1
|
Wong SK. Effects of chloroquine and hydroxychloroquine on bone health (Review). Mol Med Rep 2025; 31:168. [PMID: 40243121 PMCID: PMC12012435 DOI: 10.3892/mmr.2025.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ), which were initially used to treat malaria, are now also used to treat autoimmune and inflammatory diseases, which have gained notoriety during the coronavirus‑19 pandemic. The emerging uses of CQ and HCQ in cancer therapy, metabolic syndrome and bone disorders highlight their broad clinical potential. Patients with autoimmune and inflammatory conditions have a higher risk of suboptimal bone health because of chronic inflammation, immune dysregulation and medication use. In the present review, the use of CQ and HCQ in bone research was explored, particularly in terms of their effectiveness and mechanism in modulating bone homeostasis. CQ and HCQ inhibit osteoblastic activity by suppressing autophagy, inducing oxidative stress and promoting osteoblast apoptosis. CQ suppresses osteoclastic activity by blocking the receptor activator of nuclear factor κ‑β/receptor activator of nuclear factor κ‑β ligand interaction, autophagy and inflammation. HCQ inhibits osteoclastogenesis by increasing the expression levels of osteoprotegerin, inducing osteoclast apoptosis and reducing cytokines without affecting autophagy. With regard to the molecular machineries, CQ and HCQ inhibit bone formation and bone resorption. Variations in dose, frequency and duration of CQ and HCQ treatment result in heterogenous outcomes. Further research is necessary to clarify the net effects of CQ and HCQ on bone through studies specifically designed to explore their direct impact as the primary objective. The use of these medications is broadening particularly in patients with autoimmune diseases who are at risk of skeletal disorders. However, their safety profiles, adverse effects and contraindications must be carefully monitored when administered for long‑term use and in combination.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Yuan L, Jiang N, Li Y, Wang X, Wang W. RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca 2+ Response in Rheumatoid Arthritis. Inflammation 2025; 48:447-463. [PMID: 38904871 DOI: 10.1007/s10753-024-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Mice
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/genetics
- Osteogenesis/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Humans
- Transcription, Genetic
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Enhancer Elements, Genetic
- Calcium/metabolism
- Enhancer RNAs
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Nan Jiang
- Department of Price, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, P.R. China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, P.R. China
| | - Xin Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Wei Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China.
| |
Collapse
|
3
|
Murillo-Rodríguez E, Millán-Aldaco D, Arankowsky-Sandoval G, Yamamoto T, Pertwee RG, Parker L, Mechoulam R. Assessing the treatment of cannabidiolic acid methyl ester: a stable synthetic analogue of cannabidiolic acid on c-Fos and NeuN expression in the hypothalamus of rats. J Cannabis Res 2021; 3:31. [PMID: 34253253 PMCID: PMC8276432 DOI: 10.1186/s42238-021-00081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/14/2021] [Indexed: 04/03/2024] Open
Abstract
BACKGROUND Cannabidiol (CBD), the non-psychotropic compound from Cannabis sativa, shows positive results on controlling several health disturbances; however, comparable data regarding additional chemical from C. sativa, such as cannabidiolic acid (CBDA), is scarce due to its instability. To address this limitation, a stable CBDA analogue, CBDA methyl ester (HU-580), was synthetized and showed CBDA-like effects. Recently, we described that HU-580 increased wakefulness and wake-related neurochemicals. OBJECTIVE To extend the comprehension of HU-580´s properties on waking, the c-Fos and NeuN expression in a wake-linked brain area, the hypothalamus was evaluated. METHODS c-Fos and NeuN expression in hypothalamic sections were analyzed after the injections of HU-580 (0.1 or 100 μg/kg, i.p.). RESULTS Systemic administrations of HU-580 increased c-Fos and neuronal nuclei (NeuN) expression in hypothalamic nuclei, including the dorsomedial hypothalamic nucleus dorsal part, dorsomedial hypothalamic nucleus compact part, and dorsomedial hypothalamic nucleus ventral part. CONCLUSION HU-580 increased c-Fos and NeuN immunoreactivity in hypothalamus nuclei suggesting that this drug might modulate the sleep-wake cycle by engaging the hypothalamus.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, Km. 15.5 Carretera Mérida-Progreso, Int. Km. 2 Carretera a Chablekal, Yucatán, C.P. 97,308, Mérida, México.
