1
|
Preiss L, Gauthier R, Richard H, Courtois L, Chopard-Lallier AL, Fabrègue D, Chevalier J, Courtois N. Bone mechanical behavior around dental implants: Densification and deformation follow-up by in-situ computed tomography. J Mech Behav Biomed Mater 2025; 167:106966. [PMID: 40088542 DOI: 10.1016/j.jmbbm.2025.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
The state of bone tissue around dental implants is a crucial factor influencing their early clinical outcomes. Currently, this state is mainly defined by its primary stability, both in terms of biomechanical analysis and clinically. The clinical methods used for quantifying this stability-such as the Implant Stability Quotient (ISQ) and Insertion Torque (IT)-are indirect measures. While these methods provide insights into the overall mechanical behavior of the bone-implant system, they do not account for the impact of implant morphology on the surrounding bone. The method presented here aims to analyze the peri-implant bone using image analysis and volume correlation techniques combined with computed tomography to assess the bone strain field and densification resulting from dental implant placement. The study utilized two types of implants with distinct designs-one cylindrical and the other self-tapping-on five iliac crest bone samples harvested from butcher pigs. The results indicated that the self-tapping implant caused significantly greater bone densification near the implant compared to the cylindrical one (46% of densification in the first 30 μm, against 21% for cylindrical implant). Additionally, the volume of strained peri-implant bone appeared to be larger for the self-tapping implant (38% of the volume was mechanically affected above 0,5% VM strains for self-tapping implant, against 31% for the cylindrical implant), though this difference was not statistically significant. Furthermore, established descriptors from the literature struggled to effectively differentiate between the two implant types. Despite the study's limitations, the proposed method shows promise for distinguishing implants based on the densification and deformation of peri-implant bone, and can serve as a complementary approach to standard ISQ and IT measurements.
Collapse
Affiliation(s)
- Laura Preiss
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 20 Avenue Albert Einstein, Villeurbanne, 69621, France.
| | - Rémy Gauthier
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 20 Avenue Albert Einstein, Villeurbanne, 69621, France
| | - Hervé Richard
- Anthogyr SAS, 2237 Avenue A. Lasquin, 74700, Sallanches, France
| | | | | | - Damien Fabrègue
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 20 Avenue Albert Einstein, Villeurbanne, 69621, France
| | - Jérôme Chevalier
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 20 Avenue Albert Einstein, Villeurbanne, 69621, France
| | | |
Collapse
|
2
|
Erbel C, Laschke MW, Grobecker-Karl T, Karl M. Preclinical Performance of a Novel Dental Implant Design Reducing Mechanical Stress in Cortical Bone. J Funct Biomater 2025; 16:102. [PMID: 40137381 PMCID: PMC11942938 DOI: 10.3390/jfb16030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
This animal study compared the healing performance of a novel implant design characterized by a shift in thread geometry and core diameter with two different surfaces with that of an apically tapered implant. Test Bioactive (n = 9), Test Porous (n = 7) and Control (n = 8) implants were placed in the mandibles of minipigs. Following healing, bone samples were harvested for determining bone-to-implant contact (BIC) and marginal bone loss (MBL). Comparative statistics were based on Levene's test, Shapiro-Wilk tests, the Kruskal-Wallis test and Wilcoxon tests with Holm correction (α = 0.05). The mean undersizing of the osteotomy was 0.15 mm for Control, while in the test groups 0.33 mm and 0.34 mm were calculated. Insertion torques ranged from 61.5 Ncm (Control) to 76.1 Ncm (Test Bioactive). Maximum BIC was seen in Test Porous with 55.83%, while Test Bioactive showed only 48.11%. MBL was 4.1 mm in Test Bioactive, while Test Porous and Control exhibited 2.8 mm. No significant differences between the implant groups were observed (p > 0.05). Despite greater undersizing, the novel implant type performed comparably to the established Control implants. The rougher surface of the bioactive implants increased the insertion torque and led to more MBL.
Collapse
Affiliation(s)
- Carolin Erbel
- Department of Prosthodontics, Saarland University, 66421 Homburg, Germany; (C.E.); (T.G.-K.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany;
| | - Tanja Grobecker-Karl
- Department of Prosthodontics, Saarland University, 66421 Homburg, Germany; (C.E.); (T.G.-K.)
| | - Matthias Karl
- Department of Prosthodontics, Philipps University Marburg, 35039 Marburg, Germany
| |
Collapse
|
3
|
Narayanan R, Tarawneh OH, Trenchfield D, Meade MH, Lee Y, Opara O, McCurdy MA, Pineda N, Kaye LD, Alhassan F, Vo M, Mangan JJ, Canseco JA, Hilibrand AS, Vaccaro AR, Kepler CK, Schroeder GD. Preoperative Hounsfield Units Predict Pedicle Screw Loosening in Osteoporotic Patients Following Short-Segment Lumbar Fusion. Spine (Phila Pa 1976) 2024; 49:1722-1728. [PMID: 38556736 DOI: 10.1097/brs.0000000000004995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
STUDY DESIGN Retrospective Cohort. OBJECTIVE (1) To determine if vertebral HU values obtained from preoperative CT predict postoperative outcomes following one to three level lumbar fusion and (2) to investigate whether decreased BMD values determined by HU predict cage subsidence and screw loosening. SUMMARY OF BACKGROUND DATA In light of suboptimal screening for osteoporosis, vertebral computerized tomography (CT) Hounsfield Units (HU), have been investigated as a surrogate for bone mineral density (BMD). MATERIALS AND METHODS In this retrospective study, adult patients who underwent one to three level posterior lumbar decompression and fusion (PLDF) or transforaminal lumbar interbody and fusion (TLIF) for degenerative disease between the years 2017 and 2022 were eligible for inclusion. Demographics and surgical characteristics were collected. Outcomes assessed included 90-day readmissions, 90-day complications, revisions, patient-reported outcomes (PROMs), cage subsidence, and screw loosening. Osteoporosis was defined as HU of ≤110 on preoperative CT at L1. RESULTS We assessed 119 patients with a mean age of 59.1, of whom 80.7% were white and 64.7% were nonsmokers. The majority underwent PLDF (63%) compared with TLIF (37%), with an average of 1.63 levels fused. Osteoporosis was diagnosed in 37.8% of the cohort with a mean HU in the osteoporotic group of 88.4 compared with 169 in nonosteoporotic patients. Although older in age, osteoporotic individuals did not exhibit increased 90-day readmissions, complications, or revisions compared with nonosteoporotic patients. A significant increase in the incidence of screw loosening was noted in the osteoporotic group with no differences observed in subsidence rates. On multivariable linear regression osteoporosis was independently associated with less improvement in visual analog scale (VAS) scores for back pain. CONCLUSIONS Osteoporosis predicts screw loosening and increased back pain. Clinicians should be advised of the importance of preoperative BMD optimization as part of their surgical planning and the utility of vertebral CT HU as a tool for risk stratification. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Rajkishen Narayanan
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhou Y, Höglund L, Samanta A, Procter P, Persson C. Hydroxyapatite particle shape affects screw attachment in cancellous bone when augmented with hydroxyapatite-containing hydrogels. J Mech Behav Biomed Mater 2024; 150:106241. [PMID: 37995601 DOI: 10.1016/j.jmbbm.2023.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Screw-bone construct failures are a true challenge in orthopaedic implant fixation, particularly in poor quality bone. Whilst augmentation with bone cement can improve the primary stability of screws, there are cements, e.g. PMMA, that may impede blood flow and nutrients and hamper bone remodelling. In this study, soft, non-setting biomaterials based on Hyalectin gels and hydroxyapatite (HA) particles with different morphological parameters were evaluated as potential augmentation materials, using a lapine ex vivo bone model. The pull-out force, stiffness, and work to fracture were considered in evaluating screw attachment. The pull-out force of constructs reinforced with Hyalectin containing irregularly shaped nano-HA and spherically shaped micro-HA particles were found to be significantly higher than the control group (no augmentation material). The pull-out stiffness increased for the micro-HA particles and the work to fracture increased for the irregular nano-HA particles. However, there were no significant augmentation effect found for the spherical shaped nano-HA particles. In conclusion, injectable Hyalectin gel loaded with hydroxyapatite particles was found to have a potentially positive effect on the primary stability of screws in trabecular bone, depending on the HA particle shape and size.
