1
|
Chavez MB, Andras NL, Tan MH, Kolli TN, Chu EY, Goldberg HA, Foster BL. Exogenous bone sialoprotein improves extraction socket healing in Ibsp knockout and wild-type mice. Bone 2025; 192:117381. [PMID: 39722365 PMCID: PMC11761379 DOI: 10.1016/j.bone.2024.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp-/-) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp-/- mice. Collagen gel with or without native rat BSP (nBSP) or recombinant rat BSP (rBSP) was delivered to sockets after first maxillary molar extraction in Ibsp-/- and wild-type (WT) mice. Tissues were harvested 0, 1, 2, 7, and 14 days post-procedure (dpp) and analyzed by micro-computed tomography, histology, and immunohistochemistry (IHC). Histology and IHC demonstrated that collagen and BSP were retained within sockets. At 14 dpp, both bone volume fraction (BV/TV) and bone mineral density (BMD) were increased by both nBSP (over 50 %) and rBSP (over 60 %), compared to collagen alone in Ibsp-/- mice. In WT alveolar bone, BV/TV and BMD were also increased by nBSP (over 30 %) and rBSP (over 60 %) compared to collagen controls. Gene expression analyses revealed few changes from delivery of nBSP, while addition of rBSP resulted in regulation of cell signaling, ECM, mineralization, and osteoblast/osteoclast-associated genes. Exogenous BSP rescued alveolar bone healing defects in Ibsp-/- mice and enhanced bone healing in WT mice. Despite both forms of BSP improving bone healing, the substantial differences in how they regulate gene expression suggests that exogenous BSP acts in a complex, multifunctional manner to promote bone healing. These results support BSP as a novel approach to improve the quantity and quality of new bone in socket healing.
Collapse
Affiliation(s)
- M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA; College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - N L Andras
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E Y Chu
- Division of Operative Dentistry, Department of General Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - H A Goldberg
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Foster BL. The role of bone sialoprotein in bone healing. J Struct Biol 2024; 216:108132. [PMID: 39369971 PMCID: PMC11645215 DOI: 10.1016/j.jsb.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bone sialoprotein (BSP) is a multi-functional extracellular matrix (ECM) protein associated with mineralized tissues, particularly bone and cementum. The amino acid sequence of BSP includes three evolutionarily conserved sequences which contribute to functions of the protein: an N-terminal collagen-binding domain, polyglutamic acid (polyE) sequences involved in hydroxyapatite nucleation and crystal growth, and a C-terminal arginine-glycine-aspartic acid (RGD) integrin-binding domain. BSP promotes attachment and differentiation of osteogenic and osteoclastic cells. Genetic ablation of BSP in mice results in skeletal and dental developmental defects and impaired bone healing in both appendicular bone and alveolar bone of the jaw. Several studies demonstrated positive effects of BSP on bone healing in rodent models, though other experiments show negligible results. Native (harvested from rat bones) BSP cross-linked to collagen induced slight improvements in calvarial bone healing in rats. Recombinant BSP and collagen delivered in a polylactide (PLA) cylinder improved bone defect healing in rat femurs. Both native and recombinant BSP delivered in a collagen gel improved alveolar bone healing in wild-type and BSP-deficient mice. These advances suggest BSP is a new player in bone healing that has potential to be an alternative or complimentary to other bioactive factors. Future studies are necessary to understand mechanisms of how BSP influences bone healing and optimize delivery and dose in different types of bone defects and injuries.
Collapse
Affiliation(s)
- B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Chavez MB, Tan MH, Kolli TN, Andras NL, Foster BL. Functional defects in cementoblasts with disrupted bone sialoprotein functional domains, in vitro. Bone 2024; 179:116961. [PMID: 37951522 PMCID: PMC10841848 DOI: 10.1016/j.bone.2023.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Bone sialoprotein (BSP) is a multifunctional extracellular matrix (ECM) protein present in bone and cementum. Global in vivo ablation of BSP leads to bone mineralization defects, lack of acellular cementum, and periodontal breakdown. BSP harbors three main functional domains: N-terminal collagen-binding domain, hydroxyapatite-nucleating domain, and C-terminal RGD integrin-binding signaling domain. How each of these domains contributes to BSP function(s) is not understood. We hypothesized that collagen-binding and RGD domains play distinct roles in cementoblast functions. Three CRISPR/Cas9 gene-edited cell lines were derived from control wild-type (WT) OCCM.30 murine immortalized cementoblasts: 1) deletion of the N-terminus of BSP after signal peptide, including entire collagen binding domain (Ibsp∆N-Term); 2) deletion of exon 4 (majority of collagen-binding domain; Ibsp∆Ex4); and 3) deletion of C-terminus of BSP including the integrin binding RGD domain (Ibsp∆C-Term). Compared to WT, Ibsp∆Ex4 and Ibsp∆C-Term cell lines showed reduced BSP secretion, in vitro. Abnormal cell morphology was observed in all mutant cell lines, with Ibsp∆C-Term showing highly disorganized cytoskeleton. All mutant cell lines showed significantly lower cell proliferation compared to WT at all timepoints. Ibsp∆N-Term cells showed reduced cell migration by 24 h. All mutants exhibited over 50 % significant reduced mineralization at days 6 and 10. While WT cells were largely unaffected by seeding density, mutant cells failed to mineralize at lower cell density. Mutant cell lines diverged from WT and from each other by dysregulated expression in 23 genes involved in mineralization, ECM, and cell signaling. In summary, disabling BSP functional domains led to profound and distinct changes in cementoblast cell functions, especially dysregulated gene expression and reduced mineralization, in a way did not align with a straightforward narrative where each functional domain caused specific, expected differences. Instead, the study uncovered a significant level of complexity in how different mutant forms of BSP affected cell functions, in vitro.
Collapse
Affiliation(s)
- Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA; College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Michelle H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Tamara N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Natalie L Andras
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
da Costa NMM, Parisi L, Ghezzi B, Elviri L, de Souza SLS, Novaes AB, de Oliveira PT, Macaluso GM, Palioto DB. Anti-Fibronectin Aptamer Modifies Blood Clot Pattern and Stimulates Osteogenesis: An Ex Vivo Study. Biomimetics (Basel) 2023; 8:582. [PMID: 38132522 PMCID: PMC10741424 DOI: 10.3390/biomimetics8080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Scaffold (SCA) functionalization with aptamers (APT) provides adsorption of specific bioactive molecules on biomaterial surfaces. The aim of this study was to observe if SCA enriched with anti-fibronectin APT can favor coagulum (PhC) and osteoblasts (OSB) differentiation. METHODS 20 μg of APT was functionalized on SCA by simple adsorption. For PhC formation, SCAs were inserted into rat calvaria defects for 17 h. Following proper transportation (buffer solution PB), OSBs (UMR-106 lineage) were seeded over PhC + SCAs with and without APT. Cells and PhC morphology, PhC cell population, protein labeling and gene expression were observed in different time points. RESULTS The APT induced higher alkaline phosphatase and bone sialoprotein immunolabeling in OSB. Mesenchymal stem cells, leukocytes and lymphocytes cells were detected more in the APT group than when scaffolds were not functionalized. Additionally, an enriched and dense fibrin network and different cell types were observed, with more OSB and white blood cells in PhC formed on SCA with APT. The gene expression showed higher transforming growth factor beta 1 (TGF-b1) detection in SCA with APT. CONCLUSIONS The SCA functionalization with fibronectin aptamers may alter key morphological and functional features of blood clot formation, and provides a selective expression of proteins related to osteo differentiation. Additionally, aptamers increase TGF-b1 gene expression, which is highly associated with improvements in regenerative therapies.