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.
| | - Diana Millán-Aldaco
- Depto. de Neurociencia Cognitiva. División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Linda Parker
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, Guelph, Ontario, Canada
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Ma F, Wang H, Liu K, Wang Z, Chen S. CSN6 inhibition suppresses pancreatic adenocarcinoma metastasis via destabilizing the c-Fos protein. Exp Cell Res 2020; 391:112004. [PMID: 32289284 DOI: 10.1016/j.yexcr.2020.112004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
Deubiquitinase (DUB) can reverse the ubiquitin signal, and participate in virtually all aspects of cancer progression. Thus, DUB represents an attractive target for development of anticancer drugs. However, little is known about DUB which can be used as drug targets. Here, we found that the constitutive photomorphogenic 9 (COP9) signalosome complex subunit 6 (COPS6/CSN6), a DUB belongs to JAMM/MPN domain-associated metallopeptidases(JAMMs) class, was highly expressed in pancreatic adenocarcinoma(PAAD) tissues. High expression of CSN6 was associated with tumor TNM stage and metastasis in PAAD patients. Moreover, we demonstrated that CSN6 promoted invasion and metastasis through regulating forkhead box protein A1 (FOXA1) in PAAD cells. Re-expression of FOXA1 rescued the decreased invasion and metastasis caused by CSN6 knockdown, whereas inhibition of FOXA1 alleviated the pro-metastasis effect induced by CSN6 overexpression. Further, CSN6 regulated the expression of FOXA1 via c-Fos in PAAD cells. Mechanistically, CSN6 stabilized c-Fos protein by binding to it and decreasing its ubiquitination. Our work identified CSN6 as a targeting-permissible deubiquitinase, and CSN6 inhibition maybe a potential treatment strategy for PAAD.
Collapse
Affiliation(s)
- Fangqi Ma
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Hong Wang
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Kefen Liu
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong, 274300, PR China
| | - Zhongqiang Wang
- Department of Oncology, Shanxian Haijiya Hospital, Heze, Shandong, 274300, PR China
| | - Shijun Chen
- Department of Oncology, Shanxian Haijiya Hospital, Heze, Shandong, 274300, PR China.
| |
Collapse
|
5
|
Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS. Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome. Mol Cell 2018; 71:169-177.e6. [PMID: 29979964 PMCID: PMC6070390 DOI: 10.1016/j.molcel.2018.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.
Collapse
Affiliation(s)
- Kapil V Ramachandran
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jack M Fu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas B Schaffer
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- The Johns Hopkins University School of Medicine Microscope Facility, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Lombardi MS, Gilliéron C, Berkelaar M, Gabay C. Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis. PLoS One 2017; 12:e0185426. [PMID: 28973003 PMCID: PMC5626034 DOI: 10.1371/journal.pone.0185426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022] Open
Abstract
Osteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising three members (SIK1, -2, and -3). Inhibition of SIK kinase activity induces an anti-inflammatory phenotype in macrophages. Since osteoclasts originate from precursors of macrophage origin, we hypothesized a role of SIK in osteoclastogenesis. We analyzed SIK1, -2 and -3 expression and function in osteoclast differentiation using the mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMM). We show that all three SIK are expressed in fully differentiated osteoclasts and that in BMM-derived osteoclasts there is an increased expression of SIK1 and SIK3 proteins. Interestingly, the pan-SIK inhibitor HG-9-91-01 significantly inhibited osteoclastogenesis by dose dependently reducing osteoclast differentiation markers (i.e. CathepsinK, MMP-9 and TRAP) and bone resorbing activity. Analysis of the signaling pathways activated by RANKL in RAW cells showed that SIK inhibitors did not affect RANKL-induced ERK1/2, JNK, p38 or NF-κB activation, but induced a significant downregulation in c-Fos and NFATc1 protein levels, the two main transcription factors involved in the regulation of osteoclast-specific genes. Moreover, SIK inhibition partially increased the proteasome-mediated degradation of c-Fos. SIK2 and SIK3 knockout RAW cells were generated by the CRISPR/Cas9 approach. SIK2 KO and, to a lesser extent, SIK3 KO recapitulated the effect of SIK small molecule inhibitor, thus confirming the specificity of the effect of SIK inhibition on the reduction of osteoclastogenesis. Overall, our results support the notion that the SIK signaling pathway plays a significant role among the check-points controlling osteoclastogenesis. SIK kinase inhibitors could thus represent a potential novel therapy to prevent bone erosions.
