1
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Saulacic N, Katagiri H, Fujioka-Kobayashi M, Ferrari SL, Gerbaix MC. Alternated activation with relaxation of periosteum stimulates bone modeling and remodeling. Sci Rep 2024; 14:11136. [PMID: 38750119 PMCID: PMC11096315 DOI: 10.1038/s41598-024-61902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Gradual elevation of the periosteum from the original bone surface, based on the principle of distraction osteogenesis, induces endogenous hard and soft tissue formation. This study aimed to assess the impact of alternating protocols of activation with relaxation (periosteal pumping) on bone modeling and remodeling. One hundred and sixty-two adult male Wistar rats were used in this study. Four test groups with different pumping protocols were created based on the relaxation applied. Two control groups underwent an activation period without relaxation or only a single activation. One group was sham-operated. Periosteal pumping without period of activation induced gene expression in bone and bone remodeling, and following activation period enhanced bone modeling. Four test groups and control group with activation period equaled the values of bone modeling at the end-consolidation period, showing significant downregulation of Sost in the bone and periosteum compared to that in the sham group (p < 0.001 and p < 0.001, respectively). When all test groups were pooled together, plate elevation from the bony surface increased bone remodeling on day 45 of the observation period (p = 0.003). Furthermore, bone modeling was significantly affected by plate elevation on days 17 and 45 (p = 0.047 and p = 0.005, respectively) and by pumping protocol on day 31 (p = 0.042). Periosteal pumping was beneficial for increasing bone repair when the periosteum remained in contact with the underlaying bony surface during the manipulation period. Following periosteal elevation, periosteal pumping accelerated bone formation from the bony surface by the modeling process.
Collapse
Affiliation(s)
- Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland.
| | - Hiroki Katagiri
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Serge L Ferrari
- Service of Bone Diseases, Department Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Maude C Gerbaix
- Service of Bone Diseases, Department Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
3
|
Szulc P, Whittier DE, Boyd SK, Chapurlat R. Rapid bone microarchitecture decline in older men with high bone turnover-the prospective STRAMBO study. J Bone Miner Res 2024; 39:17-29. [PMID: 38630881 DOI: 10.1093/jbmr/zjad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 04/19/2024]
Abstract
Older men with high bone turnover have faster bone loss. We assessed the link between the baseline levels of bone turnover markers (BTMs) and the prospectively assessed bone microarchitecture decline in men. In 825 men aged 60-87 yr, we measured the serum osteocalcin (OC), bone alkaline phosphatase (BAP), N-terminal propeptide of type I procollagen (PINP), and C-terminal telopeptide of type I collagen (CTX-I), and urinary total deoxypyridinoline (tDPD). Bone microarchitecture and strength (distal radius and distal tibia) were estimated by high-resolution pQCT (XtremeCT, Scanco Medical) at baseline and then after 4 and 8 yr. Thirty-seven men took medications affecting bone metabolism. Statistical models were adjusted for age and BMI. At the distal radius, the decrease in the total bone mineral density (Tt.BMD), cortical BMD (Ct.BMD), cortical thickness (Ct.Thd), and cortical area (Ct.Ar) and failure load was faster in the highest vs the lowest CTX-I quartile (failure load: -0.94 vs -0.31% yr-1, P < .001). Patterns were similar for distal tibia. At the distal tibia, bone decline (Tt.BMD, Ct.Thd, Ct.Ar, Ct.BMD, and failure load) was faster in the highest vs the lowest tDPD quartile. At each skeletal site, the rate of decrease in Tb.BMD differed between the extreme OC quartiles (P < .001). Men in the highest BAP quartile had a faster loss of Tt.BMD, Tb.BMD, reaction force, and failure load vs the lowest quartile. The link between PINP and bone decline was poor. The BTM score is the sum of the nos. of the quartiles for each BTM. Men in the highest quartile of the score had a faster loss of cortical bone and bone strength vs the lowest quartile. Thus, in the older men followed prospectively for 8 yr, the rate of decline in bone microarchitecture and estimated bone strength was 50%-215% greater in men with high bone turnover (highest quartile, CTX-I above the median) compared to the men with low bone turnover (lowest quartile, CTX-I below the median).
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon 69437, France
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Roland Chapurlat
- INSERM UMR 1033, University of Lyon, Hôpital Edouard Herriot, Lyon 69437, France
| |
Collapse
|
4
|
Hoshi-Numahata M, Takakura A, Nakanishi-Kimura A, Watanabe H, Takada K, Nishiura M, Sato Y, Takao-Kawabata R, Iimura T. Evaluation of cortical bone remodeling in canines treated with daily and weekly administrations of teriparatide by establishing AI-driven morphometric analyses and GIS-based spatial mapping. Bone Rep 2023; 19:101720. [PMID: 37915737 PMCID: PMC10616120 DOI: 10.1016/j.bonr.2023.101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Larger animal models with a well-developed Haversian system, as observed in humans, are ideal to analyze cortical bone remodeling in pharmacological studies of anti-osteoporosis drugs, although they have some limitations in controlling individual variability in size, weight, age, and number. This study aimed to morphometrically analyze cortical bone remodeling focusing on Haversian canals in dogs using four regimens of TPTD with daily and weekly administrations at lower and higher weekly doses (4.9 μg/kg/week and 19.8 μg/kg/week, respectively) for 9 months. A micro-computed tomography-based analysis showed no significant differences among regimen groups. By establishing artificial intelligence (AI)-driven morphometric analyses and geographical information system (GIS)-based spatial mapping of Haversian canals that does not require confocal microscopy but is possible with more commonly used wide field microscopes, we successfully observed significant morphometric distinctions among regimens applied even in dogs. Our analytical results suggested that the daily higher regimen specifically increased the number of eroded pores creating spaces between existing canals, thus stimulating cortical bone remodeling.
Collapse
Affiliation(s)
- Marie Hoshi-Numahata
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
- Department of Orthodontics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Atsuko Nakanishi-Kimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
- Department of Orthodontics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
- Department of Oral Medicine and Diagnostics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Kentaro Takada
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo 060-8010, Japan
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
- Department of Dentistry for Children and Disabled Persons, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Yoshiaki Sato
- Department of Orthodontics, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Japan
| |
Collapse
|
5
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
6
|
Yu Y, Wang Y, Hou X, Tian F. Recent advances in the identification of related factors and preventive strategies of hip fracture. Front Public Health 2023; 11:1006527. [PMID: 36992874 PMCID: PMC10040558 DOI: 10.3389/fpubh.2023.1006527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Hip fracture is the most devastating type of osteoporosis-related fracture, and is a major worldwide public health problem with a high socioeconomic burden, morbidity rate, and mortality rate. Thus, it is crucial to uncover the risk factors and protective factors to create a hip fracture prevention strategy. In addition to a briefly review of some well accepted risk and protective factors of hip fracture, this review mainly summarized the recent advances in the identification of emerging risk or protective factors for hip fracture, in terms of regional differences in medical services, diseases, drugs, mechanical load, neuromuscular mass, genes, blood types, cultural differences. This review provides a comprehensive review of the associated factors and effective prevention measures for hip fracture, and discusses issues that need further investigation. These issues include the determination of the influencing mechanism of risk factors triggering hip fracture and their interlinked correlation with other factors, as well as the confirmation or correction of emerging factors associated with hip fracture, particularly those that are still controversial. These recent findings will aid in optimizing the strategy for preventing hip fracture.
Collapse
|
7
|
Battista MD, Kernitsky J, Exarchos E, Ohira T, Dibart S. Quantification and comparison of the regional acceleratory phenomenon in bone following piezosurgery or bur osteotomy: A pilot study in rats. Clin Exp Dent Res 2023; 9:66-74. [PMID: 36369743 PMCID: PMC9932235 DOI: 10.1002/cre2.689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVE The Regional Acceleratory Phenomenon (RAP) can be induced surgically via decortication (selective cortical penetrations) of bone to accelerate orthodontic tooth movement. Few studies have compared the impact and efficiency of different decortication methods to induce the RAP. The aim of this study was to determine if there is a significant difference in the intensity of the RAP induced by a surgical defect created either using a piezoelectric knife or a rotary bur. METHODS Twenty-two Sprague-Dawley rats were divided into two treatment groups (each n = 8) and a control group (n = 6). The treatment groups were subjected to transcortical penetrations (TP) of the right tibia using either a piezoelectric knife (PTP) or a rotary bur (BTP). The right tibias of the control group animals had reflection of tissues (SHAM) and the left legs were kept for comparison (INTACT). The animals were killed at 7 and 14 days after the operation in an equally distributed manner. Microcomputed tomography images were obtained and analyzed utilizing artificial intelligence for bone cortical porosity (Ct.Po) locally and regionally. RESULTS/CONCLUSION Regionally, TP using a PTP induced significantly (p < .05, Kruskal-Wallis test) more Ct.Po than BTP or INTACT for both the 7- and 14-day time points. PTP was not found to induce significantly more Ct.Po than SHAM at any time point. However, PTP induced significantly more Ct.Po than the INTACT group for each time point, while SHAM did not. The local analysis did not reveal any relevant significant differences between groups.
Collapse
Affiliation(s)
- Massimo Di Battista
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental MedicineBoston UniversityBostonMassachusettsUSA
| | - Jeremy Kernitsky
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental MedicineBoston UniversityBostonMassachusettsUSA
| | - Elias Exarchos
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental MedicineBoston UniversityBostonMassachusettsUSA
| | - Taisuke Ohira
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental MedicineBoston UniversityBostonMassachusettsUSA
| | - Serge Dibart
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental MedicineBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
8
|
Expansion of the osteocytic lacunar-canalicular system involved in pharmacological action of PTH revealed by AI-driven fluorescence morphometry in female rabbits. Sci Rep 2022; 12:16799. [PMID: 36207444 PMCID: PMC9546928 DOI: 10.1038/s41598-022-20793-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoporosis is an age-related disorder that is characterized by reduced bone mass. Its prevention and treatment are important healthcare issues for maintaining social activity in aged societies. Although bone fractures mostly occur at sites of weakened cortical bone, pathophysiological and pharmacological evaluations of bone mass have tended to be predominantly assessed in trabecular bone. To statistically characterize cortical bone remodeling, we originally established multimode fluorescence imaging and artificial intelligence (AI)-driven morphometric analyses in six-month-old female rabbits with well-defined cortical remodeling, similar to that in humans. We evaluated three distinct administration frequencies of teriparatide [TPTD; human parathyroid hormone, hPTH (1–34)]: once (1/w), twice (2/w), and seven times (7/w) a week, with the same total dose (140 μg/kg/week). Our analyses revealed significant expansions of the osteocytic lacunar-canalicular system and Haversian canals accompanied by the development of cortical porosity and endosteal naïve bone formation induced by a frequent administration regimen (7/w) of TPTD; however, once-weekly (1/w) and twice-weekly (2/w) administration of TPTD showed little effect. These findings demonstrate a clear contrast between the effects of frequent and infrequent administration of TPTD on cortical bone metabolism and suggest that osteocytic bone remodeling is involved in the pharmacological action of PTH.
