible in vitro bone models that are responsive to exogenous stimuli, offering a versatile platform for conducting preclinical translatable research studies.
Collapse
Affiliation(s)
- Melissa Finlay
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Laurence A Hill
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Binal Patel
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Miruna Chipara
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Hannah C Lamont
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Kathryn Frost
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Jonathan W Lewis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - James Edwards
- NDORMS, University of Oxford, Oxford, Oxfordshire, OX3 7HE, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Liam M Grover
- Healthcare Technologies Institute, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
4
|
Salamanna F, Faldini C, Veronesi F, Borsari V, Ruffilli A, Manzetti M, Viroli G, Traversari M, Marchese L, Fini M, Giavaresi G. A Pilot Study on Circulating, Cellular, and Tissue Biomarkers in Osteosarcopenic Patients. Int J Mol Sci 2024; 25:5879. [PMID: 38892069 PMCID: PMC11172451 DOI: 10.3390/ijms25115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.
Collapse
Affiliation(s)
- Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Alberto Ruffilli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Marco Manzetti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Giovanni Viroli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Matteo Traversari
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
| | - Laura Marchese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| |
Collapse
|
5
|
Zheng YH, Pan GJ, Quan Y, Zhang HY. Construction of microgravity biological knowledge graph and its applications in anti-osteoporosis drug prediction. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:64-73. [PMID: 38670654 DOI: 10.1016/j.lssr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 04/28/2024]
Abstract
Microgravity in the space environment can potentially have various negative effects on the human body, one of which is bone loss. Given the increasing frequency of human space activities, there is an urgent need to identify effective anti-osteoporosis drugs for the microgravity environment. Traditional microgravity experiments conducted in space suffer from limitations such as time-consuming procedures, high costs, and small sample sizes. In recent years, the in-silico drug discovery method has emerged as a promising strategy due to the advancements in bioinformatics and computer technology. In this study, we first collected a total of 184,915 literature articles related to microgravity and bone loss. We employed a combination of dependency path extraction and clustering techniques to extract data from the text. Afterwards, we conducted data cleaning and standardization to integrate data from several sources, including The Global Network of Biomedical Relationships (GNBR), Curated Drug-Drug Interactions Database (DDInter), Search Tool for Interacting Chemicals (STITCH), DrugBank, and Traditional Chinese Medicines Integrated Database (TCMID). Through this integration process, we constructed the Microgravity Biology Knowledge Graph (MBKG) consisting of 134,796 biological entities and 3,395,273 triplets. Subsequently, the TransE model was utilized to perform knowledge graph embedding. By calculating the distances between entities in the model space, the model successfully predicted potential drugs for treating osteoporosis and microgravity-induced bone loss. The results indicate that out of the top 10 ranked western medicines, 7 have been approved for the treatment of osteoporosis. Additionally, among the top 10 ranked traditional Chinese medicines, 5 have scientific literature supporting their effectiveness in treating bone loss. Among the top 20 predicted medicines for microgravity-induced bone loss, 15 have been studied in microgravity or simulated microgravity environments, while the remaining 5 are also applicable for treating osteoporosis. This research highlights the potential application of MBKG in the field of space drug discovery.
Collapse
Affiliation(s)
- Yu-Han Zheng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guan-Jing Pan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Cowburn J, Serrancolí G, Colyer S, Cazzola D. Optimal fibre length and maximum isometric force are the most influential parameters when modelling muscular adaptations to unloading using Hill-type muscle models. Front Physiol 2024; 15:1347089. [PMID: 38694205 PMCID: PMC11061504 DOI: 10.3389/fphys.2024.1347089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Spaceflight is associated with severe muscular adaptations with substantial inter-individual variability. A Hill-type muscle model is a common method to replicate muscle physiology in musculoskeletal simulations, but little is known about how the underlying parameters should be adjusted to model adaptations to unloading. The aim of this study was to determine how Hill-type muscle model parameters should be adjusted to model disuse muscular adaptations. Methods: Isokinetic dynamometer data were taken from a bed rest campaign and used to perform tracking simulations at two knee extension angular velocities (30°·s-1 and 180°·s-1). The activation and contraction dynamics were solved using an optimal control approach and direct collocation method. A Monte Carlo sampling technique was used to perturb muscle model parameters within physiological boundaries to create a range of theoretical and feasible parameters to model muscle adaptations. Results: Optimal fibre length could not be shortened by more than 67% and 61% for the knee flexors and non-knee muscles, respectively. Discussion: The Hill-type muscle model successfully replicated muscular adaptations due to unloading, and recreated salient features of muscle behaviour associated with spaceflight, such as altered force-length behaviour. Future researchers should carefully adjust the optimal fibre lengths of their muscle-models when trying to model adaptations to unloading, particularly muscles that primarily operate on the ascending and descending limbs of the force-length relationship.
Collapse
Affiliation(s)
- James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| |
Collapse
|
7
|
Neukart F. Towards sustainable horizons: A comprehensive blueprint for Mars colonization. Heliyon 2024; 10:e26180. [PMID: 38404830 PMCID: PMC10884476 DOI: 10.1016/j.heliyon.2024.e26180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
This paper thoroughly explores the feasibility, challenges, and proposed solutions for establishing a sustainable human colony on Mars. We quantitatively and qualitatively analyze the Martian environment, highlighting key challenges such as radiation exposure, which astronauts could experience at minimum levels of 0.66 sieverts during a round trip, and the complications arising from Mars' thin atmosphere and extreme temperature variations. Technological advancements are examined, including developing Martian concrete, which utilizes sulfur as a binding agent, and innovative life support strategies like aeroponics and algae bioreactors. The human aspect of colonization is addressed, focusing on long-term space habitation's psychological and physiological impacts. We also present a cost-benefit analysis of in-situ resource utilization versus Earth-based supply missions, emphasizing economic viability with the potential reduction in launch costs through reusable rocket technology. A timeline for the colonization process is suggested, spanning preliminary unmanned missions for resource assessment, followed by short-term manned missions leading to sustainable settlements over several decades. The paper concludes with recommendations for future research, particularly in refining resource utilization techniques and advancing health and life support systems, to solidify the foundation for Mars colonization. This comprehensive assessment aims to guide researchers, policymakers, and stakeholders in planning and executing a strategic and informed approach to making Mars colonization a reality.
Collapse
Affiliation(s)
- Florian Neukart
- Leiden Institute of Advanced Computer Science, Snellius Gebouw, Niels Bohrweg 1, Leiden, 2333 CA, South Holland, Netherlands
- Terra Quantum AG, Kornhausstrasse 25, St. Gallen, 9000, St. Gallen, Switzerland
| |
Collapse
|
8
|
Holsgrove‐West RK, Revuelta Iniesta R, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB. Maximal sustainable energy intake during transatlantic ocean rowing is insufficient for total energy expenditure and skeletal muscle mass maintenance. Exp Physiol 2024; 109:227-239. [PMID: 37966359 PMCID: PMC10988706 DOI: 10.1113/ep091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Studies of extreme endurance have suggested that there is an alimentary limit to energy intake (EI) of ∼2.5 × resting metabolic rate (RMR). To gain further insight, this study aimed to simultaneously measure EI, total energy expenditure (TEE) body mass and muscle mass in a large cohort of males and females of varying ages during a transatlantic rowing race. Forty-nine competitors (m = 32, f = 17; age 24-67 years; time at sea 46 ± 7 days) in the 2020 and 2021 Talisker Whisky Atlantic Challenge rowed 12-18 hday-1 for ∼3000 miles. TEE was assessed in the final week of the row using 2 H2 18 O doubly labelled water, and EI was analysed from daily ration packs over this period. Thickness of relatively active (vastus lateralis, intermedius, biceps brachaii and rectus abdominus) and inactive (gastrocnemius, soleus and triceps) muscles was measured pre (<7 days) and post (<24 h) row using ultrasound. Body mass was measured and used to calculate RMR from standard equations. There were no sex differences in males and females in EI (2.5 ± 0.5 and 2.3 ± 0.4 × RMR, respectively, P = 0.3050), TEE (2.5 ± 1.0 and 2.3 ± 0.4 × RMR, respectively, P = 0.5170), or body mass loss (10.2 ± 3.1% and 10.0 ± 3.0%, respectively, P = 0.8520), and no effect of age on EI (P = 0.5450) or TEE (P = 0.9344). Muscle loss occurred exclusively in the calf (15.7% ± 11.4% P < 0.0001), whilst other muscles remained unchanged. After 46 days of prolonged ultra-endurance ocean rowing incurring 10% body mass loss, maximal sustainable EI of ∼2.5 × RMR was unable to meet total TEE suggesting that there is indeed a physiological capacity to EI.