Collapse
Affiliation(s)
- Natacha Malu Miranda da Costa
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland;
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Lisa Elviri
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale Delle Ricerche, Parco Area Delle Scienze 37/A, 43124 Parma, Italy;
| | - Sergio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Arthur Belém Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil;
| | - Guido Maria Macaluso
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Parco Area Delle Scienze 27/A, 43124 Parma, Italy;
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| |
Collapse
|
6
|
Chavez M, Tan MH, Kolli TN, Zachariadou C, Farah F, Mohamed F, Chu E, Foster B. Bone Sialoprotein Is Critical for Alveolar Bone Healing in Mice. J Dent Res 2023; 102:187-196. [PMID: 36377066 PMCID: PMC9893390 DOI: 10.1177/00220345221126716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bone sialoprotein (BSP) is an extracellular matrix (ECM) protein associated with mineralized tissues, particularly bone and cementum. BSP includes functional domains implicated in collagen binding, hydroxyapatite nucleation, and cell signaling, although its function(s) in osteoblast and osteoclast differentiation and function remain incompletely understood. Genetic ablation of BSP in Ibsp knockout (Ibsp-/-) mice results in developmental bone mineralization and remodeling defects, with alveolar bone more severely affected than the femurs and tibias of the postcranial skeleton. The role of BSP in alveolar bone healing has not been studied. We hypothesized that BSP ablation would cause defective alveolar bone healing. We employed a maxillary first molar extraction socket healing model in 42-d postnatalIbsp-/- and wild-type (WT) control mice. Tissues were collected at 0, 7, 14, 21, and 56 d postprocedure (dpp) for analysis by micro-computed tomography (microCT), histology, in situ hybridization (ISH), immunohistochemistry (IHC), and quantitative polymerase chain reaction (qPCR) array. As expected, alveolar bone healing progressed in WT mice with increasing bone volume fraction (BV/TV), bone mineral density (BMD), and tissue mineral density (TMD), transitioning from woven to mature bone from 7 to 56 dpp. Ibsp messenger RNA (mRNA) and BSP protein were strongly expressed during alveolar bone healing in parallel with other osteogenic markers. Compared to WT, Ibsp-/- mice exhibited 50% to 70% reduced BV/TV and BMD at all time points, 7% reduced TMD at 21 dpp, abnormally increased Col1a1 and Alpl mRNA expression, and persistent presence of woven bone and increased bone marrow in healing sockets. qPCR revealed substantially dysregulated gene expression in alveolar bone of Ibsp-/- versus WT mice, with significantly disrupted expression of 45% of tested genes in functional groups, including markers for osteoblasts, osteoclasts, mineralization, ECM, cell signaling, and inflammation. We conclude that BSP is a critical and nonredundant factor for alveolar bone healing, and its absence disrupts multiple major pathways involved in appropriate healing.
Collapse
Affiliation(s)
- M.B. Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - M. H. Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T. N. Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - C. Zachariadou
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F. Farah
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F.F. Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E.Y. Chu
- Division of Operative Dentistry, Department of General Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B.L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Shuai Y, Liu B, Rong L, Shao B, Chen B, Jin L. OSGIN2 regulates osteogenesis of jawbone BMSCs in osteoporotic rats. BMC Mol Cell Biol 2022; 23:22. [PMID: 35729522 PMCID: PMC9215015 DOI: 10.1186/s12860-022-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Augmentation of oxidative stress after estrogen deficiency leading to functional deficiency of jawbone bone marrow mesenchymal stem cells (BMSCs) causes jawbone loss in osteoporosis. OSGIN2, an oxidative stress induced factor, has been found to be associated with skeletal diseases. This study aims to investigate the function of OSGIN2 in jawbone BMSCs of osteoporotic rats. Jawbone BMSCs were used. Results Oxidative stress was increased in jawbone BMSCs of osteoporotic rats, meanwhile OSGIN2 was also up-regulated. Osteogenesis of jawbone BMSCs was declined under oxidative stress, while silence of OSGIN2 ameliorated the osteogenic deficiency. RORα and its downstream osteogenic markers (BSP and OCN) decreased under oxidative stress, while knocking-down of OSGIN2 restored their expressions. Inhibition of OSGIN2 improved the osteogenesis of jawbone BMSCs under oxidative stress, whereas down-regulation of RORα offset the effect. Intra-jawbone infusion of si-OSGIN2 rescued jawbone loss and promoted new bone deposition of osteoporotic rats. Conclusions Oxidative stress is redundant in osteoporosis, which results in up-regulation of OSGIN2. OSGIN2 restricts osteogenic ability of jawbone BMSCs via regulating RORα, while silencing of OSGIN2 rescues the osteogenic deficiency of osteoporotic rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00423-8.
Collapse
|
8
|
Nagasaki K, Chavez M, Nagasaki A, Taylor J, Tan M, Ma M, Ralston E, Thew M, Kim DG, Somerman M, Foster B. The Bone Sialoprotein RGD Domain Modulates and Maintains Periodontal Development. J Dent Res 2022; 101:1238-1247. [PMID: 35686360 PMCID: PMC9403724 DOI: 10.1177/00220345221100794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bone sialoprotein (gene: Ibsp; protein: BSP) is a multifunctional extracellular matrix protein present in bone, cementum, and dentin. Accumulating evidence supports BSP as a key regulator of mineralized tissue formation via evolutionarily conserved functional domains, including a C-terminal integrin-binding Arg-Gly-Asp (RGD) domain implicated in extracellular matrix-cell signaling. Ablation of Ibsp in mice (Ibsp-/-) results in impaired bone growth and mineralization and defective osteoclastogenesis, with effects in the craniofacial region including reduced acellular cementum formation, detachment of the periodontal ligament (PDL), alveolar bone hypomineralization, and severe periodontal breakdown. We hypothesized that BSP-RGD plays an important role in cementum and alveolar bone formation and mineralization, as well as periodontal function. This hypothesis was tested by replacing the RGD motif with a nonfunctional Lys-Ala-Glu (KAE) sequence in (IbspKAE/KAE) mice and OCCM.30 murine (IbspKAE) cementoblasts. The RGD domain was not critical for acellular or cellular cementum formation in IbspKAE/KAE mice. However, PDL volume and thickness were increased, and significantly more tartrate-resistant acid phosphatase-positive osteoclasts were found on alveolar bone surfaces of IbspKAE/KAE mice versus wild type mice. PDL organization was disrupted as indicated by picrosirius red stain, second harmonic generation imaging, dynamic mechanical analysis, and decreased asporin proteoglycan localization. In vitro studies implicated RGD functions in cell migration, adhesion, and mineralization, and this was confirmed by an ossicle implant model where cells lacking BSP-RGD showed substantial defects as compared with controls. In total, the BSP-RGD domain is implicated in periodontal development, though the scale and scope of changes indicated by in vitro studies indicate that other factors may partially compensate for and reduce the phenotypic severity of mice lacking BSP-RGD in vivo.