Collapse
|
9
|
Ivaska KK, McGuigan FE, Malmgren L, Gerdhem P, Johansson H, Kanis JA, Akesson KE. Bone Turnover Marker Profiling and Fracture Risk in Older Women: Fracture Risk from Age 75 to 90. Calcif Tissue Int 2022; 111:288-299. [PMID: 35750934 PMCID: PMC9395308 DOI: 10.1007/s00223-022-00996-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE A major challenge in osteoporosis is to identify individuals at high fracture risk. We investigated six bone turnover markers (BTMs) to determine association with specific fracture types; the time-frame for risk prediction and whether these are influenced by age at assessment. METHODS Population-based OPRA cohort (n = 1044) was assessed at ages 75, 80, 85 and fractures documented for up to 15 years. Six BTMs were analyzed at each time-point (N-terminal propeptide of type I collagen, PINP; total osteocalcin, OC; bone-specific alkaline phosphatase, BALP; C-terminal telopeptide of type I collagen, CTX; tartrate-resistant acid phosphatase 5b, TRAcP5b; urinary osteocalcin). Hazard ratios (HR) for any, major osteoporotic, vertebral and hip fractures were calculated as short (1, 2, 3 years) and long-term risk (5, 10, 15 years). RESULTS At 75 year, high CTX levels were associated with an increased risk of all fractures, including major osteoporotic fractures, across most time-frames (HRs ranging: 1.28 to 2.28). PINP was not consistently associated. Urinary osteocalcin was consistently associated with elevated short-term risk (HRs ranging: 1.83-2.72). Other BTMs were directionally in accordance, though not all statistically significant. BTMs were not predictive for hip fractures. Association of all BTMs attenuated over time; at 80 year none were associated with an increased fracture risk. CONCLUSION CTX, urinary OC and TRAcP5b are predictive for fracture in a 1 to 3 year, perspective, whereas in the long-term or above age 80 years, BTMs appear less valuable. Resorption markers, particularly CTX, were more consistently associated with fracture risk than formation markers in the very elderly.
Collapse
Affiliation(s)
- Kaisa K Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland.
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - Fiona E McGuigan
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Linnea Malmgren
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Geriatrics, Skåne University Hospital, Malmö, Sweden
| | - Paul Gerdhem
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences and Department of Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Helena Johansson
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Kristina E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Department of Orthopedics Malmö, Skåne University Hospital, S-21428, Malmö, Sweden.
| |
Collapse
|
10
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
11
|
Pendleton EG, Tehrani KF, Barrow RP, Mortensen LJ. Second harmonic generation characterization of collagen in whole bone. BIOMEDICAL OPTICS EXPRESS 2020; 11:4379-4396. [PMID: 32923050 PMCID: PMC7449751 DOI: 10.1364/boe.391866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 05/24/2023]
Abstract
Bone is a unique biological composite material made up of a highly structured collagen mesh matrix and mineral deposits. Although mineral provides stiffness, collagen's secondary organization provides a critical role in bone elasticity. Here, we performed polarimetric analysis of bone collagen fibers using second harmonic generation (SHG) imaging to evaluate lamella sheets and collagen fiber integrity in intact cranial bone. Our polarimetric data was fitted to a model accounting for diattenuation, polarization cross-talk, and birefringence. We compared our data to the fitted model and found no significant difference between our polarimetric observation and the representation of these scattering properties up to 70 µm deep. We also observed a loss of resolution as we imaged up to 70 µm deep into bone but a conservation of polarimetric response. Polarimetric SHG allows for the discrimination of collagen lamellar sheet structures in intact bone. Our work could allow for label-free identification of disease states and monitor the efficacy of therapies for bone disorders.
Collapse
Affiliation(s)
- Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kayvan F. Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ruth P. Barrow
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Pereira D, Fernandes J, Belanger P. Ex Vivo Assessment of Cortical Bone Properties Using Low-Frequency Ultrasonic Guided Waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:910-922. [PMID: 31825866 DOI: 10.1109/tuffc.2019.2958035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The early diagnosis of osteoporosis through bone quality assessment is a major public health challenge. Research in axial transmission using ultrasonic guided waves has shown the method to be sensitive to the geometrical and mechanical properties of the cortical layer in long bones. However, because of the asymmetric nature of cortical bone, the introduction of a more elaborate numerical model than the analytical plate and cylinder models, as well as its inversion, continues to be challenging. The aim of this article is, therefore, to implement a bone-like geometry using semianalytical finite-element (SAFE) modeling to perform the inverse characterization of ex vivo radii at low frequencies (< 60 kHz). Five cadaveric radiuses were taken from donors aged between 53 and 88 and tested using a typical axial transmission configuration at the middle of the diaphysis. The dispersion curves of the propagating modes were measured experimentally and then systematically compared with the solutions obtained with the SAFE method. For each sample, four parameters were estimated using a parameter identification procedure: 1) the bulk density; 2) the thickness; 3) the outer diameter; and 4) a shape factor (SF). The results showed a moderate agreement between the predicted bulk density and the average voxel value calculated from X-ray computed tomography images. Furthermore, a good agreement was observed between the geometrical parameters (thickness, outer diameter, and SF) and the reference images.
Collapse
|
13
|
Qu X, Zheng B, Chen T, Cao Z, Qu B, Jiang T. Bone Turnover Markers and Bone Mineral Density to Predict Osteoporotic Fractures in Older Women: A Retrospective Comparative Study. Orthop Surg 2019; 12:116-123. [PMID: 31880071 PMCID: PMC7031572 DOI: 10.1111/os.12596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the clinical significance of the detection of bone mineral density (BMD) and bone turnover markers (BTM) in older women with osteoporosis, and to compare their predictive power for osteoporotic fractures (OF). Methods In this retrospective study, 96 patients with OF and 107 patients with osteoporosis who were hospitalized in the Department of Orthopedics at the First Affiliated Hospital of Chengdu Medical College were examined from October 2017 to February 2019. All selected patients were divided into either the fracture group (96 cases, 47.3%) or the non‐fracture group (107 cases, 52.7%). BMD was measured by dual‐energy X‐ray absorptiometry (DXA). BTM were detected by electrochemical luminescence: aminoterminal propeptide of type I procollagen (PINP), β‐cross‐linked C‐telopeptide of type I collagen (β‐CTX), and molecular fragment of osteocalcin N terminal (N‐MID). Bone metabolism‐related indicators were detected, including alkaline phosphatase (ALP), calcium (Ca), and phosphorus (P). Independent‐samples t‐tests were used to compare the measurement data between the two groups, one‐way ANOVA to compare the gaps between groups, and binary logistic regression to analyze the correlation of BMD and BTM with OF. Results There were no significant differences in age, weight, height, body mass index, age, and time of menopause between the two groups. There were a total of 71 cases (35.0%) in group A (60–70 years), 80 cases (39.4%) in group B (71–80 years), and 52 cases (25.6%) in group C (81–90 years). The fracture group was compared with the non‐fracture group for BMD in the lumbar (0.75 ± 0.05 vs 0.88 ± 0.13, 0.75 ± 0.16 vs 0.87 ± 0.09, 0.74 ± 0.21 vs 0.87 ± 0.12 g/cm2; P < 0.05), BMD in the hip (0.62 ± 0.16 vs 0.74 ± 0.14, 0.61 ± 0.15 vs 0.73 ± 0.0, 0.58 ± 0.13 vs 0.73 ± 0.08 g/cm2; P < 0.05), PINP (83.7 ± 5.7 vs 74.8 ± 5.0, 80.7 ± 4.1 vs 72.1 ± 5.1, 81.2 ± 7.0 vs 68.7 ± 6.3 ng/mL, P < 0.05), and β‐CTX (829.7 ± 91.5 vs 798.8 ± 52.2, 848.1 ± 71.2 vs 812.4 ± 79.0, 867.3 ± 53.1 vs 849.1 ± 67.2 pg./mL, P < 0.05). N‐MID (19.0 ± 6.7 vs 21.3 ± 9.7, 16.2 ± 7.0 vs 18.0 ± 5.3 ng/mL, P < 0.05) in the fracture cases was lower than in the non‐fracture cases for groups B and C, and there was statistical significance. Among the fracture cases, PINP in group A was higher than in group B and C, and β‐CTX in group C was higher than in group A and B (P < 0.05). There was no significant difference in the ALP, P, and Ca between the two groups (P > 0.05). Binary logistic regression analysis showed that for BMD in the lumbar and hip, β‐CTX and OF were significantly correlated (respectively, odds ratio [OR] = −4.182, 95% confidence interval [CI] 1.672–3.448; OR = 6.929, 95% CI 2.586–12.106; OR = 7.572, 95% CI 1.441–3.059), and the differences were statistically significant. PINP and N‐MID were correlated with OF (respectively, OR = 4.213, 95% CI 0.978–1.005; OR = 2.510, 95% CI 1.070–1.134, P > 0.05), the difference was not statistically significant. Conclusion Osteoporotic older women, with lower bone density and higher β‐CTX, are more likely to incur OF. β‐CTX is better than BMD at predicting OF and can help in its management and in implementing interventions in high‐risk populations.