Collapse
Affiliation(s)
- Maria Stella Lombardi
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- * E-mail: (CGa); (MSL)
| | - Corine Gilliéron
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Majoska Berkelaar
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- * E-mail: (CGa); (MSL)
| |
Collapse
|
7
|
Cho DS, Doles JD. Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity. Gene 2017; 636:54-63. [PMID: 28893664 DOI: 10.1016/j.gene.2017.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/03/2017] [Accepted: 09/07/2017] [Indexed: 02/03/2023]
Abstract
Tissue specific stem cells are indispensable contributors to adult tissue maintenance, repair, and regeneration. In skeletal muscle, satellite cells (SCs) are the resident muscle stem cell population and are required to maintain skeletal muscle homeostasis throughout life. Increasing evidence suggests that SCs are a heterogeneous cell population with substantial biochemical and functional diversity. A major limitation in the field is an incomplete understanding of the nature and extent of this cellular heterogeneity. Single cell analyses are well suited to addressing this issue, especially when coupled to unbiased profiling paradigms such as high throughout RNA sequencing. We performed single cell RNA sequencing (scRNA-seq) on freshly isolated muscle satellite cells and found a surprising degree of heterogeneity at multiple levels, from muscle-specific transcripts to the broader SC transcriptome. We leveraged several comparative bioinformatics techniques and found that individual SCs enrich for unique transcript clusters. We propose that these gene expression "fingerprints" may contribute to observed functional SC diversity. Overall, these studies underscore the importance of several established SC signaling pathways/processes on a single cell level, implicate novel regulators of SC heterogeneity, and lay the groundwork for further investigation into SC heterogeneity in health and disease.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Park SH, Kim JY, Cheon YH, Baek JM, Ahn SJ, Yoon KH, Lee MS, Oh J. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice. Phytother Res 2016; 30:604-12. [DOI: 10.1002/ptr.5565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Sun-Hyang Park
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Yoon-Hee Cheon
- Center for Metabolic Function Regulation; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Kwon-Ha Yoon
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Department of Radiology, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Division of Rheumatology, Department of Internal Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Institute for Skeletal Disease; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Jaemin Oh
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Institute for Skeletal Disease; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| |
Collapse
|
9
|
Shankar E, Song K, Corum SL, Bane KL, Wang H, Kao HY, Danielpour D. A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells. J Biol Chem 2016; 291:5512-5526. [PMID: 26786102 DOI: 10.1074/jbc.m115.694877] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Indexed: 01/04/2023] Open
Abstract
The transcription factor c-Fos controls many important cellular processes, including cell growth and apoptosis. c-Fos expression is rapidly elevated in the prostate upon castration-mediated androgen withdrawal through an undefined mechanism. Here we show that androgens (5α-dihydrotestosterone and R1881) suppress c-Fos protein and mRNA expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) or EGF in human prostate cancer (PCa) cell lines. Such suppression transpires through a transcriptional mechanism, predominantly at the proximal serum response element of the c-fos promoter. We show that androgen signaling suppresses TPA-induced c-Fos expression through repressing a PKC/MEK/ERK/ELK-1 signaling pathway. Moreover, our results support the hypothesis that p38(MAPK), PI3K, and PKCδ are involved in the androgenic regulation of c-Fos through controlling MEK/ERK. Stable silencing of c-Fos and PKCδ with shRNAs suggests that R1881 promotes cell death induced by low-dose TPA through a mechanism that is dependent on both PKCδ and loss of c-Fos expression. Reciprocally, loss of either PKCδ or c-Fos activates p38(MAPK) while suppressing the activation of ERK1/2. We also provide the first demonstration that R1881 permits cell death induced by low-dose TPA in the LNCaP androgen-dependent PCa cell line and that TPA-induced cell death is independent of exogenous androgen in the castration-resistant variants of LNCaP, C4-2 and C4-2B. Acquisition of androgen-independent killing by TPA correlates with activation of p38(MAPK), suppression of ERK1/2, and loss of c-Fos. These results provide new insights into androgenic control of c-Fos and use of PKC inhibitors in PCa therapy.
