1
|
Polgár TF, Spisák K, Kádár Z, Alodah N, Szebeni GJ, Klein K, Patai R, Siklós L, Nógrádi B. Photobleaching alters the morphometric analysis of fluorescently labeled neurons and microglial cells. Pathol Oncol Res 2025; 31:1612087. [PMID: 40255652 PMCID: PMC12006003 DOI: 10.3389/pore.2025.1612087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/22/2025]
Abstract
Photobleaching of immunofluorescence signal is a well-known phenomenon, however, its impact on derived parameters characterizing number and shape of different cell types in tissue sections is less understood. Our aim was to determine whether the duration of illumination and the type of fluorophore (Alexa Fluor 546 (A546), and Alexa Fluor 488 Plus (A488)) can influence the acquired morphometric parameters of cells in the nervous system. Immunofluorescent staining of microglia and neurons was performed on mouse spinal cord sections. Mean color intensity in a field of view, number of detectable neuronal cell profiles, partial coverage of microglial profiles, and fractal geometrical parameters were determined. All measurements were made using epifluorescence microscopy with identical acquisition parameters. Most of the measured parameters suffered significant alternation after 30-60 s of illumination. The data-altering effect of photobleaching was most prominent in the case of mean fluorescent intensity. Thus, while immunofluorescent staining is useful for co-localizing different groups of cells, cell-specific quantitative morphological measurements require photostable staining. Possibility of the combination of these methods on the same section in order to achieve multi-channel localization without photobleaching is exemplified.
Collapse
Affiliation(s)
- Tamás F. Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Krisztina Spisák
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zalán Kádár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Nora Alodah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Kata Klein
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Oguchi S, Sakamoto T, Hoshi K, Hikita A. Quantitative analyses of matrices, osteoblasts, and osteoclasts during bone remodeling using an in vitro system. J Bone Miner Metab 2023; 41:3-16. [PMID: 36344637 DOI: 10.1007/s00774-022-01381-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Bone remodeling plays a central role in the maintenance of bone homeostasis. Our group has established an in vitro system by which the cellular events during bone remodeling can be observed longitudinally. This study used this system to quantitatively analyze osteoblasts, osteoclasts, and matrices to elucidate their temporal changes and correlations. MATERIALS AND METHODS Osteoblasts from EGFP mice were cultured to form calcified nodules, followed by co-culture with bone marrow macrophages from Tnfrsf11aCre/+ x Ai14 mice for 3 weeks (resorption phase). Then cells were cultured with osteoblast differentiation medium for 3 weeks (formation phase). The same sites were observed weekly using 2-photon microscopy. Matrices were detected using second harmonic generation. Parameters related to matrices, osteoblasts, and osteoclasts were quantified and statistically analyzed. RESULTS Resorption and replenishment of the matrix were observed at the same sites by 2 photon microscopy. Gross quantification revealed that matrix and osteoblast parameters decreased in the resorption phase and increased in the formation phase, while osteoclast parameters showed the opposite pattern. When one field of view was divided into 16 regions of interest (ROIs) and correlations between parameters were analyzed in each ROI, decreased and increased matrix volumes were moderately correlated. Parameters of matrices and osteoblasts, and those of matrices and osteoclasts exhibited moderate correlations, while those of osteoblasts and osteoclasts were only weakly correlated. CONCLUSION Several correlations between cells and matrix during remodeling were demonstrated quantitatively. This system may be a powerful tool for the research of bone remodeling.
Collapse
Affiliation(s)
- Shuya Oguchi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
- Department of Oral‑Maxillofacial Surgery, and Orthodontics, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan.