Collapse
Affiliation(s)
| | | | | | - Andrew J. Murton
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Benjamin T. Wall
- Public Health and Sport Sciences, Medical SchoolUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Public Health and Sport Sciences, Medical SchoolUniversity of ExeterExeterUK
| |
Collapse
|
9
|
Smith C, Sim M, Dalla Via J, Levinger I, Duque G. The Interconnection Between Muscle and Bone: A Common Clinical Management Pathway. Calcif Tissue Int 2024; 114:24-37. [PMID: 37922021 DOI: 10.1007/s00223-023-01146-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/26/2023] [Indexed: 11/05/2023]
Abstract
Often observed with aging, the loss of skeletal muscle (sarcopenia) and bone (osteoporosis) mass, strength, and quality, is associated with reduced physical function contributing to falls and fractures. Such events can lead to a loss of independence and poorer quality of life. Physical inactivity (mechanical unloading), especially in older adults, has detrimental effects on the mass and quality of bone as well as muscle, while increases in activity (mechanical loading) have positive effects. Emerging evidence suggests that the relationship between bone and muscle is driven, at least in part, by bone-muscle crosstalk. Bone and muscle are closely linked anatomically, mechanically, and biochemically, and both have the capacity to function with paracrine and endocrine-like action. However, the exact mechanisms involved in this crosstalk remain only partially explored. Given older adults with lower bone mass are more likely to present with impaired muscle function, and vice versa, strategies capable of targeting both bone and muscle are critical. Exercise is the primary evidence-based prevention strategy capable of simultaneously improving muscle and bone health. Unfortunately, holistic treatment plans including exercise in conjunction with other allied health services to prevent or treat musculoskeletal disease remain underutilized. With a focus on sarcopenia and osteoporosis, the aim of this review is to (i) briefly describe the mechanical and biochemical interactions between bone and muscle; (ii) provide a summary of therapeutic strategies, specifically exercise, nutrition and pharmacological approaches; and (iii) highlight a holistic clinical pathway for the assessment and management of sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Cassandra Smith
- School of Medical and Health Sciences, Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Marc Sim
- School of Medical and Health Sciences, Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Jack Dalla Via
- School of Medical and Health Sciences, Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Gustavo Duque
- Bone, Muscle & Geroscience Research Group, Research Institute of the MUHC, Montreal, QC, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Papadopetraki A, Giannopoulos A, Maridaki M, Zagouri F, Droufakou S, Koutsilieris M, Philippou A. The Role of Exercise in Cancer-Related Sarcopenia and Sarcopenic Obesity. Cancers (Basel) 2023; 15:5856. [PMID: 38136400 PMCID: PMC10741686 DOI: 10.3390/cancers15245856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
One of the most common adverse effects of cancer and its therapeutic strategies is sarcopenia, a condition which is characterised by excess muscle wasting and muscle strength loss due to the disrupted muscle homeostasis. Moreover, cancer-related sarcopenia may be combined with the increased deposition of fat mass, a syndrome called cancer-associated sarcopenic obesity. Both clinical conditions have significant clinical importance and can predict disease progression and survival. A growing body of evidence supports the claim that physical exercise is a safe and effective complementary therapy for oncology patients which can limit the cancer- and its treatment-related muscle catabolism and promote the maintenance of muscle mass. Moreover, even after the onset of sarcopenia, exercise interventions can counterbalance the muscle mass loss and improve the clinical appearance and quality of life of cancer patients. The aim of this narrative review was to describe the various pathophysiological mechanisms, such as protein synthesis, mitochondrial function, inflammatory response, and the hypothalamic-pituitary-adrenal axis, which are regulated by exercise and contribute to the management of sarcopenia and sarcopenic obesity. Moreover, myokines, factors produced by and released from exercising muscles, are being discussed as they appear to play an important role in mediating the beneficial effects of exercise against sarcopenia.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Antonios Giannopoulos
- Section of Sports Medicine, Department of Community Medicine & Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Dafne, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| |
Collapse
|
11
|
Hughes JM, Greeves JP. Editorial on: Association between Combat-Related Traumatic Injury and Skeletal Health: Bone Mineral Density Loss Is Localized and Correlates with Altered Loading in Amputees: The ADVANCE Study. J Bone Miner Res 2023; 38:1223-1224. [PMID: 37607690 DOI: 10.1002/jbmr.4891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, UK
- Division of Surgery and Interventional Science, University College London, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Thomasius F, Pesta D, Rittweger J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br J Clin Pharmacol 2023. [PMID: 37559171 DOI: 10.1111/bcp.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Despite 2 h of daily exercise training, muscle wasting and bone loss are still present after 6-month missions to the international space station. Some crew members lose bone much faster than others. In preparation for missions to the Moon and Mars, space agencies are therefore reviewing their countermeasure portfolios. Here, we discuss the potential of current pharmacological strategies. Bone loss in space is fuelled by bone resorption. Alendronate, an oral bisphosphonate, reduced bone losses in experimental bed rest and space. However, gastrointestinal side effects precluded its further utilization in space. Zoledronate (a potent bisphosphonate), denosumab (RANKL antagonist) and romosozumab (sclerostin antagonist) are all administered via injection. They effectively suppress bone resorption and are routinely prescribed against osteoporosis. Their serious adverse effects, namely, osteonecrosis of the jaw and atypical femur fractures occur very rarely when the usage is limited to 1 or 2 years. Hence, utilization of one of these compounds may outweigh the bone risks of space travelling, in particular in those with high bone resorption rates. Muscle wasting in space is likely due to hampered muscle protein synthesis. Even though this might theoretically be countered by the synthesis-boosting effects of anabolic steroids, the practical grounds for such recommendation are currently weak. Moreover, they reveal their full potential only when combined with an anabolic exercise stimulus, for example, via strength training. It therefore seems that a combination of exercise and pharmacological countermeasures should be considered for musculoskeletal health on the way to the Moon and Mars and back.
Collapse
Affiliation(s)
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
13
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hardy EJO, Inns TB, Hatt J, Doleman B, Bass JJ, Atherton PJ, Lund JN, Phillips BE. The time course of disuse muscle atrophy of the lower limb in health and disease. J Cachexia Sarcopenia Muscle 2022; 13:2616-2629. [PMID: 36104842 PMCID: PMC9745468 DOI: 10.1002/jcsm.13067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Short, intermittent episodes of disuse muscle atrophy (DMA) may have negative impact on age related muscle loss. There is evidence of variability in rate of DMA between muscles and over the duration of immobilization. As yet, this is poorly characterized. This review aims to establish and compare the time-course of DMA in immobilized human lower limb muscles in both healthy and critically ill individuals, exploring evidence for an acute phase of DMA and differential rates of atrophy between and muscle groups. MEDLINE, Embase, CINHAL and CENTRAL databases were searched from inception to April 2021 for any study of human lower limb immobilization reporting muscle volume, cross-sectional area (CSA), architecture or lean leg mass over multiple post-immobilization timepoints. Risk of bias was assessed using ROBINS-I. Where possible meta-analysis was performed using a DerSimonian and Laird random effects model with effect sizes reported as mean differences (MD) with 95% confidence intervals (95% CI) at various time-points and a narrative review when meta-analysis was not possible. Twenty-nine studies were included, 12 in healthy volunteers (total n = 140), 18 in patients on an Intensive Therapy Unit (ITU) (total n = 516) and 3 in patients with ankle fracture (total n = 39). The majority of included studies are at moderate risk of bias. Rate of quadriceps atrophy over the first 14 days was significantly greater in the ITU patients (MD -1.01 95% CI -1.32, -0.69), than healthy cohorts (MD -0.12 95% CI -0.49, 0.24) (P < 0.001). Rates of atrophy appeared to vary between muscle groups (greatest in triceps surae (-11.2% day 28), followed by quadriceps (-9.2% day 28), then hamstrings (-6.5% day 28), then foot dorsiflexors (-3.2% day 28)). Rates of atrophy appear to decrease over time in healthy quadriceps (-6.5% day 14 vs. -9.1% day 28) and triceps surae (-7.8% day 14 vs. -11.2% day 28), and ITU quadriceps (-13.2% day 7 vs. -28.2% day 14). There appears to be variability in the rate of DMA between muscle groups, and more rapid atrophy during the earliest period of immobilization, indicating different mechanisms being dominant at different timepoints. Rates of atrophy are greater amongst critically unwell patients. Overall evidence is limited, and existing data has wide variability in the measures reported. Further work is required to fully characterize the time course of DMA in both health and disease.