Collapse
Affiliation(s)
| | - Kyung Song
- Division of General Medical Sciences-Oncology
| | | | - Kara L Bane
- Division of General Medical Sciences-Oncology
| | | | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106 and; From the Case Comprehensive Cancer Center
| | - David Danielpour
- Division of General Medical Sciences-Oncology,; Department of Pharmacology, and; the Department of Urology, University Hospitals of Cleveland, Cleveland, Ohio 44106; From the Case Comprehensive Cancer Center,.
| |
Collapse
|
10
|
Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337:47-57. [PMID: 26318284 DOI: 10.1016/j.tox.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and β-naphthoflavone (β-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.
Collapse
|
11
|
Guo Y, Wang Y, Liu Y, Liu Y, Zeng Q, Zhao Y, Zhang X, Zhang X. MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells. Mol Med Rep 2015; 12:3033-8. [PMID: 25937096 DOI: 10.3892/mmr.2015.3705] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) is an important regulator of cell differentiation and function. Mechanical strain is important in the growth and differentiation of osteoblasts. Therefore, mechanresponsive miRNA may be important in the response of osteoblasts to mechanical strain. The purpose of the present study was to select and identify the mechanoresponsive miRNAs of osteoblasts. Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with a mechanical tensile strain of 2,50 με at 0.5 Hz, and the activity of alkaline phosphatase (ALP), mRNA levels of ALP, osteocalcin (OCN), and collagen type I (Col I), and protein levels of bone morphogenetic proteins (BMPs) in the cell culture medium were assayed. Following miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses, differentially expressed miRNAs in the mechanically strained cells and unstrained cells were selected and identified. Using bioinformatics analysis, the target genes of the miRNAs were then predicted. The results revealed that the mechanical strain of 2,500 με increased the activity of ALP, the mRNA levels of ALP, OCN and Col I, and the protein levels of bone morphogenetic protein(BMP)-2 and BMP-4 Continuous mechanical stimulation for 8 h had the most marked stimulant effects. miR-218, miR-191*, miR-3070a and miR-33 were identified as differentially expressed miRNAs in the mechanically strained MC3T3-E1 cells. Certain target genes of these four miRNAs were involved in osteoblastic differentiation. These findings indicated that a mechanical strain of 2,500 με, particularly for a period of 8 h, promoted osteoblastic differentiation, and the four mechanoresponsive miRNAs identified may be a potential regulator of osteoblastic differentiation and their response to mechanical strain.
Collapse
Affiliation(s)
- Yong Guo
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yang Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yinqin Liu
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yongming Liu
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Qiangcheng Zeng
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong 253000, P.R. China
| | - Yumin Zhao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xinchang Zhang
- Lab of Biomechanics, Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xizheng Zhang
- Lab of Biomechanics, Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| |
Collapse
|
12
|
Hoon Lee C, Kwak SC, Kim JY, Mee Oh H, Chual Rho M, Yoon KH, Yoo WH, Su Lee M, Oh J. Genipin Inhibits RANKL-Induced Osteoclast Differentiation Through Proteasome-Mediated Degradation of c-Fos Protein and Suppression of NF-κB Activation. J Pharmacol Sci 2014; 124:344-53. [DOI: 10.1254/jphs.13174fp] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z. Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol 2012; 58:511-22. [PMID: 23116693 DOI: 10.1016/j.archoralbio.2012.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/29/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We recently reported establishment of a periodontal ligament (PDL) tissue model, which may mimic the biological behaviour of human PDL under static compression in orthodontic tooth movement (OTM). In the present study, we aimed at investigating the time-course gene expression profiles of the PDL tissue model under compression. DESIGN The PDL tissue model was established through 3-D-culturing human PDL cells (PDLCs) in a thin sheet of porous poly lactic-co-glycolic acid (PLGA) scaffolds, which was subjected to 25g/cm(2) static compression for 6, 24 and 72h respectively. After that, its gene expression profiles were investigated using microarray assay, followed by signalling pathway and gene ontology (GO) analysis. Real-time RT-PCR verification was done for 15 identified genes of interest. The cell proliferation alteration was detected through EdU labelling. RESULTS (1) Among the genes identified as differentially expressed, there were numerous osteoclastogenesis inducers (including CCL20, COX-1, COX-2, RANKL, PTHrP, IL-11, IL-8, etc.), osteoclastogenesis inhibitors (including IL-1Ra, NOG, OPG, etc.), and other potential bone remodelling regulators (including STC1, CYR61, FOS, etc.). (2) According to analysis of the microarray data, the most significant pathways included Cytokine-cytokine receptor interaction (containing CCL20, RANKL, IL-11, IL-8, etc.), MAPK (containing FGF7, FOS, MAP3K8, JUN, etc.) and Cell cycle (containing CDK1, CCNA2, etc.); the most significant GOs included Cell-cell signalling (containing CCL20, STC1, FGF7, PTHrP, IL-11, IL-8, etc.), Extracellular space (containing CCL20, IL-1Ra, NOG, PTHrP, IL-11, IL-8, etc.) and Microtubule-based movement (containing KIF11, KIF23, etc.). (3) After prolonged compression, cell proliferation was significantly inhibited. CONCLUSION The present findings have expanded our understandings to the roles that PDL plays under static compression in OTM.