Collapse
Affiliation(s)
- Xiao‐long Qu
- Chengdu Medical College The First Affiliated Hospital of Chengdu Medical College Chengdu China
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Bo Zheng
- Chengdu Medical College The First Affiliated Hospital of Chengdu Medical College Chengdu China
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Tian‐yi Chen
- Chengdu Medical College The First Affiliated Hospital of Chengdu Medical College Chengdu China
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Zong‐rui Cao
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Bo Qu
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| | - Tao Jiang
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chengdu Medical College Chengdu China
| |
Collapse
|
14
|
Braux J, Jourdain ML, Guillaume C, Untereiner V, Piot O, Baehr A, Klymiuk N, Winter N, Berri M, Buzoni-Gatel D, Caballero I, Guillon A, Si-Tahar M, Jacquot J, Velard F. CFTR-deficient pigs display alterations of bone microarchitecture and composition at birth. J Cyst Fibros 2019; 19:466-475. [PMID: 31787573 DOI: 10.1016/j.jcf.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The lack of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing to severe lung disease, reduced growth and osteopenia. Both reduced bone content and strength are increasingly recognized in infants with CF before the onset of significant lung disease, suggesting a developmental origin and a possible role in bone disease pathogenesis. The role of CFTR in bone metabolism is unclear and studies on humans are not feasible. Deletion of CFTR in pigs (CFTR -/- pigs) displays at birth severe malformations similar to humans in the intestine, respiratory tract, pancreas, liver, and male reproductive tract. METHODS We compared bone parameters of CFTR -/- male and female pigs with those of their wild-type (WT) littermates at birth. Morphological and microstructural properties of femoral cortical and trabecular bone were evaluated using micro-computed tomography (μCT), and their chemical compositions were examined using Raman microspectroscopy. RESULTS The integrity of the CFTR -/- bone was altered due to changes in its microstructure and chemical composition in both sexes. Low cortical thickness and high cortical porosity were found in CFTR -/- pigs compared to sex-matched WT littermates. Moreover, an increased chemical composition heterogeneity associated with higher carbonate/phosphate ratio and higher mineral crystallinity was found in CFTR -/- trabecular bone, but not in CFTR -/- cortical bone. CONCLUSIONS The loss of CFTR directly alters the bone composition and metabolism of newborn pigs. Based on these findings, we speculate that bone defects in patients with CF could be a primary, rather than a secondary consequence of inflammation and infection.
Collapse
Affiliation(s)
- Julien Braux
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Marie-Laure Jourdain
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Christine Guillaume
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Valérie Untereiner
- Université de Reims Champagne Ardenne (URCA), PICT Platform, Reims, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT (Translational BioSpectroscopy) EA 7506, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nathalie Winter
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Mustapha Berri
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | | | - Ignaccio Caballero
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Antoine Guillon
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Mustapha Si-Tahar
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Jacky Jacquot
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| | - Frédéric Velard
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| |
Collapse
|
15
|
Minonzio JG, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C, Laugier P. Ultrasound-Based Estimates of Cortical Bone Thickness and Porosity Are Associated With Nontraumatic Fractures in Postmenopausal Women: A Pilot Study. J Bone Miner Res 2019; 34:1585-1596. [PMID: 30913320 DOI: 10.1002/jbmr.3733] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 01/02/2023]
Abstract
Recent ultrasound (US) axial transmission techniques exploit the multimode waveguide response of long bones to yield estimates of cortical bone structure characteristics. This pilot cross-sectional study aimed to evaluate the performance at the one-third distal radius of a bidirectional axial transmission technique (BDAT) to discriminate between fractured and nonfractured postmenopausal women. Cortical thickness (Ct.Th) and porosity (Ct.Po) estimates were obtained for 201 postmenopausal women: 109 were nonfractured (62.6 ± 7.8 years), 92 with one or more nontraumatic fractures (68.8 ± 9.2 years), 17 with hip fractures (66.1 ± 10.3 years), 32 with vertebral fractures (72.4 ± 7.9 years), and 17 with wrist fractures (67.8 ± 9.6 years). The areal bone mineral density (aBMD) was obtained using DXA at the femur and spine. Femoral aBMD correlated weakly, but significantly with Ct.Th (R = 0.23, p < 0.001) and Ct.Po (R = -0.15, p < 0.05). Femoral aBMD and both US parameters were significantly different between the subgroup of all nontraumatic fractures combined and the control group (p < 0.05). The main findings were that (1) Ct.Po was discriminant for all nontraumatic fractures combined (OR = 1.39; area under the receiver operating characteristic curve [AUC] equal to 0.71), for vertebral (OR = 1.96; AUC = 0.84) and wrist fractures (OR = 1.80; AUC = 0.71), whereas Ct.Th was discriminant for hip fractures only (OR = 2.01; AUC = 0.72); there was a significant association (2) between increased Ct.Po and vertebral and wrist fractures when these fractures were not associated with any measured aBMD variables; (3) between increased Ct.Po and all nontraumatic fractures combined independently of aBMD neck; and (4) between decreased Ct.Th and hip fractures independently of aBMD femur. BDAT variables showed comparable performance to that of aBMD neck with all types of fractures (OR = 1.48; AUC = 0.72) and that of aBMD femur with hip fractures (OR = 2.21; AUC = 0.70). If these results are confirmed in prospective studies, cortical BDAT measurements may be considered useful for assessing fracture risk in postmenopausal women. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- J-G Minonzio
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - N Bochud
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Q Vallet
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - D Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - A Etcheto
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - K Briot
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - S Kolta
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - C Roux
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - P Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| |
Collapse
|
16
|
Rodrigues AM, Eusébio M, Rodrigues AB, Caetano-Lopes J, Lopes IP, Lopes A, Mendes JM, Coelho PS, Fonseca JE, Branco JC, Canhão H. Low Serum Levels of DKK2 Predict Incident Low-Impact Fracture in Older Women. JBMR Plus 2019; 3:e10179. [PMID: 31372588 PMCID: PMC6659448 DOI: 10.1002/jbm4.10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 11/26/2022] Open
Abstract
There are currently no robust noninvasive markers of fragility fractures. Secreted frizzled related protein‐1 (sFRP‐1), dickkopf‐related protein 1 (DKK1) and DKK2, and sclerostin (SOST) inhibit Wnt signaling and interfere with osteoblast‐mediated bone formation. We evaluated associations of serum levels of sFRP‐1, DKK1, DKK2, and SOST with incident low‐impact fracture and BMD in 828 women aged ≥65 years from EpiDoC, a longitudinal population‐based cohort. A structured questionnaire during a baseline clinical appointment assessed prevalent fragility fractures and clinical risk factors (CRFs) for fracture. Blood was collected to measure serum levels of bone turnover markers and Wnt regulators. Lumbar spine and hip BMD were determined by DXA scanning. Follow‐up assessment was performed through a phone interview; incident fragility fracture was defined by any new self‐reported low‐impact fracture. Multivariate Cox proportional hazard models were used to analyze fracture risk adjusted for CRFs and BMD. During a mean follow‐up of 2.3 ± 1.0 years, 62 low‐impact fractures were sustained in 58 women. A low serum DKK2 level (per 1 SD decrease) was associated with a 1.5‐fold increase in fracture risk independently of BMD and CRFs. Women in the two lowest DKK2 quartiles had a fracture incidence rate of 32 per 1000 person‐years, whereas women in the two highest quartiles had 14 fragility fractures per 1000 person‐years. A high serum sFRP1 level was associated with a 1.6‐fold increase in fracture risk adjusted for CRFs, but not independently of BMD. Serum levels of SOST (r = 0.191; p = 0.0025) and DKK1(r = −0.1725; p = 0.011) were correlated with hip BMD, but not with incident fragility fracture. These results indicate that serum DKK2 and sFRP1 may predict low‐impact fracture. The low number of incident fractures recorded is a limitation and serum levels of Wnt regulators should be further studied in other populations as potential noninvasive markers of fragility fractures. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ana M Rodrigues
- CEDOC EpiDoc Unit-Epidemiology of Chronic Diseases Nova Medical School Universidade Nova de Lisboa Lisboa Portugal.,Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal.,Associação EpiSaúde Évora Portugal
| | | | - Ana B Rodrigues
- Faculdade de Medicina da Universidade de Lisboa Lisboa Portugal
| | - Joana Caetano-Lopes
- Department of Orthopaedic Research Boston Children's Hospital, Boston, MA, USA; Department of Genetics Harvard Medical School Boston MA USA
| | - Inês P Lopes
- Unidade de Investigação em Reumatologia Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Centro Académico de Medicina de Lisboa Lisboa Portugal
| | - Ana Lopes
- Unidade de Investigação em Reumatologia Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Centro Académico de Medicina de Lisboa Lisboa Portugal
| | | | | | - João Eurico Fonseca
- Unidade de Investigação em Reumatologia Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Centro Académico de Medicina de Lisboa Lisboa Portugal.,Serviço de Reumatologia e Doença Ósseas Metabólicas Hospital de Santa Maria CHLN Centro Académico de Medicina de Lisboa Lisboa Portugal
| | - Jaime C Branco
- CEDOC EpiDoc Unit-Epidemiology of Chronic Diseases Nova Medical School Universidade Nova de Lisboa Lisboa Portugal.,Centro de Estudos de Doenças Crónicas (CEDOC) da NOVA Medical School Universidade Nova de Lisboa (NMS/UNL) Lisboa Portugal.,Serviço de Reumatologia do Hospital Egas Moniz-Centro Hospitalar Lisboa Ocidental (CHLO- E.P.E.) Lisboa Portugal
| | - Helena Canhão
- CEDOC EpiDoc Unit-Epidemiology of Chronic Diseases Nova Medical School Universidade Nova de Lisboa Lisboa Portugal.,Associação EpiSaúde Évora Portugal.,Escola Nacional de Saúde Pública Universidade Nova de Lisboa Lisboa Portugal
| |
Collapse
|
17
|
Zebaze R, Osima M, Bui M, Lukic M, Wang X, Ghasem-Zadeh A, Eriksen EF, Vais A, Shore-Lorenti C, Ebeling PR, Seeman E, Bjørnerem Å. Adding Marrow Adiposity and Cortical Porosity to Femoral Neck Areal Bone Mineral Density Improves the Discrimination of Women With Nonvertebral Fractures From Controls. J Bone Miner Res 2019; 34:1451-1460. [PMID: 30883870 DOI: 10.1002/jbmr.3721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 11/08/2022]
Abstract
Advancing age is accompanied by a reduction in bone formation and remodeling imbalance, which produces microstructural deterioration. This may be partly caused by a diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage cells. We hypothesized that microstructural deterioration would be associated with an increased marrow adiposity, and each of these traits would be independently associated with nonvertebral fractures and improve discrimination of women with fractures from controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) alone. The marrow adiposity and bone microstructure were quantified from HR-pQCT images of the distal tibia and distal radius in 77 women aged 40 to 70 years with a recent nonvertebral fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR-pQCT images was validated using direct histologic measurement as the gold standard, at the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each SD higher distal tibia marrow adiposity was associated with 0.33 SD higher cortical porosity, and 0.60 SD fewer, 0.24 SD thinner, and 0.72 SD more-separated trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (ORs) (95% CI) for fracture per SD higher marrow adiposity and cortical porosity were OR, 3.39 (95% CI, 2.14 to 5.38) and OR, 1.79 (95% CI, 1.14 to 2.80), respectively. Discrimination of women with fracture from controls improved when cortical porosity was added to FN aBMD and age (area under the receiver-operating characteristic curve [AUC] 0.778 versus 0.751, p = 0.006) or marrow adiposity was added to FN aBMD and age (AUC 0.825 versus 0.751, p = 0.002). The model including FN aBMD, age, cortical porosity, trabecular thickness, and marrow adiposity had an AUC = 0.888. Results were similar for the distal radius. Whether marrow adiposity and cortical porosity indices improve the identification of women at risk for fractures requires validation in prospective studies. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roger Zebaze
- Department of Medicine, School of Clinical Sciences, Monash Health, Monash University, Melbourne, Australia.,Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | - Marit Osima
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Marko Lukic
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Xiaofang Wang
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | - Ali Ghasem-Zadeh
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | - Erik F Eriksen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Angela Vais
- Hudson Institute for Medical Research, Monash University, Melbourne, Australia
| | - Catherine Shore-Lorenti
- Department of Medicine, School of Clinical Sciences, Monash Health, Monash University, Melbourne, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash Health, Monash University, Melbourne, Australia
| | - Ego Seeman
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
18
|
Jørgensen V, Slettahjell HB, Skavberg Roaldsen K, Kostovski E. Carboxy terminal collagen crosslinks as a prognostic risk factor for fall-related fractures in individuals with established spinal cord injury. Spinal Cord 2019; 57:985-991. [PMID: 31308468 PMCID: PMC6892418 DOI: 10.1038/s41393-019-0322-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 11/09/2022]
Abstract
Study design Prospective cohort study. Objective To study associations between specific bone turnover markers and fall-related fractures in individuals with spinal cord injury (SCI). Setting Rehabilitation Hospital. Methods Carboxy terminal collagen crosslinks (CTX), type-1 procollagen N-terminal (P1NP), albumin-corrected calcium (Ca2+), parathyroid hormone (PTH) and vitamin D were examined in a cohort of 106 participants with SCI at least 1 year post injury. The participants were followed for 1 year monitoring fall-related fractures. Results In total, 29 out of 106 reported having experienced a fall-related fracture post-injury at baseline, and 5 out of 100 had experienced a fall-related bone fracture during the 1 year follow-up. Our main findings were that high levels of serum CTX increased the odds of being in the fracture group, and that 25-hydroxy vitamin D (25 OHD) levels, Ca2+, PTH or P1NP were not associated with being in the fracture group. Conclusions We here present an association between high-CTX plasma levels at baseline and fall-related fractures reported during a 1-year follow-up among individuals with established SCI. We recommend studies with larger SCI populations before further clinical implications can be drawn.