Collapse
Affiliation(s)
- Yijun Zhou
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| | - Lisa Höglund
- Division of Macromolecular Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Ayan Samanta
- Division of Macromolecular Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Philip Procter
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden.
| |
Collapse
|
5
|
Does Preoperative Bone Mineral Density Impact Fusion Success in Anterior Cervical Spine Surgery? A Prospective Cohort Study. World Neurosurg 2022; 164:e830-e834. [PMID: 35605943 DOI: 10.1016/j.wneu.2022.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The purpose of this study was to identify risk factors for pseudarthrosis in patients undergoing anterior cervical discectomy and fusion (ACDF) with a focus on the role of bone mineral density (BMD) on arthrodesis. METHODS We retrospectively reviewed a prospectively collected database of patients undergoing 1- to 4-level ACDF for degenerative indications between 2012 and 2018 at a single institution. All patients were required to have undergone a preoperative dual-energy x-ray absorptiometry (DEXA) scan. Fusion status was assessed on computed tomography (CT) scans obtained 1 year postoperatively. Patients were divided into subgroups based on fusion status and compared on the basis of demographic, BMD, and surgical variables to determine risk factors for pseudarthrosis. RESULTS We identified 79 patients for inclusion in this study. Fusion was achieved in 65 patients (82%), while 14 patients (18%) developed pseudarthrosis. The pseudarthrosis subgroup demonstrated significantly lower BMD than their counterparts who achieved successful fusion in both mean hip (-1.4 ± 1.2 vs. -0.2 ± 1.2, respectively; P = 0.002) and spine T-scores (-0.8 ± 1.8 vs. 0.6 ± 1.9, respectively; P = 0.02). The pseudarthrosis group had a substantially higher proportion of patients with osteopenia (57.1% vs. 20.0%) and osteoporosis (21.5% vs. 6.2%; P < 0.001) than the fusion group. Multivariate analysis demonstrated osteopenia (odds ratio [OR] 8.76, P = 0.04), osteoporosis (OR 9.97, P = 0.03), and low BMD (OR 11.01, P = 0.002) to be associated with an increased likelihood of developing pseudarthrosis. CONCLUSIONS The results of this study suggest that both osteopenia and osteoporosis are associated with increased rates of pseudarthrosis in patients undergoing elective ACDF.
Collapse
|
6
|
Yeni YN, Dix MR, Xiao A, Oravec DJ, Flynn MJ. Measuring the thickness of vertebral endplate and shell using digital tomosynthesis. Bone 2022; 157:116341. [PMID: 35092890 PMCID: PMC8858866 DOI: 10.1016/j.bone.2022.116341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/07/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
The vertebral endplate and cortical shell play an important structural role and contribute to the overall strength of the vertebral body, are at highest risk of initial failure, and are involved in degenerative disease of the spine. The ability to accurately measure the thickness of these structures is therefore important, even if difficult due to relatively low resolution clinical imaging. We posit that digital tomosynthesis (DTS) may be a suitable imaging modality for measurement of endplate and cortical shell thickness owing to the ability to reconstruct multiplanar images with good spatial resolution at low radiation dose. In this study, for 25 cadaveric L1 vertebrae, average and standard deviation of endplate and cortical shell thickness were measured using images from DTS and microcomputed tomography (μCT). For endplate thickness measurements, significant correlations between DTS and μCT were found for all variables when comparing thicknesses measured in both the overall endplate volume (R2 = 0.25-0.54) and when measurements were limited to a central range of coronal or sagittal slices (R2 = 0.24-0.62). When compared to reference values from the overall shell volume, DTS thickness measurements were generally nonsignificant. However, when measurement of cortical shell thickness was limited to a range of central slices, DTS outcomes were significantly correlated with reference values for both sagittal and coronal central regions (R2 = 0.21-0.49). DTS may therefore offer a means for measurement of endplate thickness and, within a limited sagittal or coronal measurement volume, for measurement of cortical shell thickness.
Collapse
Affiliation(s)
- Yener N Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America.
| | - Michael R Dix
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America; School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Angela Xiao
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| | - Daniel J Oravec
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| | - Michael J Flynn
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States of America
| |
Collapse
|
7
|
Liu JB, Zuo R, Zheng WJ, Li CQ, Zhang C, Zhou Y. The accuracy and effectiveness of automatic pedicle screw trajectory planning based on computer tomography values: an in vitro osteoporosis model study. BMC Musculoskelet Disord 2022; 23:165. [PMID: 35189892 PMCID: PMC8862578 DOI: 10.1186/s12891-022-05101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/08/2022] [Indexed: 09/25/2024] Open
Abstract
Background Pedicle screw placement in patients with osteoporosis is a serious clinical challenge. The bone mineral density (BMD) of the screw trajectory has been positively correlated with the screw pull-out force, while the computer tomography (CT) value has been linearly correlated with the BMD. The purpose of this study was to establish an in vitro osteoporosis model and verify the accuracy and effectiveness of automated pedicle screw planning software based on CT values in this model. Methods Ten vertebrae (L1-L5) of normal adult pigs were randomly divided into decalcification and control groups. In the decalcification group, the vertebral bodies were decalcified with Ethylenediaminetetraacetic acid (EDTA) to construct an in vitro osteoporosis model. In the decalcification group, automatic planning (AP) and conventional manual planning (MP) were used to plan the pedicle screw trajectory on the left and right sides of the pedicle, respectively, and MP was used on both sides of the control group. CT values of trajectories obtained by the two methods were measured and compared. Then, 3D-printed guide plates were designed to assist pedicle screw placement. Finally, the pull-out force of the trajectory obtained by the two methods was measured. Results After decalcification, the BMD of the vertebra decreased from − 0.03 ± 1.03 to − 3.03 ± 0.29 (P < 0.05). In the decalcification group, the MP trajectory CT value was 2167.28 ± 65.62 Hu, the AP trajectory CT value was 2723.96 ± 165.83 Hu, and the MP trajectory CT value in the control group was 2242.94 ± 25.80 Hu (P < 0.05). In the decalcified vertebrae, the screw pull-out force of the MP group was 48.6% lower than that of the control group (P < 0.05). The pull-out force of the AP trajectory was 44.7% higher than that of the MP trajectory (P < 0.05) and reached 97.4% of the MP trajectory in the control group (P > 0.05). Conclusion Automatic planning of the pedicle screw trajectory based on the CT value can obtain a higher screw pull-out force, which is a valuable new method of pedicle screw placement in osteoporotic vertebre. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05101-6.