Collapse
Affiliation(s)
- Yu Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bergstraesser C, Hoeger S, Song H, Ermantraut L, Hottenrot M, Czymai T, Schmidt M, Goebeler M, Ponelies N, Stich C, Loesel R, Molema G, Seelen M, van Son W, Yard BA, Rafat N. Inhibition of VCAM-1 expression in endothelial cells by CORM-3: the role of the ubiquitin-proteasome system, p38, and mitochondrial respiration. Free Radic Biol Med 2012; 52:794-802. [PMID: 22210380 DOI: 10.1016/j.freeradbiomed.2011.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/27/2023]
Abstract
Carbon monoxide (CO) abrogates TNF-α-mediated inflammatory responses in endothelial cells, yet the underlying mechanism thereof is still elusive. We have previously shown that the anti-inflammatory effect of CO-releasing molecule-3 (CORM-3) is not completely mediated via deactivation of the NF-κB pathway. In this study, we sought to explore other potential mechanisms by which CORM-3 downregulates VCAM-1 expression on TNF-α-stimulated HUVECs. By genome-wide gene expression profiling and pathway analysis we studied the relevance of particular pathways for the anti-inflammatory effect of CORM-3. In CORM-3-stimulated HUVECs significant changes in expression were found for genes implicated in the proteasome and porphyrin pathways. Although proteasome activities were increased by CORM-3, proteasome inhibitors did not abolish the effect of CORM-3. Likewise, heme oxygenase-1 inhibitors did not abrogate the ability of CORM-3 to downregulate VCAM-1 expression. Interestingly, CORM-3 inhibited MAPK p38, and the p38 inhibitor SB203580 downregulated VCAM-1 expression. However, downregulation of VCAM-1 by CORM-3 occurred only at concentrations that partly inhibit ATP production and sodium azide and oligomycin paralleled the effect of CORM-3 in this regard. Our results indicate that CORM-3-induced downregulation of VCAM-1 is mediated via p38 inhibition and mitochondrial respiration, whereas the ubiquitin-proteasome system seems not to be involved.
Collapse
Affiliation(s)
- Claudia Bergstraesser
- Fifth Medical Department, University Hospital Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 2010; 5:e11766. [PMID: 20668680 PMCID: PMC2909908 DOI: 10.1371/journal.pone.0011766] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 01/24/2023] Open
Abstract
We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis.