| |
Collapse
|
3
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
4
|
Xue B, Wen X, Kuwar R, Sun D, Zhang N. Age-dependent viscoelastic characterization of rat brain cortex. BRAIN MULTIPHYSICS 2022; 3. [DOI: 10.1016/j.brain.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
5
|
Osumi R, Wang Z, Ishihara Y, Odagaki N, Iimura T, Kamioka H. Changes in the intra- and peri-cellular sclerostin distribution in lacuno-canalicular system induced by mechanical unloading. J Bone Miner Metab 2021; 39:148-159. [PMID: 32844318 DOI: 10.1007/s00774-020-01135-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mechanical stimuli regulate Sclerostin (Scl), a negative regulator of bone formation, expression in osteocytes. However, the detailed Scl distribution in osteocytes in response to mechanical unloading remains unclear. MATERIALS AND METHODS Twelve-week-old male rats were used. The sciatic and femoral nerves on the right side were excised as mechanical unloading treatment. A sham operation was performed on the left side. One week after neurotrauma, the bone density of the femora was evaluated by peripheral quantitative computed tomography, and immunofluorescence was performed in coronal sections of the femoral diaphysis. The mean fluorescence intensity and fluorescent profile of Scl from the marrow to the periosteal side were analyzed to estimate the Scl expression and determine to which side (marrow or periosteal) the Scl prefers to distribute in response to mechanical unloading. The most sensitive region indicated by the immunofluorescence results was further investigated by transmission electron microscopy (TEM) with immunogold staining to show the Scl expression changes in different subcellular structures. RESULTS In femur distal metaphysis, neurotrauma-induced mechanical unloading significantly decreased the bone density, made the distribution of Scl closer to the marrow on the anterior and medial side, and increased the Scl expression only on the lateral side. TEM findings showed that only the expression of Scl in canaliculi was increased by mechanical unloading. CONCLUSIONS Our results showed that even short-term mechanical unloading is enough to decrease bone density, and mechanical unloading not only regulated the Scl expression but also changed the Scl distribution in both the osteocyte network and subcellular structures.
Collapse
Affiliation(s)
- Ryuta Osumi
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan.
| |
Collapse
|
6
|
Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 2020; 10:13751. [PMID: 32792620 PMCID: PMC7426814 DOI: 10.1038/s41598-020-70817-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissues have trabecular bone with a high bone turnover and cortical bone with a low turnover. The mechanisms by which the turnover rate of these bone tissues is determined remain unclear. Osteocytes secrete sclerostin, a Wnt/β-catenin signaling antagonist, and inhibit bone formation. We found that sclerostin expression in cortical bone is more marked than in trabecular bone in Sost reporter mice. Leukemia inhibitory factor (LIF) secreted from osteoclasts reportedly suppressed sclerostin expression and promoted bone formation. Here, we report that osteoclasts downregulate sclerostin expression in trabecular bone and promote bone turnover. Treatment of C57BL/6 mice with an anti-RANKL antibody eliminated the number of osteoclasts and LIF-positive cells in trabecular bone. The number of sclerostin-positive cells was increased in trabecular bone, while the number of β-catenin-positive cells and bone formation were decreased in trabecular bone. Besides, Tnfsf11 heterozygous (Rankl+/−) mice exhibited a decreased number of LIF-positive cells and increased number of sclerostin-positive cells in trabecular bone. Rankl+/− mice exhibited a decreased number of β-catenin-positive cells and reduced bone formation in trabecular bone. Furthermore, in cultured osteoclasts, RANKL stimulation increased Lif mRNA expression, suggesting that RANKL signal increased LIF expression. In conclusion, osteoclasts downregulate sclerostin expression and promote trabecular bone turnover.