Collapse
Affiliation(s)
- Jia Bin Liu
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Rui Zuo
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Wen Jie Zheng
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chang Qing Li
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chao Zhang
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China.
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Fracture fixation aims to provide stability and promote healing, but remains challenging in unstable and osteoporotic fractures with increased risk of construct failure and nonunion. The first part of this article reviews the clinical motivation behind finite element analysis of fracture fixation, its strengths and weaknesses, how models are developed and validated, and how outputs are typically interpreted. The second part reviews recent modeling studies of the femur and proximal humerus, areas with particular relevance to fragility fractures. RECENT FINDINGS There is some consensus in the literature around how certain modeling aspects are pragmatically formulated, including bone and implant geometries, meshing, material properties, interactions, and loads and boundary conditions. Studies most often focus on predicted implant stress, bone strain surrounding screws, or interfragmentary displacements. However, most models are not rigorously validated. With refined modeling methods, improved validation efforts, and large-scale systematic analyses, finite element analysis is poised to advance the understanding of fracture fixation failure, enable optimization of implant designs, and improve surgical guidance.
Collapse
Affiliation(s)
- Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA.
| | | | - Hwabok Wee
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA
| | - J Spence Reid
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, PA, USA
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
9
|
Block MS, Christensen BJ. Porous Bone Increases the Risk of Posterior Mandibular Implant Failure. J Oral Maxillofac Surg 2021; 79:1459-1466. [PMID: 33785292 DOI: 10.1016/j.joms.2021.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Our recent study indicated that patients with osteoporosis had an increased risk for early and late implant failure perhaps due to a large cancellous space. Therefore, the purpose of the article is to explore the relationship between the amount of cancellous space in an implant site and implant failure. PATIENTS AND METHODS The authors conducted a retrospective cohort study on patients who received dental implants in the posterior mandible at the senior author's practice from January 1, 2008 to October 1, 2019. The primary outcome variable was time to implant failure. The primary predictor variable was the amount of cancellous bone between the buccal and lingual cortices (cancellous space). Other study variables included demographic variables, medical history variables, and implant site measurements. Statistical analysis was performed using descriptive statistics, chi-squared tests, single variable and multiple Cox proportional hazard analyses. RESULTS The study cohort (n = 220) was composed of 62.3% women and the average age was 58.2 years. The median follow-up time was 3.5 years (range: 1-12). Five-year survival rates for patients with a cancellous space of <4 mm was 100%, with a cancellous space of 4-6 mm was 95.3%, with a cancellous space of 6-8 mm was 88.2%, and with a cancellous space of >8 mm was 64.1%. In the final multivariate Cox proportional hazard model adjusting for age, gender, smoking status, site and buccal cortex width, cancellous space remained significantly associated with time to implant failure (aHR 1.7 per millimeter change [1.4 - 2.2], P < .0001). CONCLUSIONS The width of the cancellous space and subsequent gap between implant and cortical bone should be considered when placing implants into the mandibular molar sites. When the patient presents for an implant in the mandibular molar region, if the cancellous space is large, the patient should be informed of the risk.
Collapse
Affiliation(s)
- Michael S Block
- Clinical Professor, Department of Oral & Maxillofacial Surgery, LSU School of Dentistry, Private Practice, Metairie, La.
| | - Brian J Christensen
- Assistant Professor, Department of Oral & Maxillofacial Surgery, LSU School of Dentistry, New Orleans, La
| |
Collapse
|
10
|
Song D, Shujaat S, Huang Y, Van Dessel J, Politis C, Lambrichts I, Jacobs R. Effect of platelet-rich and platelet-poor plasma on 3D bone-to-implant contact: a preclinical micro-CT study. Int J Implant Dent 2021; 7:11. [PMID: 33598799 PMCID: PMC7889772 DOI: 10.1186/s40729-021-00291-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bone-to-implant contact ratio (BIC%) plays a critical role in secondary stability of osseointegrated dental implants. The aim of this study was to identify the correlation of 2D/3D micro-CT images with histology as a gold standard for evaluating BIC% and to investigate the influence of the platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on 3D BIC% following delayed implant placement with delayed loading (DIP+DL). METHODS Nine beagle dogs were recruited. Following bilateral extraction of mandibular 3rd premolar, 4th premolar, and 1st molar, 54 screw-type titanium implants were inserted and randomly divided into one control and two test groups based on a split-mouth design. The control group involved DIP+DL (n = 18) and both test groups included DIP+DL with local application of PRP (n = 18) and PPP (n = 18). A BIC analysis was performed utilizing 2D histomorphometry and 2D/3D micro-CT. Following identification of correlation between histology and 2D/3D micro-CT images, a 3D micro-CT assessment of the 3D BIC% at three follow-up time-points (1, 3, and 6 months) was carried out for observing the influence of PRP and PPP on BIC. RESULTS The 2D micro-CT BIC% values revealed a strong positive correlation with histology (r = 0.98, p < 0.001) and a moderate correlation existed with 3D micro-CT (r = 0. 67, p = 0.005). BIC levels at 1 month and combined influence of PPP and PRP irrespective of time-points revealed significantly higher 3D BIC% compared to the control. However, a reduction in 3D BIC% was observed at the 3rd and 6th month. No significant difference was observed between both PRP and PPP. CONCLUSIONS Both 2D and 3D micro-CT demonstrated a potential to be utilized as a complimentary method for assessing BIC compared to the histological gold standard. Overall, both PRP and PPP significantly facilitated bone healing and osseointegration with a higher 3D BIC at follow-up. However, their influence was reduced as the observation period was increased.