Collapse
Affiliation(s)
- Edward J O Hardy
- Department of General Surgery, Royal Derby Hospital, Derby, UK.,Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Thomas B Inns
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Jacob Hatt
- Department of General Surgery, Royal Derby Hospital, Derby, UK.,Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Brett Doleman
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,Department of Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Joseph J Bass
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Philip J Atherton
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Jonathan N Lund
- Department of General Surgery, Royal Derby Hospital, Derby, UK.,Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Bethan E Phillips
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
16
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
17
|
Högelin ER, Thulin K, von Walden F, Fornander L, Michno P, Alkner B. Reliability and Validity of an Ultrasound-Based Protocol for Measurement of Quadriceps Muscle Thickness in Children. Front Physiol 2022; 13:830216. [PMID: 35832479 PMCID: PMC9272772 DOI: 10.3389/fphys.2022.830216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction and aims: Accurate determination of skeletal muscle size is of great importance in multiple settings including resistance exercise, aging, disease, and disuse. Ultrasound (US) measurement of muscle thickness (MT) is a method of relatively high availability and low cost. The present study aims to evaluate a multisite ultrasonographic protocol for measurement of MT with respect to reproducibility and correlation to gold-standard measurements of muscle volume (MV) with magnetic resonance imaging (MRI) in children. Material and methods: 15 children completed the study (11 ± 1 year, 41 ± 8 kg, 137 ± 35 cm). Following 20 min supine rest, two investigators performed US MT measurements of all four heads of the m. quadriceps femoris, at pre-determined sites. Subsequently, MRI scanning was performed and MV was estimated by manual contouring of individual muscle heads. Results: Ultrasound measurement of MT had an intra-rater reliability of ICC = 0.985–0.998 (CI 95% = 0.972–0.998) and inter-rater reliability of ICC = 0.868–0.964 (CI 95% = 0.637–0.983). The US examinations took less than 15 min, per investigator. Muscle thickness of all individual quadriceps muscles correlated significantly with their corresponding MV as measured by MRI (overall r = 0.789, p < 0.001). Conclusion: The results of this study indicate that US measurement of MT using a multisite protocol is a competitive alternative to MRI scanning, especially with respect to availability and time consumption. Therefore, US MT could allow for wider clinical and scientific implementation.
Collapse
Affiliation(s)
- Emil Rydell Högelin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Futurum - Academy for Health and Care, Jönköping, Sweden
| | - Kajsa Thulin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Orthopaedic Surgery, Eksjö, Jönköping, Sweden
| | - Ferdinand von Walden
- Department of Paediatrics, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Fornander
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Orthopedic Surgery, Norrköping, Sweden
| | - Piotr Michno
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Orthopaedic Surgery, Jönköping, Sweden
| | - Björn Alkner
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Orthopaedic Surgery, Eksjö, Jönköping, Sweden
| |
Collapse
|
18
|
Ekman R, Green DA, Scott JPR, Huerta Lluch R, Weber T, Herssens N. Introducing the Concept of Exercise Holidays for Human Spaceflight - What Can We Learn From the Recovery of Bed Rest Passive Control Groups. Front Physiol 2022; 13:898430. [PMID: 35874509 PMCID: PMC9307084 DOI: 10.3389/fphys.2022.898430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In an attempt to counteract microgravity-induced deconditioning during spaceflight, exercise has been performed in various forms on the International Space Station (ISS). Despite significant consumption of time and resources by daily exercise, including around one third of astronauts' energy expenditure, deconditioning-to variable extents-are observed. However, in future Artemis/Lunar Gateway missions, greater constraints will mean that the current high volume and diversity of ISS in-flight exercise will be impractical. Thus, investigating both more effective and efficient multi-systems countermeasure approaches taking into account the novel mission profiles and the associated health and safety risks will be required, while also reducing resource requirements. One potential approach is to reduce mission exercise volume by the introduction of exercise-free periods, or "exercise holidays". Thus, we hypothesise that by evaluating the 'recovery' of the no-intervention control group of head-down-tilt bed rest (HDTBR) campaigns of differing durations, we may be able to define the relationship between unloading duration and the dynamics of functional recovery-of interest to future spaceflight operations within and beyond Low Earth Orbit (LEO)-including preliminary evaluation of the concept of exercise holidays. Hence, the aim of this literature study is to collect and investigate the post-HDTBR recovery dynamics of current operationally relevant anthropometric outcomes and physiological systems (skeletal, muscular, and cardiovascular) of the passive control groups of HDTBR campaigns, mimicking a period of 'exercise holidays', thereby providing a preliminary evaluation of the concept of 'exercise holidays' for spaceflight, within and beyond LEO. The main findings were that, although a high degree of paucity and inconsistency of reported recovery data is present within the 18 included studies, data suggests that recovery of current operationally relevant outcomes following HDTBR without exercise-and even without targeted rehabilitation during the recovery period-could be timely and does not lead to persistent decrements differing from those experienced following spaceflight. Thus, evaluation of potential exercise holidays concepts within future HDTBR campaigns is warranted, filling current knowledge gaps prior to its potential implementation in human spaceflight exploration missions.
Collapse
Affiliation(s)
- Robert Ekman
- Riga Stradins University, Faculty of Medicine, Riga, Latvia
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathon P. R. Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Institut Médecine Physiologie Spatiale (MEDES), Toulouse, France
| | - Roger Huerta Lluch
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
20
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|
21
|
Man J, Graham T, Squires-Donelly G, Laslett AL. The effects of microgravity on bone structure and function. NPJ Microgravity 2022; 8:9. [PMID: 35383182 PMCID: PMC8983659 DOI: 10.1038/s41526-022-00194-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.
Collapse
Affiliation(s)
- Joey Man
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| | - Taylor Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Georgina Squires-Donelly
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| |
Collapse
|
22
|
Böcker J, Schmitz MT, Mittag U, Jordan J, Rittweger J. Between-Subject and Within-Subject Variaton of Muscle Atrophy and Bone Loss in Response to Experimental Bed Rest. Front Physiol 2022; 12:743876. [PMID: 35273514 PMCID: PMC8902302 DOI: 10.3389/fphys.2021.743876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
To improve quantification of individual responses to bed rest interventions, we analyzed peripheral quantitative computer tomography (pQCT) datasets of the lower leg of 76 participants, who took part in eight different bed rest studies. A newly developed statistical approach differentiated measurement uncertainty U Meas from between-subject-variation (BSV) and within-subject variation (WSV). The results showed that U Meas decreased 59.3-80% over the two decades of bed rest studies (p < 0.01), and that it was higher for muscles than for bones. The reduction of U Meas could be explained by improved measurement procedures as well as a higher standardization. The vast majority (89.6%) of the individual responses pc i exceeded the 95% confidence interval defined by U Meas , indicating significant and substantial BSV, which was greater for bones than for muscles, especially at the epiphyseal measurement sites. Non-significant to small positive inter-site correlations between bone sites, but very large positive inter-site correlation between muscle sites suggests that substantial WSV exists in the tibia bone, but much less so in the calf musculature. Furthermore, endocortical circumference, an indicator of the individual's bone geometry could partly explain WSV and BSV. These results demonstrate the existence of substantial BSV bone, and that it is partly driven by WSV, and likely also by physical activity and dietary habits prior to bed rest. In addition, genetic and epigenetic variation could potentially explain BSV, but not WSV. As to the latter, differences of bone characteristics and the bone resorption process could offer an explanation for its existence. The study has also demonstrated the importance of duplicate baseline measurements. Finally, we provide here a rationale for worst case scenarios with partly effective countermeasures in long-term space missions.
Collapse
Affiliation(s)
- Jonas Böcker
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Marie-Therese Schmitz
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - Uwe Mittag
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
- German Aerospace Center, Head of Institute of Aerospace Medicine, Cologne, Germany
| | - Jörn Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
24
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
25
|
Dionyssiotis Y, Prokopidis K, Vorniotakis P, Bakas E. Osteosarcopenia School. J Frailty Sarcopenia Falls 2021; 6:231-240. [PMID: 34950814 PMCID: PMC8649862 DOI: 10.22540/jfsf-06-231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcopenia has been proposed as a syndrome in a subset of frail individuals at higher risk of falls, fractures and institutionalization. In this paper, we will go over the translational aspects of sarcopenia and osteoporosis research and highlight outcomes from different interventions. In addition, preventative measures and therapeutic interventions that can benefit both muscle and bone simultaneously will be analysed also. A new holistic concept called Osteosarcopenia School will be presented. This new concept is based on counselling and education of patients as part of a rehabilitation program, aiming to reduce the risk of social isolation, falls and fractures, and subsequent disability through muscle strengthening and balance training. In this patient group, the combination of pharmaceutical treatments and specific exercise programmes are essential to counteract the consequences of osteosarcopenia. Finally, educational programmes targeting patient functionality through social reintegration may have a substantial impact on their daily living activities and overall quality of life.