Collapse
|
7
|
Koide M, Kobayashi Y, Yamashita T, Uehara S, Nakamura M, Hiraoka BY, Ozaki Y, Iimura T, Yasuda H, Takahashi N, Udagawa N. Bone Formation Is Coupled to Resorption Via Suppression of Sclerostin Expression by Osteoclasts. J Bone Miner Res 2017; 32:2074-2086. [PMID: 28543818 DOI: 10.1002/jbmr.3175] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 11/07/2022]
Abstract
Bone formation is coupled to bone resorption throughout life. However, the coupling mechanisms are not fully elucidated. Using Tnfrsf11b-deficient (OPG-/- ) mice, in which bone formation is clearly coupled to bone resorption, we found here that osteoclasts suppress the expression of sclerostin, a Wnt antagonist, thereby promoting bone formation. Wnt/β-catenin signals were higher in OPG-/- and RANKL-transgenic mice with a low level of sclerostin. Conditioned medium from osteoclast cultures (Ocl-CM) suppressed sclerostin expression in UMR106 cells and osteocyte cultures. In vitro experiments revealed that osteoclasts secreted leukemia inhibitory factor (LIF) and inhibited sclerostin expression. Anti-RANKL antibodies, antiresorptive agents, suppressed LIF expression and increased sclerostin expression, thereby reducing bone formation in OPG-/- mice. Taken together, osteoclast-derived LIF regulates bone turnover through sclerostin expression. Thus, LIF represents a target for improving the prolonged suppression of bone turnover by antiresorptive agents. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | | | - Yuki Ozaki
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Tadahiro Iimura
- Proteo-Science Center (PROS) and Advanced Research Support Center (ADRES), Ehime University, and Translational Research Center and Artificial Joint Integrated Center, Ehime University Hospital Shitsukawa, Toon, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Nobuyuki Udagawa
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
8
|
Takakura A, Lee JW, Hirano K, Isogai Y, Ishizuya T, Takao-Kawabata R, Iimura T. Administration frequency as well as dosage of PTH are associated with development of cortical porosity in ovariectomized rats. Bone Res 2017; 5:17002. [PMID: 28503340 PMCID: PMC5405404 DOI: 10.1038/boneres.2017.2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
To investigate whether the administration frequency of parathyroid hormone (PTH) is associated with the development of cortical porosity, this study established 15 dosage regimens of teriparatide [human PTH(1–34), TPTD] with four distinct concentrations and four distinct administration frequencies of TPTD to 16-week-old ovariectomized rats. Our analyses demonstrated that the bone mineral density, mechanical properties, and bone turnover were associated with the total amount of TPTD administered. Our observations further revealed that the cortical porosity was markedly developed as a result of an increased administration frequency with a lower concentration of total TPTD administration in our setting, although the highest concentration also induced cortical porosity. Deconvolution fluorescence tiling imaging on calcein-labeled undecalcified bone sections also demonstrated the development of cortical porosity to be closely associated with the bone site where periosteal bone formation took place. This site-specific cortical porosity involved intracortical bone resorption and an increased number and proximity of osteocytic lacunae, occasionally causing fused lacunae. Taken together, these findings suggested the involvement of local distinctions in the rate of bone growth that may be related to the site-specific mechanical properties in the development of cortical porosity induced by frequent and/or high doses of TPTD.
Collapse
Affiliation(s)
- Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan.,Graduate School of Medicine, Division of Analytical Bio-Medicine, Ehime University, Ehime, Japan
| | - Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
| | - Kyoko Hirano
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Yukihiro Isogai
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshinori Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Tadahiro Iimura
- Graduate School of Medicine, Division of Analytical Bio-Medicine, Ehime University, Ehime, Japan.,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Ehime, Japan.,Artificial Joint Integrated Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
9
|
Lee JW, Iimura T. Shedding quantitative fluorescence light on novel regulatory mechanisms in skeletal biomedicine and biodentistry. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:2-10. [PMID: 28408963 PMCID: PMC5390335 DOI: 10.1016/j.jdsr.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 10/26/2022] Open
Abstract
Digitalized fluorescence images contain numerical information such as color (wavelength), fluorescence intensity and spatial position. However, quantitative analyses of acquired data and their validation remained to be established. Our research group has applied quantitative fluorescence imaging on tissue sections and uncovered novel findings in skeletal biomedicine and biodentistry. This review paper includes a brief background of quantitative fluorescence imaging and discusses practical applications by introducing our previous research. Finally, the future perspectives of quantitative fluorescence imaging are discussed.