Collapse
Affiliation(s)
- Vivien Jørgensen
- Department of Research, Sunnaas Rehabilitation Hospital, University of Oslo, Oslo, Norway
| | | | - Kirsti Skavberg Roaldsen
- Department of Research, Sunnaas Rehabilitation Hospital, University of Oslo, Oslo, Norway.,Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Faculty of Health Sciences, Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Emil Kostovski
- Department of Research, Sunnaas Rehabilitation Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Bigelow EM, Patton DM, Ward FS, Ciarelli A, Casden M, Clark A, Goulet RW, Morris MD, Schlecht SH, Mandair GS, Bredbenner TL, Kohn DH, Jepsen KJ. External Bone Size Is a Key Determinant of Strength-Decline Trajectories of Aging Male Radii. J Bone Miner Res 2019; 34:825-837. [PMID: 30715752 PMCID: PMC6536328 DOI: 10.1002/jbmr.3661] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Given prior work showing associations between remodeling and external bone size, we tested the hypothesis that wide bones would show a greater negative correlation between whole-bone strength and age compared with narrow bones. Cadaveric male radii (n = 37 pairs, 18 to 89 years old) were evaluated biomechanically, and samples were sorted into narrow and wide subgroups using height-adjusted robustness (total area/bone length). Strength was 54% greater (p < 0.0001) in wide compared with narrow radii for young adults (<40 years old). However, the greater strength of young-adult wide radii was not observed for older wide radii, as the wide (R2 = 0.565, p = 0.001), but not narrow (R2 = 0.0004, p = 0.944) subgroup showed a significant negative correlation between strength and age. Significant positive correlations between age and robustness (R2 = 0.269, p = 0.048), cortical area (Ct.Ar; R2 = 0.356, p = 0.019), and the mineral/matrix ratio (MMR; R2 = 0.293, p = 0.037) were observed for narrow, but not wide radii (robustness: R2 = 0.015, p = 0.217; Ct.Ar: R2 = 0.095, p = 0.245; MMR: R2 = 0.086, p = 0.271). Porosity increased with age for the narrow (R2 = 0.556, p = 0.001) and wide (R2 = 0.321, p = 0.022) subgroups. The wide subgroup (p < 0.0001) showed a significantly greater elevation of a new measure called the Cortical Pore Score, which quantifies the cumulative effect of pore size and location, indicating that porosity had a more deleterious effect on strength for wide compared with narrow radii. Thus, the divergent strength-age regressions implied that narrow radii maintained a low strength with aging by increasing external size and mineral content to mechanically offset increases in porosity. In contrast, the significant negative strength-age correlation for wide radii implied that the deleterious effect of greater porosity further from the centroid was not offset by changes in outer bone size or mineral content. Thus, the low strength of elderly male radii arose through different biomechanical mechanisms. Consideration of different strength-age regressions (trajectories) may inform clinical decisions on how best to treat individuals to reduce fracture risk. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Erin Mr Bigelow
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Daniella M Patton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ferrous S Ward
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Antonio Ciarelli
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael Casden
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Clark
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert W Goulet
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Morris
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | | | - Gurjit S Mandair
- Biological and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Todd L Bredbenner
- Department of Mechanical and Aerospace Engineering, University of Colorado-Colorado Springs, Colorado Springs, CO, USA
| | - David H Kohn
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biological and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Mesinovic J, McMillan LB, Shore-Lorenti C, Zengin A, De Courten B, Ebeling PR, Scott D. Sex-specific associations between insulin resistance and bone parameters in overweight and obese older adults. Clin Endocrinol (Oxf) 2019; 90:680-689. [PMID: 30724369 DOI: 10.1111/cen.13947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To determine sex-specific associations between insulin resistance and bone parameters measured by peripheral quantitative computed tomography in overweight and obese community-dwelling older adults. STUDY DESIGN Cross-sectional study of 79 community-dwelling overweight and obese adults (mean ± SD age 62.8 ± 7.9 years; body mass index 32.3 ± 6.1 kg/m2 ; 58% women). MAIN OUTCOME MEASURES Peripheral quantitative computed tomography assessed distal radius and tibia trabecular volumetric bone mineral density (vBMD) and proximal radius and tibia cortical vBMD, periosteal circumference, endosteal circumference and stress-strain index. The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) score was calculated from fasting glucose and insulin values. Lean mass was assessed using dual-energy X-ray absorptiometry. Total minutes of moderate and vigorous physical activity (MVPA) were calculated using the Active Australia Survey. RESULTS Men and women in this cohort had no significant differences in fasting glucose and insulin concentrations, HOMA-IR values and diabetes prevalence (all P > 0.05). In women, HOMA-IR was positively correlated with proximal radius periosteal and endosteal circumference (r = 0.331; P = 0.034 and r = 0.325; P = 0.038, respectively). These associations became nonsignificant in multivariable regression analyses; however, HOMA-IR was negatively associated with proximal radius cortical vBMD (B = -4.79; 95% CI -8.66, -0.92) after adjusting for age, lean mass and MVPA. All associations between HOMA-IR and bone parameters became nonsignificant in a sensitivity analysis excluding individuals with diabetes, or self-reported use of glucose-lowering medications. There were no associations between HOMA-IR and bone parameters in men. CONCLUSIONS Homeostatic Model Assessment of Insulin Resistance was negatively associated with radial cortical vBMD in overweight and obese older women, but not in men. Further studies are needed to clarify sex-specific associations between insulin resistance and bone health in overweight and obese older adults.
Collapse
Affiliation(s)
- Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Lachlan B McMillan
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Catherine Shore-Lorenti
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Barbora De Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Victoria, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Victoria, Australia
| |
Collapse
|
21
|
Tian A, Ma J, Feng K, Liu Z, Chen L, Jia H, Ma X. Reference markers of bone turnover for prediction of fracture: a meta-analysis. J Orthop Surg Res 2019; 14:68. [PMID: 30819222 PMCID: PMC6393999 DOI: 10.1186/s13018-019-1100-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/13/2019] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To explore whether bone turnover biomarkers (BTMs), i.e., C-terminal telopeptide of type I collagen (CTX) and procollagen type I aminoterminal propeptide (PINP), are associated with fracture. METHODS We searched electronic database including PubMed, Embase and Cochrane Library, and the reference lists of relevant articles published from inception to August 22, 2018. An updated meta-analysis was performed to assess the prediction value of CTX and PINP in fracture. RESULTS Nine articles met our inclusion criteria and were included in the meta-analysis. The crude and adjusted effect size between PINP and fracture were extracted from two and five studies, respectively. PINP was not associated with fracture incidence without adjusting covariates (crude GR, 1.03; 95% CI, 0.91-1.17). After adjusting for potential confounders, PINP demonstrated a significant positive association with fracture (adjusted GR, 1.28; 95% CI, 1.15-1.42). In the subgroup analysis of studies after adjusting covariates, there were significant associations in women. Both the crude (1.16, 95%CI, 1.04-1.20) and adjusted GR (1.20, 95%CI, 1.05-1.37) shown positive relationships between CTX and fracture, which were extracted from four and six studies, separately. The sensitivity analysis confirmed the stability of the results. In the subgroup analysis of studies after adjusting covariates, there were significant associations in the subgroups of elderly, female, and hip fracture patients. CONCLUSIONS Our results indicate a statistically significant but modest association between BTMs (s-PINP or s-CTX) and future fracture risk after adjusting for BMD and clinical risk factors. The causal relationship between the two clinical conditions requires future validation with more standardized studies. REGISTRATION NUMBER CRD42018107879.
