1
|
Dey G, Sinai‐Turyansky R, Yakobovich E, Merquiol E, Loboda J, Sridharan N, Houri‐Haddad Y, Polak D, Yona S, Turk D, Wald O, Blum G. Development and Application of Reversible and Irreversible Covalent Probes for Human and Mouse Cathepsin-K Activity Detection, Revealing Nuclear Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401518. [PMID: 38970171 PMCID: PMC11481179 DOI: 10.1002/advs.202401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/30/2024] [Indexed: 07/08/2024]
Abstract
Cathepsin-K (CTSK) is an osteoclast-secreted cysteine protease that efficiently cleaves extracellular matrices and promotes bone homeostasis and remodeling, making it an excellent therapeutic target. Detection of CTSK activity in complex biological samples using tailored tools such as activity-based probes (ABPs) will aid tremendously in drug development. Here, potent and selective CTSK probes are designed and created, comparing irreversible and reversible covalent ABPs with improved recognition components and electrophiles. The newly developed CTSK ABPs precisely detect active CTSK in mouse and human cells and tissues, from diseased and healthy states such as inflamed tooth implants, osteoclasts, and lung samples, indicating changes in CTSK's activity in the pathological samples. These probes are used to study how acidic pH stimulates mature CTSK activation, specifically, its transition from pro-form to mature form. Furthermore, this study reveals for the first time, why intact cells and cell lysate exhibit diverse CTSK activity while having equal levels of mature CTSK enzyme. Interestingly, these tools enabled the discovery of active CTSK in human osteoclast nuclei and in the nucleoli. Altogether, these novel probes are excellent research tools and can be applied in vivo to examine CTSK activity and inhibition in diverse diseases without immunogenicity hazards.
Collapse
Affiliation(s)
- Gourab Dey
- The Institute for Drug ResearchThe School of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Reut Sinai‐Turyansky
- The Institute for Drug ResearchThe School of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Evalyn Yakobovich
- The Institute for Drug ResearchThe School of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Emmanuelle Merquiol
- The Institute for Drug ResearchThe School of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Jure Loboda
- Department of BiochemistryMolecular and Structural BiologyJ. Stefan InstituteLjubljanaSI‐1000Slovenia
| | - Nikhila Sridharan
- The Institute of Biomedical and Oral ResearchThe Faculty of Dental MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Yael Houri‐Haddad
- Department of ProsthodonticsThe Faculty of Dental MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - David Polak
- Department of ProsthodonticsThe Faculty of Dental MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Simon Yona
- The Institute of Biomedical and Oral ResearchThe Faculty of Dental MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Dusan Turk
- Department of BiochemistryMolecular and Structural BiologyJ. Stefan InstituteLjubljanaSI‐1000Slovenia
| | - Ori Wald
- Department of Cardiothoracic SurgeryHadassah Hebrew University Medical CenterThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| | - Galia Blum
- The Institute for Drug ResearchThe School of PharmacyThe Faculty of MedicineThe Hebrew University of JerusalemJerusalem9112001Israel
| |
Collapse
|
2
|
Patntirapong S, Khankhow J, Julamorn S. Long-term passage impacts human dental pulp stem cell activities and cell response to drug addition in vitro. PeerJ 2024; 12:e17913. [PMID: 39193517 PMCID: PMC11348901 DOI: 10.7717/peerj.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Background Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell numbers. However, continuous cell replication causes cell aging in vitro, which usually accompanies and potentially affect DPSC characteristics and activities. Continuous passaging could alter susceptibility to external factors such as drug treatment. Therefore, this study sought to investigate potential outcome of in vitro passaging on DPSC morphology and activities in the absence or presence of external factor. Methods Human DPSCs were subcultured until reaching early passages (P5), extended passages (P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity, and gene expressions in the absence or presence of external factor. Alendronate (ALN) drug treatment was used as an external factor. Results Continuous passaging of DPSCs gradually lost their normal spindle shape and increased in cell and nuclear sizes. DPSCs were vulnerable to ALN. The size and shape were altered, leading to morphological abnormality and inhomogeneity. Long-term culture and ALN interfered with cell adhesion. DPSCs were able to proliferate irrespective of cell passages but the rate of cell proliferation in late passages was slower. ALN at moderate dose inhibited cell growth. ALN caused reduction of ALP activity in early passage. In contrast, extended passage responded differently to ALN by increasing ALP activity. Late passage showed higher collagen but lower osteocalcin gene expressions compared with early passage in the presence of ALN. Conclusion An increase in passage number played critical role in cell morphology and activities as well as responses to the addition of an external factor. The effects of cell passage should be considered when used in basic science research and clinical applications.
Collapse
Affiliation(s)
- Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | - Sikarin Julamorn
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
3
|
Koo S, Lee EJ, Xiong H, Yun DH, McDonald MM, Park SI, Kim JS. Real-Time Live Imaging of Osteoclast Activation via Cathepsin K Activity in Bone Diseases. Angew Chem Int Ed Engl 2024; 63:e202318459. [PMID: 38105412 DOI: 10.1002/anie.202318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Intravital fluorescence imaging of functional osteoclasts within their intact disease context provides valuable insights into the intricate biology at the microscopic level, facilitating the development of therapeutic approaches for osteoclast-associated bone diseases. However, there is a lack of studies investigating osteoclast activity within deep-seated bone lesions using appropriate fluorescent probes, despite the advantages offered by the multi-photon excitation system in enhancing deep tissue imaging resolution. In this study, we report on the intravital tracking of osteoclast activity in three distinct murine bone disease models. We utilized a cathepsin K (CatK)-responsive two-photon fluorogenic probe (CatKP1), which exhibited a notable fluorescence turn-on response in the presence of active CatK. By utilizing CatKP1, we successfully monitored a significant increase in osteoclast activity in hindlimb long bones and its attenuation through pharmacological intervention without sacrificing mice. Thus, our findings highlight the efficacy of CatKP1 as a valuable tool for unraveling pathological osteoclast behavior and exploring novel therapeutic strategies.
Collapse
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University, Seoul, 02841, Korea
- Department of Biomedical and Chemical Sciences, Hyupsung University, Hwaseong, 18330, Korea
| | - Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hao Xiong
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Da Hyeon Yun
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Michelle M McDonald
- Skeletal Diseases Program, The Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical Campus, School of Clinical Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
- School of Medicine Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Korea
- Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
- TheranoChem Incorporation, Seoul, 02856, Korea
| |
Collapse
|
4
|
Song Z, Miao J, Miao M, Cheng B, Li S, Liu Y, Miao Q, Li Q, Gao M. Cathepsin K-Activated Probe for Fluoro-Photoacoustic Imaging of Early Osteolytic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300217. [PMID: 37341286 PMCID: PMC10460880 DOI: 10.1002/advs.202300217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Precise detection of early osteolytic metastases is crucial for their treatment but remains challenging in the clinic because of the limited sensitivity and specificity of traditional imaging techniques. Although fluorescence imaging offers attractive features for the diagnosis of osteolytic metastases, it is hampered by limited penetration depth. To address this issue, a fluoro-photoacoustic dual-modality imaging probe comprising a near-infrared dye caged by a cathepsin K (CTSK)-cleavable peptide sequence on one side and functionalized with osteophilic alendronate through a polyethylene glycol linker on the other side is reported. Through systematic in vitro and in vivo experiments, it is demonstrated that in response to CTSK, the probe generated both near-infrared fluorescent and photoacoustic signals from bone metastatic regions, thus offering a potential strategy for detecting deep-seated early osteolytic metastases.
Collapse
Affiliation(s)
- Zhuorun Song
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Jia Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Minqian Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Baoliang Cheng
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Shenhua Li
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yinghua Liu
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Qingqing Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Qing Li
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
5
|
Janiszewski T, Kołt S, Ciastoń I, Vizovisek M, Poręba M, Turk B, Drąg M, Kozieł J, Kasperkiewicz P. Investigation of osteoclast cathepsin K activity in osteoclastogenesis and bone loss using a set of chemical reagents. Cell Chem Biol 2023; 30:159-174.e8. [PMID: 36696904 DOI: 10.1016/j.chembiol.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/28/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Cathepsin K (CatK) is a lysosomal cysteine protease whose highest expression is found in osteoclasts, which are the cells responsible for bone resorption. Investigations of the functions and physiological relevance of CatK have often relied on antibody-related techniques, which makes studying its activity patterns a challenging task. Hence, we developed a set of chemical tools for the investigation of CatK activity. We show that our probe is a valuable tool for monitoring the proteolytic activation of CatK during osteoclast formation. Moreover, we demonstrate that our inhibitor of CatK impedes osteoclastogenesis and bone resorption and that CatK is stored in its active form in osteoclasts within their lysosomal compartment and mainly in the ruffled borders of osteoclasts. Given that our probe recognizes active CatK within living cells without exhibiting any observed cytotoxicity in the several models tested, we expect that it would be well suited to theranostic applications in CatK-related diseases.