Collapse
Affiliation(s)
- Dandan Song
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
- Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
| | - Sohaib Shujaat
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
- Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Yan Huang
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
- Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- West China College of Stomatology, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Sichuan University, Chengdu, China
| | - Jeroen Van Dessel
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
- Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Constantinus Politis
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
- Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
- Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Huntington LS, Mandaleson A, Hik F, Ek ETH, Ackland DC, Tham SKY. Measurement of Scaphoid Bone Microarchitecture: A Computed Tomography Imaging Study and Implications for Screw Placement. J Hand Surg Am 2020; 45:1185.e1-1185.e8. [PMID: 32723573 DOI: 10.1016/j.jhsa.2020.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE High bone density and quality is associated with improved screw fixation in fracture fixation. The objective of this study was to assess bone density and quality in the proximal and distal scaphoid to determine optimum sites for placement of 2 screws in scaphoid fracture fixation. METHODS Twenty-nine cadaveric human scaphoid specimens were harvested and scanned using micro-computed tomography. Bone density (bone volume fraction) and bone quality (relative bone surface area, trabecular number, and trabecular thickness) were evaluated in 4 quadrants within each of the proximal and distal scaphoid. RESULTS The proximal radial quadrant of the scaphoid had significantly greater bone volume than the distal ulnar (mean difference, 33.2%) and distal volar quadrants (mean difference, 32.3%). There was a significantly greater trabecular number in the proximal radial quadrant than in the distal ulnar (mean difference, 16.7%) and in the distal volar quadrants (mean difference, 15.9%) and between the proximal ulnar and the distal ulnar quadrants (mean difference, 12%). There was a significantly greater bone surface area in the proximal radial and distal radial quadrants than in the distal ulnar and distal volar quadrants. There were no significant differences in trabecular thickness between the 8 analyzed quadrants CONCLUSIONS: Although there are differences in bone volume, trabecular number, and bone surface area between the proximal pole of the scaphoid and that of the distal pole, there were no significant differences in the bone quality (trabecular thickness, trabecular number, and relative bone surface area) and density (bone volume fraction) between the 4 quadrants of the proximal or distal pole of the cadaveric scaphoids studied. CLINICAL RELEVANCE Insertion of 2 headless compression screws can be determined by ease of surgical access and ease of screw positioning and not by differences in bone quality or density of the proximal or distal scaphoid.
Collapse
Affiliation(s)
- Lachlan S Huntington
- Department of Biomedical Engineering, University of Melbourne, Parkville; Melbourne Medical School, University of Melbourne, Parkville
| | - Avanthi Mandaleson
- Division of Hand Surgery, Department of Orthopaedic Surgery, Monash University, Dandenong Hospital, Dandenong, Australia
| | - Freya Hik
- Department of Biomedical Engineering, University of Melbourne, Parkville
| | - Eugene T H Ek
- Division of Hand Surgery, Department of Orthopaedic Surgery, Monash University, Dandenong Hospital, Dandenong, Australia; Hand and Wrist Biomechanics Laboratory, O'Brien Institute, Fitzroy, Victoria
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville
| | - Stephen K Y Tham
- Division of Hand Surgery, Department of Orthopaedic Surgery, Monash University, Dandenong Hospital, Dandenong, Australia; Hand and Wrist Biomechanics Laboratory, O'Brien Institute, Fitzroy, Victoria.
| |
Collapse
|
12
|
Jain P, Khan MR. Selection of suitable pedicle screw for degenerated cortical and cancellous bone of human lumbar spine: A finite element study. Int J Artif Organs 2020; 44:361-366. [PMID: 33045876 DOI: 10.1177/0391398820964483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pedicular arthrodesis is the traditional procedure in terms of increase in the biomechanical stability with higher fixation rate. The current work aims to identify the effect of three spinal pedicle screws considering cortical and cancellous degeneracy condition. Lumbar section L2-L3 is utilized and various load and moment conditions were applied to depict the various biomechanical parameters for selection of suitable screw. Three dimensional model is considered in finite element analysis to identify the various responses of pedicle screw at bone screw juncture. Computed tomography (CT) images of a healthy male were considered to generate the finite element vertebral model. Generated intact model was further utilized to develop the other implanted models of degenerated cortical and cancellous bone models. The three fused instrumented models with different cortical and cancellous degeneracy conditions were analyzed in finite element analysis. The results were obtained as stress pattern at bone screw boundary and intervertebral disc stress. FE simulated results represents significant changes in the von Mises stress due to various load and moment conditions on degenerated bones during different body movement conditions. Results have shown that among all pedicle screws, the 6.0 mm diameter screw reflects very less stress values at the juncture. Multiple results on biomechanical aspects obtained during the FE study can be considered to design a new stabilization device and may be helpful to plan surgery of critical sections.
Collapse
Affiliation(s)
- Pushpdant Jain
- School of Mechanical Engineering, VIT Bhopal University, Madhya Pradesh, India
| | - Mohammed Rajik Khan
- Department of Industrial Design, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to critically evaluate the current literature regarding implant fixation in osteoporotic bone. RECENT FINDINGS Clinical studies have not only demonstrated the growing prevalence of osteoporosis in patients undergoing total joint replacement (TJR) but may also indicate a significant gap in screening and treatment of this comorbidity. Osteoporosis negatively impacts bone in multiple ways beyond the mere loss of bone mass, including compromising skeletal regenerative capacity, architectural deterioration, and bone matrix quality, all of which could diminish implant fixation. Recent findings both in preclinical animal models and in clinical studies indicate encouraging results for the use of osteoporosis drugs to promote implant fixation. Implant fixation in osteoporotic bone presents an increasing clinical challenge that may be benefitted by increased screening and usage of osteoporosis drugs.
Collapse
Affiliation(s)
- Kyle D Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amarjit S Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Ko FC, Meagher MJ, Mashiatulla M, Ross RD, Virdi AS, Sumner DR. Implant surface alters compartmental-specific contributions to fixation strength in rats. J Orthop Res 2020; 38:1208-1215. [PMID: 31821588 PMCID: PMC7225079 DOI: 10.1002/jor.24561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/15/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Mechanical fixation of the implant to host bone is an important contributor to orthopedic implant survivorship. The relative importance of bone-implant contact, trabecular bone architecture, and cortical bone geometry to implant fixation strength has never been directly tested, especially in the settings of differential implant surface properties. Thus, using a rat model where titanium rods were placed into the intramedullary canal of the distal femur, we determined the relative contribution of bone-implant contact and peri-implant bone architecture to the fixation strength in implants with different surface roughness: highly polished and smooth (as-received) and dual acid-etched (DAE) implants. Using a training set that maximized variance in implant fixation strength, we initially examined correlation between implant fixation strength and outcome parameters from microcomputed tomography and found that osseointegration volume per total volume (OV/TV), trabecular bone volume per total volume (BV/TV), and cortical thickness (Ct.Th) were the single best compartment-specific predictors of fixation strength. We defined separate regression models to predict implant fixation strength for as-received and DAE implants. When the training set models were applied to independent validation sets, we found strong correlations between predicted and experimentally measured implant fixation strength, with r2 = .843 in as received and r2 = .825 in DAE implants. Interestingly, for as-received implants, OV/TV explained more of the total variance in implant fixation strength than the other variables, whereas in DAE implants, Ct.Th had the most explanatory power, suggesting that surface topography of implants affects which bone compartment is most important in providing implant fixation strength.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Matthew J. Meagher
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Maleeha Mashiatulla
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Amarjit S. Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - D. Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
15
|
Li Z, Betts D, Kuhn G, Schirmer M, Müller R, Ruffoni D. Mechanical regulation of bone formation and resorption around implants in a mouse model of osteopenic bone. J R Soc Interface 2020; 16:20180667. [PMID: 30890053 DOI: 10.1098/rsif.2018.0667] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although mechanical stimulation is considered a promising approach to accelerate implant integration, our understanding of load-driven bone formation and resorption around implants is still limited. This lack of knowledge may delay the development of effective loading protocols to prevent implant loosening, especially in osteoporosis. In healthy bone, formation and resorption are mechanoregulated processes. In the intricate context of peri-implant bone regeneration, it is not clear whether bone (re)modelling can still be load-driven. Here, we investigated the mechanical control of peri-implant bone (re)modelling with a well-controlled mechanobiological experiment. We applied cyclic mechanical loading after implant insertion in tail vertebrae of oestrogen depleted mice and we monitored peri-implant bone response by in vivo micro-CT. Experimental data were combined with micro-finite element simulations to estimate local tissue strains in (re)modelling locations. We demonstrated that a substantial increase in bone mass around the implant could be obtained by loading the entire bone. This augmentation could be attributed to a large reduction in bone resorption rather than to an increase in bone formation. We also showed that following implantation, mechanical regulation of bone (re)modelling was transiently lost. Our findings should help to clarify the role of mechanical stimulation on the maintenance of peri-implant bone mass.