Collapse
Affiliation(s)
- Aixian Tian
- Tianjin Hospital, Tianjin University, Tianjin, 300211 China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, 300211 China
| | - Kaiqiang Feng
- Department of Clinical Laboratory, Tianjin Hospital, Tianjin, 300211 China
| | - Zhaojie Liu
- Tianjin Hospital, Tianjin University, Tianjin, 300211 China
| | - Lei Chen
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Haobo Jia
- Department of Orthopedics Institute, Tianjin Hospital, Tianjin, 300211 China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, Tianjin, 300211 China
| |
Collapse
|
22
|
Diversity in intracortical remodeling in the human femoral bone: A novel view point with the morphological analysis of secondary osteons. J Orthop Sci 2018; 23:1079-1086. [PMID: 30145105 DOI: 10.1016/j.jos.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 06/18/2018] [Accepted: 07/31/2018] [Indexed: 02/09/2023]
Abstract
INTRODUCTION In humans, intracortical bone remodeling is performed by a basic multicellular unit (BMU) composed of osteoclasts and osteoblasts penetrating through cortical bones. As a result, secondary osteons and their boundaries, cement lines, can be observed on the transverse section. There have been few reports mention whether there is diversity within a single individual and on the relevance to bone remodeling. The purpose of this study is to investigate the morphological diversity of secondary osteons in human femoral bone and to examine the relationship with bone remodeling. MATERIAL AND METHODS First of all, we developed an original method to get the cross-sectional images of the cortical bones around the whole circumference for the purpose of evaluating the morphology of the secondary osteon exhaustively. Then, a total of ten cross-sectional slices from one right human femoral bone of male were prepared and stained with this method. The osteon population density and complexity of cement lines in osteons were evaluated in detail. RESULTS Within this femoral bone, the osteon population density was significantly higher in the periosteal side and in the posterior area. Conversely, the cement line density and the osteon complexity were higher in the endosteal side; the proportion of complexed osteon significantly increased from the periosteal side toward the endosteal side. DISCUSSION The results suggested that there were diversities in osteon population densities and osteon morphological pattern within one human femoral bone. It seemed that the BMUs ran to avoid the existing regions of osteon in the periosteal sides and to overlap the existing osteon in the endosteal sides. This seemed to be one of the novel viewpoints in the morphological analysis of secondary osteons. It might be better for the orthopedic surgeons to be aware that the osteon distribution in the cortical bone is not uniform.
Collapse
|
23
|
Kral R, Osima M, Vestgaard R, Richardsen E, Bjørnerem Å. Women with fracture, unidentified by FRAX, but identified by cortical porosity, have a set of characteristics that contribute to their increased fracture risk beyond high FRAX score and high cortical porosity. Bone 2018; 116:259-265. [PMID: 30153509 DOI: 10.1016/j.bone.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/12/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
The Fracture Risk Assessment Tool (FRAX) is widely used to identify individuals at increased risk for fracture. However, cortical porosity is associated with risk for fracture independent of FRAX and is reported to improve the net reclassification of fracture cases. We wanted to test the hypothesis that women with fracture who are unidentified by high FRAX score, but identified by high cortical porosity, have a set of characteristics that contribute to their fracture risk beyond high FRAX score and high cortical porosity. We quantified FRAX score with femoral neck areal bone mineral density (FN aBMD), and femoral subtrochanteric architecture, in 211 postmenopausal women aged 54-94 years with non-vertebral fractures, and 232 fracture-free controls in Tromsø, Norway, using StrAx software. Of 211 fracture cases, FRAX score > 20% identified 53 women (sensitivity 25.1% and specificity 93.5%), while cortical porosity cut-off > 80th percentile identified 61 women (sensitivity 28.9% and specificity 87.9%). The 43 (20.4%) additional fracture cases identified by high cortical porosity alone, had lower FRAX score (12.3 vs. 26.2%) than those identified by FRAX alone, they were younger, had higher FN aBMD (806 vs. 738 mg/cm2), and fewer had a prior fracture (23.3 vs. 62.9%), all p < 0.05. They had higher cortical porosity (48.7 vs. 42.1%), thinner cortices (3.75 vs. 4.12 mm), lower cortical and total volumetric BMD (942 vs. 1053 and 586 vs. 699 mg HA/cm3), larger medullary and total cross-sectional areas (245 vs. 190 and 669 vs. 593 mm2), and higher cross-sectional moment of inertia (2619 vs. 2388 cm4) all p < 0.001. When the fracture cases and controls with high cortical porosity were compared, cases had higher cortical porosity, lower cortical vBMD, lower total vBMD, smaller cortical CSA/Total CSA, larger medullary CSA and larger total CSA than controls (all p ≤ 0.05). Thus, fracture cases, unidentified by FRAX, but identified by cortical porosity, had an architecture where the positive impact of larger bone size did not offset the negative effect of thinner cortices with increased porosity. A measurement of cortical porosity may be a marker of other characteristics that capture additional fracture risk components, not captured by FRAX.
Collapse
Affiliation(s)
- Rita Kral
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marit Osima
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Roald Vestgaard
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Elin Richardsen
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Åshild Bjørnerem
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
24
|
Minonzio JG, Bochud N, Vallet Q, Bala Y, Ramiandrisoa D, Follet H, Mitton D, Laugier P. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone 2018; 116:111-119. [PMID: 30056165 DOI: 10.1016/j.bone.2018.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Several studies showed the ability of the cortex of long bones such as the radius and tibia to guide mechanical waves. Such experimental evidence has given rise to the emergence of a category of quantitative ultrasound techniques, referred to as the axial transmission, specifically developed to measure the propagation of ultrasound guided waves in the cortical shell along the axis of long bones. An ultrasound axial transmission technique, with an automated approach to quantify cortical thickness and porosity is described. The guided modes propagating in the cortex are recorded with a 1-MHz custom made linear transducer array. Measurement of the dispersion curves is achieved using a two-dimensional spatio-temporal Fourier transform combined with singular value decomposition. Automatic parameters identification is obtained through the solution of an inverse problem in which the dispersion curves are predicted with a two-dimensional transverse isotropic free plate model. Thirty-one radii and fifteen tibiae harvested from human cadavers underwent axial transmission measurements. Estimates of cortical thickness and porosity were obtained on 40 samples out of 46. The reproducibility, given by the root mean square error of the standard deviation of estimates, was 0.11 mm for thickness and 1.9% for porosity. To assess accuracy, site-matched micro-computed tomography images of the bone specimens imaged at 9 μm voxel size served as the gold standard. Agreement between micro-computed tomography and axial transmission for quantification of thickness and porosity at the radius and tibia ranged from R2=0.63 for porosity (root mean square error RMSE=1.8%) to 0.89 for thickness (RMSE=0.3 mm). Despite an overall good agreement for porosity, the method performs less well for porosities lower than 10%. The heterogeneity and general complexity of cortical bone structure, which are not fully accounted for by our model, are suspected to weaken the model approximation. This study presents the first validation study for assessing cortical thickness and porosity using the axial transmission technique. The automatic signal processing minimizes operator-dependent errors for parameters determination. Recovering the waveguide characteristics, that is to say cortical thickness and porosity, could provide reliable information about skeletal status and future fracture risk.
Collapse
Affiliation(s)
- J-G Minonzio
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - N Bochud
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France.
| | - Q Vallet
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - Y Bala
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Ramiandrisoa
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - H Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR T9406, Lyon F-69622, France
| | - P Laugier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| |
Collapse
|
25
|
Ramchand SK, Seeman E. The Influence of Cortical Porosity on the Strength of Bone During Growth and Advancing Age. Curr Osteoporos Rep 2018; 16:561-572. [PMID: 30187285 DOI: 10.1007/s11914-018-0478-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Bone densitometry provides a two-dimensional projected areal apparent bone mineral density that fails to capture the heterogeneity of bone's material composition and macro-, micro-, and nano-structures critical to its material and structural strength. Assessment of the structural basis of bone fragility has focused largely on trabecular bone based on the common occurrence of fragility fractures at sites with substantial amounts of trabecular bone. This review focuses on the contribution of cortical bone to bone fragility throughout life. RECENT FINDINGS Accurately differentiating cortical and trabecular bone loss has important implications in quantifying bone fragility as these compartments have differing effects on bone strength. Recent advances in imaging methodology have improved distinction of these two compartments by (i) recognition of a cortico-trabecular transitional zone and (ii) quantifying bone microstructure in a region of interest that is a percentage of bone length rather than a fixed point. Additionally, non-invasive three-dimensional imaging methods allow more accurate quantification of changes in the cortical, trabecular, and cortico-trabecular compartments during growth, aging, disease, and treatment. Over 75% of the skeleton is assembled as cortical bone. Of all fragility fractures, ~ 80% are appendicular and involve regions rich in cortical bone and ~ 70% of all age-related appendicular bone loss is cortical and is mainly due to unbalanced intracortical remodeling which increases cortical porosity. The failure to achieve the optimal peak bone microstructure during growth due to disease and the deterioration in cortical and trabecular bone produced by bone loss compromise bone strength. The loss of strength produced by microstructural deterioration is disproportionate to the bone loss producing this deterioration. The reason for this is that the loss of strength increases as a 7th power function of the rise in cortical porosity and a 3rd power function of the fall in trabecular density (Schaffler and Burr in J Biomech. 21(1):13-6, 1988), hence the need to quantify bone microstructure.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia.