Collapse
Affiliation(s)
- Tomasz Janiszewski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Izabela Ciastoń
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Matej Vizovisek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
6
|
Abstract
The bone marrow (BM) is home to numerous cell types arising from hematopoietic stem cells (HSCs) and nonhematopoietic mesenchymal stem cells, as well as stromal cell components. Together they form the BM microenvironment or HSC niche. HSCs critically depend on signaling from these niches to function and survive in the long term. Significant advances in imaging technologies over the past decade have permitted the study of the BM microenvironment in mice, particularly with the development of intravital microscopy (IVM), which provides a powerful method to study these cells in vivo and in real time. Still, there is a lot to be learnt about the interactions of individual HSCs with their environment - at steady state and under various stresses - and whether specific niches exist for distinct developing hematopoietic lineages. Here, we describe our protocol and techniques used to visualize transplanted HSCs in the mouse calvarium, using combined confocal and two-photon IVM.
Collapse
Affiliation(s)
- Myriam L R Haltalli
- Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cristina Lo Celso
- Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Mijanović O, Jakovleva A, Branković A, Zdravkova K, Pualic M, Belozerskaya TA, Nikitkina AI, Parodi A, Zamyatnin AA. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int J Mol Sci 2022; 23:ijms232213762. [PMID: 36430239 PMCID: PMC9698382 DOI: 10.3390/ijms232213762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cathepsin K (CatK) is a part of the family of cysteine proteases involved in many important processes, including the degradation activity of collagen 1 and elastin in bone resorption. Changes in levels of CatK are associated with various pathological conditions, primarily related to bone and cartilage degradation, such as pycnodysostosis (associated with CatK deficiency), osteoporosis, and osteoarthritis (associated with CatK overexpression). Recently, the increased secretion of CatK is being highly correlated to vascular inflammation, hypersensitivity pneumonitis, Wegener granulomatosis, berylliosis, tuberculosis, as well as with tumor progression. Due to the wide spectrum of diseases in which CatK is involved, the design and validation of active site-specific inhibitors has been a subject of keen interest in pharmaceutical companies in recent decades. In this review, we summarized the molecular background of CatK and its involvement in various diseases, as well as its clinical significance for diagnosis and therapy.
Collapse
Affiliation(s)
- Olja Mijanović
- Dia-M, LCC, 7 b.3 Magadanskaya Str., 129345 Moscow, Russia
- The Human Pathology Department, Sechenov First Moscow State University, 119991 Moscow, Russia
| | | | - Ana Branković
- Department of Forensics Engineering, University of Criminal Investigation and Police Studies, Cara Dusana 196, 11000 Belgrade, Serbia
| | - Kristina Zdravkova
- AD Alkaloid Skopje, Boulevar Alexander the Great 12, 1000 Skopje, North Macedonia
| | - Milena Pualic
- Institute Cardiovascular Diseases Dedinje, Heroja Milana Tepica 1, 11000 Belgrade, Serbia
| | - Tatiana A. Belozerskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Angelina I. Nikitkina
- ArhiMed Clinique for New Medical Technologies, Vavilova St. 68/2, 119261 Moscow, Russia
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
- Correspondence: ; Tel.: +7-9261180220
| |
Collapse
|
8
|
Zhu L, Soldevila F, Moretti C, d'Arco A, Boniface A, Shao X, de Aguiar HB, Gigan S. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat Commun 2022; 13:1447. [PMID: 35304460 PMCID: PMC8933547 DOI: 10.1038/s41467-022-29166-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
Non-invasive optical imaging techniques are essential diagnostic tools in many fields. Although various recent methods have been proposed to utilize and control light in multiple scattering media, non-invasive optical imaging through and inside scattering layers across a large field of view remains elusive due to the physical limits set by the optical memory effect, especially without wavefront shaping techniques. Here, we demonstrate an approach that enables non-invasive fluorescence imaging behind scattering layers with field-of-views extending well beyond the optical memory effect. The method consists in demixing the speckle patterns emitted by a fluorescent object under variable unknown random illumination, using matrix factorization and a novel fingerprint-based reconstruction. Experimental validation shows the efficiency and robustness of the method with various fluorescent samples, covering a field of view up to three times the optical memory effect range. Our non-invasive imaging technique is simple, neither requires a spatial light modulator nor a guide star, and can be generalized to a wide range of incoherent contrast mechanisms and illumination schemes.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, China
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France
| | - Claudio Moretti
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France
| | - Alexandra d'Arco
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France
| | - Antoine Boniface
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France
| | - Xiaopeng Shao
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, China
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005, Paris, France.
| |
Collapse
|
9
|
Rocho FR, Bonatto V, Lameiro RF, Lameira J, Leitão A, Montanari CA. A patent review on cathepsin K inhibitors to treat osteoporosis (2011 - 2021). Expert Opin Ther Pat 2022; 32:561-573. [PMID: 35137661 DOI: 10.1080/13543776.2022.2040480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cathepsin K (CatK) is a lysosomal cysteine protease and the predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix. Hence, CatK is an attractive therapeutic target related to diseases characterized by bone resorption, like osteoporosis. AREAS COVERED This review summarizes the patent literature from 2011 to 2021 on CatK inhibitors and their potential use as new treatments for osteoporosis. The inhibitors were classified by their warheads, with the most explored nitrile-based inhibitors. Promising in vivo results have also been disclosed. EXPERT OPINION As one of the most potent lysosomal proteins whose primary function is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic intervention. Nevertheless, there is no record of any approved drug that targets CatK. The most notable cases of drug candidates targeting CatK were balicatib and odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter the market. Further developments include exploring new chemical entities beyond the nitrile-based chemical space, with improved ADME and safety profiles. In addition, CatK's role in cancer immunoexpression and its involvement in the pathophysiology of osteo- and rheumatoid arthritis have raised the race to develop activity-based probes with excellent potency and selectivity.