Collapse
Affiliation(s)
- Zihui Li
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | - Duncan Betts
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | - Gisela Kuhn
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | | | - Ralph Müller
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | - Davide Ruffoni
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland.,3 Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège , Liège , Belgium
| |
Collapse
|
16
|
Carlson BC, Robinson WA, Wanderman NR, Sebastian AS, Nassr A, Freedman BA, Anderson PA. A Review and Clinical Perspective of the Impact of Osteoporosis on the Spine. Geriatr Orthop Surg Rehabil 2019; 10:2151459319861591. [PMID: 31360592 PMCID: PMC6637832 DOI: 10.1177/2151459319861591] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Osteopenia and osteoporosis are common conditions in the United States. The health consequences of low bone density can be dire, from poor surgical outcomes to increased mortality rates following a fracture. Significance This article highlights the impact low bone density has on spine health in terms of vertebral fragility fractures and its adverse effects on elective spine surgery. It also reviews the clinical importance of bone health assessment and optimization. Results Vertebral fractures are the most common fragility fractures with significant consequences related to patient morbidity and mortality. Additionally, a vertebral fracture is the best predictor of a subsequent fracture. These fractures constitute sentinel events in osteoporosis that require further evaluation and treatment of the patient's underlying bone disease. In addition to fractures, osteopenia and osteoporosis have deleterious effects on elective spine surgery from screw pullout to fusion rates. Adequate evaluation and treatment of a patient's underlying bone disease in these situations have been shown to improve patient outcomes. Conclusion With an increased understanding of the prevalence of low bone mass and its consequences as well an understanding of how to identify these patients and appropriately intervene, spine surgeons can effectively decrease the rates of adverse health outcomes related to low bone mass.
Collapse
Affiliation(s)
- Bayard C Carlson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Ahmad Nassr
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Brett A Freedman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Paul A Anderson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Rittel D, Dorogoy A, Shemtov-Yona K. Modeling the effect of osseointegration on dental implant pullout and torque removal tests. Clin Implant Dent Relat Res 2018; 20:683-691. [PMID: 30051951 DOI: 10.1111/cid.12645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Osseointegration of dental implants is a key factor for their success. It can be assessed either by destructive (eg, pullout or torque extraction), or nondestructive methods (eg, resonant frequency analysis). However, as of today there is a scarcity of models that can relate the outcome of destructive tests to the level of osseointegration. PURPOSE To study various percentages of bone to implant bonding (tie) using finite element simulations. While evolutions of the bone mechanical properties are not explicitly taken into account, emphasis is put on the 3-dimensional variable extent of the bone-implant bonding, its statistical distribution, and its influence on the measurable extraction and torque loads, seeking to obtain a quantitative relationship. MATERIALS AND METHODS We performed numerical simulations of randomly tied implants and calculated the evolution of the pullout force as well as that of the extraction torque. CONCLUSION Within simplifying assumptions for the osseointegration represented by a tie (as opposed to frictional) constraint, the results of this work indicate that the torque test is more discriminant than the extraction one, while both cannot really discriminate osseointegration levels below a relative variation of 20%.
Collapse
Affiliation(s)
- Daniel Rittel
- Technion, Faculty of Mechanical Engineering, 32000, Haifa, Israel
| | - Avraham Dorogoy
- Technion, Faculty of Mechanical Engineering, 32000, Haifa, Israel
| | | |
Collapse
|
18
|
Elhaddad M, Zander N, Bog T, Kudela L, Kollmannsberger S, Kirschke J, Baum T, Ruess M, Rank E. Multi-level hp-finite cell method for embedded interface problems with application in biomechanics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2951. [PMID: 29265715 DOI: 10.1002/cnm.2951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/21/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This work presents a numerical discretization technique for solving 3-dimensional material interface problems involving complex geometry without conforming mesh generation. The finite cell method (FCM), which is a high-order fictitious domain approach, is used for the numerical approximation of the solution without a boundary-conforming mesh. Weak discontinuities at material interfaces are resolved by using separate FCM meshes for each material sub-domain and weakly enforcing the interface conditions between the different meshes. Additionally, a recently developed hierarchical hp-refinement scheme is used to locally refine the FCM meshes to resolve singularities and local solution features at the interfaces. Thereby, higher convergence rates are achievable for nonsmooth problems. A series of numerical experiments with 2- and 3-dimensional benchmark problems is presented, showing that the proposed hp-refinement scheme in conjunction with the weak enforcement of the interface conditions leads to a significant improvement of the convergence rates, even in the presence of singularities. Finally, the proposed technique is applied to simulate a vertebra-implant model. The application showcases the method's potential as an accurate simulation tool for biomechanical problems involving complex geometry, and it demonstrates its flexibility in dealing with different types of geometric description.