- Department of Endocrinology, Level 2 Centaur Wing, Austin Health Repatriation Campus, 300 Waterdale Road, Heidelberg Heights, Melbourne, Victoria, 3081, Australia.
| | - Ego Seeman
- Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
- Department of Endocrinology, Level 2 Centaur Wing, Austin Health Repatriation Campus, 300 Waterdale Road, Heidelberg Heights, Melbourne, Victoria, 3081, Australia
- Australian Catholic University, Melbourne, Australia
| |
Collapse
|
26
|
Crandall CJ, Vasan S, LaCroix A, LeBoff MS, Cauley JA, Robbins JA, Jackson RD, Bauer DC. Bone Turnover Markers Are Not Associated With Hip Fracture Risk: A Case-Control Study in the Women's Health Initiative. J Bone Miner Res 2018; 33:1199-1208. [PMID: 29923225 PMCID: PMC7060935 DOI: 10.1002/jbmr.3471] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/29/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022]
Abstract
Current guidelines recommend that serum C-terminal telopeptide of type I collagen (CTX) and serum procollagen type 1 aminoterminal propeptide (PINP), measured by standardized assays, be used as reference markers in observational and interventional studies. However, there are limited data to determine whether serum CTX and PINP are associated with hip fracture risk among postmenopausal women. We determined the associations of serum CTX and serum PINP with hip fracture risk among postmenopausal women aged 50 to 79 years at baseline. We performed a prospective case-control study (400 cases, 400 controls) nested in the Women's Health Initiative Observational Study, which enrolled participants at 40 US clinical centers. Cases were women with incident hip fracture not taking osteoporosis medication; hip fractures were confirmed using medical records. Untreated controls were matched by age, race/ethnicity, and date of blood sampling. Serum CTX and serum PINP were analyzed on 12-hour fasting blood samples. The main outcome measure was incident hip fracture risk (mean follow-up 7.13 years). After adjustment for body mass index, smoking, frequency of falls, history of fracture, calcium and vitamin D intake, and other relevant covariates, neither serum CTX level nor serum PINP level was statistically significantly associated with hip fracture risk (CTX ptrend = 0.22, PINP ptrend = 0.53). Our results do not support the utility of serum CTX level or PINP level to predict hip fracture risk in women in this age group. These results will inform future guidelines regarding the potential utility of these markers in fracture prediction. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn J Crandall
- Division of General Internal Medicine and Health Services Research, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Sowmya Vasan
- Women's Health Initiative, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea LaCroix
- Family and Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Meryl S LeBoff
- Endocrine, Diabetes, and Hypertension Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jane A Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Robbins
- Department of Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas C Bauer
- Departments of Medicine and Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Choksi P, Jepsen KJ, Clines GA. The challenges of diagnosing osteoporosis and the limitations of currently available tools. Clin Diabetes Endocrinol 2018; 4:12. [PMID: 29862042 PMCID: PMC5975657 DOI: 10.1186/s40842-018-0062-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Dual-energy X-ray absorptiometry (DXA) was the first imaging tool widely utilized by clinicians to assess fracture risk, especially in postmenopausal women. The development of DXA nearly coincided with the availability of effective osteoporosis medications. Although osteoporosis in adults is diagnosed based on a T-score equal to or below − 2.5 SD, most individuals who sustain fragility fractures are above this arbitrary cutoff. This incongruity poses a challenge to clinicians to identify patients who may benefit from osteoporosis treatments. DXA scanners generate 2 dimensional images of complex 3 dimensional structures, and report bone density as the quotient of the bone mineral content divided by the bone area. An obvious pitfall of this method is that a larger bone will convey superior strength, but may in fact have the same bone density as a smaller bone. Other imaging modalities are available such as peripheral quantitative CT, but are largely research tools. Current osteoporosis medications increase bone density and reduce fracture risk but the mechanisms of these actions vary. Anti-resorptive medications (bisphosphonates and denosumab) primarily increase endocortical bone by bolstering mineralization of endosteal resorption pits and thereby increase cortical thickness and reduce cortical porosity. Anabolic medications (teriparatide and abaloparatide) increase the periosteal and endosteal perimeters without large changes in cortical thickness resulting in a larger more structurally sound bone. Because of the differences in the mechanisms of the various drugs, there are likely benefits of selecting a treatment based on a patient’s unique bone structure and pattern of bone loss. This review retreats to basic principles in order to advance clinical management of fragility fractures by examining how skeletal biomechanics, size, shape, and ultra-structural properties are the ultimate predictors of bone strength. Accurate measurement of these skeletal parameters through the development of better imaging scanners is critical to advancing fracture risk assessment and informing clinicians on the best treatment strategy. With this information, a “treat to target” approach could be employed to tailor current and future therapies to each patient’s unique skeletal characteristics.
Collapse
Affiliation(s)
- Palak Choksi
- 1Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Karl J Jepsen
- 2Departments of Orthopaedic Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Gregory A Clines
- 1Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA.,Endocrinology Section, Ann Arbor VA Medical Center, 2215 Fuller Road, Research 151, Ann Arbor, MI 48105-2399 USA
| |
Collapse
|
28
|
Kamimura M, Taguchi A, Nakamura Y, Koiwai H, Ikegami S, Uchiyama S, Kato H. Pretreatment of daily teriparatide enhances the increase of bone mineral density in cortical bones by denosumab therapy. Ther Clin Risk Manag 2018; 14:637-642. [PMID: 29662314 PMCID: PMC5892610 DOI: 10.2147/tcrm.s154686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background While it is well known that teriparatide (TPTD) increases bone mineral density (BMD) in osteoporotic patients, it is unknown whether TPTD pretreatment affects BMD after denosumab (DMAb) therapy. Methods Fifty-seven patients in TPTD-pretreated group and 35 patients in DMAb-alone group had been further analyzed, all of whom were treated by DMAb for 1.5 years. Vitamin D (400 IU) and Ca (600 mg) supplementation was used in all patients. The BMD of lumbar 1–4 vertebrae (L-BMD), bilateral total hips (H-BMD), and bilateral femoral neck (FN-BMD) was quantified at first visit, and at 4, 8, 12, and 18 months after daily TPTD treatment following four times DMAb treatment. Results There were significant differences in L-BMD (p=0.004) and H-BMD (p=0.026) at baseline between TPTD-pretreated and DMAb-alone groups, although there was no significant difference in FN-BMD between the two groups. The increase of L-BMD by DMAb therapy was less in TPTD-pretreated group than in DMAb-alone group. There was no significant difference in H-BMD, although percent changes of H-BMD tended to be higher in the TPTD-pretreated group than those in the DMAb-alone group. Percent change in FN-BMD at 4 months (p=0.067) and 12 months (p=0.057) tended to be higher in TPTD-pretreated group than in DMAb-alone group. Percent change in FN-BMD at 18 months was significantly higher in TPTD-pretreated group (p=0.004) than in DMAb-alone group. Conclusion These findings suggest that the pretreatment of TPTD might have enhanced the increase of BMD in cortical bones treated by DMAb. Thus, it is favorable that TPTD can be used for osteoporotic patients who have high fracture risks with cortical bones.
Collapse
Affiliation(s)
- Mikio Kamimura
- Center for Osteoporosis and Spinal Disorders, Kamimura Orthopedic Clinic, Matsumoto, Japan
| | - Akira Taguchi
- Department of Oral and Maxillofacial Radiology, Matsumoto Dental University, Shiojiri, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Orthopedic Surgery, Showa-Inan General Hospital, Komagane, Japan
| | | | - Shota Ikegami
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shigeharu Uchiyama
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
29
|
Bjørnerem Å, Wang X, Bui M, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E. Menopause-Related Appendicular Bone Loss is Mainly Cortical and Results in Increased Cortical Porosity. J Bone Miner Res 2018; 33:598-605. [PMID: 29218771 DOI: 10.1002/jbmr.3333] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 11/06/2022]
Abstract
After menopause, remodeling becomes unbalanced and rapid. Each of the many remodeling transactions deposits less bone than it resorbed, producing microstructural deterioration. Trabecular bone is said to be lost more rapidly than cortical bone. However, because 80% of the skeleton is cortical, we hypothesized that most menopause-related bone loss and changes in bone microstructure are cortical, not trabecular in origin, and are the result of intracortical remodeling. Distal tibial and distal radial microstructure were quantified during 3.1 years (range, 1.5 to 4.5 years) of follow-up using high-resolution peripheral quantitative computed tomography and StrAx software in 199 monozygotic and 125 dizygotic twin pairs aged 25 to 75 years in Melbourne, Australia. The annual increases in tibial cortical porosity accelerated, being 0.44%, 0.80%, and 1.40% in women remaining premenopausal, transitioning to perimenopause, and from perimenopausal to postmenopause, respectively. Porosity increased in the compact-appearing, outer, and inner transitional zones of the cortex (all p < 0.001). The annual decrease in trabecular bone volume/tissue volume (BV/TV) also accelerated, being 0.17%, 0.26%, and 0.31%, respectively. Little bone loss was observed before menopause. The reduction in BV/TV was due to a decrease in trabecular number (p < 0.001). The greatest bone loss, 7.7 mg hydroxyapatite (HA) annually, occurred in women transitioning from perimenopausal to postmenopause and of this, 6.1 mg HA (80%) was cortical. Results were similar for the distal radius. Despite microarchitectural changes, no significant bone loss was observed before menopause. Over 90% of appendicular bone loss occurs during and after menopause, over 80% is cortical, and this may explain why 80% of fractures are appendicular. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| | - Xiaofang Wang
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ali Ghasem-Zadeh
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Roger Zebaze
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia.,Institute for Health and Ageing (IHA), Australian Catholic University, Melbourne, Australia
| |
Collapse
|
30
|
Osima M, Borgen TT, Lukic M, Grimnes G, Joakimsen RM, Eriksen EF, Bjørnerem Å. Serum parathyroid hormone is associated with increased cortical porosity of the inner transitional zone at the proximal femur in postmenopausal women: the Tromsø Study. Osteoporos Int 2018; 29:421-431. [PMID: 29134242 DOI: 10.1007/s00198-017-4298-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/01/2017] [Indexed: 01/14/2023]
Abstract
UNLABELLED Serum parathyroid hormone (PTH) was associated with increased bone turnover markers and cortical porosity of the inner transitional zone at the proximal femur. These results suggest that PTH through increased intracortical bone turnover leads to trabecularisation of inner cortical bone in postmenopausal women. INTRODUCTION Vitamin D deficiency leads to secondary hyperparathyroidism and increased risk for fractures, whereas its association with cortical porosity is less clear. We tested (i) whether serum 25-hydroxyvitamin D (25(OH)D) and PTH were associated with cortical porosity and (ii) whether the associations of 25(OH)D) and PTH with fracture risk are dependent on cortical porosity. METHODS This case-control study included 211 postmenopausal women, 54-94 years old, with prevalent fractures and 232 controls from the Tromsø Study. Serum 25(OH)D, PTH, and bone turnover markers (procollagen type I N-terminal propeptide [PINP] and C-terminal cross-linking telopeptide of type I collagen [CTX]) were measured. Femoral subtrochanteric cortical and trabecular parameters were quantified using computed tomography, and femoral neck areal bone mineral density (FN aBMD) was quantified using dual-energy X-ray absorptiometry. RESULTS Compared with controls, fracture cases exhibited reduced serum 25(OH)D and increased PTH, PINP, and CTX, increased femoral subtrochanteric cortical porosity, and reduced cortical thickness and FN aBMD (all, p < 0.05). Serum 25(OH)D was not associated with cortical parameters (all, p > 0.10). PTH was associated with increased PINP, CTX, and cortical porosity of the inner transitional zone and reduced trabecular bone volume/tissue volume and FN aBMD (p ranging from 0.003 to 0.054). Decreasing 25(OH)D and increasing PTH were associated with increased odds for fractures, independent of age, height, weight, calcium supplementation, serum calcium, cortical porosity, and thickness. CONCLUSIONS These data suggest that serum PTH, not 25(OH)D, is associated with increased intracortical bone turnover resulting in trabecularisation of the inner cortical bone; nevertheless, decreasing 25(OH)D) and increasing PTH are associated with fracture risk, independent of cortical porosity and thickness.