Collapse
Affiliation(s)
- Yannis Dionyssiotis
- Spinal Cord Injury Rehabilitation Clinic, University of Patras, Rio Patras, Greece
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Eleftherios Bakas
- Physical Medicine and Rehabilitation Department, KAT Hospital, Kifissia, Greece
| |
Collapse
|
26
|
Ding Y, Cui Y, Yang X, Wang X, Tian G, Peng J, Wu B, Tang L, Cui CP, Zhang L. Anti-RANKL monoclonal antibody and bortezomib prevent mechanical unloading-induced bone loss. J Bone Miner Metab 2021; 39:974-983. [PMID: 34212247 DOI: 10.1007/s00774-021-01246-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. It is essential to develop therapeutic strategies to combat the bone loss occurring in people afflicted with disuse atrophy on earth as well as in astronauts in space, especially during prolonged missions. Although several drugs have been demonstrated for treating postmenopausal osteoporosis or bone-related diseases, their effects on microgravity-induced bone loss are still unclear. MATERIALS AND METHODS Here, we employed the hindlimb-unloading (HLU) tail suspension model and compared the preventive efficiencies of five agents including alendronate (ALN), raloxifene (Rox), teriparatide (TPTD), anti-murine RANKL monoclonal antibody (anti-RANKL) and proteasome inhibitor bortezomib (Bzb) on mechanical unloading-induced bone loss. Bone mineral density (BMD) was measured by quantitative computed tomography. The osteoblastic and osteoclastic activity were measured by serum ELISA, histology analysis, and histomorphometric analysis. RESULTS Compared to the control, ALN and anti-RANKL antibody could restore bone mass close to sham levels by inhibiting bone resorption. Bzb could increase the whole bone mass and strength by inhibiting bone resorption and promoting bone formation simultaneously. Meanwhile, Rox did not affect bone loss caused by HLU. TPTD stimulated cortical bone formation but the total bone mass was not increased significantly. CONCLUSIONS We demonstrated for the first time that anti-RANKL antibody and Bzb had a positive effect on preventing mechanical unloading-induced bone loss. This finding puts forward the potential use of anti-RANKL and Bzb on bone loss therapies or prophylaxis of astronauts in spaceflight.
Collapse
Affiliation(s)
- Yi Ding
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yu Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
- General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang, China
| | - Xiaolu Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Guangzhao Tian
- Lab of Orthopaedics of Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Lab of Orthopaedics of Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Li Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| |
Collapse
|
27
|
Steell L, Gray SR, Russell RK, MacDonald J, Seenan JP, Wong SC, Gaya DR. Pathogenesis of Musculoskeletal Deficits in Children and Adults with Inflammatory Bowel Disease. Nutrients 2021; 13:nu13082899. [PMID: 34445056 PMCID: PMC8398806 DOI: 10.3390/nu13082899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Musculoskeletal deficits are among the most commonly reported extra-intestinal manifestations and complications of inflammatory bowel disease (IBD), especially in those with Crohn’s disease. The adverse effects of IBD on bone and muscle are multifactorial, including the direct effects of underlying inflammatory disease processes, nutritional deficits, and therapeutic effects. These factors also indirectly impact bone and muscle by interfering with regulatory pathways. Resultantly, individuals with IBD are at increased risk of osteoporosis and sarcopenia and associated musculoskeletal morbidity. In paediatric IBD, these factors may contribute to suboptimal bone and muscle accrual. This review evaluates the main pathogenic factors associated with musculoskeletal deficits in children and adults with IBD and summarises the current literature and understanding of the musculoskeletal phenotype in these patients.
Collapse
Affiliation(s)
- Lewis Steell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (L.S.); (S.R.G.)
| | - Stuart R. Gray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (L.S.); (S.R.G.)
| | - Richard K. Russell
- Department of Paediatric Gastroenterology, Royal Hospital for Sick Children, Edinburgh EH16 4TJ, UK;
| | - Jonathan MacDonald
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK; (J.M.); (J.P.S.)
| | - John Paul Seenan
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK; (J.M.); (J.P.S.)
| | - Sze Choong Wong
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow G51 4TF, UK;
| | - Daniel R. Gaya
- Department of Gastroenterology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
- Correspondence:
| |
Collapse
|
28
|
Hildebrand KN, Sidhu K, Gabel L, Besler BA, Burt LA, Boyd SK. The Assessment of Skeletal Muscle and Cortical Bone by Second-generation HR-pQCT at the Tibial Midshaft. J Clin Densitom 2021; 24:465-473. [PMID: 33257203 DOI: 10.1016/j.jocd.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Peripheral quantitative computed tomography (pQCT) is the current densitometric gold-standard for assessing skeletal muscle at the 66% proximal tibia site. High resolution peripheral quantitative computed tomography (HR-pQCT) is a leading technology for quantifying bone microarchitecture at the distal extremities, and with the second-generation HR-pQCT it is possible to measure proximal limb sites. Therefore, the objectives of this study were to: (1) assess the feasibility of using HR-pQCT to assess skeletal muscle parameters at the 66% proximal tibia site, and (2) test HR-pQCT skeletal muscle measurement reproducibility at this site. METHODS Adult participants (9 males; 7 females; ages 31-75) received 1 pQCT scan and 2 HR-pQCT scans at the 66% proximal site of the nondominant tibia. Participants were repositioned between HR-pQCT scans to test reproducibility. HR-pQCT and pQCT scans were analyzed to quantify muscle cross-sectional area (CSA) and muscle density. Coefficients of determination and Bland-Altman plots compared muscle parameters between pQCT and HR-pQCT. For short-term reproducibility, root-mean-square of coefficient of variance and least significant change were calculated. RESULTS HR-pQCT and pQCT measured muscle density and muscle CSA were positively correlated (R2 = 0.66, R2 = 0.95, p < 0.001, respectively). Muscle density was equivalent between HR-pQCT and pQCT; however, there was systematic and directional bias for muscle CSA, such that muscle CSA was 11% lower with HR-pQCT and bias increased with larger muscle CSA. Root-mean-square of coefficient of variance was 0.67% and 0.92% for HR-pQCT measured muscle density and muscle CSA, respectively, while least significant change was 1.4 mg/cm3 and 174.0 mm2 for muscle density and muscle CSA, respectively. CONCLUSION HR-pQCT is capable of assessing skeletal muscle at the 66% site of the tibia with good precision. Measures of muscle density are comparable between HR-pQCT and pQCT.
Collapse
Affiliation(s)
- Kurt N Hildebrand
- Faculty of Kinesiology, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Karamjot Sidhu
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Leigh Gabel
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Bryce A Besler
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- Faculty of Kinesiology, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
29
|
Strollo F, Vernikos J. Aging-like metabolic and adrenal changes in microgravity: State of the art in preparation for Mars. Neurosci Biobehav Rev 2021; 126:236-242. [PMID: 33757818 DOI: 10.1016/j.neubiorev.2021.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023]
Abstract
Endocrine and metabolic changes that typically accompany aging on Earth have been consistently observed in space. Support for the role of gravity in aging has mostly come from ground simulation studies in head down bed rest. However, uncertainties remain and have to be resolved in planning for the ambitious enterprise of sending humans to Mars and back. Stress-related corticosteroid changes and metabolic adaptation to microgravity and their relationship with aging are the object of the present review mostly, albeit of course non exclusively, coming from the personal experience of the authors. The picture coming out of it is that of some, not easily proven, stress-induced cortisol increase accompanied by insulin resistance, both of which represent typical aging-like phenomena mediated by chronic low-grade inflammation. This suggests the need for humans to consider the long journey to safely land, live and work on Mars by taking advantage of integrative medicine solutions including synthetic torpor and/or continuous self-monitoring of eating, sleeping, moving to enable remotely supervised self-treatment.
Collapse
Affiliation(s)
- Felice Strollo
- Elle-Di and San Raffaele Research Institute, Rome, Italy.
| | | |
Collapse
|
30
|
Bass JJ, Hardy EJO, Inns TB, Wilkinson DJ, Piasecki M, Morris RH, Spicer A, Sale C, Smith K, Atherton PJ, Phillips BE. Atrophy Resistant vs. Atrophy Susceptible Skeletal Muscles: "aRaS" as a Novel Experimental Paradigm to Study the Mechanisms of Human Disuse Atrophy. Front Physiol 2021; 12:653060. [PMID: 34017264 PMCID: PMC8129522 DOI: 10.3389/fphys.2021.653060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms. METHOD Seven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted. RESULTS TA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (-2.8 ± 1.4%, p < 0.05) and muscle thickness decreased (-12.9 ± 1.6%, p < 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged. CONCLUSION The use of this unique "aRaS" paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA.