Collapse
Affiliation(s)
- Emilie Sapin
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Anne Bérod
- CNRS, EAC5006, Pharmacologie et Imagerie de la neurotransmission sérotoninergique, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Lucienne Léger
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Paul A. Herman
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Pierre-Hervé Luppi
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
| | - Christelle Peyron
- CNRS, UMR5167, Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Université Claude Bernard-Lyon 1, Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
16
|
Kido S, Kuriwaka-Kido R, Imamura T, Ito Y, Inoue D, Matsumoto T. Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation. Bone 2009; 45:1125-32. [PMID: 19665600 DOI: 10.1016/j.bone.2009.07.087] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 02/08/2023]
Abstract
Molecular mechanism of mechanical stress-induced bone formation remains unclear. We demonstrate that mechanical unloading suppresses and reloading enhances Interleukin (IL)-11 gene expression in the hindlimb of mice in vivo. Mechanical stress to osteoblasts by fluid shear stress (FSS) in vitro rapidly and transiently enhances fosB gene transcription, stimulates binding of DeltaFosB/JunD complex to activator protein (AP)-1 site of the IL-11 gene promoter, and enhances IL-11 gene transcription. Anti-IL-11 antibody blocks mechanical stress-induced enhancement of osteoblastogenesis and suppression of adipogenesis, suggesting the requirement of IL-11 for the stimulation of osteoblast differentiation by mechanical stress. Down-regulation of DeltaFosB/JunD by small interfering RNA (siRNA) suppresses and overexpression of DeltaFosB/JunD enhances IL-11 gene promoter activity. Consistent with our previous observations that up-regulation of DeltaFosB depends upon activation of cyclic AMP response element-binding protein (CREB) via Ca(2+)-dependent activation of extracellular signal-regulated kinase (ERK) to phosphorylate CREB, mechanical stress-induced activation of IL-11 gene transcription is dependent upon Ca(2+)-ERK pathway. Present results also demonstrated that FSS to osteoblasts enhances canonical Wnt signaling in vitro, and that mechanical unloading induces and reloading suppresses the expression of a canonical Wnt signal inhibitor, dickkopf2 (Dkk2), in vivo. In addition, IL-11 siRNA enhances Dkk2 expression suppressed by FSS, and osteoblasts from IL-11 transgenic mice show reduced Dkk2 mRNA expression than those from wild-type mice. These observations are consistent with the notion that mechanical stress stimulates IL-11 gene transcription via an enhanced DeltaFosB/JunD binding to the IL-11 gene promoter, and that increased IL-11 enhances canonical Wnt signal at least in part via a reduction in Dkk2 expression to stimulate osteoblast differentiation.
Collapse
Affiliation(s)
- Shinsuke Kido
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Medical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Lee JH, Kim HN, Yang D, Jung K, Kim HM, Kim HH, Ha H, Lee ZH. Trolox prevents osteoclastogenesis by suppressing RANKL expression and signaling. J Biol Chem 2009; 284:13725-13734. [PMID: 19299513 PMCID: PMC2679474 DOI: 10.1074/jbc.m806941200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/11/2009] [Indexed: 11/06/2022] Open
Abstract
Excessive receptor activator of NF-kappaB ligand (RANKL) signaling causes enhanced osteoclast formation and bone resorption. Thus, down-regulation of RANKL expression or its downstream signals may be a therapeutic approach to the treatment of pathological bone loss. In this study, we investigated the effects of Trolox, a water-soluble vitamin E analogue, on osteoclastogenesis and RANKL signaling. Trolox potently inhibited interleukin-1-induced osteoclast formation in bone marrow cell-osteoblast coculture by abrogating RANKL induction in osteoblasts. This RANKL reduction was attributed to the reduced production of prostaglandin E(2) via a down-regulation of cyclooxygenase-2 activity. We also found that Trolox inhibited osteoclast formation from bone marrow macrophages induced by macrophage colony-stimulating factor plus RANKL in a reversible manner. Trolox was effective only when present during the early stage of culture, which implies that it targets early osteoclast precursors. Pretreatment with Trolox did not affect RANKL-induced early signaling pathways, including MAPKs, NF-kappaB, and Akt. We found that Trolox down-regulated the induction by RANKL of c-Fos protein by suppressing its translation. Ectopic overexpression of c-Fos rescued the inhibition of osteoclastogenesis by Trolox in bone marrow macrophages. Trolox also suppressed interleukin-1-induced osteoclast formation and bone loss in mouse calvarial bone. Taken together, our findings indicate that Trolox prevents osteoclast formation and bone loss by inhibiting both RANKL induction in osteoblasts and c-Fos expression in osteoclast precursors.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Ha-Neui Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Daum Yang
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyoungsuk Jung
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hyun-Man Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hyunil Ha
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
18
|
González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. ACTA ACUST UNITED AC 2008; 183:653-66. [PMID: 19015316 PMCID: PMC2582892 DOI: 10.1083/jcb.200805049] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C.
Collapse
Affiliation(s)
- José María González
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Valencia, Spain
| | | | | | | | | |
Collapse
|
19
|
Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta Rev Cancer 2008; 1786:153-77. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/08/2023]
Abstract
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here.