Collapse
Affiliation(s)
- K. Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M.B. Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A. Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J.M. Taylor
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M.H. Tan
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M. Ma
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - E. Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M.E. Thew
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D.-G. Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M.J. Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B.L. Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: Regulation of mineralization in the periodontium. Genesis 2022; 60:e23474. [PMID: 35460154 PMCID: PMC9492628 DOI: 10.1002/dvg.23474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022]
Abstract
The periodontium supports and attaches teeth via mineralized and nonmineralized tissues. It consists of two, unique mineralized tissues, cementum and alveolar bone. In between these tissues, lies an unmineralized, fibrous periodontal ligament (PDL), which distributes occlusal forces, nourishes and invests teeth, and harbors progenitor cells for dentoalveolar repair. Many unanswered questions remain regarding periodontal biology. This review will focus on recent research providing insights into one enduring mystery: the precise regulation of the hard-soft tissue borders in the periodontium which define the interfaces of the cementum-PDL-alveolar bone structure. We will focus on advances in understanding the molecular mechanisms that maintain the unmineralized PDL "between a rock and a hard place" by regulating the mineralization of cementum and alveolar bone.
Collapse
Affiliation(s)
- Natalie L. Andras
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Fatma F. Mohamed
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Emily Y. Chu
- Division of Operative Dentistry, Department of General Dentistry, School of DentistryUniversity of MarylandBaltimoreMarylandUSA
| | - Brian L. Foster
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
FAM20C Overview: Classic and Novel Targets, Pathogenic Variants and Raine Syndrome Phenotypes. Int J Mol Sci 2021; 22:ijms22158039. [PMID: 34360805 PMCID: PMC8348777 DOI: 10.3390/ijms22158039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
FAM20C is a gene coding for a protein kinase that targets S-X-E/pS motifs on different phosphoproteins belonging to diverse tissues. Pathogenic variants of FAM20C are responsible for Raine syndrome (RS), initially described as a lethal and congenital osteosclerotic dysplasia characterized by generalized atherosclerosis with periosteal bone formation, characteristic facial dysmorphisms and intracerebral calcifications. The aim of this review is to give an overview of targets and variants of FAM20C as well as RS aspects. We performed a wide phenotypic review focusing on clinical aspects and differences between all lethal (LRS) and non-lethal (NLRS) reported cases, besides the FAM20C pathogenic variant description for each. As new targets of FAM20C kinase have been identified, we reviewed FAM20C targets and their functions in bone and other tissues, with emphasis on novel targets not previously considered. We found the classic lethal and milder non-lethal phenotypes. The milder phenotype is defined by a large spectrum ranging from osteonecrosis to osteosclerosis with additional congenital defects or intellectual disability in some cases. We discuss our current understanding of FAM20C deficiency, its mechanism in RS through classic FAM20C targets in bone tissue and its potential biological relevance through novel targets in non-bone tissues.
Collapse
|
11
|
Lee CS, Kim SH. Anti-inflammatory and Anti-osteoporotic Potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as Probiotics. Probiotics Antimicrob Proteins 2021; 12:623-634. [PMID: 31372901 DOI: 10.1007/s12602-019-09577-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study involves an investigation on the probiotic properties of lactic acid bacteria and their potential applications in an in vitro model of lipopolysaccharide (LPS)-stimulated inflammation and dexamethasone-induced osteoporosis. Nine strains were pre-screened from 485 lactic acid bacteria based on their survival at a low pH and in a solution containing bile salts. All candidates were capable of surviving in an environment with low pH and with bile salts and could successfully colonize the intestine. Furthermore, their functional properties, such as anti-oxidation and anti-inflammation, were evaluated. Of the nine probiotic candidates, Lactobacillus plantarum A41 and L. fermentum SRK414 exhibited the highest anti-oxidative capacity. Moreover, only L. plantarum A41 and L. fermentum SRK414 could increase gut barrier function by upregulating the mRNA expression of tight junction proteins and inhibit the expression of inflammatory mediators induced by LPS-stimulated inflammation. Interestingly, these two strains were also capable of regulating several bone metabolism-related markers playing a role in bone homeostasis and osteoblast differentiation. In brief, L. plantarum A41 and L. fermentum SRK414 exhibited high probiotic potential and potentially impact immune-related bone health by modulating pro-inflammatory cytokines and bone metabolism-related markers.
Collapse
Affiliation(s)
- Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. .,Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Bernhardt A, Skottke J, von Witzleben M, Gelinsky M. Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. Int J Mol Sci 2021; 22:7316. [PMID: 34298935 PMCID: PMC8307867 DOI: 10.3390/ijms22147316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, D-01307 Dresden, Germany; (J.S.); (M.v.W.); (M.G.)