Collapse
Affiliation(s)
- M Osima
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, N-9037, Tromsø, Norway.
- Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway.
| | - T T Borgen
- Department of Rheumatology, Vestre Viken Hospital Trust, Hospital of Drammen, Drammen, Norway
| | - M Lukic
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - G Grimnes
- Department of Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - R M Joakimsen
- Department of Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - E F Eriksen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Å Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
31
|
Bonnet N, Biver E, Chevalley T, Rizzoli R, Garnero P, Ferrari SL. Serum Levels of a Cathepsin-K Generated Periostin Fragment Predict Incident Low-Trauma Fractures in Postmenopausal Women Independently of BMD and FRAX. J Bone Miner Res 2017; 32:2232-2238. [PMID: 28766739 DOI: 10.1002/jbmr.3203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022]
Abstract
Periostin is a matricellular protein involved in bone formation and bone matrix organization, but it is also produced by other tissues. Its circulating levels have been weakly associated with bone microstructure and prevalent fractures, possibly because periostin measured by the current commercial assays does not specifically reflect bone metabolism. In this context, we developed a new ELISA for a periostin fragment resulting from cathepsin K digestion (K-Postn). We hypothesized that circulating K-Postn levels could be associated with bone fragility. A total of 695 women (age 65.0 ± 1.5 years), enrolled in the Geneva Retirees Cohort (GERICO), were prospectively evaluated over 4.7 ± 1.9 years for the occurrence of low-trauma fractures. At baseline, we measured serum periostin, K-Postn, and bone turnover markers (BTMs), distal radius and tibia microstructure by HR-pQCT, hip and lumbar spine aBMD by DXA, and estimated fracture probability using the Fracture Risk Assessment Tool (FRAX). Sixty-six women sustained a low-trauma clinical fracture during the follow-up. Total periostin was not associated with fractures (HR [95% CI] per SD: 1.19 [0.89 to 1.59], p = 0.24). In contrast, K-Postn was significantly higher in the fracture versus nonfracture group (57.5 ± 36.6 ng/mL versus 42.5 ± 23.4 ng/mL, p < 0.001) and associated with fracture risk (HR [95%CI] per SD: 2.14 [1.54 to 2.97], p < 0.001). After adjustment for aBMD, FRAX, bone microstructure, or BTMs, K-Postn remained significantly associated with fracture risk. The performance of the fracture prediction models was improved by adding K-Postn to aBMD or FRAX (Harrell C index for fracture: 0.70 for aBMD + K-Post versus 0.58 for aBMD alone, p = 0.001; 0.73 for FRAX + K-Postn versus 0.65 for FRAX alone, p = 0.005). Circulating K-Postn predicts incident fractures independently of BMD, BTMs, and FRAX in postmenopausal women. Hence measurement of a periostin fragment resulting from in vivo cathepsin K digestion may help to identify subjects at high risk of fracture. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Thierry Chevalley
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - René Rizzoli
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Patrick Garnero
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Serge L Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
32
|
Tian L, Yang R, Wei L, Liu J, Yang Y, Shao F, Ma W, Li T, Wang Y, Guo T. Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: A cross-sectional study in Gansu province, Northwestern of China. Medicine (Baltimore) 2017; 96:e8294. [PMID: 29068999 PMCID: PMC5671832 DOI: 10.1097/md.0000000000008294] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the osteoporosis prevalence and the risks of postmenopausal women and elderly men in Gansu province.This cross-sectional study involved 3359 postmenopausal women and 3205 elderly males who were randomly selected from 7 areas in Gansu province. Areal bone mineral density (BMD) (g/cm) was measured at the distal one-third radius of the nonstressed forearm using dual-energy X-ray absorptiometry (DXA: Osteometer MediTech). Factors related to osteoporosis were analyzed.The prevalence of osteoporosis in the entire study population was 9.65% for postmenopausal women and 8.08% for elderly males by WHO criteria, while the rate of osteopenia were 27.09% for postmenopausal women and 26.68% for elderly males. Risk of osteoporosis was significantly associated with age, menopause age, duration of menopause, body mass index (BMI), educational level, and alcohol consumption in postmenopausal women. In elderly men, age, BMI, current smoking, alcohol consumption, physical activity, and sun exposure were associated with osteoporosis. The bone turnover markers osteocalcin (OC) and C-terminal cross-linked telopeptides of type I collagen (β-CTX) were inversely correlated with BMD in both genders; serum P and 25(OH)D found no significant correlation with BMD. Serum Ca showed a positive effect on BMD in elderly men only.The osteoporosis prevalence of postmenopausal women and the men aged over 60 years in Gansu province is presented. Risk of osteoporosis was significantly associated with age, menopause age, year since menopause, BMI, and educational level in postmenopausal women. In elderly men, age, BMI, and current smoking were associated with osteoporosis. This study also found that higher OC and β-CTX level were associated with lower BMD. Poor 25(OH)D, Ca, P status were not associated with an increased risk of low BMD.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yang
- Department of Information Center, The Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. PLoS One 2017; 12:e0185363. [PMID: 28945789 PMCID: PMC5612722 DOI: 10.1371/journal.pone.0185363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022] Open
Abstract
The Fracture Risk Assessment Tool (FRAX) and Garvan Calculator have improved the individual prediction of fracture risk. However, additional bone measurements that might enhance the predictive ability of these tools are the subject of research. There is increasing interest in cortical parameters, especially cortical porosity. Neither FRAX nor Garvan include measurements of cortical architecture, important for bone strength, and providing independent information beyond the conventional approaches. We tested the hypothesis that cortical parameters are associated with fracture risk, independent of FRAX and Garvan estimates. This nested case-control study included 211 postmenopausal women aged 54–94 years with nonvertebral fractures, and 232 controls from the Tromsø Study in Norway. We assessed FRAX and Garvan 10-year risk estimates for fragility fracture, and quantified femoral subtrochanteric cortical porosity, thickness, and area from computed tomography images using StrAx1.0 software. Per standard deviation higher cortical porosity, thinner cortices, and smaller cortical area, the odds ratio (95% confidence interval) for fracture was 1.71 (1.38–2.11), 1.79 (1.44–2.23), and 1.52 (1.19–1.95), respectively. Cortical porosity and thickness, but not area, remained associated with fracture when adjusted for FRAX and Garvan estimates. Adding cortical porosity and thickness to FRAX or Garvan resulted in greater area under the receiver operating characteristic curves. When using cortical porosity (>80th percentile) or cortical thickness (<20th percentile) combined with FRAX (threshold >20%), 45.5% and 42.7% of fracture cases were identified, respectively. Using the same cutoffs for cortical porosity or thickness combined with Garvan (threshold >25%), 51.2% and 48.3% were identified, respectively. Specificity for all combinations ranged from 81.0–83.6%. Measurement of cortical porosity or thickness identified 20.4% and 17.5% additional fracture cases that, were unidentified using FRAX alone, and 16.6% and 13.7% fracture cases unidentified using Garvan alone. In conclusion, cortical parameters may help to improve identification of women at risk for fracture.
Collapse
|
34
|
Fisher A, Srikusalanukul W, Fisher L, Smith PN. Lower serum P1NP/βCTX ratio and hypoalbuminemia are independently associated with osteoporotic nonvertebral fractures in older adults. Clin Interv Aging 2017; 12:1131-1140. [PMID: 28769558 PMCID: PMC5529092 DOI: 10.2147/cia.s141097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To estimate the discriminative value of serum P1NP/βCTX ratio and albumin levels in hospitalized orthogeriatric patients with and without nonvertebral fractures. Methods In 1,239 orthogeriatric patients (mean age 78.1±9.52 years, 69.1% women) including 854 (68.9%) with osteoporotic nonvertebral fractures (455 [36.7%] with hip fracture [HF]) and 385 (31.1%) without fractures, markers of bone formation (procollagen type 1 N-terminal propeptide [P1NP], osteocalcin [OC], and bone resorption (beta-C-terminal cross-linking telopeptide of type 1 collagen [βCTX]), indices of mineral metabolism, and parameters of liver and renal functions were assessed; data on clinical and laboratory characteristics were collected prospectively. Results Both lower serum P1NP/βCTX ratio and albumin concentration (as continuous or categorical variables) were independently associated with fracture presence in multivariate logistic regressions. Compared with the highest P1NP/βCTX tertile, the prevalence of HF, after adjustment for multiple covariates, was 3-fold higher in the lowest tertile and 1.5 times higher in the middle tertile; presence of any fracture was 2.3- and 1.6-fold higher, respectively; patients with albumin levels in the lowest tertile had multivariate odds ratio (OR) of 4.6 for HF and 2.8 for any fracture, in the middle tertile the ORs were 2.2 and 1.3, respectively. The P1NP/βCTX <100.0 (median) and hypoalbuminemia (<33 g/L) demonstrated area under the curve values for HF of 0.802 and 0.806, respectively, and for any fractures of 0.711 and 0.706, respectively. When both characteristics were combined, the ORs for HF or any fracture, compared with the nonfractured group, were 7.8 and 3.2, respectively, with an accuracy of 79.6% and 71.6%, respectively. Conclusions In orthogeriatric patients, both serum P1NP/βCTX ratio and albumin levels demonstrated an inverse dose–effect relationship with the prevalence of nonvertebral fractures and independently indicated fracture presence with acceptable discriminatory power. Lower P1NP/βCTX (<100) and hypoalbuminemia could be useful simple additive prognostic tools for fracture risk stratification in the elderly.