Collapse
Affiliation(s)
- Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier, F-34293, France
| | | | | |
Collapse
|
20
|
Elberg G, Chen L, Elberg D, Chan MD, Logan CJ, Turman MA. MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells. Am J Physiol Renal Physiol 2008; 294:F1116-28. [DOI: 10.1152/ajprenal.00142.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is known to induce epithelial-mesenchymal transition in the kidney, a process involved in tubulointerstitial fibrosis. We hypothesized that a coactivator of the serum response factor (SRF), megakaryoblastic leukemia factor-1 (MKL1), stimulates α-smooth muscle actin (α-SMA) transcription in primary cultures of renal tubular epithelial cells (RTC), which convert into myofibroblasts on treatment with TGF-β1. Herein, we study the effect of MKL1 expression on α-SMA in these cells. We demonstrate that TGF-β1 stimulation of α-SMA transcription is mediated through CC(A/T)6-rich GG elements known to bind to SRF. These elements also mediate the MKL1 effect that dramatically activates α-SMA transcription in serum-free media. MKL1 fused to green fluorescent protein localizes to the nucleus and induces α-SMA expression regardless of treatment with TGF-β1. Using proteasome inhibitors, we also demonstrate that the proteolytic ubiquitin pathway regulates MKL1 expression. These data indicate that MKL1 overexpression is sufficient to induce α-SMA expression. Inhibition of endogenous expression of MKL1 by small interfering RNA abolishes TGF-β1 stimulation of α-SMA expression. Therefore, MKL1 is also absolutely required for TGF-β1 stimulation of α-SMA expression. Western blot and immunofluorescence analysis show that overexpressed and endogenous MKL1 are located in the nucleus in non-stimulated RTC. Chromatin immunoprecipitation assay demonstrates that TGF-β1 induces binding of endogenous SRF and MKL1 to the α-SMA promoter in chromatin. Since MKL1 constitutes a potent factor regulating α-SMA expression, modulation of endogenous MKL1 expression or activity may have a profound effect on myofibroblast formation and function in the kidney.
Collapse
|
21
|
Kim KS, Kim GS, Hwang JY, Lee HJ, Park MH, Kim KJ, Jung J, Cha HS, Shin HD, Kang JH, Park EK, Kim TH, Hong JM, Koh JM, Oh B, Kimm K, Kim SY, Lee JY. Single nucleotide polymorphisms in bone turnover-related genes in Koreans: ethnic differences in linkage disequilibrium and haplotype. BMC MEDICAL GENETICS 2007; 8:70. [PMID: 18036257 PMCID: PMC2222243 DOI: 10.1186/1471-2350-8-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/26/2007] [Indexed: 12/20/2022]
Abstract
Background Osteoporosis is defined as the loss of bone mineral density that leads to bone fragility with aging. Population-based case-control studies have identified polymorphisms in many candidate genes that have been associated with bone mass maintenance or osteoporotic fracture. To investigate single nucleotide polymorphisms (SNPs) that are associated with osteoporosis, we examined the genetic variation among Koreans by analyzing 81 genes according to their function in bone formation and resorption during bone remodeling. Methods We resequenced all the exons, splice junctions and promoter regions of candidate osteoporosis genes using 24 unrelated Korean individuals. Using the common SNPs from our study and the HapMap database, a statistical analysis of deviation in heterozygosity depicted. Results We identified 942 variants, including 888 SNPs, 43 insertion/deletion polymorphisms, and 11 microsatellite markers. Of the SNPs, 557 (63%) had been previously identified and 331 (37%) were newly discovered in the Korean population. When compared SNPs in the Korean population with those in HapMap database, 1% (or less) of SNPs in the Japanese and Chinese subpopulations and 20% of those in Caucasian and African subpopulations were significantly differentiated from the Hardy-Weinberg expectations. In addition, an analysis of the genetic diversity showed that there were no significant differences among Korean, Han Chinese and Japanese populations, but African and Caucasian populations were significantly differentiated in selected genes. Nevertheless, in the detailed analysis of genetic properties, the LD and Haplotype block patterns among the five sub-populations were substantially different from one another. Conclusion Through the resequencing of 81 osteoporosis candidate genes, 118 unknown SNPs with a minor allele frequency (MAF) > 0.05 were discovered in the Korean population. In addition, using the common SNPs between our study and HapMap, an analysis of genetic diversity and deviation in heterozygosity was performed and the polymorphisms of the above genes among the five populations were substantially differentiated from one another. Further studies of osteoporosis could utilize the polymorphisms identified in our data since they may have important implications for the selection of highly informative SNPs for future association studies.