Collapse
Affiliation(s)
- Fernanda R Rocho
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Vinícius Bonatto
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Jerônimo Lameira
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil.,On leave from Drug Designing and Development Laboratory. Federal University of Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| |
Collapse
|
10
|
Flegar D, Filipović M, Šućur A, Markotić A, Lukač N, Šisl D, Ikić Matijašević M, Jajić Z, Kelava T, Katavić V, Kovačić N, Grčević D. Preventive CCL2/CCR2 Axis Blockade Suppresses Osteoclast Activity in a Mouse Model of Rheumatoid Arthritis by Reducing Homing of CCR2 hi Osteoclast Progenitors to the Affected Bone. Front Immunol 2021; 12:767231. [PMID: 34925336 PMCID: PMC8677701 DOI: 10.3389/fimmu.2021.767231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Detailed characterization of medullary and extramedullary reservoirs of osteoclast progenitors (OCPs) is required to understand the pathophysiology of increased periarticular and systemic bone resorption in arthritis. In this study, we focused on identifying the OCP population specifically induced by arthritis and the role of circulatory OCPs in inflammatory bone loss. In addition, we determined the relevant chemokine axis responsible for their migration, and targeted the attraction signal to reduce bone resorption in murine collagen-induced arthritis (CIA). OCPs were expanded in periarticular as well as circulatory compartment of arthritic mice, particularly the CCR2hi subset. This subset demonstrated enhanced osteoclastogenic activity in arthritis, whereas its migratory potential was susceptible to CCR2 blockade in vitro. Intravascular compartment of the periarticular area contained increased frequency of OCPs with the ability to home to the arthritic bone, as demonstrated in vivo by intravascular staining and adoptive transfer of splenic LysMcre/Ai9 tdTomato-expressing cells. Simultaneously, CCL2 levels were increased locally and systemically in arthritic mice. Mouse cohorts were treated with the small-molecule inhibitor (SMI) of CCR2 alone or in combination with methotrexate (MTX). Preventive CCR2/CCL2 axis blockade in vivo reduced bone resorption and OCP frequency, whereas combining with MTX treatment also decreased disease clinical score, number of active osteoclasts, and OCP differentiation potential. In conclusion, our study characterized the functional properties of two distinct OCP subsets in CIA, based on their CCR2 expression levels, implying that the CCR2hi circulatory-like subset is specifically induced by arthritis. Signaling through the CCL2/CCR2 axis contributes to OCP homing in the inflamed joints and to their increased osteoclastogenic potential. Therefore, addition of CCL2/CCR2 blockade early in the course of arthritis is a promising approach to reduce bone pathology.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Benzoxazines/pharmacology
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Chemokine CCL2/metabolism
- Disease Models, Animal
- Flow Cytometry
- Humans
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Methotrexate/pharmacology
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Osteoclasts/cytology
- Osteoclasts/metabolism
- RNA Interference
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Spiro Compounds/pharmacology
- Mice
Collapse
Affiliation(s)
- Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Markotić
- Center for Clinical Pharmacology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
- Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Ikić Matijašević
- Department of Clinical Immunology, Rheumatology and Pulmology, Sveti Duh University Hospital, Zagreb, Croatia
| | - Zrinka Jajić
- Department of Rheumatology, Physical Medicine and Rehabilitation, Clinical Hospital Center Sestre Milosrdnice, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Maerz T, Newton MD, Fleischer M, Hartner SE, Gawronski K, Junginger L, Baker KC. Traumatic joint injury induces acute catabolic bone turnover concurrent with articular cartilage damage in a rat model of posttraumatic osteoarthritis. J Orthop Res 2021; 39:1965-1976. [PMID: 33146410 DOI: 10.1002/jor.24903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 02/04/2023]
Abstract
Assess acute alterations in bone turnover, microstructure, and histomorphometry following noninvasive anterior cruciate ligament rupture (ACLR). Twelve female Lewis rats were randomized to receive noninvasive ACLR or Sham loading (n = 6/group). In vivo μCT was performed at 3, 7, 10, and 14 days postinjury to quantify compartment-dependent subchondral (SCB) and epiphyseal trabecular bone remodeling. Near-infrared (NIR) molecular imaging was used to measure in vivo bone anabolism (800 CW BoneTag) and catabolism (Cat K 680 FAST). Metaphyseal bone remodeling and articular cartilage morphology was quantified using ex vivo μCT and contrast-enhanced µCT, respectively. Calcein-based dynamic histomorphometry was used to quantify bone formation. OARSI scoring was used to assess joint degeneration, and osteoclast number was quantified on TRAP stained-sections. ACLR induced acute catabolic bone remodeling in subchondral, epiphyseal, and metaphyseal compartments. Thinning of medial femoral condyle (MFC) SCB was observed as early as 7 days postinjury, while lateral femoral condyles (LFCs) exhibited SCB gains. Trabecular thinning was observed in MFC epiphyseal bone, with minimal changes to LFC. NIR imaging demonstrated immediate and sustained reduction of bone anabolism (~15%-20%), and a ~32% increase in bone catabolism at 14 days, compared to contralateral limbs. These findings were corroborated by reduced bone formation rate and increased osteoclast numbers, observed histologically. ACLR-injured femora had significantly elevated OARSI score, cartilage thickness, and cartilage surface deviation. ACL rupture induces immediate and sustained reduction of bone anabolism and overactivation of bone catabolism, with mild-to-moderate articular cartilage damage at 14 days postinjury.
Collapse
Affiliation(s)
- Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D Newton
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
| | | | - Samantha E Hartner
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
| | - Karissa Gawronski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucas Junginger
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin C Baker
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| |
Collapse
|
12
|
Schulze S, Rothe R, Neuber C, Hauser S, Ullrich M, Pietzsch J, Rammelt S. Men who stare at bone: multimodal monitoring of bone healing. Biol Chem 2021; 402:1397-1413. [PMID: 34313084 DOI: 10.1515/hsz-2021-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Knowledge of the physiological and pathological processes, taking place in bone during fracture healing or defect regeneration, is essential in order to develop strategies to enhance bone healing under normal and critical conditions. Preclinical testing allows a wide range of imaging modalities that may be applied both simultaneously and longitudinally, which will in turn lower the number of animals needed to allow a comprehensive assessment of the healing process. This work provides an up-to-date review on morphological, functional, optical, biochemical, and biophysical imaging techniques including their advantages, disadvantages and potential for combining them in a multimodal and multiscale manner. The focus lies on preclinical testing of biomaterials modified with artificial extracellular matrices in various animal models to enhance bone remodeling and regeneration.
Collapse
Affiliation(s)
- Sabine Schulze
- University Center of Orthopaedics, Trauma and Plastic Surgery (OUPC), University Hospital Carl Gustav Carus, D-01307Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, D-01307Dresden, Germany
| | - Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics, Trauma and Plastic Surgery (OUPC), University Hospital Carl Gustav Carus, D-01307Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, D-01307Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), D-01307Dresden, Germany
| |
Collapse
|
13
|
Abstract
Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| |
Collapse
|
14
|
Arora M, Pandey G, Chauhan SS. Cysteine Cathepsins and Their Prognostic and Therapeutic Relevance in Leukemia. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractCysteine cathepsins are lysosomal proteases that require Cys-His ion pair in their catalytic site for enzymatic activity. While their aberrant expression and oncogenic functions have been widely reported in solid tumors, recent findings suggest that these proteases also play an important role in the pathogenesis of hematological malignancies. In this review, we summarize the potential clinical implications of cysteine cathepsins as diagnostic and prognostic markers in leukemia, and present evidences which supports the utility of these proteases as potential therapeutic targets in hematological malignancies. We also highlight the available information on the expression patterns, regulation, and potential functions of cysteine cathepsins in normal hematopoiesis and hematological malignancies. In hematopoiesis, cysteine cathepsins play a variety of physiological roles including regulation of hematopoietic stem cell adhesion in the bone marrow, trafficking, and maturation. They are also involved in several functions of immune cells which include the selection of lymphocytes in the thymus, antigen processing, and presentation. However, the expression of cysteine cathepsins is dysregulated in hematological malignancies where they have been shown to play diverse functions. Interestingly, several pieces of evidence over the past few years have demonstrated overexpression of cathepsins in leukemia and their association with worst survival outcomes in patients. Strategies aimed at altering the expression, activity, and subcellular localization of these cathepsins are emerging as potential therapeutic modalaties in the management of hematological malignancies. Recent findings also suggest the involvement of these proteases in modulating the immune response in leukemia and lymphomas.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Garima Pandey
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Haltalli MLR, Lo Celso C. Intravital Imaging of Bone Marrow Niches. Methods Mol Biol 2021; 2308:203-222. [PMID: 34057725 DOI: 10.1007/978-1-0716-1425-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Haematopoietic stem cells (HSCs) are instrumental in driving the generation of mature blood cells, essential for various functions including immune defense and tissue remodeling. They reside within a specialised bone marrow (BM) microenvironment , or niche, composed of cellular and chemical components that play key roles in regulating long-term HSC function and survival. While flow cytometry methods have significantly advanced studies of hematopoietic cells, enabling their quantification in steady-state and perturbed situations, we are still learning about the specific BM microenvironments that support distinct lineages and how their niches are altered under stress and with age. Major advances in imaging technology over the last decade have permitted in-depth studies of HSC niches in mice. Here, we describe our protocol for visualizing and analyzing the localization, morphology, and function of niche components in the mouse calvarium, using combined confocal and two-photon intravital microscopy, and we present the specific example of measuring vascular permeability.