| | | | | | | |
Collapse
|
13
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Ustriyana P, Schulte F, Gombedza F, Gil-Bona A, Paruchuri S, Bidlack FB, Hardt M, Landis WJ, Sahai N. Spatial survey of non-collagenous proteins in mineralizing and non-mineralizing vertebrate tissues ex vivo. Bone Rep 2021; 14:100754. [PMID: 33665237 PMCID: PMC7900015 DOI: 10.1016/j.bonr.2021.100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Bone biomineralization is a complex process in which type I collagen and associated non-collagenous proteins (NCPs), including glycoproteins and proteoglycans, interact closely with inorganic calcium and phosphate ions to control the precipitation of nanosized, non-stoichiometric hydroxyapatite (HAP, idealized stoichiometry Ca10(PO4)6(OH)2) within the organic matrix of a tissue. The ability of certain vertebrate tissues to mineralize is critically related to several aspects of their function. The goal of this study was to identify specific NCPs in mineralizing and non-mineralizing tissues of two animal models, rat and turkey, and to determine whether some NCPs are unique to each type of tissue. The tissues investigated were rat femur (mineralizing) and tail tendon (non-mineralizing) and turkey leg tendon (having both mineralizing and non-mineralizing regions in the same individual specimen). An experimental approach ex vivo was designed for this investigation by combining sequential protein extraction with comprehensive protein mapping using proteomics and Western blotting. The extraction method enabled separation of various NCPs based on their association with either the extracellular organic collagenous matrix phases or the inorganic mineral phases of the tissues. The proteomics work generated a complete picture of NCPs in different tissues and animal species. Subsequently, Western blotting provided validation for some of the proteomics findings. The survey then yielded generalized results relevant to various protein families, rather than only individual NCPs. This study focused primarily on the NCPs belonging to the small leucine-rich proteoglycan (SLRP) family and the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). SLRPs were found to be associated only with the collagenous matrix, a result suggesting that they are mainly involved in structural matrix organization and not in mineralization. SIBLINGs as well as matrix Gla (γ-carboxyglutamate) protein were strictly localized within the inorganic mineral phase of mineralizing tissues, a finding suggesting that their roles are limited to mineralization. The results from this study indicated that osteocalcin was closely involved in mineralization but did not preclude possible additional roles as a hormone. This report provides for the first time a spatial survey and comparison of NCPs from mineralizing and non-mineralizing tissues ex vivo and defines the proteome of turkey leg tendons as a model for vertebrate mineralization.
Collapse
Key Words
- B, rat bone
- BSP, bone sialoprotein
- DCN, decorin
- E, EDTA extract
- ECM, extracellular matrix
- G, guanidine-HCl-only extract (for non-mineralizing tissues)
- G1, first guanidine-HCl extract
- G2, second guanidine-HCl extract
- Gla, gamma-carboxylated glutamic acid
- MGP, matrix Gla protein
- MT, turkey mineralizing tendon
- Mineralization
- NCP, non-collagenous protein
- NMT, turkey never-mineralizing tendon
- NT, turkey not-yet-mineralized tendon
- Non-collagenous protein
- OCN, osteocalcin
- OPN, osteopontin
- Proteomics
- SIBLING, small integrin-binding ligand N-linked glycoprotein
- SLRP, small leucine-rich proteoglycan
- T, rat tail tendon
- TLT, turkey leg tendon (gastrocnemius)
- TNAP, tissue-nonspecific alkaline phosphatase
- Type I collagen
- Vertebrate
Collapse
Affiliation(s)
- Putu Ustriyana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Fabian Schulte
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Farai Gombedza
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - William J. Landis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
- Department of Geosciences, The University of Akron, Akron, OH 44325, USA
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
15
|
Detzen L, Cheat B, Besbes A, Hassan B, Marchi V, Baroukh B, Lesieur J, Sadoine J, Torrens C, Rochefort G, Bouchet J, Gosset M. NLRP3 is involved in long bone edification and the maturation of osteogenic cells. J Cell Physiol 2021; 236:4455-4469. [PMID: 33319921 DOI: 10.1002/jcp.30162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
Overexpression of the nucleotide-binding leucine-rich repeat protein 3 (NLRP3) inflammasome in chronic auto-immune diseases leads to skeletal anomalies, with severe osteopenia due to the activation of osteoclasts. Reproducing this phenotype in Nlrp3 knock-in mice has provided insights into the role of NLRP3 in bone metabolism. We studied the role of NLRP3 in physiological bone development using a complete Nlrp3 knock-out mouse model. We found impaired skeletal development in Nlrp3-/- mice, resulting in a shorter stature than that of Nlrp3+/+ mice. These growth defects were associated with altered femur bone growth, characterized by a deficient growth plate and an osteopenic profile of the trabeculae. No differences in osteoclast recruitment or activity were observed. Instead, Nlrp3-/- femurs showed a less mineralized matrix in the trabeculae than those of Nlrp3+/+ mice, as well as less bone sialoprotein (BSP) expressing hypertrophic chondrocytes. In vitro, primary osteoblasts lacking NLRP3 expression showed defective mineralization, together with the downregulation of BSP expression. Finally, follow-up by micro-CT highlighted the role of NLPR3 in bone growth, occurring early in living mice, as the osteopenic phenotype diminishes over time. Overall, our data suggest that NLRP3 is involved in bone edification via the regulation of hypertrophic chondrocyte maturation and osteoblast activity. Furthermore, the defect appeared to be transitory, as the skeleton recovered with aging.
Collapse
Affiliation(s)
- L Detzen
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Département de Parodontologie, Service d'Odontologie, AP-HP, Hôpital Rothschild, Paris, France
- Laboratoire d'Excellence INFLAMEX, France
| | - B Cheat
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - A Besbes
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
- Faculté de Médecine Dentaire, Université de Monastir, Monastir, Tunisie
| | - B Hassan
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - V Marchi
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - B Baroukh
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - J Lesieur
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - J Sadoine
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Université de Paris, Paris, France
| | - C Torrens
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - G Rochefort
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - J Bouchet
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - M Gosset
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
- Service de Médecine Bucco-Dentaire, AP-HP, Hôpital Charles Foix, Ivry/seine, France
| |
Collapse
|
16
|
Gorski JP, Franz NT, Pernoud D, Keightley A, Eyre DR, Oxford JT. A repeated triple lysine motif anchors complexes containing bone sialoprotein and the type XI collagen A1 chain involved in bone mineralization. J Biol Chem 2021; 296:100436. [PMID: 33610546 PMCID: PMC8008188 DOI: 10.1016/j.jbc.2021.100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
While details remain unclear, initiation of woven bone mineralization is believed to be mediated by collagen and potentially nucleated by bone sialoprotein (BSP). Interestingly, our recent publication showed that BSP and type XI collagen form complexes in mineralizing osteoblastic cultures. To learn more, we examined the protein composition of extracellular sites of de novo hydroxyapatite deposition which were enriched in BSP and Col11a1 containing an alternatively spliced "6b" exonal sequence. An alternate splice variant "6a" sequence was not similarly co-localized. BSP and Col11a1 co-purify upon ion-exchange chromatography or immunoprecipitation. Binding of the Col11a1 "6b" exonal sequence to bone sialoprotein was demonstrated with overlapping peptides. Peptide 3, containing three unique lysine-triplet sequences, displayed the greatest binding to osteoblastic cultures; peptides containing fewer lysine triplet motifs or derived from the "6a" exon yielded dramatically lower binding. Similar results were obtained with 6-carboxyfluorescein (FAM)-conjugated peptides and western blots containing extracts from osteoblastic cultures. Mass spectroscopic mapping demonstrated that FAM-peptide 3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-peptide 3 localized to biomineralization foci (site of BSP) and to nucleoli (site of nucleolin). In bone sections, biotin-labeled peptide 3 bound to sites of new bone formation which were co-labeled with anti-BSP antibodies. These results establish the fluorescent peptide 3 conjugate as the first nonantibody-based method to identify BSP on western blots and in/on cells. Further examination of the "6b" splice variant interactions will likely reveal new insights into bone mineralization during development.