Collapse
Affiliation(s)
- Kyung-Seon Kim
- Center for Genome Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pardo VG, Facchinetti MM, Curino A, Boland R, de Boland AR. Age-related alteration of 1alpha,25(OH)2-vitamin D3-dependent activation of p38 MAPK in rat intestinal cells. Biogerontology 2006; 8:13-24. [PMID: 16855859 DOI: 10.1007/s10522-006-9031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/10/2006] [Indexed: 01/17/2023]
Abstract
In intestinal cells, 1alpha,25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)) regulates gene expression via the specific intracellular vitamin D receptor and induces fast non-transcriptional responses involving stimulation of transmembrane signal transduction pathways. In the present study, we analyzed, for the first time, alterations in p38 MAPK response to 1alpha,25(OH)(2)D(3) in rat enterocytes with ageing. In enterocytes from young rats, the hormone increased, in a time- and dose-dependent fashion, the phosphorylation of p38 MAPK, peaking at 3 min (+2-fold). Basal levels of p38 MAPK phosphorylation were lower in enterocytes from old rats and the hormone response was greatly diminished (+0.5-fold at 3 min). p38 MAPK phosphorylation impairment in old animals was not related to significant changes of the kinase protein expression and do not explain the decreased response to 1alpha,25(OH)(2)D(3). Extracellular and intracellular Ca(2+) chelation or c-Src pharmacological inhibition suppressed hormone activation of p38 MAPK in both, young and aged rats, demonstrating that Ca(2+) and the non-receptor tyrosine kinase c-Src are required for full activation of p38 MAPK in cells stimulated with 1alpha,25(OH)(2)D(3). Two other vitamin D(3) metabolites, 25(OH)D(3) and 24,25(OH)(2)D(3, )also enhanced p38 phosphorylation, and to a similar extent than 1alpha,25(OH)(2)D(3), an ability that is lost with ageing. Enterocyte exposure to the hormone also resulted in the rapid induction of c-fos protein (peaking at 5 min, +3-fold) and to a greater extent than that of mRNA induction. With ageing, 1alpha,25(OH)(2)D(3)-dependent increase of c-fos protein level was diminished, but c-fos mRNA expression was not different from young animals. Impairment of 1alpha,25(OH)(2)D(3) activation of p38 MAPK upon ageing and abnormal hormone regulation of the c-fos oncoprotein synthesis may affect intestinal cell function.
Collapse
Affiliation(s)
- Verónica Gonzalez Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, Bahia Blanca 8000, Argentina
| | | | | | | | | |
Collapse
|
23
|
Ogawa T, Ishida-Kitagawa N, Tanaka A, Matsumoto T, Hirouchi T, Akimaru M, Tanihara M, Yogo K, Takeya T. A novel role of L-serine (L-Ser) for the expression of nuclear factor of activated T cells (NFAT)2 in receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis in vitro. J Bone Miner Metab 2006; 24:373-9. [PMID: 16937269 DOI: 10.1007/s00774-006-0705-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Multinucleated cell formation is crucial for osteoclastogenesis, and the expression of nuclear factor of activated T cells (NFAT)2 (NFATc1) is essential for this process. We previously found, using mouse RAW264 cells, that culture at high cell density blocked progression to the multinucleated cell stage induced by stimulation with receptor activator of nuclear factor kappaB ligand (RANKL). Here, we have confirmed this finding in a bone marrow cell system and extended the analysis further. A high cell density appeared to cause a change in the composition of the culture medium accompanying downregulation of NFAT2 expression, and we identified L-serine (LSer) as essential for the expression of NFAT2 induced by RANKL. Namely, culture at high cell density caused a depletion of LSer in the medium. Consequently, L-Ser appeared to exert its effect at an early stage under the regular conditions used for inducing the expression of c-Fos, an upstream regulator of NFAT2. D-Ser, an enantiomer of L-Ser, showed no NFAT2-inducing activity. The expression of NFAT2, using a retrovirus vector, could compensate for the depletion of L-Ser and resume the progression to the multinucleated cell stage. These results demonstrate a novel role for L-Ser in RANKL-induced osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Takuya Ogawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|