Collapse
Affiliation(s)
- Myriam L R Haltalli
- Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cristina Lo Celso
- Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
16
|
Dondossola E, Alexander S, Holzapfel BM, Filippini S, Starbuck MW, Hoffman RM, Navone N, De-Juan-Pardo EM, Logothetis CJ, Hutmacher DW, Friedl P. Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 2019; 10:10/452/eaao5726. [PMID: 30068572 DOI: 10.1126/scitranslmed.aao5726] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Intravital multiphoton microscopy (iMPM) in mice provides access to cellular and molecular mechanisms of metastatic progression of cancers and the underlying interactions with the tumor stroma. Whereas iMPM of malignant disease has been performed for soft tissues, noninvasive iMPM of solid tumor in the bone is lacking. We combined miniaturized tissue-engineered bone constructs in nude mice with a skin window to noninvasively and repetitively monitor prostate cancer lesions by three-dimensional iMPM. In vivo ossicles developed large central cavities containing mature bone marrow surrounded by a thin cortex and enabled tumor implantation and longitudinal iMPM over weeks. Tumors grew inside the bone cavity and along the cortical bone interface and induced niches of osteoclast activation (focal osteolysis). Interventional bisphosphonate therapy reduced osteoclast kinetics and osteolysis without perturbing tumor growth, indicating dissociation of the tumor-stroma axis. The ossicle window, with its high cavity-to-cortex ratio and long-term functionality, thus allows for the mechanistic dissection of reciprocal epithelial tumor-bone interactions and therapy response.
Collapse
Affiliation(s)
- Eleonora Dondossola
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Stephanie Alexander
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Boris M Holzapfel
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia.,Orthopaedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstraße 11, 97074 Würzburg, Germany
| | - Stefano Filippini
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael W Starbuck
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego and AntiCancer Inc., 7917 Ostrow Street, San Diego, CA 92111, USA
| | - Nora Navone
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elena M De-Juan-Pardo
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Christopher J Logothetis
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia.,ARC Centre in Additive Biomanufacturing, QUT, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. .,Radboud University Nijmegen, Nijmegen, Netherlands.,Cancer Genomics Centre (CGC.nl), 3584 Utrecht, Netherlands
| |
Collapse
|
17
|
Swallow EA, Aref MW, Metzger CE, Sacks S, Lehmkuhler DR, Chen N, Hammond MA, Territo PR, Nickolas TL, Moe SM, Allen MR. Skeletal levels of bisphosphonate in the setting of chronic kidney disease are independent of remodeling rate and lower with fractionated dosing. Bone 2019; 127:419-426. [PMID: 31299384 PMCID: PMC6708715 DOI: 10.1016/j.bone.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) results in a dramatic increase in skeletal fracture risk. Bisphosphates (BP) are an effective treatment for reducing fracture risk but they are not recommended in advanced CKD. We have recently shown higher acute skeletal accumulation of fluorescently-tagged zoledronate (ZOL) in the setting of CKD but how this accumulation is retained/lost over time is unclear. Furthermore, it is unknown if alternative dosing approaches can modulate accumulation in the setting of CKD. METHODS To address these two questions normal (NL) and Cy/+ (CKD) rats were divided into control groups (no dosing), a single dose of a fluorescent-tagged ZOL (FAM-ZOL), a single dose of non-labelled zoledronate (ZOL) or ten weekly doses of FAM-ZOL each at 1/10th the dose of the single dose group. Half of the CKD animals in each group were provided water with 3% calcium in drinking water (CKD + Ca) to suppress PTH and remodeling. At 30 or 35 weeks of age, serum, tibia, ulna, radius, vertebra, femora, and mandible were collected and subjected to assessment methods including biochemistry, dynamic histomorphometry and multi-spectral fluorescence levels (using IVIS SpectrumCT). RESULTS FAM-ZOL did not significantly reduce bone remodeling in either NL or CKD animals while Ca supplementation in CKD produced remodeling levels comparable to NL. At five- and ten-weeks post-dosing, both CKD and CKD + Ca groups had higher levels of FAM-ZOL in most, but not all, skeletal sites compared to NL with no difference between the two CKD groups suggesting that the rate of remodeling did not affect skeletal retention of FAM-ZOL. Fractionating the FAM-ZOL into ten weekly doses led to 20-32% less (p < 0.05) accumulation/retention of compound in the vertebra, radius, and ulna compared to administration as a single dose. CONCLUSIONS The rate of bone turnover does not have significant effects on levels of FAM-ZOL accumulation/retention in animals with CKD. A lower dose/more frequent administration paradigm results in lower levels of accumulation/retention over time. These data provide information that could better inform the use of bisphosphonates in the setting of CKD in order to combat the dramatic increase in fracture risk.
Collapse
Affiliation(s)
- Elizabeth A Swallow
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mohammad W Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Spencer Sacks
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Demi R Lehmkuhler
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neal Chen
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Max A Hammond
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul R Territo
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Thomas L Nickolas
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Sharon M Moe
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
18
|
Cho N, Shokeen M. Changing landscape of optical imaging in skeletal metastases. J Bone Oncol 2019; 17:100249. [PMID: 31316892 PMCID: PMC6611980 DOI: 10.1016/j.jbo.2019.100249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
Optical imaging is an emerging strategy for in vitro and in vivo visualization of the molecular mechanisms of cancer over time. An increasing number of optical imaging contrast agents and techniques have been developed in recent years specifically for bone research and skeletal metastases. Visualizing molecular processes in relation to bone remodeling in metastasized cancers provides valuable information for understanding disease mechanisms and monitoring expression of primary molecular targets and therapeutic efficacy. This review is intended to provide an overview of tumor-specific and non-specific contrast agents in the first near-infrared window (NIR-I) window from 650 nm to 950 nm that can be used to study functional and structural aspects of skeletal remodeling of cancer in preclinical animal models. Near-infrared (NIR) optical imaging techniques, specifically NIR spectroscopy and photoacoustic imaging, and their use in skeletal metastases will also be discussed. Perspectives on the promises and challenges facing this exciting field are then given.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO 63110, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO 63110, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States.,Alvin J. Siteman Cancer Center at Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, MO 63110, United States
| |
Collapse
|
19
|
Minoshima M, Kikuta J, Omori Y, Seno S, Suehara R, Maeda H, Matsuda H, Ishii M, Kikuchi K. In Vivo Multicolor Imaging with Fluorescent Probes Revealed the Dynamics and Function of Osteoclast Proton Pumps. ACS CENTRAL SCIENCE 2019; 5:1059-1066. [PMID: 31263765 PMCID: PMC6598158 DOI: 10.1021/acscentsci.9b00220] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 05/05/2023]
Abstract
In vivo two-photon fluorescence imaging is a powerful modality to monitor cell dynamics in biomedical studies. To detect protein functions in living animals in real-time, fluorescent probes must show a quick response to the target function in specific tissues. Here, we developed a rhodamine-based small-molecule fluorescent probe called Red-pHocas (red pH-activatable fluorescent probe for osteoclast activity sensing) to reversibly detect the acidic environments for the spatiotemporal analysis of the function of osteoclast proton pumps. The introduction of electron-withdrawing N-alkyl substituents in the rhodamine spirolactam fluorophore remarkably increased the kinetics of the fluorescence response to acidic pHs, which allowed the rapid and reversible monitoring of acidic compartments and the analysis of the dynamics of osteoclast proton pumps during osteoclastic bone resorption. In vivo multicolor two-photon imaging using Red-pHocas in fluorescent reporter mice revealed that bone acidification occurred synchronously with the accumulation of proton pumps onto the bone surfaces. To our knowledge, this is the first study to demonstrate the direct involvement of osteoclast proton pumps in bone acidification under intravital conditions by means of an imaging probe.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department
of Immunology and Cell Biology, Graduate School of Medicine and Frontier
Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- WPI—Immunology
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Omori
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeto Seno
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Riko Suehara
- Department
of Immunology and Cell Biology, Graduate School of Medicine and Frontier
Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Maeda
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Ishii
- Department
of Immunology and Cell Biology, Graduate School of Medicine and Frontier
Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- WPI—Immunology
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- WPI—Immunology
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- E-mail:
| |
Collapse
|
20
|
Nakagawa Y, Lebaschi AH, Wada S, E. Green SJ, Wang D, Album ZM, Carballo CB, Deng XH, Rodeo SA. Duration of postoperative immobilization affects MMP activity at the healing graft-bone interface: Evaluation in a mouse ACL reconstruction model. J Orthop Res 2019; 37:325-334. [PMID: 30431170 PMCID: PMC6411439 DOI: 10.1002/jor.24177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
Excessive MMP activity may impair tendon-to-bone healing. However, little is known about the effect of joint motion on MMP activity after ACL reconstruction. The aim of this study was to determine the effect of different durations of knee immobilization on MMP activity in a mouse ACL reconstruction model using a fluorescent MMP probe which detects MMP 2, 3, 9, and 13 and near-infra red in vivo imaging. Sixty C57BL male mice underwent ACL reconstruction. Post-operatively, the animals were treated with free cage activity (Group 1), or with the use of an external fixator to restrict knee motion and weight bearing for 5 days (Group 2), 14 days (Group 3), and 28 days (Group 4). At days 3, 7, 16, 23, and 30, five mice underwent IVIS imaging. At days 3, 7, 16, and 30, histological analysis was also performed. Probe signal intensity in the whole limb peaked at day 7, followed by a decrease at day 16, and maintenance up to day 30. There was no significant difference among groups at any time point based on IVIS, but histologic localization of MMP probe signal showed significantly less activity in Group 2 and Group 3 compared to Group 4 in the bone tunnel at day 30. We demonstrated that short-term immobilization led to less MMP activity around the bone tunnel compared with prolonged immobilization. A short period of immobilization after ACL reconstruction might enhance graft-bone interface healing by mitigating excess MMP expression. These findings have implications for post-operative rehabilitation protocols following ACL reconstruction. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:325-334, 2019.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York,Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amir H. Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Samuel J E. Green
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Dean Wang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Zoe M. Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Camilla B. Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Scott A. Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| |
Collapse
|
21
|
Swallow EA, Aref MW, Chen N, Byiringiro I, Hammond MA, McCarthy BP, Territo PR, Kamocka MM, Winfree S, Dunn KW, Moe SM, Allen MR. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease. Osteoporos Int 2018; 29:2139-2146. [PMID: 29947866 PMCID: PMC6103914 DOI: 10.1007/s00198-018-4589-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. INTRODUCTION Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. METHODS At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. RESULTS CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. CONCLUSIONS These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.