Collapse
Affiliation(s)
- Jeff P Gorski
- Center of Excellence in Mineralized Tissue Research, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| | - Nichole T Franz
- Center of Excellence in Mineralized Tissue Research, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Daniel Pernoud
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Andrew Keightley
- Department of Ophthalmology and Proteomics Core Facility, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, Idaho, USA
| |
Collapse
|
17
|
Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, Zhang H. SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis 2020; 9:95-107. [PMID: 35005110 PMCID: PMC8720659 DOI: 10.1016/j.gendis.2020.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.
Collapse
Affiliation(s)
- Xia Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Qiuman Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fang Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fugui Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David S Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| |
Collapse
|
18
|
Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol 2020; 11:757. [PMID: 32528290 PMCID: PMC7264100 DOI: 10.3389/fphar.2020.00757] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic bio-environment with precisely regulated mechanical and biochemical properties. In bone, ECMs are involved in regulating cell adhesion, proliferation, and responses to growth factors, differentiation, and ultimately, the functional characteristics of the mature bone. Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the rapid development of bone regenerative medicine, the osteoinductive, osteoconductive, and osteogenic potential of ECM-based scaffolds has attracted increasing attention. ECM-based scaffolds for bone tissue engineering can be divided into two types, that is, ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering strategies that utilize the functional ECM are superior at guiding the formation of specific tissues at the implantation site. In this review, we provide an overview of the function of various types of bone ECMs in bone tissue and their regulation roles in the behaviors of osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM in bone repair and regeneration. A better understanding of the role of bone ECM in guiding cellular behavior and tissue function is essential for its future applications in bone repair and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Yong-Guang Gao
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
19
|
Yu M, Du Y, Han Y, Lei B. Biomimetic Elastomeric Bioactive Siloxane‐Based Hybrid Nanofibrous Scaffolds with miRNA Activation: A Joint Physico‐Chemical‐Biological Strategy for Promoting Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201906013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 01/27/2025]
Abstract
AbstractRapid and efficient disease‐induced or critical‐size bone regeneration remains a challenge in tissue engineering due to the lack of highly bioactive biomaterial scaffolds. Physical structures such as nanostructures, chemical components such as silicon elements, and biological factors such as genes have shown positive effects on bone regeneration. Herein, a bioactive photoluminescent elastomeric silicate‐based nanofibrous scaffold with sustained miRNA release is reported for promoting bone regeneration based on a joint physico‐chemical‐biological strategy. Bioactive nanofibrous scaffolds are fabricated by cospinning poly (ε‐caprolactone) (PCL), elastomeric poly (citrates‐siloxane) (PCS), and bioactive osteogenic miRNA nanocomplexes (denoted PPM nanofibrous scaffolds). The PPM scaffolds possess uniform nanostructures, significantly enhanced tensile stress (≈15 MPa) and modulus (≈32 MPa), improved hydrophilicity (30–60°), controlled biodegradation, and strong blue fluorescence. Bioactive miRNA complexes are efficiently loaded into the nanofibrous matrix and exhibit long‐term release for up to 70 h. The PPM scaffolds significantly promote the adhesion, proliferation, and osteoblast differentiation of bone marrow stem cells in vitro and enhanced rat cranial defect restoration (12 weeks) in vivo. This work reports an attractive joint physico‐chemical‐biological strategy for the design of novel cell/protein‐free bioactive scaffolds for synergistic tissue regeneration.
Collapse
Affiliation(s)
- Meng Yu
- Frontier Institute of Science and Technology Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Yuzhang Du
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Science Northwestern Polytechnical University Xi'an 710072 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
| | - Bo Lei
- Frontier Institute of Science and Technology Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Instrumental Analysis Center Xi'an Jiaotong University Xi'an 710054 China
- State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an 710054 China
| |
Collapse
|
20
|
Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I. Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902295. [PMID: 31993293 PMCID: PMC6974953 DOI: 10.1002/advs.201902295] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Clinical translation of cell-based products is hampered by their limited predictive in vivo performance. To overcome this hurdle, engineering strategies advocate to fabricate tissue products through processes that mimic development and regeneration, a strategy applicable for the healing of large bone defects, an unmet medical need. Natural fracture healing occurs through the formation of a cartilage intermediate, termed "soft callus," which is transformed into bone following a process that recapitulates developmental events. The main contributors to the soft callus are cells derived from the periosteum, containing potent skeletal stem cells. Herein, cells derived from human periosteum are used for the scalable production of microspheroids that are differentiated into callus organoids. The organoids attain autonomy and exhibit the capacity to form ectopic bone microorgans in vivo. This potency is linked to specific gene signatures mimicking those found in developing and healing long bones. Furthermore, callus organoids spontaneously bioassemble in vitro into large engineered tissues able to heal murine critical-sized long bone defects. The regenerated bone exhibits similar morphological properties to those of native tibia. These callus organoids can be viewed as a living "bio-ink" allowing bottom-up manufacturing of multimodular tissues with complex geometric features and inbuilt quality attributes.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Luís Freitas Mendes
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Charikleia Gklava
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue EngineeringKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- GIGA In Silico MedicineUniversité de LiègeAvenue de l'Hôpital 11—BAT 344000Liège 1Belgium
- Biomechanics SectionKU LeuvenCelestijnenlaan 300C, PB 24193001LeuvenBelgium
| | - Frank P. Luyten
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- Present address:
Institute of Chemical Engineering Sciences (ICE‐HT)Foundation for Research and TechnologyHellas (FORTH)Stadiou St.Platani26504PatrasGreece
| |
Collapse
|
21
|
Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev 2019; 49:59-69. [PMID: 31543432 DOI: 10.1016/j.cytogfr.2019.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| |
Collapse
|
22
|
Chen L, Childs RD, Landis WJ. Correlations between gene expression and mineralization in the avian leg tendon. Bone 2019; 121:42-59. [PMID: 30419319 DOI: 10.1016/j.bone.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Certain avian tendons have been studied previously as a model system for normal mineralization of vertebrates in general. In this regard, the gastrocnemius tendon in the legs of turkeys mineralizes in a well defined temporal and spatial manner such that changes in the initial and subsequent events of mineral formation can be associated with time and specific locations in the tissue. In the present investigation, these parameters and mineral deposition have been correlated with the expression of several genes and the synthesis and secretion of their related extracellular matrix proteins by the composite tenocytes of the tendon. Quantitative polymerase chain reaction analysis demonstrates that mRNA expression of the non-collagenous genes of bone sialoprotein, osteopontin, and osteocalcin corresponds well with the temporal and spatial onset and progression of mineralization. Immunolocalization separately confirms the synthesis and secretion of these matrix molecules. The expression of other non-collagenous genes such as decorin does not show strong correlation with turkey leg tendon mineralization, and expression of vimentin, a cytoskeletal component which may be regulated by biomechanical factors in the tendon, may lead to inhibition of osteocalcin expression during the development and mineralization of the tissue. The overall results of this work provide insight into direct temporal and spatial relations between the genes and proteins of interest as well as the formation and deposition of mineral in the avian tendon model.