Collapse
Affiliation(s)
- Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Edward J. O. Hardy
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, United Kingdom
| | - Thomas B. Inns
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Robert H. Morris
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Abi Spicer
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Philip J. Atherton,
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Bethan E. Phillips,
| |
Collapse
|
31
|
Mekjavic IB, Eiken O, Mekjavic PJ, McDonnell AC. Do females and males exhibit a similar sarcopenic response as a consequence of normoxic and hypoxic bed rest? Exp Physiol 2020; 106:37-51. [PMID: 33016528 DOI: 10.1113/ep087834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do females and males exhibit a similar sarcopenic response as a consequence of normoxic and hypoxic bed rest? What is the main finding and its importance? During 10-day bed rest, exposure to a simulated (normobaric hypoxia) altitude of ∼4000 m does not exert additional significant structural or functional effect on the weight-bearing muscles in females compared to those noted under normoxic conditions. Whereas males and females exhibit decrements in muscle cross-sectional area and mass during normoxic and hypoxic bed rest, a concomitant strength decrement was only observed in males. ABSTRACT This study investigated the effects of hypoxia on the known processes of adaptation of body composition and muscle function to normoxic inactivity. Females (n = 12) and males (n = 11) took part in the following interventions: hypoxic ambulation (HAMB; ∼4000 m); hypoxic bed rest (HBR; ∼4000 m) and normoxic bed rest (NBR). Prior to and immediately following each intervention, body composition, thigh and lower leg cross-sectional area (CSA) and isometric muscular strength were recorded. Participants lost body mass (HAMB: male -1.5 ± 0.9 kg, female -1.9 ± 0.7 kg; HBR: male -2.0 ± 1.8 kg, female -2.4 ± 0.8 kg; NBR: male -1.4 ± 1.3 kg, female -1.4 ± 0.9 kg) and lean mass (HAMB: male -3.9 ± 3.0%, female -3.4 ± 2.0%; HBR: male -4.0 ± 4.4%, female -4.1 ± 2.0%; NBR: male -4.0 ± 3.4%, female -2.2 ± 2.7%) with no between-condition or sex differences. Knee extension decreased for males in NBR compared to HAMB (HAMB: male -0.2 ± 9.1%, female 1.3 ± 4.9%; HBR: male -7.8 ± 10.3%, female -3.3 ± 10.9%; NBR: male -14.5 ± 11%, female -3.4 ± 6.9%). Loss of force during maximal voluntary contraction (MVC) in the knee extensors was significantly different between males and females following NBR. There were no other significant changes noted following the experimental interventions. There were no differences recorded between sexes in maximal MVC for elbow or ankle joints. Female lower leg CSA decreased following bed rest (HAMB: -4.5 ± 2.0%; HBR: -9.9 ± 2.6%; NBR: -8.0 ± 1.6%). These findings indicate that a 10-day hypoxic bed rest does not exert any significant additional effect on muscle atrophy when compared to NBR, except for female thigh CSA. In contrast to males, who exhibited a significant loss of muscle strength, no such decrement in strength was observed in the female participants.
Collapse
Affiliation(s)
- Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Centre, Royal Institute of Echnology, Stockholm, Sweden
| | | | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
32
|
Yokozeki Y, Uchida K, Miyagi M, Murata K, Koyama T, Kuroda A, Kawakubo A, Nanri Y, Inoue G, Takaso M. Short-Term Impact of Staying Home on Bone Health in Patients With Osteoporosis During a State of Emergency Declaration Due to COVID-19 in Kanagawa, Japan. Cureus 2020; 12:e10278. [PMID: 32923299 PMCID: PMC7478512 DOI: 10.7759/cureus.10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 11/05/2022] Open
Abstract
Background On April 16, 2020, the Japanese government declared a state of emergency due to the spread of COVID-19 infection, leading prefectural governors to announce a stay-at-home order for 39 days until May 25, 2020. As physical inactivity is a risk factor for osteoporosis, we investigated the short-term impact of the stay-at-home order on bone health among patients with osteoporosis in our hospital in Kanagawa prefecture. Methods Thirty patients with osteoporosis with no delays in their regular medication who received care at our hospital's osteoporosis outpatient clinic within one month after the end of the state of emergency were included. Lumbar spine and femur proximal bone mineral density (BMD) were measured at the last follow-up date (May 25 to June 30, 2020; 0M) and six (6M) and 12 months (12M) before the last follow-up using dual-energy X-ray absorptiometry. Bone alkaline phosphatase (BAP), Tartrate-resistant Acid Phosphatase 5b (TRACP5b), calcium and phosphorus were assessed at the same time points. Results Serum BAP concentrations were significantly lower at 0M than 12M (p=0.040), but were comparable between 0M and 6M (p=0.527). Serum TRACP5b was significantly lower at 6M than 12M (p=0.009), but was similar between 0M and 6M (p=1.000). Serum calcium and phosphorus did not differ among the time points (p=0.516 and p=0.358, respectively). Similarly, lumbar spine and femoral neck BMD were comparable (p=0.679 and p=0.076, respectively). Conclusion Bone health in patients with osteoporosis was maintained during the short-term COVID-19 stay-at-home order among patients who experienced no delays in medication. However, larger and long-term studies are needed.
Collapse
Affiliation(s)
- Yuji Yokozeki
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Kentaro Uchida
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, Sagamihara, JPN
- Medical Sciences Research Institute, Shonan University, Chigasaki, JPN
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Kosuke Murata
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Tomohisa Koyama
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Akiyoshi Kuroda
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Ayumu Kawakubo
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Yuta Nanri
- Department of Rehabilitation, Kitasato University Hospital, Kitasato University Hospital, Sagamihara, JPN
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, Sagamihara, JPN
| |
Collapse
|
33
|
Shi W, Zhang Y, Chen K, He J, Feng X, Wei W, Hua J, Wang J. Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization. Bone 2020; 136:115346. [PMID: 32240849 DOI: 10.1016/j.bone.2020.115346] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
Abstract
Microgravity-induced bone deterioration is a major challenge in long-term spaceflights since the underlying mechanisms remain elusive. Previously, we reported that primary cilia of osteoblasts gradually disappeared in microgravity conditions, and cilia abrogation was necessary for the inhibition of osteogenesis induced by microgravity. However, the precise roles of primary cilia have not been fully elucidated. Here, we report that microgravity depolymerizes the microtubule network of rat calvarial osteoblasts (ROBs) reversibly but has no effect on the architecture of actin filaments. Preventing primary ciliogenesis by chloral hydrate or a small interfering RNA sequence (siRNA) targeting intraflagellar transport protein 88 (IFT88) effectively relieves microgravity-induced microtubule depolymerization, whereas the stabilization of microtubules using pharmacological approaches cannot prevent the disappearance of primary cilia in microgravity conditions. Furthermore, quantification of the number of microtubules emerging from the ciliary base body shows that microgravity significantly decreases the number of basal microtubules, which is dependent on the existence of primary cilia. Finally, microgravity-induced repression of the differentiation, maturation, and mineralization of ROBs is abrogated by the stabilization of cytoplasmic microtubules. Taken together, these data suggest that primary cilia-dependent depolymerization of microtubules is responsible for the inhibition of osteogenesis induced by microgravity. Our study provides a new perspective regarding the mechanism of microgravity-induced bone loss, supporting the previously established role of primary cilia as a sensor in bone metabolism.
Collapse
Affiliation(s)
- Wengui Shi
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keming Chen
- Institute of Orthopaedics, Joint Logistic Support 940 Hospital of CPLA, Lanzhou 730050, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiu Feng
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Hind K, Hayes L, Basterfield L, Pearce MS, Birrell F. Objectively-measured sedentary time, habitual physical activity and bone strength in adults aged 62 years: the Newcastle Thousand Families Study. J Public Health (Oxf) 2020; 42:325-332. [PMID: 31220295 DOI: 10.1093/pubmed/fdz029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The influence of sedentary time and habitual physical activity on the bone health of middle aged adults is not well known. METHODS Bone mineral density (BMD) and hip bone geometry were evaluated in 214 men (n = 92) and women (n = 112) aged 62.1 ± 0.5 years from the Newcastle Thousand Families Study birth cohort. Accelerometry was used to measure physical activity (PA) and sedentary time over 4 days. Regression models were adjusted for clinical risk factor covariates. RESULTS Men were more sedentary than women (P < 0.05), and sedentary time was negatively associated with spine BMD in men, with 84 minutes more sedentary time corresponding to 0.268 g.cm-2 lower BMD (β = -0.268; P = 0.017). In men, light PA and steps/day were positively associated with bone geometry and BMD. Steps/day was positively associated with bone geometry and femur BMD in women, with a positive difference of 1415 steps/day corresponding to 0.232 g.cm-2 greater BMD (β = 0.232, P = 0.015). CONCLUSIONS Sedentary time was unfavourably associated with bone strength in men born in North East England at age 62 years. Higher volumes of light PA, and meeting the public health daily step recommendations (10 000 steps/day) was positively associated with bone health in both sexes.
Collapse
Affiliation(s)
- K Hind
- Department of Sport and Exercise Science, Durham University, Durham DH1 3HP, UK.,Institute of Health and Society, Newcastle University, Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - L Hayes
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place NE2 4HH, UK
| | - L Basterfield
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place NE2 4HH, UK
| | - M S Pearce
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place NE2 4HH, UK
| | - F Birrell
- Institute of Health and Society, Newcastle University, Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| |
Collapse
|
35
|
Rosen CJ, Figueroa CA. Parkinson's disease and osteoporosis: basic and clinical implications. Expert Rev Endocrinol Metab 2020; 15:185-193. [PMID: 32336178 PMCID: PMC7250483 DOI: 10.1080/17446651.2020.1756772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
Introduction: Parkinson's disease (PD) is the second most frequent neurodegenerative disease. Lewy bodies, the hallmark of this disease due to an accumulation of α-synuclein, lead to loss of dopamine-regulated motor circuits, concomitantly progressive immobilization and a broad range of nonmotor features. PD patients have more hospitalizations, endure longer recovery time from comorbidities, and exhibit higher mortality than healthy controls. Although often overlooked, secondary osteoporosis has been reported frequently and is associated with a worse prognosis.Areas covered: In this review, we discuss the pathophysiology of PD from a systemic perspective. We searched on PubMed articles from the last 20 years in PD, both clinical features and bone health status. We discuss possible neuro/endocrine mechanisms by which PD impacts the skeleton, review available therapy for osteoporotic fractures and highlight evidence gaps in defining skeletal co-morbid events.Expert opinion: Future research is essential to understand the local and systemic effects of dopaminergic signaling on bone remodeling and to determine how pathological α-synuclein deposition in the central nervous system might impact the skeleton. It is hoped that a systematic approach to the pathogenesis of this disease and its treatment will allow the informed use of osteoporotic drugs to prevent fractures in PD patients.