Collapse
Affiliation(s)
- E A Swallow
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - M W Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - N Chen
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - I Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - M A Hammond
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - B P McCarthy
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P R Territo
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M M Kamocka
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Winfree
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K W Dunn
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S M Moe
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - M R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA.
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Perosky JE, Khoury BM, Jenks TN, Ward FS, Cortright K, Meyer B, Barton DK, Sinder BP, Marini JC, Caird MS, Kozloff KM. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model. Bone 2016; 93:79-85. [PMID: 27641475 PMCID: PMC5077648 DOI: 10.1016/j.bone.2016.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023]
Abstract
Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation.
Collapse
Affiliation(s)
- Joseph E Perosky
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States
| | - Basma M Khoury
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States
| | - Terese N Jenks
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Ferrous S Ward
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Kai Cortright
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Bethany Meyer
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - David K Barton
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Benjamin P Sinder
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Disorders, NIH, Bethesda, MD, United States
| | - Michelle S Caird
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States
| | - Kenneth M Kozloff
- University of Michigan Department of Orthopaedic Surgery, Ann Arbor, MI, United States; University of Michigan Department of Biomedical Engineering, Ann Arbor, MI, United States.
| |
Collapse
|
23
|
Kanduluru AK, Srinivasarao M, Low PS. Design, Synthesis, and Evaluation of a Neurokinin-1 Receptor-Targeted Near-IR Dye for Fluorescence-Guided Surgery of Neuroendocrine Cancers. Bioconjug Chem 2016; 27:2157-65. [PMID: 27529726 PMCID: PMC5343518 DOI: 10.1021/acs.bioconjchem.6b00374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurokinin-1 receptor (NK1R) is implicated in the growth and metastasis of many tumors, including cancers of the brain (e.g., gliomas, glioblastomas, and astrocytomas), skin (e.g., melanomas), and neuroendocrine tissues (cancers of the breast, stomach, pancreas, larynx, and colon). Because overexpression of NK1R has been reported in most of these malignancies, we have undertaken designing an NK1R-targeted near-infrared (NIR) fluorescent dye for fluorescence-guided surgeries of these cancers. We demonstrate here that an NK1R-binding ligand linked to the NIR dye LS288 selectively accumulates in NK1R-expressing tumor xenografts with high affinity (Kd = 13 nM), allowing intraoperative imaging of these cancers in live mice. Because tumor accumulation is nearly quantitatively blocked by excess unlabeled ligand, and because NK1R-negative tumors and normal tissues display virtually no uptake, we conclude that the observed tumor retention is NK1R-mediated. Results on the synthesis, in vitro characterization, and animal testing of NK1R-targeted NIR dye are presented.
Collapse
Affiliation(s)
- Ananda Kumar Kanduluru
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside. Biochimie 2016; 122:48-61. [DOI: 10.1016/j.biochi.2015.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
|
25
|
Koizumi H, Suzuki H, Ikezaki S, Ohbuchi T, Hashida K, Sakai A. Osteoclasts are not activated in middle ear cholesteatoma. J Bone Miner Metab 2016; 34:193-200. [PMID: 25796629 DOI: 10.1007/s00774-015-0655-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/12/2015] [Indexed: 10/23/2022]
Abstract
It is unclear whether osteoclasts are present and activated in cholesteatomas. We explored the expression of messenger RNA (mRNA) for osteoclast biomarkers and regulating factors in middle ear cholesteatomas to elucidate the level of osteoclast activity in this disease. Bone powder was collected from 14 patients with cholesteatomatous and noncholesteatomatous chronic otitis media during tympanomastoidectomy, separately from cortical bone of the mastoid (clean bone powder), from bone neighboring cholesteatoma (cholesteatomatous bone powder), and from bone of the air cells and antrum of noncholesteatomatous chronic otitis media patients (noncholesteatomatous bone powder). The samples collected were soaked in TRIzol reagent, and total RNA was extracted and purified by the acid guanidinium thiocyanate-phenol-chloroform method, followed by the use of magnetic bead technology. The sample was then subjected to quantitative reverse transcription polymerase chain reaction for receptor activator of nuclear factor κB (RANK), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), osteoclast-associated receptor (OSCAR), calcitonin receptor (CALCR), matrix metalloproteinase 9 (MMP9), receptor activator of nuclear factor κB ligand (RANKL), and osteoprotegerin (OPG). There was no significant difference in the expression of TRAP, CTSK, OSCAR, CALCR, MMP9, or OPG among the clean, cholesteatomatous, and noncholesteatomatous bone powder. On the other hand, the expression of RANK and RANKL was significantly lower in the cholesteatomatous bone powder than in the noncholesteatomatous bone powder (P = 0.003 and P = 0.028, respectively). The RANKL mRNA/OPG mRNA ratio did not differ among the three samples. These results indicate that osteoclasts are unlikely to be activated in cholesteatomas. Bone resorption mechanisms not mediated by osteoclasts may need to be reappraised in cholesteatoma research in future studies.
Collapse
Affiliation(s)
- Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Shoji Ikezaki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Koichi Hashida
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
26
|
Well-designed bone-seeking radiolabeled compounds for diagnosis and therapy of bone metastases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:676053. [PMID: 26075256 PMCID: PMC4446473 DOI: 10.1155/2015/676053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
Abstract
Bone-seeking radiopharmaceuticals are frequently used as diagnostic agents in nuclear medicine, because they can detect bone disorders before anatomical changes occur. Furthermore, their effectiveness in the palliation of metastatic bone cancer pain has been demonstrated in the clinical setting. With the aim of developing superior bone-seeking radiopharmaceuticals, many compounds have been designed, prepared, and evaluated. Here, several well-designed bone-seeking compounds used for diagnostic and therapeutic use, having the concept of radiometal complexes conjugated to carrier molecules to bone, are reviewed.