Collapse
Affiliation(s)
- Ling Chen
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | | | - William J Landis
- Department of Polymer Science, University of Akron, Akron, OH, USA.
| |
Collapse
|
23
|
Terruzzi I, Montesano A, Senesi P, Villa I, Ferraretto A, Bottani M, Vacante F, Spinello A, Bolamperti S, Luzi L, Rubinacci A. L-Carnitine Reduces Oxidative Stress and Promotes Cells Differentiation and Bone Matrix Proteins Expression in Human Osteoblast-Like Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5678548. [PMID: 30800672 PMCID: PMC6360619 DOI: 10.1155/2019/5678548] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/23/2018] [Indexed: 12/21/2022]
Abstract
Bone fragility and associated fracture risk are major problems in aging. Oxidative stress and mitochondrial dysfunction play a key role in the development of bone fragility. Mitochondrial dysfunction is closely associated with excessive production of reactive oxygen species (ROS). L-Carnitine (L-C), a fundamental cofactor in lipid metabolism, has an important antioxidant property. Several studies have shown how L-C enhances osteoblastic proliferation and activity. In the current study, we investigated the potential effects of L-C on mitochondrial activity, ROS production, and gene expression involved in osteoblastic differentiation using osteoblast-like cells (hOBs) derived from elderly patients. The effect of 5mM L-C treatment on mitochondrial activity and L-C antioxidant activity was studied by ROS production evaluation and cell-based antioxidant activity assay. The possible effects of L-C on hOBs differentiation were assessed by analyzing gene and protein expression by Real Time PCR and western blotting, respectively. L-C enhanced mitochondrial activity and improved antioxidant defense of hOBs. Furthermore, L-C increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Additionally, L-C induced the phosphorylation of ERK1/2 and AKT and the main kinases involved in osteoblastic differentiation and upregulated the expression of osteogenic related genes, RUNX2, osterix (OSX), bone sialoprotein (BSP), and osteopontin (OPN) as well as OPN protein synthesis, suggesting that L-C exerts a positive modulation of key osteogenic factors. In conclusion, L-C supplementation could represent a possible adjuvant in the treatment of bone fragility, counteracting oxidative phenomena and promoting bone quality maintenance.
Collapse
Affiliation(s)
- Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli, 31, 20133 Milano, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli, 31, 20133 Milano, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - Isabella Villa
- Bone Metabolism Unit, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli, 31, 20133 Milano, Italy
| | - Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy
| | - Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - Alice Spinello
- Bone Metabolism Unit, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli, 31, 20133 Milano, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - Alessandro Rubinacci
- Bone Metabolism Unit, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
24
|
Li N, Wang Q, Zhu T, Qiao L, Zhang F, Mi R, Wang B, Chen L, Gu J, Lu Y, Zheng Q. In vitro functional characterization of prostaglandin-endoperoxide synthase 2 during chondrocyte hypertrophic differentiation. Oncotarget 2017; 7:36280-36292. [PMID: 27121205 PMCID: PMC5095000 DOI: 10.18632/oncotarget.8889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase 2 (Cox-2) has been implicated an essential role during bone repair, but the mechanisms remain elusive. Bone repair healing is known to include processes similar to endochondral ossification. In this study, we investigated the in vitro effect of Cox-2 on Col10a1 expression and chondrocyte hypertrophy, two critical components of endochondral ossification. Using quantitative RT-PCR, we detected increased mRNA levels of Cox-2 and Col10a1 in hypertrophic MCT cells, while cells treated with Cox-2 inhibitor, NS398, showed decreased mRNA and protein levels of Cox-2 and Col10a1. Increased Cox-2 also correlated with significantly upregulated Col10a1 in hypertrophic ATDC5 cells, whereas inhibition of Cox-2 significantly decreased Col10a1 expression. We further generated a Cox-2-expressing ATDC5 stable cell line. Compared with the controls, Cox-2 over-expression significantly increased Col10a1 as early as day 7 of continuous culturing, but not at days 14 and 21. Enhanced Alp staining was also observed in day 7 stable cell line. Correspondingly, we detected significantly increased levels of Runx2, Alp, Bcl-2, Bax, Col1a1, Osterix, and Bsp in day 7 stable line. Most of these genes have been associated with chondrocyte maturation and apoptosis. Together, our results support that Cox-2 promotes Col10a1 expression and chondrocyte hypertrophy in vitro, possibly through upregulation of Runx2 and other relevant transcription factors.
Collapse
Affiliation(s)
- Na Li
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, 215002, China
| | - Fei Zhang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rui Mi
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Bo Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Junxia Gu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Lauria I, Dickmeis C, Röder J, Beckers M, Rütten S, Lin YY, Commandeur U, Fischer H. Engineered Potato virus X nanoparticles support hydroxyapatite nucleation for improved bone tissue replacement. Acta Biomater 2017; 62:317-327. [PMID: 28864253 DOI: 10.1016/j.actbio.2017.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Bionanoparticles based on filamentous phages or flexuous viruses are interesting candidates for meeting the challenges of tailoring biomineralization in hydrogel-based bone tissue substitutes. We hypothesized that hydroxyapatite crystal nucleation and matrix mineralization can be significantly increased by mineralization-inducing (MIP) and integrin binding motif (RGD) peptides presented on biomimetic nanoparticles. In this study, Potato virus X (PVX), a flexible rod-shaped plant virus was genetically engineered to present these functional peptides on its particle surface. Recombinant PVX-MIP/RGD particles were isolated from infected Nicotiana benthamiana plants and characterized by western blot, SEM, TEM, and TPLSM in MSC cultures. The presence of RGD was proven by cell attachment, spreading, and vinculin cluster analysis, and MIP by in vitro mineralization and osteogenic differentiation assays. Thus the tailored surface of genetically engineered PVX forms fibril-like nanostructures which enables enhanced focal adhesion-dependent cell adhesion, and matrix mineralization verified by Alizarin. Hydroxyapatite crystal nucleation is supported on recombinant PVX particles leading to a biomimetic network and bundle-like structures similar to mineralized collagen fibrils. In conclusion, the recombinant flexuous PVX nanoparticles exhibit properties with great potential for bone tissue substitutes. STATEMENT OF SIGNIFICANCE A suitable biomaterial for tissue engineering should be able to mimic the endogenous extracellular matrix by presenting biochemical and biophysical cues. Novel hydrogel-based materials seek to meet the criteria of cytocompatibility, biodegradability, printability, and crosslinkability under mild conditions. However, a majority of existing hydrogels lack cell-interactive motifs, which are crucial to modulate cellular responses. The incorporation of the plant virus PVX to the hydrogel could improve functions like integrin-binding and mineralization due to peptide-presentation on the particle surface. The tailored surface of genetically engineered PVX forms fibril-like nanostructures which enables enhanced focal adhesion-dependent cell adhesion and matrix mineralization and offers great potential for the development of new hydrogel compositions for bone tissue substitutes.