Collapse
Affiliation(s)
- Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Carolina A Figueroa
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
36
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
37
|
Fernandez‐Gonzalo R, Tesch PA, Lundberg TR, Alkner BA, Rullman E, Gustafsson T. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures. FASEB J 2020; 34:7958-7969. [DOI: 10.1096/fj.201902976r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Rodrigo Fernandez‐Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Per A. Tesch
- Department of Physiology & Pharmacology Karolinska Institutet Stockholm Sweden
| | - Tommy R. Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Björn A. Alkner
- Department of Orthopaedics Region Jönköping County Eksjö Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
38
|
Herrmann M, Engelke K, Ebert R, Müller-Deubert S, Rudert M, Ziouti F, Jundt F, Felsenberg D, Jakob F. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020; 10:biom10030432. [PMID: 32164381 PMCID: PMC7175139 DOI: 10.3390/biom10030432] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Marietta Herrmann
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, IZKF Research Group Tissue regeneration in musculoskeletal diseases, University Hospital Würzburg, University of Wuerzburg, 97070 Würzburg, Germany;
| | - Klaus Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Regina Ebert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Sigrid Müller-Deubert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Maximilian Rudert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
| | - Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Dieter Felsenberg
- Privatpraxis für Muskel- und Knochenkrankheiten, 12163 Berlin Germany;
| | - Franz Jakob
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
- Correspondence:
| |
Collapse
|
39
|
Berman AG, Organ JM, Allen MR, Wallace JM. Muscle contraction induces osteogenic levels of cortical bone strain despite muscle weakness in a mouse model of Osteogenesis Imperfecta. Bone 2020; 132:115061. [PMID: 31805389 PMCID: PMC7720097 DOI: 10.1016/j.bone.2019.115061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023]
Abstract
Mechanical interactions between muscle and bone have long been recognized as integral to bone integrity. However, few studies have directly measured these interactions within the context of musculoskeletal disease. In this study, the osteogenesis imperfecta murine model (oim/oim) was utilized because it has both reduced bone and muscle properties, allowing direct assessment of whether weakened muscle is able to engender strain on weakened bone. To do so, a strain gauge was attached to the tibia of healthy and oim/oim mice, muscles within the posterior quadrant of the lower hind limb were stimulated, and bone strain during muscle contraction was measured. Results indicated that the relationship between maximum muscle torque and maximum engendered strain is altered in oim/oim bone, with less torque required to engender strain compare to wild-type and heterozygous mice. Maximum muscle torque at 150 Hz stimulation frequency was able to engender ~1500 μɛ in oim/oim animals. However, even though the strain engendered in the oim/oim mice was high relative to historical bone formation thresholds, the maximum strain values were still significantly lower than that of the wild-type mice. These results are promising in that they suggest that muscle stimulation may be a viable means of inducing bone formation in oim/oim and potentially other disease models where muscle weakness/atrophy exist.
Collapse
Affiliation(s)
- Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jason M Organ
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Bone and skeletal muscle changes in oldest-old women: the role of physical inactivity. Aging Clin Exp Res 2020; 32:207-214. [PMID: 31535334 DOI: 10.1007/s40520-019-01352-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alterations in bone and muscle parameters related to advanced aging and physical inactivity have never been investigated in oldest-old women. AIMS To investigate the impact of physical inactivity on bone mineral density (BMD) and body composition at the systemic and regional levels in oldest-old (> 75 years old) women. We hypothesized that, further to aging, alterations in bone and body composition parameters are exacerbated in the locomotor limbs that have experienced physical inactivity. METHODS Whole-body and regional (lower limbs and trunk) BMD and fat-free soft tissue mass (FFSTM) were measured by means of dual-energy X-ray absorptiometry in 11 oldest-old wheelchair-bound women (OIW), 11 oldest-old mobile women (OMW), and 11 young healthy women (YW), all matched for weight (± 10 kg), height (± 10 cm). RESULTS Whole-body BMD was reduced by 15% from YW to OMW and 10% from OMW to OIW. Whole-body FFSTM was also reduced from YW to OIW (- 13%). Lower limb BMD was progressively reduced among YW, OMW and OIW (- 23%). Similarly, lower limb FFSTM was reduced among YW (12,816 ± 1797 g), OMW (11,999 ± 1512 g) and OIW (10,037 ± 1489 g). Trunk BMD was progressively reduced among YW, OMW and OIW (- 19%), while FFSTM was similar among the three groups ~ 19801 g. CONCLUSIONS The results of the present study suggest that the alterations in bone and body composition parameters are exacerbated in the physical inactive oldest-old. These negative effects of physical inactivity are not confined to the locomotor limbs, and a systemic decline of bone and muscle parameters are likely associated with the physical inactivity.
Collapse
|
41
|
Pahl A, Wehrle A, Kneis S, Gollhofer A, Bertz H. Whole body vibration training during allogeneic hematopoietic cell transplantation-the effects on patients' physical capacity. Ann Hematol 2020; 99:635-648. [PMID: 31970448 PMCID: PMC7060160 DOI: 10.1007/s00277-020-03921-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Patients undergoing allogeneic hematopoietic cell transplantation (alloHCT) experience a considerable decline in physical and psycho-social capacity. Since whole body vibration (WBV) is known to efficiently stimulate the neuromuscular system and enhance cardiorespiratory fitness and muscle strength in frail individuals, we hypothesized that WBV would maintain various physical and psychological capacities in patients during alloHCT. Seventy-one patients were randomly allocated to either an intervention group (IG) doing WBV or an active control group (CG) doing mobilization exercises five times per week. We determined peak oxygen consumption (VO2peak) and maximum power, maximum strength, functional performance, body composition, quality of life (QoL), and fatigue. Tests were carried out before conditioning therapy, at hospital discharge and at day ± 180 (follow-up). As 18 patients did not participate in post-intervention assessment and follow-up data from 9 patients was not collectible, per-protocol (PP) analysis of 44 patients is presented. During hospitalization, WBV maintained maximum strength, height, and power output during jumping, as well as reported QoL, physical functioning, and fatigue level compared with mobilization. At follow-up, relative VO2peak (p = 0.035) and maximum power (p = 0.011), time and power performing chair-rising test (p = 0.022; p = 0.009), and reported physical functioning (p = 0.035) significantly increased in the IG, while fatigue decreased (p = 0.005). CG’s body cell mass and phase angle had significantly decreased at follow-up (p = 0.002; p = 0.004). Thus, WBV might maintain maximum strength, functional performance, QoL, and fatigue during alloHCT, while cardiorespiratory fitness might benefit from accelerated recovery afterwards.
Collapse
Affiliation(s)
- Antonia Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.
| | - Anja Wehrle
- Institute for Exercise and Occupational Medicine, Medical Center-University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Sarah Kneis
- Department of Medicine I, Medical Center-University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center-University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| |
Collapse
|
42
|
Blottner D, Hastermann M, Weber R, Lenz R, Gambara G, Limper U, Rittweger J, Bosutti A, Degens H, Salanova M. Reactive Jumps Preserve Skeletal Muscle Structure, Phenotype, and Myofiber Oxidative Capacity in Bed Rest. Front Physiol 2020; 10:1527. [PMID: 32009969 PMCID: PMC6974579 DOI: 10.3389/fphys.2019.01527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Identification of countermeasures able to prevent disuse-induced muscle wasting is crucial to increase performance of crew members during space flight as well as ameliorate patient’s clinical outcome after long immobilization periods. We report on the outcome of short but high-impact reactive jumps (JUMP) as countermeasure during 60 days of 6° head-down tilt (HDT) bed rest on myofiber size, type composition, capillarization, and oxidative capacity in tissue biopsies (pre/post/recovery) from the knee extensor vastus lateralis (VL) and deep calf soleus (SOL) muscle of 22 healthy male participants (Reactive jumps in a sledge, RSL-study 2015–2016, DLR:envihab, Cologne). Bed rest induced a slow-to-fast myofiber shift (type I –>II) with an increased prevalence of hybrid fibers in SOL after bed rest without jumps (control, CTRL, p = 0.016). In SOL, JUMP countermeasure in bed rest prevented both fast and slow myofiber cross-sectional area (CSA) decrements (p = 0.005) in CTRL group. In VL, bed rest only induced capillary rarefaction, as reflected by the decrease in local capillary-to-fiber ratio (LCFR) for both type II (pre vs. post/R + 10, p = 0.028/0.028) and type I myofibers (pre vs. R + 10, p = 0.012), which was not seen in the JUMP group. VO2maxFiber (pL × mm–1 × min–1) calculated from succinate dehydrogenase (SDH)-stained cryosections (OD660 nm) showed no significant differences between groups. High-impact jump training in bed rest did not prevent disuse-induced myofiber atrophy in VL, mitigated phenotype transition (type I – >II) in SOL, and attenuated capillary rarefaction in the prime knee extensor VL however with little impact on oxidative capacity changes.