Collapse
Affiliation(s)
- Mohamed Elhaddad
- Chair for Computation in Engineering, Technische Universität München, Arcisstrasse 21,, 80333 München, Germany
| | - Nils Zander
- Chair for Computation in Engineering, Technische Universität München, Arcisstrasse 21,, 80333 München, Germany
| | - Tino Bog
- Chair for Computation in Engineering, Technische Universität München, Arcisstrasse 21,, 80333 München, Germany
| | - László Kudela
- Chair for Computation in Engineering, Technische Universität München, Arcisstrasse 21,, 80333 München, Germany
| | - Stefan Kollmannsberger
- Chair for Computation in Engineering, Technische Universität München, Arcisstrasse 21,, 80333 München, Germany
| | - Jan Kirschke
- Abteilung für Neuroradiologie, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Strasse 22,, 81675 Munich, Germany
| | - Thomas Baum
- Abteilung für Neuroradiologie, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Strasse 22,, 81675 Munich, Germany
| | - Martin Ruess
- School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue,, Glasgow G12 8LT, United Kingdom
| | - Ernst Rank
- Chair for Computation in Engineering, Technische Universität München, Arcisstrasse 21,, 80333 München, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a,, 85748 Garching, Germany
| |
Collapse
|
19
|
Li Z, Müller R, Ruffoni D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res 2018; 36:584-593. [PMID: 28975660 DOI: 10.1002/jor.23758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Anchorage of orthopedic implants depends on the interfacial bonding between the implant and the host bone as well as on the mass and microstructure of peri-implant bone, with all these factors being continuously regulated by the biological process of bone (re)modeling. In osteoporotic bone, implant integration may be jeopardized not only by lower peri-implant bone quality but also by reduced intrinsic regeneration ability. The first aim of this review is to provide a critical overview of the influence of osteoporosis on bone regeneration post-implantation. Mechanical stimulation can trigger bone formation and inhibit bone resorption; thus, judicious administration of mechanical loading can be used as an effective non-pharmacological treatment to enhance implant anchorage. Our second aim is to report recent achievements on the application of external mechanical stimulation to improve the quantity of peri-implant bone. The review focuses on peri-implant bone changes in osteoporotic conditions and following mechanical loading, prevalently using small animals and in vivo monitoring approaches. We intend to demonstrate the necessity to reveal new biological information on peri-implant bone mechanobiology to better target implant anchorage and fracture fixation in osteoporotic conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:584-593, 2018.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospaceand Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Biomechanical Study of Fused Lumbar Spine Considering Bone Degeneracy Using FEA. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2848-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Li Z, Kuhn G, Schirmer M, Müller R, Ruffoni D. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography. PLoS One 2017; 12:e0184835. [PMID: 28910363 PMCID: PMC5599039 DOI: 10.1371/journal.pone.0184835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Mechanics of Biological and Bioinspired Materials Research Unit, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
22
|
Wen XX, Yu HL, Yan YB, Zong CL, Ding HJ, Ma XY, Wang TS, Lei W. Influence of the shape of the micro-finite element model on the mechanical properties calculated from micro-finite element analysis. Exp Ther Med 2017; 14:1744-1748. [PMID: 28810645 DOI: 10.3892/etm.2017.4709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
Assessing the biomechanical properties of trabecular bone is of major biological and clinical significance for the research of bone diseases, fractures and their treatments. Micro-finite element (µFE) models are becoming increasingly popular for investigating the biomechanical properties of trabecular bone. The shapes of µFE models typically include cube and cylinder. Whether there are differences between cubic and cylindrical µFE models has not yet been studied. In the present study, cubic and cylindrical µFE models of human vertebral trabecular bone were constructed. A 1% strain was prescribed to the model along the superior-inferior direction. E values were calculated from these models, and paired t-tests were performed to determine whether these were any differences between E values obtained from cubic and cylindrical models. The results demonstrated that there were no statistically significant differences in the E values between cubic and cylindrical models, and there were no significant differences in Von Mises stress distributions between the two models. These findings indicated that, to construct µFE models of vertebral trabecular bone, cubic or cylindrical models were both feasible. Choosing between the cubic or cylindrical µFE model is dependent upon the specific study design.
Collapse
Affiliation(s)
- Xin-Xin Wen
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Hai-Long Yu
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of PLA, Rescue Center of Severe Wound and Trauma of PLA, Shenyang, Liaoning 110016, P.R. China
| | - Ya-Bo Yan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chun-Lin Zong
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hai-Jiao Ding
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xiang-Yu Ma
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Tian-Sheng Wang
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, Liaoning 110042, P.R. China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
23
|
Nguyen VH, Rosi G, Naili S, Michel A, Raffa ML, Bosc R, Meningaud JP, Chappard C, Takano N, Haiat G. Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study. Comput Methods Biomech Biomed Engin 2017; 20:1312-1325. [PMID: 28768422 DOI: 10.1080/10255842.2017.1357703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the biomechanical behavior of the acetabular cup (AC) implant is determinant for the surgical success, it remains difficult to be assessed due to the multiscale and anisotropic nature of bone tissue. The aim of the present study was to investigate the influence of the anisotropic properties of peri-implant trabecular bone tissue on the biomechanical behavior of the AC implant at the macroscopic scale. Thirteen bovine trabecular bone samples were imaged using micro-computed tomography (μCT) with a resolution of 18 μm. The anisotropic biomechanical properties of each sample were determined at the scale of the centimeter based on a dedicated method using asymptotic homogenization. The material properties obtained with this multiscale approach were used as input data in a 3D finite element model to simulate the macroscopic mechanical behavior of the AC implant under different loading conditions. The largest stress and strain magnitudes were found around the equatorial rim and in the polar area of the AC implant. All macroscopic stiffness quantities were significantly correlated (R2 > 0.85, p < 6.5 e-6) with BV/TV (bone volume/total volume). Moreover, the maximum value of the von Mises stress field was significantly correlated with BV/TV (R2 > 0.61, p < 1.6 e-3) and was always found at the bone-implant interface. However, the mean value of the microscopic stress (at the scale of the trabeculae) decrease as a function of BV/TV for vertical and torsional loading and do not depend on BV/TV for horizontal loading. These results highlight the importance of the anisotropic properties of bone tissue.
Collapse
Affiliation(s)
- Vu-Hieu Nguyen
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Giuseppe Rosi
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Salah Naili
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Adrien Michel
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Maria-Letizia Raffa
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Romain Bosc
- b INSERM U955 , Université Paris-Est , Créteil , France
| | | | - Christine Chappard
- c Laboratoire Bioingénierie Biomécanique Ostéo-Articulaires, UMR CNRS 7052 , Université Paris Diderot , Paris , France
| | - Naoki Takano
- d Faculty of Science and Engineering, Department of Mechanical Engineering , Keio University , Yokohama , Japan
| | - Guillaume Haiat
- e Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208 , Créteil , France.,f École de technologie supérieure , Montreal , Canada.,g Research Center, Hôpital du Sacré-Cœur de Montréal , Montreal , Canada
| |
Collapse
|
24
|
Hsu JT, Shen YW, Kuo CW, Wang RT, Fuh LJ, Huang HL. Impacts of 3D bone-to- implant contact and implant diameter on primary stability of dental implant. J Formos Med Assoc 2017; 116:582-590. [PMID: 28551316 DOI: 10.1016/j.jfma.2017.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND/PURPOSE This study investigated the effects of three three-dimensional (3D) bone-to-implant contact (BIC) parameters-potential BIC area (pBICA), BIC area (BICA), and 3D BIC percentage (3D BIC%; defined as BICA divided by pBICA)-in relation to the implant diameter on primary implant stability, as well as their correlations were also evaluated. METHODS Dental implants with diameters of 3.75, 4, 5, and 6 mm and artificial bone specimens were scanned by microcomputed tomography to construct 3D models for calculating pBICA, BICA, and 3D BIC%. Indexes of the primary implant stability including the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) were measured after implants with various diameters were placed into bone specimens. The Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni adjustment, and Spearman correlations were all performed as statistical and correlation analyses. RESULTS The implant diameter significantly influenced pBICA and BICA, but not 3D BIC%. ITV and PTV were more sensitive to implant diameter than was ISQ. The coefficients of determination were high (>0.92) for the correlations between pBICA (or BICA) and indexes of the primary implant stability. CONCLUSION This study revealed how the implant diameter and the three-dimensional (3D) BIC influence the primary stabilities of dental implant. ITV and PTV were more sensitively influenced by the implant diameter than ISQ. The pBICA and BICA seem to be more important than 3D BIC % for using wider implant in treatment plan, since those two parameters are highly predictive of variations in the primary stability of dental implant.