Collapse
Affiliation(s)
- Ines Lauria
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Malin Beckers
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ying Ying Lin
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
26
|
Maximiano WMA, da Silva EZM, Santana AC, de Oliveira PT, Jamur MC, Oliver C. Mast Cell Mediators Inhibit Osteoblastic Differentiation and Extracellular Matrix Mineralization. J Histochem Cytochem 2017; 65:723-741. [PMID: 28980852 DOI: 10.1369/0022155417734174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mast cells are multifunctional immune cells that participate in many important processes such as defense against pathogens, allergic reactions, and tissue repair. These cells perform their functions through the release of a wide variety of mediators. This release occurs mainly through cross-linking IgE (immunoglobulin E) bound to high affinity IgE receptors by multivalent antigens. The abundance of mast cells in connective tissue, surrounding blood vessels, and their involvement in the early stages of bone repair support the possibility of physiological and pathological interactions between mast cells and osteoblasts. However, the participation of mast cell mediators in osteogenesis is not fully understood. Therefore, the objective of this work was to investigate the role of mast cell mediators in the acquisition of the osteogenic phenotype in vitro. The results show that pooled mast cell mediators can affect proliferation, morphology, and cytoskeleton of osteoblastic cells, and impair the activity and expression of alkaline phosphatase as well as the expression of bone sialoprotein. Also, mast cell mediators inhibit the expression of mRNA for those proteins and inhibit the formation and maturation of calcium nodules and consequently inhibit mineralization. Therefore, mast cell mediators can modulate osteogenesis and are potential therapeutic targets for treatments of bone disorders.
Collapse
Affiliation(s)
- William Marcatti Amarú Maximiano
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Carolina Santana
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Tambasco de Oliveira
- Department of Morphology, Stomatology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Wang HJ, Zhang Y, Kato S, Nakagawa K, Kimura F, Miyazawa T, Wang JY. HPLC-MS/MS: A potential method to track the in vivo degradation of zein-based biomaterial. J Biomed Mater Res A 2017; 106:606-613. [PMID: 28960906 DOI: 10.1002/jbm.a.36252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/02/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023]
Abstract
Given the inadequacies of existing clinic tracking strategies, such as isotopic tracer techniques, one of the major thrusts in protein-based tissue engineering substitutes prior to use in clinic is to develop a safe technique that can effectively track their degradation in vivo. Keeping in view the possible application of a natural polymer, zein as a novel bone substitute, with the advantages of good bio-compatibility, bio-degradability and outstanding mechanical properties, we attempted here to construct a HPLC-MS/MS method to track the in vivo degradation of zein porous scaffold. Histological observation and immunohistochemistry analysis using the intramuscular implantation model of rats clearly indicated that zein porous scaffold has certain osteoinductive ability. More importantly, HPLC-MS/MS detected the changes of amino acids levels in plasma and different organs after the implantation of scaffolds. With these findings, it could be concluded that HPLC-MS/MS might be a potential method to track the in vivo degradation of protein-based tissue engineering substitutes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 606-613, 2018.
Collapse
Affiliation(s)
- Hua-Jie Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, Dongchuan Road, Shanghai, 200240, China.,Food Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe) at Tohoku University, Sendai, 980-0845, Japan
| | - Yue Zhang
- School of Biomedical Engineering, Shanghai Jiaotong University, Dongchuan Road, Shanghai, 200240, China
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, School of Agriculture, Tohoku University, Sendai, 980-0845, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, School of Agriculture, Tohoku University, Sendai, 980-0845, Japan
| | - Fumiko Kimura
- Food and Biodynamic Chemistry Laboratory, School of Agriculture, Tohoku University, Sendai, 980-0845, Japan
| | - Teruo Miyazawa
- Food Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe) at Tohoku University, Sendai, 980-0845, Japan.,Food and Biodynamic Chemistry Laboratory, School of Agriculture, Tohoku University, Sendai, 980-0845, Japan
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
28
|
Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, Rouard H, Chevallier N. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater 2017. [PMID: 28636926 DOI: 10.1016/j.actbio.2017.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to induce an efficient bone formation with human bone marrow mesenchymal stromal cells (hBMSC) associated to a scaffold, it is crucial to determine the key points of the hBMSC action after in vivo transplantation as well as the appropriate features of a scaffold. To this aim we compared the hBMSC behavior when grafted onto two biomaterials allowing different bone potential in vivo. The cancellous devitalized Tutoplast®-processed bone (TPB) and the synthetic hydroxyapatite/β-tricalcium-phosphate (HA/βTCP) which give at 6weeks 100% and 50% of bone formation respectively. We first showed that hBMSC adhesion is two times favored on TPB in vitro and in vivo compared to HA/βTCP. Biomaterial structure analysis indicated that the better cell adhesion on TPB is associated to its higher and smooth open pore architecture as well as its content in collagen. Our 6week time course analysis, showed using qPCR that only adherent cells are able to survive in vivo giving thus an advantage in term of cell number on TPB during the first 4weeks after graft. We then showed that grafted hBMSC survival is crucial as cells participate directly to bone formation and play a paracrine action via the secretion of hIGF1 and hRANKL which are known to regulate the bone formation and resorption pathways respectively. Altogether our results point out the importance of developing a smooth and open pore scaffold to optimize hBMSC adhesion and ensure cell survival in vivo as it is a prerequisite to potentiate their direct and paracrine functions. STATEMENT OF SIGNIFICANCE Around 10% of skeletal fractures do not heal correctly causing nonunion. An approach involving mesenchymal stromal cells (MSC) associated with biomaterials emerges as an innovative strategy for bone repair. The diversity of scaffolds is a source of heterogeneity for bone formation efficiency. In order to better determine the characteristics of a powerful scaffold it is crucial to understand their relationship with cells after graft. Our results highlight that a biomaterial architecture similar to cancellous bone is important to promote MSC adhesion and ensure cell survival in vivo. Additionally, we demonstrated that the grafted MSC play a direct role coupled to a paracrine effect to enhance bone formation and that both of those roles are governed by the used scaffold.