Collapse
Affiliation(s)
- Dieter Blottner
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.,NeuroMuscular Group, Center of Space Medicine and Extreme Environments, Berlin, Germany
| | - Maria Hastermann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.,NeuroMuscular Group, Center of Space Medicine and Extreme Environments, Berlin, Germany
| | - Robert Weber
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Regina Lenz
- Department of Movement and Neurosciences, German Sports University, Cologne, Germany
| | - Guido Gambara
- Charité Comprehensive Cancer Center, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Jörn Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | | | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Michele Salanova
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany.,NeuroMuscular Group, Center of Space Medicine and Extreme Environments, Berlin, Germany
| |
Collapse
|
43
|
Ireland A, Mittag U, Degens H, Felsenberg D, Ferretti JL, Heinonen A, Koltai E, Korhonen MT, McPhee JS, Mekjavic I, Piasecki J, Pisot R, Radak Z, Simunic B, Suominen H, Wilks DC, Winwood K, Rittweger J. Greater maintenance of bone mineral content in male than female athletes and in sprinting and jumping than endurance athletes: a longitudinal study of bone strength in elite masters athletes. Arch Osteoporos 2020; 15:87. [PMID: 32524289 PMCID: PMC7286845 DOI: 10.1007/s11657-020-00757-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/11/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We investigated longitudinal changes in tibia bone strength in master power (jumping and sprinting) and endurance (distance) athletes of both sexes. Bone mass but not cross-sectional moment of inertia was better maintained in power than endurance athletes over time, particularly in men and independent of changes in performance. OBJECTIVE Assessment of effects of sex and athletic discipline (lower limb power events, e.g. sprint running and jumping versus endurance running events) on longitudinal changes in bone strength in masters athletes. METHODS We examined tibia and fibula bone properties at distal (4% distal-proximal tibia length) and proximal (66% length) sites using peripheral quantitative computed tomography (pQCT) in seventy-one track and field masters athletes (30 male, 41 female, age at baseline 57.0 ± 12.2 years) in a longitudinal cohort study that included at least two testing sessions over a mean period of 4.2 ± 3.1 years. Effects of time, as well as time × sex and time × discipline interactions on bone parameters and calf muscle cross-sectional area (CSA), were examined. RESULTS Effects of time were sex and discipline-dependent, even following adjustment for enrolment age, sex and changes in muscle CSA and athletic performance. Male sex and participation in power events was associated with better maintenance of tibia bone mineral content (BMC, an indicator of bone compressive strength) at 4% and 66% sites. In contrast, there was no strong evidence of sex or discipline effects on cross-sectional moment of inertia (CSMI, an indicator of bone bending and torsional strength-P > 0.3 for interactions). Similar sex and discipline-specific changes were also observed in the fibula. CONCLUSIONS Results suggest that male athletes and those participating in lower limb power-based rather than endurance-based disciplines have better maintenance of bone compressive but not bending and torsional strength.
Collapse
Affiliation(s)
- Alex Ireland
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK
| | - Uwe Mittag
- grid.7551.60000 0000 8983 7915Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hans Degens
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK ,grid.419313.d0000 0000 9487 602XLithuanian Sports University, Kaunas, Lithuania ,grid.10414.300000 0001 0738 9977University of Medicine and Pharmacy of Targu Mures, Targu Mures, Romania
| | - Dieter Felsenberg
- grid.7468.d0000 0001 2248 7639Osteology and Orphane Bone Diseases and Charité – Campus Benjamin Franklin, Centre of Muscle and Bone Research, Humboldt-University Berlin and Free University, Berlin, Germany
| | - José L. Ferretti
- grid.10814.3c0000 0001 2097 3211Center for P-Ca Metabolism Studies (CEMFoC), National University of Rosario, Rosario, Argentina
| | - Ari Heinonen
- grid.9681.60000 0001 1013 7965Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Erika Koltai
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Marko T. Korhonen
- grid.9681.60000 0001 1013 7965Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jamie S. McPhee
- grid.25627.340000 0001 0790 5329Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Igor Mekjavic
- grid.11375.310000 0001 0706 0012Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia ,grid.61971.380000 0004 1936 7494Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Jessica Piasecki
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK ,grid.12361.370000 0001 0727 0669Sport Health and Performance Enhancement Centre, Nottingham Trent University, Nottingham, UK
| | - Rado Pisot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Zsolt Radak
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Bostjan Simunic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Harri Suominen
- grid.9681.60000 0001 1013 7965Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Désirée C. Wilks
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK
| | - Keith Winwood
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK
| | - Jörn Rittweger
- grid.7551.60000 0000 8983 7915Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany ,grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Davison S, Chen L, Gray D, McEnroe B, O'Brien I, Kozerski A, Caruso J. Exercise-based correlates to calcaneal osteogenesis produced by a chronic training intervention. Bone 2019; 128:115049. [PMID: 31454536 DOI: 10.1016/j.bone.2019.115049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022]
Abstract
Thirty workouts on a gravity-independent device (Impulse Training Systems, Newnan GA) evoked significant calcaneal bone mineral content (BMC, +29%) and density (BMD, +33%) gains. High speeds and impact loads were produced per repetition. We examined exercise performance variables from the 30-workout intervention to identify correlates to delta (∆) calcaneal BMC and BMD variance. Workouts included hip extension and seated calf press exercises done with subject's left legs. ∆ values were obtained from the first and 12th workouts for the hip extension movement, and for the first and 24th workouts for the seated calf press exercise. Per exercise the following variables were quantified: peak force (∆PF), peak acceleration (∆PA), impulse (∆I), and dwell times (∆DT). Dwell times are the elapsed time between the end of the eccentric phase, and the start of the next repetition's concentric phase. Pearson Coefficients assessed correlations between performance and criterion variables. With hip extension ∆DT calculated with data from the first and 12th workouts, there were significant correlations with calcaneal ∆BMC (r = -0.64) and ∆BMD (r = -0.63). With seated calf press ∆DT derived as the difference from the first and 24th workouts, there was a significant correlation with calcaneal ∆BMC (r = -0.48), but only a trend (r = -0.45) with ∆BMD as the criterion. No other variables correlated with significant amounts of calcaneal ∆BMC and ∆BMD variance. Negative correlations infer shorter dwell times evoked greater gains. The gravity-independent device warrants continued inquiry to treat and abate calcaneal losses.
Collapse
Affiliation(s)
- Steve Davison
- Impulse Training Systems, Newnan, GA 30263, United States of America
| | - Ling Chen
- University of Louisville, Louisville, KY 40292, United States of America
| | - Dane Gray
- University of Louisville, Louisville, KY 40292, United States of America
| | - Bailey McEnroe
- University of Louisville, Louisville, KY 40292, United States of America
| | - Ian O'Brien
- University of Louisville, Louisville, KY 40292, United States of America
| | - Amy Kozerski
- University of Louisville, Louisville, KY 40292, United States of America
| | - John Caruso
- University of Louisville, Louisville, KY 40292, United States of America.
| |
Collapse
|
45
|
Winnard A, Scott J, Waters N, Vance M, Caplan N. Effect of Time on Human Muscle Outcomes During Simulated Microgravity Exposure Without Countermeasures-Systematic Review. Front Physiol 2019; 10:1046. [PMID: 31474878 PMCID: PMC6707384 DOI: 10.3389/fphys.2019.01046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Space Agencies are planning human missions beyond Low Earth Orbit. Consideration of how physiological system adaptation with microgravity (μG) will be managed during these mission scenarios is required. Exercise countermeasures (CM) could be used more sparingly to decrease limited resource costs, including periods of no exercise. This study provides a complete overview of the current evidence, making recommendations on the length of time humans exposed to simulated μG might safely perform no exercise considering muscles only. Methods: Electronic databases were searched for astronaut or space simulation bed rest studies, as the most valid terrestrial simulation, from start of records to July 2017. Studies were assessed with the Quality in Prognostic Studies and bed rest analog studies assessed for transferability to astronauts using the Aerospace Medicine Systematic Review Group Tool for Assessing Bed Rest Methods. Effect sizes, based on no CM groups, were used to assess muscle outcomes over time. Outcomes included were contractile work capacity, muscle cross sectional area, muscle activity, muscle thickness, muscle volume, maximal voluntary contraction force during one repetition maximum, peak power, performance based outcomes, power, and torque/strength. Results: Seventy-five bed rest μG simulation studies were included, many with high risk of confounding factors and participation bias. Most muscle outcomes deteriorated over time with no countermeasures. Moderate effects were apparent by 7-15 days and large by 28-56 days. Moderate effects (>0.6) became apparent in the following order, power and MVC during one repetition maximum (7 days), followed by volume, cross sectional area, torques and strengths, contractile work capacity, thickness and endurance (14 days), then muscle activity (15 days). Large effects (>1.2) became apparent in the following order, volume, cross sectional area (28 days) torques and strengths, thickness (35 days) and peak power (56 days). Conclusions: Moderate effects on a range of muscle parameters may occur within 7-14 days of unloading, with large effects within 35 days. Combined with muscle performance requirements for mission tasks, these data, may support the design of CM programmes to maximize efficiency without compromising crew safety and mission success when incorporated with data from additional physiological systems that also need consideration.