Collapse
Affiliation(s)
- Jui-Ting Hsu
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Chih-Wei Kuo
- Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science & Technology, Taoyuan City, Taiwan; Department of Electro-Optical Engineering, National United University, Miaoli County, Taiwan
| | - Ruei-Teng Wang
- Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science & Technology, Taoyuan City, Taiwan
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung, Taiwan.
| | - Heng-Li Huang
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
25
|
Jariwala SH, Wee H, Roush EP, Whitcomb TL, Murter C, Kozlansky G, Lakhtakia A, Kunselman AR, Donahue HJ, Armstrong AD, Lewis GS. Time course of peri-implant bone regeneration around loaded and unloaded implants in a rat model. J Orthop Res 2017; 35:997-1006. [PMID: 27381807 PMCID: PMC5800527 DOI: 10.1002/jor.23360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 or 100 μm displacement, 1 Hz, 60 s) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0% and 37.2 ± 10.0%, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119% increase in pull-out strength was measured in the loaded implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:997-1006, 2017.
Collapse
Affiliation(s)
- Shailly H. Jariwala
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Hwabok Wee
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Evan P. Roush
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Tiffany L. Whitcomb
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Christopher Murter
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Gery Kozlansky
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Akhlesh Lakhtakia
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812
| | - Allen R. Kunselman
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Henry J. Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - April D. Armstrong
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Gregory S. Lewis
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
- Author to whom all correspondence should be addressed: Gregory S. Lewis, Ph.D*, Pennsylvania State University College of Medicine, 500 University Drive, Mailbox – H089, Hershey, PA-17033, Phone: (717) 531-5244, Fax no.: (717) 531-7583,
| |
Collapse
|
26
|
Wong AL, Meals CG, Ruff CB. Computed tomographic analysis of the internal structure of the metacarpals and its implications for hand use, pathology, and surgical intervention. Anat Sci Int 2017; 93:231-237. [PMID: 28341969 DOI: 10.1007/s12565-017-0400-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
The variation of bone structure and biomechanics between the metacarpals is not well characterized. It was hypothesized that their structure would reflect their common patterns of use (i.e., patterns of hand grip), specifically that trabecular bone density would be greater on the volar aspect of all metacarpal bases, that this would be most pronounced in the thumb, and that the thumb diaphysis would have the greatest bending strength. Cross-sections at basal and mid-diaphyseal locations of 50 metacarpals from 10 human hands were obtained by peripheral quantitative computed tomography. The volar and dorsal trabecular densities of each base were measured and characterized using the volar/dorsal density ratio. The polar stress-strain index (SSIp), a surrogate measure of torsional/bending strength, was measured for each diaphysis and standardized for bone length and mass. Comparisons were made using mixed-model analyses of variance (ANOVAs) and post hoc tests. Volar/dorsal trabecular density ratios showed even distribution in all metacarpal bases except for the thumb, which showed greater values on the volar aspect. The thumb, second, and third metacarpals all had high bending strength (SSIp), but the thumb's SSIp relative to its length and trabecular mass was much higher than those of the other metacarpals. Trabecular density of the metacarpal bases was evenly distributed except in the thumb, which also showed higher bending strength relative to its length and mass. Understanding of how these indicators of strength differ across metacarpals may improve both fracture diagnosis and treatment and lays the groundwork for investigating changes with age, hand dominance, and occupation.
Collapse
Affiliation(s)
- Alison L Wong
- Center for Bioengineering Innovation and Design, Johns Hopkins University, 3400 N. Charles Street, Clark Hall, Suite 200, Baltimore, MD, 21218, USA. .,Division of Plastic and Reconstructive Surgery, Dalhousie University, Room 4714 Halifax Infirmary Site, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada.
| | - Clifton G Meals
- The Curtis National Hand Center, MedStar Union Memorial Hospital, 3333 North Calvert Street, Baltimore, MD, 21218, USA
| | - Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Room 302, Baltimore, MD, 21205, USA
| |
Collapse
|
27
|
Liu H, Li W, Liu C, Tan J, Wang H, Hai B, Cai H, Leng HJ, Liu ZJ, Song CL. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti
6
Al
4
V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication 2016; 8:045012. [DOI: 10.1088/1758-5090/8/4/045012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Wen XX, Xu C, Zong CL, Feng YF, Ma XY, Wang FQ, Yan YB, Lei W. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis. J Mech Behav Biomed Mater 2016; 60:468-475. [PMID: 26999702 DOI: 10.1016/j.jmbbm.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/24/2023]
Abstract
Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E.
Collapse
Affiliation(s)
- Xin-Xin Wen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Chao Xu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Chun-Lin Zong
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ya-Fei Feng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Xiang-Yu Ma
- Department of Orthopedics, 463 Hospital of PLA, Shenyang, China
| | - Fa-Qi Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China
| | - Ya-Bo Yan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China.
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi׳an, Shaanxi 710032, China.
| |
Collapse
|
29
|
Han J, Sun Y, Wang C. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis. J Prosthodont 2016; 26:549-558. [PMID: 26799928 DOI: 10.1111/jopr.12434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. MATERIALS AND METHODS Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. RESULTS The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. CONCLUSIONS Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption.
Collapse
Affiliation(s)
- Jingyun Han
- Key Lab for Biomechanics and Mechanobiology of Education Ministry, School of Biological and Medical Engineering, Beihang University, Beijing, China
| | - Yuchun Sun
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Chao Wang
- Key Lab for Biomechanics and Mechanobiology of Education Ministry, School of Biological and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
30
|
Li Z, Kuhn G, von Salis-Soglio M, Cooke SJ, Schirmer M, Müller R, Ruffoni D. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone. Bone 2015; 81:468-477. [PMID: 26303288 DOI: 10.1016/j.bone.2015.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/01/2022]
Abstract
The mechanical integrity of the bone-implant system is maintained by the process of bone remodeling. Specifically, the interplay between bone resorption and bone formation is of paramount importance to fully understand the net changes in bone structure occurring in the peri-implant bone, which are eventually responsible for the mechanical stability of the bone-implant system. Using time-lapsed in vivo micro-computed tomography combined with new composite material implants, we were able to characterize the spatio-temporal changes of bone architecture and bone remodeling following implantation in living mice. After insertion, implant stability was attained by a quick and substantial thickening of the cortical shell which counteracted the observed loss of trabecular bone, probably due to the disruption of the trabecular network. Within the trabecular compartment, the rate of bone formation close to the implant was transiently higher than far from the implant mainly due to an increased mineral apposition rate which indicated a higher osteoblastic activity. Conversely, in cortical bone, the higher rate of bone formation close to the implant compared to far away was mostly related to the recruitment of new osteoblasts as indicated by a prevailing mineralizing surface. The behavior of bone resorption also showed dissimilarities between trabecular and cortical bone. In the former, the rate of bone resorption was higher in the peri-implant region and remained elevated during the entire monitoring period. In the latter, bone resorption rate had a bigger value away from the implant and decreased with time. Our approach may help to tune the development of smart implants that can attain a better long-term stability by a local and targeted manipulation of the remodeling process within the cortical and the trabecular compartments and, particularly, in bone of poor health.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Aerospace and Mechanical Engineering, University of Liege, Liege, Belgium.