Collapse
Affiliation(s)
- Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Ehime 791-0295, Japan.,Artificial Joint Integrated Center and Translational Research Center, Ehime University Hospital, Ehime 791-0295, Japan
| |
Collapse
|
10
|
Jang MG, Lee JY, Yang JY, Park H, Kim JH, Kim JE, Shin CS, Kim SY, Kim SW. Intermittent PTH treatment can delay the transformation of mature osteoblasts into lining cells on the periosteal surfaces. J Bone Miner Metab 2016; 34:532-9. [PMID: 26303221 DOI: 10.1007/s00774-015-0707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
Abstract
Mature osteoblasts have three fates: as osteocytes, quiescent lining cells, or osteoblasts that undergo apoptosis. However, whether intermittent parathyroid hormone (PTH) can modulate the fate of mature osteoblasts in vivo is uncertain. We performed a lineage-tracing study using an inducible gene system. Dmp1-CreERt2 mice were crossed with Rosa26R reporter mice to obtain targeted mature osteoblasts and their descendants, lining cells or osteocytes, which were detected using X-gal staining. Rosa26R:Dmp1-CreERt2(+) mice were injected with 0.25 mg 4-OH-tamoxifen (4-OHTam) on postnatal days 5, 7, 9, 16, and 23. In a previous study, at 22 days after the last 4-OHTam, most LacZ+ cells on the periosteal surface were inactive lining cells. On day 25 (D25), the mice were challenged with an injection of human PTH (1-34, 80 μg/kg) or vehicle daily for 10 (D36) or 20 days (D46). We evaluated the number and thickness of LacZ+ osteoblast descendants in the calvaria and tibia. In the vehicle group, the number and thickness of LacZ+ osteoblast descendants at both D36 and D46 significantly decreased compared to D25, which was attenuated in the PTH group. In line with these results, PTH inhibited the decrease in the number of LacZ+/osteocalcin-positive cells compared to vehicle at both D36 and D46. As well, the serum levels of sclerostin decreased, as did the protein expression of sclerostin in the cortical bone. These results suggest that intermittent PTH treatment can increase the number of periosteal osteoblasts by preventing mature osteoblasts from transforming into lining cells in vivo.
Collapse
Affiliation(s)
- Mi-Gyeong Jang
- Department of Internal Medicine, Biomedical Research Institute, Seoul National University Hospital, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Ji Yeon Lee
- Department of Internal Medicine, Biomedical Research Institute, Seoul National University Hospital, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Biomedical Research Institute, Seoul National University Hospital, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Hyojung Park
- Department of Internal Medicine, Biomedical Research Institute, Seoul National University Hospital, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Seong Yeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 110-799, Republic of Korea.
- Department of Internal Medicine, Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 156-707, Republic of Korea.
| |
Collapse
|
11
|
Ogura K, Iimura T, Makino Y, Sugie-Oya A, Takakura A, Takao-Kawabata R, Ishizuya T, Moriyama K, Yamaguchi A. Short-term intermittent administration of parathyroid hormone facilitates osteogenesis by different mechanisms in cancellous and cortical bone. Bone Rep 2016; 5:7-14. [PMID: 28326342 PMCID: PMC4926844 DOI: 10.1016/j.bonr.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/25/2015] [Accepted: 01/15/2016] [Indexed: 11/12/2022] Open
Abstract
Intermittent administration of human parathyroid hormone (1–34)[hPTH(1–34)] induces anabolic action on the bones. To understand the mechanism underlying the early phase of hPTH(1–34)-induced anabolic action, we investigated the expression profiles of osterix and sclerostin after short-term intermittent administration of hPTH(1–34) using immunohistochemistry in adult rats. In the cancellous bone, hPTH(1–34) administration greatly increased the number of osterix-positive cells in the bone marrow on day 1, but the cells gradually decreased on days 3 and 5. Injections of hPTH(1–34) induced no significant changes in the number of sclerostin-positive osteocytes in the cancellous bone. In the cortical bone, intermittent administration of hPTH(1–34) significantly reduced the number of sclerostin-positive osteocytes. The serum sclerostin level was downregulated and the osteocalcin level was upregulated on day 5 after intermittent administration of hPTH(1–34). Intermittent hPTH(1–34) injections increased osteoblast surface, osteoid thickness, and osteoid surface in cancellous bone, but not in cortical bone. This study suggested that the increase in osterix-positive osteoprogenitors in cancellous bone and the decrease in sclerostin-positive osteocytes in cortical bone play important roles in anabolic action on osteogenesis induced by short-term administration of hPTH(1–34). We analyzed the effects of hPTH(1–34) injection into rats at early phase. hPTH(1–34) injection increased the osterix-positive cells in bone marrow. hPTH(1–34) injection decreased sclerostin-positive cells in cortical bone. hPTH(1–34) exerts different effects in cancellous and cortical bone.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan
| | - Yuji Makino
- Department of Orthopedics, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan
| | - Ayano Sugie-Oya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Toshinori Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
| |
Collapse
|
12
|
Hikita A, Iimura T, Oshima Y, Saitou T, Yamamoto S, Imamura T. Analyses of bone modeling and remodeling using in vitro reconstitution system with two-photon microscopy. Bone 2015; 76:5-17. [PMID: 25771421 DOI: 10.1016/j.bone.2015.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Bone modeling and remodeling are cellular events during which osteoblast lineage cells and osteoclasts interact. During these events, cells undergo drastic changes with time as they become differentiated. Their morphology, topology, and activity are affected by other cells and the extracellular matrices. Since the mechanisms underlying the cellular events of bone metabolism have not been elucidated, there is a need for systems to analyze these cellular networks and their microenvironments spatiotemporally at the cellular level. Here we report a novel in vitro system for reconstituting the bone cell network of osteoclasts, osteoblasts, and osteocytes in the mineralized nodule, allowing for observation of bone modeling and remodeling phenomena by 2-photon microscopy. Using this system, the change in morphology of osteoblasts from cuboidal to flat cells was observed and measured during the formation of mineralized nodules. Furthermore, the recruitment of osteoblasts to resorption pits and their replenishment by newly formed matrices were successfully observed, providing strong evidence for the coupling of bone resorption and bone formation at cellular level. During such remodeling cycle, flat osteoblasts that survived more than 7 weeks were recruited to resorption pits, where they became cuboidal osteoblasts that express osteocalcin. This novel system permitted the elucidation of cellular behavior during bone modeling and remodeling, and can be used to analyze cellular events involved in bone metabolism.
Collapse
Affiliation(s)
- Atsuhiko Hikita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Department of Cartilage & Bone Regeneration (Fujisoft), Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Tadahiro Iimura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Yusuke Oshima
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Takashi Saitou
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Shin Yamamoto
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Gastroenterology and Metabiology, Ehime University, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan.
| |
Collapse
|
13
|
Lee JW, Iimura T. Quantitative in situ fluorescence imaging to unveil the morphological and functional heterogeneity of osteocytes. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch Oral Biol 2014; 60:45-54. [PMID: 25255472 DOI: 10.1016/j.archoralbio.2014.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 08/06/2014] [Accepted: 08/23/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Mechanical loading on the bone is sensed by osteocytes. Sclerostin is a molecule secreted by osteocytes that is downregulated by mechanical loading; therefore, its expression level is a potent sensor that indicates the spatial transduction of biomechanical properties in bone. This study applied macroconfocal microscopy to observe the spatial response of alveolar bone to orthodontic forces after immunofluorescence using anti-sclerostin antibodies. DESIGN Orthodontic tooth movement with the Ni-Ti closed-coil spring was applied between the upper bilateral incisors and the left first molar of mice. Four days after this application, the animals were subjected to multimodal confocal fluorescence imaging analyses. RESULTS Obvious downregulation of sclerotin in the osteocytic lacuna-canalicular system (LCS) was observed specifically in tensile sites of alveolar bone. Confocal-based three-dimensional fluorescence morphometry further quantitatively demonstrated that the distribution and expression of sclerostin in the tensile sites was significantly reduced compared to that observed in the corresponding control sites. Interestingly, the levels of sclerotin signals in the compression sites were significantly higher than those observed in the control sites, although the distribution of sclerotin was not significantly different. CONCLUSIONS Our observations suggest that spatial changes in the level and distribution of sclerostin in the alveolar LCS trigger successive bone remodelling due to orthodontic tooth movement. The multimodal confocal imaging analyses applied in this work will enhance comprehensive understanding regarding the spatial regulation of molecules of interest from the tissue to the cellular level.