Collapse
Affiliation(s)
- Andrew Winnard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Scott
- Space Medicine Office, European Astronaut Centre, Cologne, Germany
| | - Nathan Waters
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Martin Vance
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Nick Caplan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
46
|
McDonnell AC, Eiken O, Frings-Meuthen P, Rittweger J, Mekjavic IB. The LunHab project: Muscle and bone alterations in male participants following a 10 day lunar habitat simulation. Exp Physiol 2019; 104:1250-1261. [PMID: 31273869 DOI: 10.1113/ep087482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is well established that muscle and bone atrophy in conditions of inactivity or unloading, but there is little information regarding the effect of a hypoxic environment on the time course of these deconditioning physiological systems. What is the main finding and its importance? The main finding is that a horizontal 10 day bed rest in normoxia results in typical muscle atrophy, which is not aggravated by hypoxia. Changes in bone mineral content or in metabolism were not detected after either normoxic or hypoxic bed rest. ABSTRACT Musculoskeletal atrophy constitutes a typical adaptation to inactivity and unloading of weightbearing bones. The reduced-gravity environment in future Moon and Mars habitats is likely to be hypobaric hypoxic, and there is an urgent need to understand the effect of hypoxia on the process of inactivity-induced musculoskeletal atrophy. This was the principal aim of the present study. Eleven males participated in three 10 day interventions: (i) hypoxic ambulatory confinement; (ii) hypoxic bed rest; and (iii) normoxic bed rest. Before and after the interventions, the muscle strength (isometric maximal voluntary contraction), mass (lean mass, by dual-energy X-ray absorptiometry), cross-sectional area and total bone mineral content (determined with peripheral quantitative computed tomography) of the participants were measured. Blood and urine samples were collected before and on the 1st, 4th and 10th day of the intervention and analysed for biomarkers of bone resorption and formation. There was a significant reduction in thigh and lower leg muscle mass and volume after both normoxic and hypoxic bed rests. Muscle strength loss was proportionately greater than the loss in muscle mass for both thigh and lower leg. There was no indication of bone loss. Furthermore, the biomarkers of resorption and formation were not affected by any of the interventions. There was no significant effect of hypoxia on the musculoskeletal variables. Short-term normoxic (10 day) bed rest resulted in muscular deconditioning, but not in the loss of bone mineral content or changes in bone metabolism. Hypoxia did not modify these results.
Collapse
Affiliation(s)
- Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden
| | - Petra Frings-Meuthen
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Joern Rittweger
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany.,Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia.,Department of Biomedical Sciences and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
47
|
Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: A review. Exp Gerontol 2019; 124:110643. [PMID: 31255732 DOI: 10.1016/j.exger.2019.110643] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Prolonged bed rest and lifelong physical inactivity cause deleterious effects to multiple physiological systems that appear to hasten aging processes. Many such changes are similar to those seen with microgravity in space, but at a much faster rate. Head down tilt bed rest models are used to study whole-body changes that occur with spaceflight. We propose that bed rest can be used to quantify accelerated human aging in relation to frailty. In particular, frailty as a measure of the accumulation of deficits estimates the variability in aging across systems, and moves away from the traditional single-system approach. Here, we provide an overview of the impact of bed rest on the musculoskeletal and cardiovascular systems as well as frailty-related biological markers and inflammatory cytokines. We also propose future inquiries to study the accumulation of deficits with head down bed rest and bed rest in the clinical setting, specifically to understand how unrepaired and unremoved subclinical and subcellular damage give rise to clinically observable health problems.
Collapse
Affiliation(s)
- D S Kehler
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - O Theou
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - K Rockwood
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
48
|
A comparison of exercise interventions from bed rest studies for the prevention of musculoskeletal loss. NPJ Microgravity 2019; 5:12. [PMID: 31098391 PMCID: PMC6506471 DOI: 10.1038/s41526-019-0073-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Musculoskeletal loss in actual or simulated microgravity occurs at a high rate. Bed rest studies are a reliable ground-based spaceflight analogue that allow for direct comparison of intervention and control participants. The aim of this review was to investigate the impact of exercise compared to no intervention on bone mineral density (BMD) and muscle cross-sectional area (muscle CSA) in bed rest studies relative to other terrestrial models. Eligible bed rest studies with healthy participants had an intervention arm with an exercise countermeasure and a control arm. A search strategy was implemented for MEDLINE. After screening, eight studies were identified for inclusion. Interventions included resistive exercise (RE), resistive vibration exercise (RVE), flywheel resistive exercise, treadmill exercise with lower body negative pressure (LBNP) and a zero-gravity locomotion simulator (ZLS). Lower limb skeletal sites had the most significant BMD losses, particularly at the hip which reduced in density by 4.59% (p < 0.05) and the tibial epiphysis by 6% (p < 0.05). Exercise attenuated bone loss at the hip and distal tibia compared to controls (p < 0.05). Muscle CSA changes indicated that the calf and quadriceps were most affected by bed rest. Exercise interventions significantly attenuated loss of muscle mass. ZLS, LBNP treadmill and RE significantly attenuated bone and muscle loss at the hip compared to baseline and controls. Despite exercise intervention, high rates of bone loss were still observed. Future studies should consider adding bisphosphonates and pharmacological/nutrition-based interventions for consideration of longer-duration missions. These findings correlate to terrestrial bed rest settings, for example, stroke or spinal-injury patients.
Collapse
|
49
|
Zou Y, Qin T, Wang N, Li J, Xu M. Passive force control of multimodal astronaut training robot. INT J ADV ROBOT SYST 2019. [DOI: 10.1177/1729881419848261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For the purpose of solving the problem of astronaut training in weightlessness environment, this article proposes a multimodal astronaut training robot to enable astronauts to perform running, bench press and deep squat training in the weightless environment, so as to help them mitigate the adverse effects brought by the space adaptation syndrome. Taking the modularized wire driving unit as the research object, the dynamic model of the passive force servo system was established; and the passive force control strategy was designed. The experimental results show that the system is of good stability, high steady-state accuracy, and excellent dynamic quality after correction. When the given signal frequency is 10 Hz, the system phase lag is about 9°, and the loading error is about 5%. The passive force servo control strategy can effectively reduce the surplus force. When the speed disturbance frequency of carrying unit is within 3 Hz, the elimination rate of the surplus force can reach 90%.
Collapse
Affiliation(s)
- Yupeng Zou
- College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao, China
| | - Tao Qin
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Nuo Wang
- College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao, China
| | - Junqing Li
- College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao, China
| | - Ming Xu
- College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao, China
| |
Collapse
|
50
|
Semler O, Rehberg M, Mehdiani N, Jackels M, Hoyer-Kuhn H. Current and Emerging Therapeutic Options for the Management of Rare Skeletal Diseases. Paediatr Drugs 2019; 21:95-106. [PMID: 30941653 DOI: 10.1007/s40272-019-00330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing knowledge in the field of rare diseases has led to new therapeutic approaches in the last decade. Treatment strategies have been developed after elucidation of the underlying genetic alterations and pathophysiology of certain diseases (e.g., in osteogenesis imperfecta, achondroplasia, hypophosphatemic rickets, hypophosphatasia and fibrodysplasia ossificans progressiva). Most of the drugs developed are specifically designed agents interacting with the disease-specific cascade of enzymes and proteins involved. While some are approved (asfotase alfa, burosumab), others are currently being investigated in phase III trials (denosumab, vosoritide, palovarotene). To offer a multi-disciplinary therapeutic approach, it is recommended that patients with rare skeletal disorders are treated and monitored in highly specialized centers. This guarantees the greatest safety for the individual patient and offers the possibility of collecting data to further improve treatment strategies for these rare conditions. Additionally, new therapeutic options could be achieved through increased awareness, not only in the field of pediatrics but also in prenatal and obstetric specialties. Presenting new therapeutic options might influence families in their decision of whether or not to terminate a pregnancy with a child with a skeletal disease.
Collapse
Affiliation(s)
- Oliver Semler
- Centre for Rare Skeletal Diseases in childhood, Children's Hospital, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany. .,Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany.
| | - Mirko Rehberg
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| | - Nava Mehdiani
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| | - Miriam Jackels
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany.,Centre for Prevention and Rehabilitation, Unireha, University of Cologne, Cologne, Germany
| | - Heike Hoyer-Kuhn
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|