| |
Collapse
|
31
|
Maurer MM, Weinkamer R, Müller R, Ruffoni D. Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study. Biomech Model Mechanobiol 2014; 14:795-805. [PMID: 25501464 DOI: 10.1007/s10237-014-0637-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022]
Abstract
Although it is beyond doubt that mechanical stimulation is crucial to maintain bone mass, its role in preserving bone architecture is much less clear. Commonly, it is assumed that mechanics helps to conserve the trabecular network since an "accidental" thinning of a trabecula due to a resorption event would result in a local increase of load, thereby activating bone deposition there. However, considering that the thin trabecula is part of a network, it is not evident that load concentration happens locally on the weakened trabecula. The aim of this work was to clarify whether mechanical load has a protective role for preserving the trabecular network during remodeling. Trabecular bone is made dynamic by a remodeling algorithm, which results in a thickening/thinning of trabeculae with high/low strain energy density. Our simulations show that larger deviations from a regular cubic lattice result in a greater loss of trabeculae. Around lost trabeculae, the remaining trabeculae are on average thinner. More generally, thin trabeculae are more likely to have thin trabeculae in their neighborhood. The plausible consideration that a thin trabecula concentrates a higher amount of strain energy within itself is therefore only true when considering a single isolated trabecula. Mechano-regulated remodeling within a network-like architecture leads to local concentrations of thin trabeculae.
Collapse
|
32
|
Modeling microdamage behavior of cortical bone. Biomech Model Mechanobiol 2014; 13:1227-42. [PMID: 24622917 DOI: 10.1007/s10237-014-0568-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Bone is a complex material which exhibits several hierarchical levels of structural organization. At the submicron-scale, the local tissue porosity gives rise to discontinuities in the bone matrix which have been shown to influence damage behavior. Computational tools to model the damage behavior of bone at different length scales are mostly based on finite element (FE) analysis, with a range of algorithms developed for this purpose. Although the local mechanical behavior of bone tissue is influenced by microstructural features such as bone canals and osteocyte lacunae, they are often not considered in FE damage models due to the high computational cost required to simulate across several length scales, i.e., from the loads applied at the organ level down to the stresses and strains around bone canals and osteocyte lacunae. Hence, the aim of the current study was twofold: First, a multilevel FE framework was developed to compute, starting from the loads applied at the whole bone scale, the local mechanical forces acting at the micrometer and submicrometer level. Second, three simple microdamage simulation procedures based on element removal were developed and applied to bone samples at the submicrometer-scale, where cortical microporosity is included. The present microdamage algorithm produced a qualitatively analogous behavior to previous experimental tests based on stepwise mechanical compression combined with in situ synchrotron radiation computed tomography. Our results demonstrate the feasibility of simulating microdamage at a physiologically relevant scale using an image-based meshing technique and multilevel FE analysis; this allows relating microdamage behavior to intracortical bone microstructure.
Collapse
|
33
|
Ross RD, Hamilton JL, Wilson BM, Sumner DR, Virdi AS. Pharmacologic augmentation of implant fixation in osteopenic bone. Curr Osteoporos Rep 2014; 12:55-64. [PMID: 24293098 DOI: 10.1007/s11914-013-0182-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis presents a challenge for successful implant fixation due to an impaired healing response. Preclinical studies have consistently reported reduced osseointegration capability in trabecular bone. Although clinical studies of implant success in dentistry have not found a negative effect due to osteoporosis, low bone mass is a significant risk factor for implant migration in orthopedics. Pharmacologic treatment options that limit bone resorption or upregulate formation have been studied preclinically. While, both treatment options improve implant fixation, direct comparisons to-date have found anti-catabolic more effective than anabolic treatments for establishing implant fixation, but combination approaches are better than either treatment alone. Clinically, anti-catabolic treatments, particularly bisphosphonates have been shown to increase the longevity of implants, while limited clinical evidence on the effects of anabolic treatment exists. Preclinical experiments are needed to determine the effects of osteoporosis and subsequent treatment on the long-term maintenance of fixation and recovery after bone loss.
Collapse
Affiliation(s)
- R D Ross
- Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, Suite # AcFc 507, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
34
|
Tsouknidas A, Maliaris G, Savvakis S, Michailidis N. Anisotropic post-yield response of cancellous bone simulated by stress–strain curves of bulk equivalent structures. Comput Methods Biomech Biomed Engin 2013; 18:839-46. [DOI: 10.1080/10255842.2013.849342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Ruffoni D, Kohler T, Voide R, Wirth AJ, Donahue LR, Müller R, van Lenthe GH. High-throughput quantification of the mechanical competence of murine femora--a highly automated approach for large-scale genetic studies. Bone 2013; 55:216-21. [PMID: 23486181 DOI: 10.1016/j.bone.2013.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/25/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Animal models are widely used to gain insight into the role of genetics on bone structure and function. One of the main strategies to map the genes regulating specific traits is called quantitative trait loci (QTL) analysis, which generally requires a very large number of animals (often more than 1000) to reach statistical significance. QTL analysis for mechanical traits has been mainly based on experimental mechanical testing, which, in view of the large number of animals, is time consuming. Hence, the goal of the present work was to introduce an automated method for large-scale high-throughput quantification of the mechanical properties of murine femora. Specifically, our aims were, first, to develop and validate an automated method to quantify murine femoral bone stiffness. Second, to test its high-throughput capabilities on murine femora from a large genetic study, more specifically, femora from two growth hormone (GH) deficient inbred strains of mice (B6-lit/lit and C3.B6-lit/lit) and their first (F1) and second (F2) filial offsprings. Automated routines were developed to convert micro-computed tomography (micro-CT) images of femora into micro-finite element (micro-FE) models. The method was experimentally validated on femora from C57BL/6J and C3H/HeJ mice: for both inbred strains the micro-FE models closely matched the experimentally measured bone stiffness when using a single tissue modulus of 13.06 GPa. The mechanical analysis of the entire dataset (n=1990) took approximately 44 CPU hours on a supercomputer. In conclusion, our approach, in combination with QTL analysis could help to locate genes directly involved in controlling bone mechanical competence.
Collapse
Affiliation(s)
- D Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Eroglu M, Serhan Er M, Altinel L, Cagri Kose K. Comment on “Injectable calcium phosphate cement for augmentation around cancellous bone screws. In vivo biomechanical studies” [Journal of Biomechanics vol. 45 (7) (2012) pp. 1156–1160.]. J Biomech 2013; 46:633-4. [DOI: 10.1016/j.jbiomech.2012.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 11/26/2022]
|