Collapse
Affiliation(s)
- Miryam Mebarki
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Laura Coquelin
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Pierre Layrolle
- INSERM U957, Lab. Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - Séverine Battaglia
- INSERM U957, Lab. Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - Marine Tossou
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Philippe Hernigou
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Orthopaedic Surgery Department, Henri-Mondor AP-HP Hospital, Creteil, France
| | - Hélène Rouard
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France
| | - Nathalie Chevallier
- IMRB U955-E10, INSERM, Creteil, France; Faculty of Medicine, Paris Est University, Creteil, France; Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Créteil, France.
| |
Collapse
|
29
|
Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo. Appl Biochem Biotechnol 2017; 183:280-292. [PMID: 28321783 DOI: 10.1007/s12010-017-2444-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/20/2017] [Indexed: 10/19/2022]
Abstract
Hybrid micro-nanostructure implant surface was produced on titanium (Ti) surface by acid etching and anodic oxidation to improve the biological and mechanical properties. The biological properties of the micro-nanostructure were investigated by simulated body fluid (SBF) soaking test and MC3T3-E1 cell co-culture experiment. The cell proliferation, spreading, and bone sialoprotein (BSP) gene expression were examined by MTT, SEM, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. In addition, the mechanical properties were evaluated by instrumented nanoindentation test and friction-wear test. Furthermore, the effect of the micro-nanostructure surface on implant osteointegration was examined by in vivo experiment. The results showed that the formation of bone-like apatite was accelerated on the micro-nanostructured Ti surface after immersion in simulated body fluid, and the proliferation, spreading, and BSP gene expression of the MC3T3-E1 cells were also upregulated on the modified surface. The micro-nanostructured Ti surface displayed decreased friction coefficient, stiffness value, and Young's modulus which were much closer to those of the cortical bone, compared to the polished Ti surface. This suggested much better mechanical match to the surrounding bone tissue of the micro-nanostructured Ti surface. Furthermore, the in vivo animal experiment showed that after implantation in the rat femora, the micro-nanostructure surface displayed higher bonding strength between bone tissues and implant; hematoxylin and eosin (H&E) staining suggested that much compact osteoid tissue was observed at the interface of Micro-nano-Ti-bone than polished Ti-bone interface after implantation. Based on these results mentioned above, it was concluded that the improved biological and mechanical properties of the micro-nanostructure endowed Ti surface with good biocompatibility and better osteointegration, implying the enlarged application of the micro-nanostructure surface Ti implants in future.
Collapse
|
30
|
Song M, Huo H, Cao Z, Han Y, Gao L. Aluminum Trichloride Inhibits the Rat Osteoblasts Mineralization In Vitro. Biol Trace Elem Res 2017; 175:186-193. [PMID: 27260532 DOI: 10.1007/s12011-016-0761-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/01/2022]
Abstract
Aluminum (Al) is an accumulative toxic metal. Excessive Al accumulation inhibits osteoblasts mineralization and induces osteoporosis. However, the inhibition mechanism of Al on the mineralization is not fully understood. Thus, in this study, the rat osteoblasts were cultured and exposed to 0 mmol L-1 (control group, CG) and 0.52 mmol L-1 aluminum trichloride (AlCl3, treatment group, TG) for 7, 14, and 21 days, respectively. We found that mineralized matrix nodules, the activity of bone alkaline phosphatase, the concentration of extracellular calcium, the mRNA expression of type-I collagen, the mRNA and protein expressions of osteopontin, osteocalcin, and bone sialoprotein were all decreased, while the concentration of extracellular phosphorus was increased in TG compared with CG with time prolonged. Taken together, these results indicated that AlCl3 inhibited osteoblasts mineralization in vitro.
Collapse
Affiliation(s)
- Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Hui Huo
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
31
|
Niu LN, Pei DD, Morris M, Jiao K, Huang XQ, Primus CM, Susin LF, Bergeron BE, Pashley DH, Tay FR. Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement. Dent Mater 2016; 32:1235-1247. [DOI: 10.1016/j.dental.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
32
|
The role of bone sialoprotein in the tendon-bone insertion. Matrix Biol 2016; 52-54:325-338. [PMID: 26826499 DOI: 10.1016/j.matbio.2016.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/20/2016] [Accepted: 01/23/2016] [Indexed: 01/08/2023]
Abstract
Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp(-/-) mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp(-/-) mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp(-/-) patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp(-/-) mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone.
Collapse
|
33
|
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54:43-59. [PMID: 26807759 DOI: 10.1016/j.matbio.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
34
|
Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T. MEMO1 drives cranial endochondral ossification and palatogenesis. Dev Biol 2015; 415:278-295. [PMID: 26746790 DOI: 10.1016/j.ydbio.2015.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023]
Abstract
The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base with more widespread effects on craniofacial shape relevant to human craniofacial dysmorphology.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4002 Basel, Switzerland
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lee Niswander
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Abstract
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions.
Collapse
Affiliation(s)
- S R Stock
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611-3008, USA,
| |
Collapse
|
36
|
Foster BL, Ao M, Willoughby C, Soenjaya Y, Holm E, Lukashova L, Tran AB, Wimer HF, Zerfas PM, Nociti FH, Kantovitz KR, Quan BD, Sone ED, Goldberg HA, Somerman MJ. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 2015; 78:150-64. [PMID: 25963390 PMCID: PMC4466207 DOI: 10.1016/j.bone.2015.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 01/15/2023]
Abstract
Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.
Collapse
Affiliation(s)
- B L Foster
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - C Willoughby
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - Y Soenjaya
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - E Holm
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - L Lukashova
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - P M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health (NIH), 9000 Rockville Pike, 112 Building 28A, MSC 5230, Bethesda, MD 20892, USA.
| | - F H Nociti
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - K R Kantovitz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Pediatric Dentistry, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - B D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada.
| | - E D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - H A Goldberg
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Soenjaya Y, Foster BL, Nociti FH, Ao M, Holdsworth DW, Hunter GK, Somerman MJ, Goldberg HA. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice. J Dent Res 2015; 94:1276-85. [PMID: 26130257 DOI: 10.1177/0022034515592581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp(-/-)) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp(-/-) mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp(-/-) mice. This hypothesis was tested by comparing Bsp(-/-) and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro-computed tomography. By 8 wk of age, Bsp(-/-) mice exhibited molar and incisor malocclusion regardless of diet. Bsp(-/-) mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp(-/-) mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp(-/-) mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp(-/-) mice. Bsp(-/-) incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP in maintaining proper periodontal function and alveolar bone remodeling and point to dental dysfunction as causative factor of skeletal defects observed in Bsp(-/-) mice.
Collapse
Affiliation(s)
- Y Soenjaya
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - B L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - F H Nociti
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, Brazil
| | - M Ao
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D W Holdsworth
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada
| | - G K Hunter
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada Deparment of Biochemistry, University of Western Ontario, London, Canada
| | - M J Somerman
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H A Goldberg
- Biomedical Engineering Program, University of Western Ontario, London, Canada School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada Deparment of Biochemistry, University of Western Ontario, London, Canada
| |
Collapse
|