Collapse
|
27
|
Perosky JE, Peterson JR, Eboda ON, Morris MD, Wang SC, Levi B, Kozloff KM. Early detection of heterotopic ossification using near-infrared optical imaging reveals dynamic turnover and progression of mineralization following Achilles tenotomy and burn injury. J Orthop Res 2014; 32:1416-23. [PMID: 25087685 PMCID: PMC4408934 DOI: 10.1002/jor.22697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/24/2014] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is the abnormal formation of bone in soft tissue. Current diagnostics have low sensitivity or specificity to incremental progression of mineralization, especially at early time points. Without accurate and reliable early diagnosis and intervention, HO progression often results in incapacitating conditions of limited range of motion, nerve entrapment, and pain. We hypothesized that non-invasive near-infrared (NIR) optical imaging can detect HO at early time points and monitor heterotopic bone turnover longitudinally. C57BL6 mice received an Achilles tenotomy on their left hind limb in combination with a dorsal burn or sham procedure. A calcium-chelating tetracycline derivative (IRDye 680RD BoneTag) was injected bi-weekly and imaged via NIR to measure accumulative fluorescence for 11 wk and compared to in vivo microCT images. Percent retention of fluorescence was calculated longitudinally to assess temporal bone resorption. NIR detected HO as early as five days and revealed a temporal response in HO formation and turnover. MicroCT could not detect HO until 5 wk. Confocal microscopy confirmed fluorophore localization to areas of HO. These findings demonstrate the ability of a near-infrared optical imaging strategy to accurately and reliably detect and monitor HO in a murine model.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamin Levi
- Department of Plastic Surgery, University of Michigan
| | | |
Collapse
|
28
|
Satkunananthan PB, Anderson MJ, De Jesus NM, Haudenschild DR, Ripplinger CM, Christiansen BA. In vivo fluorescence reflectance imaging of protease activity in a mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2014; 22:1461-9. [PMID: 25278057 PMCID: PMC4185155 DOI: 10.1016/j.joca.2014.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/10/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injuries initiate a surge of inflammatory cytokines and proteases that contribute to cartilage and subchondral bone degeneration. Detecting these early processes in animal models of post-traumatic osteoarthritis (PTOA) typically involves ex vivo analysis of blood serum or synovial fluid biomarkers, or histological analysis of the joint. In this study, we used in vivo fluorescence reflectance imaging (FRI) to quantify protease, matrix metalloproteinase (MMP), and Cathepsin K activity in mice following anterior cruciate ligament (ACL) rupture. We hypothesized that these processes would be elevated at early time points following joint injury, but would return to control levels at later time points. DESIGN Mice were injured via tibial compression overload, and FRI was performed at time points from 1 to 56 days after injury using commercially available activatable fluorescent tracers to quantify protease, MMP, and cathepsin K activity in injured vs uninjured knees. PTOA was assessed at 56 days post-injury using micro-computed tomography and whole-joint histology. RESULTS Protease activity, MMP activity, and cathepsin K activity were all significantly increased in injured knees relative to uninjured knees at all time points, peaking at 1-7 days post-injury, then decreasing at later time points while still remaining elevated relative to controls. CONCLUSIONS This study establishes FRI as a reliable method for in vivo quantification of early biological processes in a translatable mouse model of PTOA, and provides crucial information about the time course of inflammation and biological activity following joint injury. These data may inform future studies aimed at targeting these early processes to inhibit PTOA development.
Collapse
Affiliation(s)
- Patrick B. Satkunananthan
- University of California-Davis Medical Center, Department of Orthopaedic Surgery,University of California-Davis, Biomedical Engineering Graduate Group
| | - Matthew J. Anderson
- University of California-Davis Medical Center, Department of Orthopaedic Surgery
| | - Nicole M. De Jesus
- University of California-Davis, Biomedical Engineering Graduate Group,University of California-Davis Medical Center, Department of Pharmacology
| | - Dominik R. Haudenschild
- University of California-Davis Medical Center, Department of Orthopaedic Surgery,University of California-Davis, Biomedical Engineering Graduate Group
| | - Crystal M. Ripplinger
- University of California-Davis, Biomedical Engineering Graduate Group,University of California-Davis Medical Center, Department of Pharmacology
| | - Blaine A. Christiansen
- University of California-Davis Medical Center, Department of Orthopaedic Surgery,University of California-Davis, Biomedical Engineering Graduate Group
| |
Collapse
|
29
|
Rodnick ME, Shao X, Kozloff KM, Scott PJH, Kilbourn MR. Carbon-11 labeled cathepsin K inhibitors: syntheses and preliminary in vivo evaluation. Nucl Med Biol 2014; 41:384-9. [PMID: 24637099 PMCID: PMC4055946 DOI: 10.1016/j.nucmedbio.2014.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/22/2014] [Accepted: 02/11/2014] [Indexed: 11/24/2022]
Abstract
Cathepsin K is a cysteine peptidase primarily located in osteoclasts, cells involved in normal growth and remodeling of bone but that are also responsible for bone loss in osteolytic diseases such as osteoporosis. In vivo imaging of cathepsin K may provide a method to assess changes in osteoclast numbers in such disease states. To that end, two high-affinity and selective cathepsin K inhibitors were radiolabeled with carbon-11. In vivo microPET imaging studies demonstrated uptake and prolonged retention of radioactivity in actively growing or remodeling bone regions (e.g., distal ulnar, carpal, distal and proximal humeral, distal femur, proximal tibia, tail vertebrae). Uptake into bone could be blocked by pre- or co-injection of unlabeled ligand, supporting a specific and saturable binding mechanism for radiotracer localization. These proof-of-concept studies indicate that radiolabeled cathepsin K inhibitors may have potential as in vivo imaging radiotracers for assessing changes of osteoclast numbers in osteolytic diseases.
Collapse
Affiliation(s)
- Melissa E Rodnick
- Division of Nuclear Medicine, Department of Radiology, and Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, and Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kenneth M Kozloff
- Division of Nuclear Medicine, Department of Radiology, and Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, and Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michael R Kilbourn
- Division of Nuclear Medicine, Department of Radiology, and Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109.
| |
Collapse
|
30
|
Wang X, Yang Y, Jia H, Jia W, Miller S, Bowman B, Feng J, Zhan F. Peptide Decoration of Nanovehicles to Achieve Active Targeting and Pathology-Responsive Cellular Uptake for Bone Metastasis Chemotherapy. Biomater Sci 2014; 2:961-971. [PMID: 26082834 DOI: 10.1039/c4bm00020j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To improve bone metastases chemotherapy, a peptide-conjugated diblock copolymer consisting of chimeric peptide, poly(ethylene glycol) and poly(trimethylene carbonate) (Pep-b-PEG-b-PTMC) is fabricated as a drug carrier capable of bone-seeking targeting as well as pathology-responsive charge reversal to ensure effective cellular uptake at the lesion sites. The chimeric peptide CKGHPGGPQAsp8 consists of an osteotropic anionic Asp8, a cathepsin K (CTSK)-cleavable substrate (HPGGPQ) and cationic residue tethered to polymer chain. Pep-b-PEG-b-PTMC can spontaneously self-assemble into negatively charged nanomicelles (~75 nm). As to the model drug of doxorubicin, Pep-b-PEG-b-PTM shows 30.0 ± 1 % and 90.1 ± 2 % for loading content and loading efficiency, respectively. High bone binding capability is demonstrated with that 66 % of Pep-b-PEG-b-PTMC micelles are able to bind to hydroxyl apatite, whereas less than 15 % is for Pep-free micelles. The nanomicelles exhibit a negative-to-positive charge conversion from -18.5 ± 1.9 mV to 15.2 ± 1.8 mV upon exposure to CTSK, an enzyme overexpressed in bone metastatic microenvironments. Such a pathology-responsive transition would lead to remarkably enhanced cellular uptake of the nanomicelles upon reaching lesion sites, thus improving the drug efficacy as verified by the in vitro cytotoxicity assay and the in vivo study in myeloma-bearing 5TGM1 mice model.
Collapse
Affiliation(s)
- Xuli Wang
- Division of Radiobiology, School of Medicine, University of Utah, 729 Arapeen Drive, Rm 2334, Salt Lake City, 84108, USA
| | - Ye Yang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplant, University of Iowa, Iowa City, IA 52242
| | - Huizhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wanjian Jia
- Division of Radiobiology, School of Medicine, University of Utah, 729 Arapeen Drive, Rm 2334, Salt Lake City, 84108, USA
| | - Scott Miller
- Division of Radiobiology, School of Medicine, University of Utah, 729 Arapeen Drive, Rm 2334, Salt Lake City, 84108, USA
| | - Beth Bowman
- Division of Radiobiology, School of Medicine, University of Utah, 729 Arapeen Drive, Rm 2334, Salt Lake City, 84108, USA
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fenghuang Zhan
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplant, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
31
|
Lan SM, Wu YN, Wu PC, Sun CK, Shieh DB, Lin RM. Advances in noninvasive functional imaging of bone. Acad Radiol 2014; 21:281-301. [PMID: 24439341 DOI: 10.1016/j.acra.2013.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 02/03/2023]
Abstract
The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.