Collapse
|
15
|
Lee JW, Yamaguchi A, Iimura T. Functional heterogeneity of osteocytes in FGF23 production: the possible involvement of DMP1 as a direct negative regulator. BONEKEY REPORTS 2014; 3:543. [PMID: 24991406 PMCID: PMC4078414 DOI: 10.1038/bonekey.2014.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/11/2014] [Indexed: 01/25/2023]
Abstract
Fibroblast growth factor 23 (FGF23) and dentin matrix protein (DMP1) are hallmarks of osteocytes in bone. However, the mechanisms underlying the actions of DMP1 as a local factor regulating FGF23 and bone mineralization are not well understood. We first observed spatially distinct distributions of FGF23- and DMP1-positive osteocytic lacunae in rat femurs using immunohistochemistry. Three-dimensional immunofluorescence morphometry further demonstrated that the distribution and relative expression levels of these two proteins exhibited reciprocally reversed patterns especially in midshaft cortical bone. These in vivo findings suggest a direct role of DMP1 in FGF23 expression in osteocytes. We next observed that the inoculation of recombinant DMP1 in UMR-106 osteoblast/osteocyte-like cells and long-cultured MC3T3-E1 osteoblastic cells showed significant downregulation of FGF23 production. This effect was rescued by incubation with an focal adhesion kinase (FAK) inhibitor or MEK (mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)) inhibitor but not inhibitors of phosphoinositide 3-kinase or Rho kinase. Consistently, the levels of phosphorylated FAK, ERK and p38 were significantly elevated, indicating that exogenous DMP1 is capable of activating FAK-mediated MAPK signaling. These findings suggest that DMP1 is a local, direct and negative regulator of FGF23 production in osteocytes involved in the FAK-mediated MAPK pathway, proposing a relevant pathway that coordinates the extracellular environment of osteocytic lacunae and bone metabolism.
Collapse
Affiliation(s)
- Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Translational Research Center and Artificial Joint Integrated Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
16
|
Hoshino A, Ueha S, Hanada S, Imai T, Ito M, Yamamoto K, Matsushima K, Yamaguchi A, Iimura T. Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts. J Cell Sci 2012; 126:1032-45. [PMID: 23264747 DOI: 10.1242/jcs.113910] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chemokines have recently been reported to be involved in pathological bone destruction. However, the physiological roles of chemokines in bone metabolism in vivo have not been well documented. We analyzed the bone phenotypes in Cx3cr1-deficient mice. The mice exhibited slight but significant increases in trabecular and cortical thickness, reduced numbers of osteoclasts and increased rates of osteoid formation. Although the morphometric parameters showed marginal differences, the Cx3cr1-deficient bones showed an elevated expression of Osterix/SP7, which encodes an essential transcriptional factor for osteoblasts, whereas the gene Osteocalcin/Bglap, which encodes a late marker, was downregulated. The levels of transcripts for various osteoclastic markers, such as receptor activator of NF-κB (RANK)/TNFRSF11A, receptor activator of NF-κB ligand (RANKL)/TNFSF11, tartrate-resistant acid phosphatase 5b (TRAP5B)/ACP5B, Cathepsin K(CTSK), MMP3 and MMP13, were significantly decreased in the Cx3cr1-deficient bones. Cultured Cx3cr1-deficient osteoblastic cells showed inverse temporal patterns of osteoblastic marker expression and reduced calcium deposition. Furthermore, in vitro studies and immunofluorescence staining against CX3CR1 and CX3CL1 suggested a role for the CX3CR1-CX3CL1 axis in an early stage of osteoblast differentiation, possibly through their trans and cis interactions. Cultured Cx3cr1-deficient pre-osteoclasts showed impaired differentiation, mainly due to a deficiency of the CD115(+)CD11b(lo) osteoclastogenic population of myeloid-lineage precursors. The treatment of bone-marrow-derived osteoclastic cultures with recombinant CX3CL1 at different time points suggested that the CX3CR1-CX3CL1 axis favors the maintenance of osteoclastic precursors, but not differentiated osteoclasts. These observations uncovered novel roles of the CX3CR1-CX3CL1 axis in the differentiation of both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Akiyoshi Hoshino
- Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|