Collapse
|
32
|
Validation of Fluorescence Molecular Tomography/Micro-CT Multimodal Imaging In Vivo in Rats. Mol Imaging Biol 2013; 16:350-61. [DOI: 10.1007/s11307-013-0698-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Harmatys KM, Cole EL, Smith BD. In vivo imaging of bone using a deep-red fluorescent molecular probe bearing multiple iminodiacetate groups. Mol Pharm 2013; 10:4263-71. [PMID: 24099089 DOI: 10.1021/mp400357v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Deep-red fluorescent molecular probes are described that have a dendritic molecular architecture with a squaraine rotaxane core scaffold and multiple peripheral iminodiacetate groups as the bone targeting units. Iminodiacetates have an inherently lower bone affinity than bisphosphonates, and a major goal of the study was to determine how many appended iminodiacetate groups are required for effective deep-red fluorescence imaging of bone in living rodents. A series of in vitro and in vivo imaging studies showed that a tetra(iminodiacetate) probe stains bones much more strongly than an analogous bis(iminodiacetate) probe. In addition, a control tetra(iminodipropionate) probe exhibited no bone targeting ability. The tetra(iminodiacetate) probe targeted the same regions of high bone turnover as the near-infrared bisphosphonate probe OsteoSense750. Longitudinal studies showed that the fluorescence image signal from living mice treated with the tetra(iminodiacetate) probe was much more stable over 19 days than the signal from OsteoSense750. The narrow emission band of the tetra(iminodiacetate) probe makes it very attractive for inclusion in multiplex imaging protocols that employ a mixture of multiple fluorescent probes in preclinical studies of bone growth or in fluorescence guided surgery. The results also suggest that molecules or nanoparticles bearing multivalent iminodiacetate groups have promise as bone targeting agents with tunable properties for various pharmaceutical applications.
Collapse
Affiliation(s)
- Kara M Harmatys
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, 46556 Indiana, United States
| | | | | |
Collapse
|
34
|
Abstract
OBJECTIVE A review of the innovative role molecular imaging plays in musculoskeletal radiology is provided. Musculoskeletal molecular imaging is under development in four key areas: imaging the activity of osteoblasts and osteoclasts, imaging of molecular and cellular biomarkers of arthritic joint destruction, cellular imaging of osteomyelitis, and imaging generators of musculoskeletal pain. CONCLUSION Together, these applications suggest that next-generation musculoskeletal radiology will facilitate quantitative visualization of molecular and cellular biomarkers, an advancement that appeared futuristic just a decade ago.
Collapse
|
35
|
Hou GQ, Guo C, Song GH, Fang N, Fan WJ, Chen XD, Yuan L, Wang ZQ. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells. Int J Mol Med 2013; 32:503-10. [PMID: 23740407 DOI: 10.3892/ijmm.2013.1406] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/29/2013] [Indexed: 11/06/2022] Open
Abstract
Bone degradation is a serious complication of chronic inflammatory diseases such as septic arthritis, osteomyelitis and infected orthopedic implant failure. At present, effective therapeutic treatments for lipopolysaccharide (LPS)-induced bone destruction are limited to antibiotics and surgical repair in chronic inflammatory diseases. The present study aimed to evaluate the mechanism of LPS on osteoclast differentiation and activation. RAW264.7 cells were non-induced, or induced by the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and then treated with LPS. Following treatment, the number of osteoclasts and cell viability were measured. The expression of osteoclast-related genes including tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), cathepsin K (CK), carbonic anhydrase II (CAII) and cyclooxygenase-2 (COX-2) was determined by RT-PCR. Protein levels of RANK, tumor necrosis factor receptor-associated factor 6 (TRAF6), COX-2 and mitogen-activated protein kinases (MAPK) were measured using western blotting assays. LPS promoted osteoclast differentiation of RAW264.7 cells and differentiated osteoclasts. LPS significantly increased mRNA expression of osteoclast-related genes in RAW264.7 cells. Differentiated osteoclasts were treated with LPS (100 ng/ml) and the results showed a significantly increased mRNA expression of osteoclast-related genes and protein levels of RANK, TRAF6 and COX-2. Furthermore, LPS at 100 ng/ml significantly promoted the MAPK pathway including increasing the phosphorylation of c-Jun N-terminal kinases (JNK) and the phosphorylation of the extracellular signal-regulated kinase (ERK1/2). In conclusion, LPS promoted osteoclast differentiation and activation by enhancing RANK signaling and COX-2 expression. LPS also promoted osteoclast differentiation via activation of the JNK and ERK1/2 cell proliferation pathways.
Collapse
Affiliation(s)
- Guo-Qing Hou
- First Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lambers FM, Stuker F, Weigt C, Kuhn G, Koch K, Schulte FA, Ripoll J, Rudin M, Müller R. Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography. Bone 2013; 52:587-95. [PMID: 23142804 DOI: 10.1016/j.bone.2012.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 10/24/2012] [Accepted: 11/01/2012] [Indexed: 11/23/2022]
Abstract
Bone research often focuses on anatomical imaging of the bone microstructure, but in order to gain better understanding in how bone remodeling is modulated through interventions also bone formation and resorption processes should be investigated. With this in mind, the purpose of this study was to establish a longitudinal in vivo imaging approach of bone formation and resorption using fluorescence molecular tomography (FMT). In this study the reproducibility, accuracy and sensitivity of FMT for bone imaging were assessed by performing longitudinal measurements with FMT and comparing it to in vivo micro-computed tomography on a set of control mice, and mice in which load-adaptation was induced in the sixth caudal vertebra. The precision error for FMT measurements, expressed as coefficient of variation, was smaller than 16%, indicating acceptable reproducibility. A correlation was found between bone resorption measured with FMT and bone resorption rate measured with in vivo micro-computed tomography only over the first 14days (R=0.81, p<0.01), but not between bone formation measured with FMT and bone formation rate measured with in vivo micro-CT. Bone formation measured by FMT was 89-109% greater (p<0.05) for mice subjected to mechanical loading than control mice. Bone resorption was 5-8% lower, but did not reach a significant difference between groups, indicating moderate sensitivity for FMT. In conclusion, in vivo FMT in mouse tail bones is feasible but needs to be optimized for monitoring load adaptation in living mice.
Collapse
Affiliation(s)
- F M Lambers
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bogdanov AA, Mazzanti ML. Fluorescent macromolecular sensors of enzymatic activity for in vivo imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:349-87. [PMID: 23244795 DOI: 10.1016/b978-0-12-386932-6.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Macromolecular imaging probes (or sensors) of enzymatic activity have a unique place in the armamentarium of modern optical imaging techniques. Such probes were initially developed by attaching optically "silent" fluorophores via enzyme-sensitive linkers to large copolymers of biocompatible poly(ethylene glycol) and poly(amino acids). In diseased tissue, where the concentration of enzymes is high, the fluorophores are freed from the macromolecular carrier and regain their initial ability to fluoresce, thus allowing in vivo optical localization of the diseased tissue. This chapter describes the design and application of these probes and their alternatives in various areas of experimental medicine and gives an overview of currently available techniques that allow imaging of animals using visible and near-infrared light.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
38
|
Bogdanov Jr AA, Mazzanti M, Castillo G, Bolotin E. Protected Graft Copolymer (PGC) in Imaging and Therapy: A Platform for the Delivery of Covalently and Non-Covalently Bound Drugs. Am J Cancer Res 2012; 2:553-76. [PMID: 22737192 PMCID: PMC3381344 DOI: 10.7150/thno.4070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/17/2012] [Indexed: 12/13/2022] Open
Abstract
Initially developed in 1992 as an MR imaging agent, the family of protected graft copolymers (PGC) is based on a conjugate of polylysine backbone to which methoxypoly(ethylene glycol) (MPEG) chains are covalently linked in a random fasion via N-ε-amino groups. While PGC is relatively simple in terms of its chemcial composition and structure, it has proved to be a versatile platform for in vivo drug delivery. The advantages of poly amino acid backbone grafting include multiple available linking sites for drug and adaptor molecules. The grafting of PEG chains to PGC does not compromise biodegradability and does not result in measurable toxicity or immunogenicity. In fact, the biocompatablility of PGC has resulted in its being one of the few 100% synthetic non-proteinaceous macromolecules that has suceeded in passing the initial safety phase of clinical trials. PGC is capable of long circulation times after injection into the blood stream and as such found use early on as a carrier system for delivery of paramagnetic imaging compounds for angiography. Other PGC types were later developed for use in nuclear medicine and optical imaging applications in vivo. Recent developments in PGC-based drug carrier formulations include the use of zinc as a bridge between the PGC carrier and zinc-binding proteins and re-engineering of the PGC carrier as a covalent amphiphile that is capabe of binding to hydrophobic residues of small proteins and peptides. At present, PGC-based formulations have been developed and tested in various disease models for: 1) MR imaging local blood circulation in stroke, cancer and diabetes; 2) MR and nuclear imaging of blood volume and vascular permeability in inflammation; 3) optical imaging of proteolytic activity in cancer and inflammation; 4) delivery of platinum(II) compounds for treating cancer; 5) delivery of small proteins and peptides for treating diabetes, obesity and myocardial infarction. This review summarizes the experience accumulated by various research groups that chose to use PGC as a drug delivery platform.
Collapse
|
39
|
van der Horst G, van der Pluijm G. Preclinical imaging of the cellular and molecular events in the multistep process of bone metastasis. Future Oncol 2012; 8:415-30. [DOI: 10.2217/fon.12.33] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bone metastasis is a complex process that ultimately leads to devastating metastatic bone disease. It is therefore of key interest to unravel the mechanisms underlying the multistep process of skeletal metastasis and cancer-induced bone disease, and to develop better treatment and management of patients with this devastating disease. Fortunately, novel technologies are rapidly emerging that allow real-time imaging of molecules, pathogenic processes, drug delivery and drug response in preclinical in vivo models. The outcome of these experimental studies will facilitate clinical cancer research by improving the detection of cancer cell invasion, metastasis and therapy response.
Collapse
Affiliation(s)
- Geertje van der Horst
- Department of Urology, Leiden University Medical Center, J3–100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, J3–100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
40
|
Lambers FM, Kuhn G, Müller R. Advances in multimodality molecular imaging of bone structure and function. BONEKEY REPORTS 2012; 1:37. [PMID: 27127622 PMCID: PMC4816287 DOI: 10.1038/bonekey.2012.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022]
Abstract
The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo.
Collapse
Affiliation(s)
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
van der Horst G, van der Pluijm G. Preclinical models that illuminate the bone metastasis cascade. Recent Results Cancer Res 2012; 192:1-31. [PMID: 22307368 DOI: 10.1007/978-3-642-21892-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this chapter currently available preclinical models of tumor progression and bone metastasis, including genetically engineered mice that develop primary and metastatic carcinomas and transplantable animal models, will be described. Understanding the multistep process of incurable bone metastasis is pivotal to the development of new therapeutic strategies. Novel technologies for imaging molecules or pathologic processes in cancers and their surrounding stroma have emerged rapidly and have greatly facilitated cancer research, in particular the cellular behavior of osteotropic tumors and their response to new and existing therapeutic agents. Optical imaging, in particular, has become an important tool in preclinical bone metastasis models, clinical trials and medical practice. Advances in experimental and clinical imaging will-in the long run-result in significant improvements in diagnosis, tumor localization, enhanced drug delivery and treatment.
Collapse
|
42
|
Groves K, Bao B, Zhang J, Handy E, Kennedy P, Cuneo G, Supuran CT, Yared W, Peterson JD, Rajopadhye M. Synthesis and evaluation of near-infrared fluorescent sulfonamide derivatives for imaging of hypoxia-induced carbonic anhydrase IX expression in tumors. Bioorg Med Chem Lett 2012; 22:653-7. [DOI: 10.1016/j.bmcl.2011.10.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
|
43
|
Edgington LE, Verdoes M, Bogyo M. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 2011; 15:798-805. [PMID: 22098719 DOI: 10.1016/j.cbpa.2011.10.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/25/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases.
Collapse
Affiliation(s)
- Laura E Edgington
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
44
|
Synergistic Enhancement of New Bone Formation by Recombinant Human Bone Morphogenetic Protein-2 and Osteoprotegerin in Trans-Sutural Distraction Osteogenesis: A Pilot Study in Dogs. J Oral Maxillofac Surg 2011; 69:e446-55. [DOI: 10.1016/j.joms.2011.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 07/13/2011] [Indexed: 01/04/2023]
|
45
|
Kowada T, Kikuta J, Kubo A, Ishii M, Maeda H, Mizukami S, Kikuchi K. In Vivo Fluorescence Imaging of Bone-Resorbing Osteoclasts. J Am Chem Soc 2011; 133:17772-6. [DOI: 10.1021/ja2064582] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Kowada
- Laboratory of Chemical Imaging Techniques, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Atsuko Kubo
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Masaru Ishii
- Laboratory of Cellular Dynamics, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Hiroki Maeda
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shin Mizukami
- Laboratory of Chemical Imaging Techniques, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kazuya Kikuchi
- Laboratory of Chemical Imaging Techniques, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
Chatani M, Takano Y, Kudo A. Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol 2011; 360:96-109. [PMID: 21963458 DOI: 10.1016/j.ydbio.2011.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022]
Abstract
Bone modeling is the central system controlling the formation of bone including bone growth and shape in early development, in which bone is continuously resorbed by osteoclasts and formed by osteoblasts. However, this system has not been well documented, because it is difficult to trace osteoclasts and osteoblasts in vivo during development. Here we showed the important role of osteoclasts in organogenesis by establishing osteoclast-specific transgenic medaka lines and by using a zebrafish osteoclast-deficient line. Using in vivo imaging of osteoclasts in the transgenic medaka carrying an enhanced GFP (EGFP) or DsRed reporter gene driven by the medaka TRAP (Tartrate-Resistant Acid Phosphatase) or Cathepsin K promoter, respectively, we examined the maturation and migration of osteoclasts. Our results showed that mononuclear or multinucleated osteoclasts in the vertebral body were specifically localized at the inside of the neural and hemal arches, but not at the vertebral centrum. Furthermore, transmission electron microscopic (TEM) analyses revealed that osteoclasts were flat-shaped multinucleated cells, suggesting that osteoclasts initially differentiate from TRAP-positive mononuclear cells residing around bone. The zebrafish panther mutant lacks a functional c-fms (receptor for macrophage colony-stimulating factor) gene crucial for osteoclast proliferation and differentiation and thus has a low number of osteoclasts. Analysis of this mutant revealed deformities in both its neural and hemal arches, which resulted in abnormal development of the neural tube and blood vessels located inside these arches. Our results provide the first demonstration that bone resorption during bone modeling is essential for proper development of neural and vascular systems associated with fish vertebrae.
Collapse
Affiliation(s)
- Masahiro Chatani
- Department of Biological Information, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | | | |
Collapse
|
47
|
Abstract
The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA, 94107, USA
| | | | | |
Collapse
|
48
|
Gade TP, Motley MW, Beattie BJ, Bhakta R, Boskey AL, Koutcher JA, Mayer-Kuckuk P. Imaging of alkaline phosphatase activity in bone tissue. PLoS One 2011; 6:e22608. [PMID: 21799916 PMCID: PMC3143164 DOI: 10.1371/journal.pone.0022608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/26/2011] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Terence P. Gade
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York, New York, United States of America
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Matthew W. Motley
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Bradley J. Beattie
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Roshni Bhakta
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York, New York, United States of America
| | - Adele L. Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York, United States of America
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Philipp Mayer-Kuckuk
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 2011; 3:229-74. [PMID: 24310495 PMCID: PMC3864234 DOI: 10.3390/pharmaceutics3020229] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/07/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022] Open
Abstract
Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development.
Collapse
|
50
|
Snoeks TJA, Khmelinskii A, Lelieveldt BPF, Kaijzel EL, Löwik CWGM. Optical advances in skeletal imaging applied to bone metastases. Bone 2011; 48:106-14. [PMID: 20688203 DOI: 10.1016/j.bone.2010.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/28/2010] [Indexed: 12/21/2022]
Abstract
Optical Imaging has evolved into one of the standard molecular imaging modalities used in pre-clinical cancer research. Bone research however, strongly depends on other imaging modalities such as SPECT, PET, x-ray and μCT. Each imaging modality has its own specific strengths and weaknesses concerning spatial resolution, sensitivity and the possibility to quantify the signal. An increasing number of bone specific optical imaging models and probes have been developed over the past years. This review gives an overview of optical imaging modalities, models and probes that can be used to study skeletal complications of cancer in small laboratory animals.
Collapse
Affiliation(s)
- T J A Snoeks
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|