Collapse
Affiliation(s)
- Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra, Australia.,Department of Orthopaedic Surgery, The Canberra Hospital, ACT Health, Canberra, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| | - Wichat Srikusalanukul
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra, Australia
| | - Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne, Australia
| | - Paul N Smith
- Department of Orthopaedic Surgery, The Canberra Hospital, ACT Health, Canberra, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| |
Collapse
|
35
|
Sosa DD, Eriksen EF. Reduced Bone Material Strength is Associated with Increased Risk and Severity of Osteoporotic Fractures. An Impact Microindentation Study. Calcif Tissue Int 2017; 101:34-42. [PMID: 28246929 DOI: 10.1007/s00223-017-0256-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 01/22/2023]
Abstract
The aim of the study was to test, whether bone material strength differs between different subtypes of osteoporotic fracture and assess whether it relates to vertebral fracture severity. Cortical bone material strength index (BMSi) was measured by impact microindentation in 66 women with osteoporotic fracture and 66 age- and sex-matched controls without fracture. Bone mineral density (BMD) and bone turnover markers were also assessed. Vertebral fracture severity was graded by semiquantitative (SQ) grading. Receiver operator characteristic (ROC) curves were used to examine the ability of BMSi to discriminate fractures. Subjects with osteoporotic fractures exhibited lower BMSi than controls (71.5 ± 7.3 vs. 76.4 ± 6.2, p < 0.001). After adjusting for age and hip BMD, a significant negative correlation was seen between BMSi and vertebral fracture severity (r 2 = 0.19, p = 0.007). A decrease of one standard deviation (SD) in BMSi was associated with increased risk of fracture (OR 2.62; 95% CI 1.35, 5.10, p = 0.004). ROC curve areas under the curve (AUC) for BMSi in subjects with vertebral fracture (VF), hip fracture (HF), and non-vertebral non-hip fracture (NVNHFx), (mean; 95% CI) were 0.711 (0.608; 0.813), 0.712 (0.576; 0.843), 0.689 (0.576; 0.775), respectively. Combining BMSi and BMD provided further improvement in the discrimination of fractures with AUC values of 0.777 (0.695; 0.858), 0.789 (0.697; 0.882), and 0.821 (0.727; 0.914) for VFx, HFx, and NVNHFx, respectively. Low BMSi of the tibial cortex is associated with increased risk of all osteoporotic fractures and severity of vertebral fractures.
Collapse
Affiliation(s)
- Daysi Duarte Sosa
- Department of Clinical Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Institute of Clinical Medicine, Oslo University, Pb 4956 Nydalen, NO-0424, Oslo, Norway.
| | - Erik Fink Eriksen
- Department of Clinical Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Institute of Clinical Medicine, Oslo University, Pb 4956 Nydalen, NO-0424, Oslo, Norway
| |
Collapse
|
36
|
Miller B, Spevak L, Lukashova L, Javaheri B, Pitsillides AA, Boskey A, Bou-Gharios G, Carriero A. Altered Bone Mechanics, Architecture and Composition in the Skeleton of TIMP-3-Deficient Mice. Calcif Tissue Int 2017; 100:631-640. [PMID: 28236102 DOI: 10.1007/s00223-017-0248-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) maintains a healthy extracellular matrix by regulating matrix metalloproteinases (MMP), disintegrin-metalloproteinases (ADAM), and disintegrin-metalloproteinases with ThromboSpondin-like motifs (ADAMTS) activity. Currently, there is a need for a comprehensive understanding of the effects of TIMP-3 on the bone quality and integrity. In this study, we examined the mechanical, morphological, and compositional properties of TIMP-3 knock out (Timp-3 -/-) mouse bone. We hypothesize that the lack of TIMP-3 plays an important role in maintaining the overall bone integrity. Mechanical properties of humeri, lumbar vertebrae, and femurs from Timp-3 -/- mice were determined using 3-point bending, compression, and notched 3-point bending, respectively. Morphological properties of the humeral cortical and trabecular bone and the caudal vertebrae cortical bone were evaluated using micro-computed tomography, while the composition of the femoral cortical and trabecular bone was examined using Fourier transform infrared spectroscopic imaging. Our results revealed that the integrity of the Timp-3 -/- bone is compromised due to changes in its composition, structure, and mechanics. Reductions in the yield and ultimate load and stress capacity, and loss in bone fracture toughness were attributed to reduced density and thickness, and increased porosity of cortical bone. Thin trabeculae were dense, highly connected, and closely packed in Timp-3 -/- bone. Furthermore, altered cortical and trabecular bone mineralization and increased compositional heterogeneity were found in Timp-3 -/- bone, all being indicative of high bone remodeling. In conclusion, this study suggests that the lack of TIMP-3 is detrimental to bone development and maintenance.
Collapse
Affiliation(s)
- Brendyn Miller
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | | | | | - Behzad Javaheri
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Alessandra Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
37
|
Chen M, Yuan H. Assessment of porosity index of the femoral neck and tibia by 3D ultra-short echo-time MRI. J Magn Reson Imaging 2017; 47:820-828. [PMID: 28561910 DOI: 10.1002/jmri.25782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Min Chen
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| | - Huishu Yuan
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| |
Collapse
|
38
|
Darling AL, Hart KH, Gossiel F, Robertson F, Hunt J, Hill TR, Johnsen S, Berry JL, Eastell R, Vieth R, Lanham-New SA. Higher bone resorption excretion in South Asian women vs. White Caucasians and increased bone loss with higher seasonal cycling of vitamin D: Results from the D-FINES cohort study. Bone 2017; 98:47-53. [PMID: 28286239 DOI: 10.1016/j.bone.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 02/01/2023]
Abstract
Few data exist on bone turnover in South Asian women and it is not well elucidated as to whether Western dwelling South Asian women have different bone resorption levels to that of women from European ethnic backgrounds. This study assessed bone resorption levels in UK dwelling South Asian and Caucasian women as well as evaluating whether seasonal variation in 25-hydroxyvitamin D [25(OH)D] is associated with bone resorption in either ethnic group. Data for seasonal measures of urinary N-telopeptide of collagen (uNTX) and serum 25(OH)D were analysed from n=373 women (four groups; South Asian postmenopausal n=44, South Asian premenopausal n=50, Caucasian postmenopausal n=144, Caucasian premenopausal n=135) (mean (±SD) age 48 (14) years; age range 18-79years) who participated in the longitudinal D-FINES (Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England) cohort study (2006-2007). A mixed between-within subjects ANOVA (n=192) showed a between subjects effect of the four groups (P<0.001) on uNTX concentration, but no significant main effect of season (P=0.163). Bonferroni adjusted Post hoc tests (P≤0.008) suggested that there was no significant difference between the postmenopausal Asian and premenopausal Asian groups. Season specific age-matched-pairs analyses showed that in winter (P=0.04) and spring (P=0.007), premenopausal Asian women had a 16 to 20nmolBCE/mmol Cr higher uNTX than premenopausal Caucasian women. The (amplitude/mesor) ratio (i.e. seasonal change) for 25(OH)D was predictive of uNTX, with estimate (SD)=0.213 (0.015) and 95% CI (0.182, 0.245; P<0.001) in a non-linear mixed model (n=154). This showed that individuals with a higher seasonal change in 25(OH)D, adjusted for overall 25(OH)D concentration, showed increased levels of uNTX. Although the effect size was smaller than for the amplitude/mesor ratio, the mesor for 25(OH)D concentration was also predictive of uNTX, with estimate (SD)=-0.035 (0.004), and 95% CI (-0.043, -0.028; P<0.001). This study demonstrates higher levels of uNTX in premenopausal South Asian women than would be expected for their age, being greater than same-age Caucasian women, and similar to postmenopausal Asian women. This highlights potentially higher than expected bone resorption levels in premenopausal South Asian women which, if not offset by concurrent increased bone formation, may have future clinical and public health implications which warrant further investigation. Individuals with a larger seasonal change in 25(OH)D concentration showed an increased bone resorption, an association which was larger than that of the 25(OH)D yearly average, suggesting it may be as important clinically to ensure a stable and steady 25(OH)D concentration, as well as one that is high enough to be optimal for bone health.
Collapse
Affiliation(s)
- A L Darling
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - K H Hart
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - F Gossiel
- Bone Biochemistry Laboratory, Department of Human Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - F Robertson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - J Hunt
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - T R Hill
- School of Agriculture, Food and Rural Development and Human Nutrition Research Centre, Agriculture Building, Newcastle University, NE1 7RU, UK
| | - S Johnsen
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - J L Berry
- Specialist Assay Laboratory (Vitamin D), Manchester Academic Health Sciences Centre, Manchester Royal Infirmary, M13 9WL, UK
| | - R Eastell
- Bone Biochemistry Laboratory, Department of Human Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - R Vieth
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5, Canada
| | - S A Lanham-New
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
39
|
Takakura A, Lee JW, Hirano K, Isogai Y, Ishizuya T, Takao-Kawabata R, Iimura T. Administration frequency as well as dosage of PTH are associated with development of cortical porosity in ovariectomized rats. Bone Res 2017; 5:17002. [PMID: 28503340 PMCID: PMC5405404 DOI: 10.1038/boneres.2017.2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
To investigate whether the administration frequency of parathyroid hormone (PTH) is associated with the development of cortical porosity, this study established 15 dosage regimens of teriparatide [human PTH(1–34), TPTD] with four distinct concentrations and four distinct administration frequencies of TPTD to 16-week-old ovariectomized rats. Our analyses demonstrated that the bone mineral density, mechanical properties, and bone turnover were associated with the total amount of TPTD administered. Our observations further revealed that the cortical porosity was markedly developed as a result of an increased administration frequency with a lower concentration of total TPTD administration in our setting, although the highest concentration also induced cortical porosity. Deconvolution fluorescence tiling imaging on calcein-labeled undecalcified bone sections also demonstrated the development of cortical porosity to be closely associated with the bone site where periosteal bone formation took place. This site-specific cortical porosity involved intracortical bone resorption and an increased number and proximity of osteocytic lacunae, occasionally causing fused lacunae. Taken together, these findings suggested the involvement of local distinctions in the rate of bone growth that may be related to the site-specific mechanical properties in the development of cortical porosity induced by frequent and/or high doses of TPTD.
Collapse
Affiliation(s)
- Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan.,Graduate School of Medicine, Division of Analytical Bio-Medicine, Ehime University, Ehime, Japan
| | - Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
| | - Kyoko Hirano
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Yukihiro Isogai
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshinori Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Tadahiro Iimura
- Graduate School of Medicine, Division of Analytical Bio-Medicine, Ehime University, Ehime, Japan.,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Ehime, Japan.,Artificial Joint Integrated Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
40
|
Yamane H, Takakura A, Shimadzu Y, Kodama T, Lee JW, Isogai Y, Ishizuya T, Takao-Kawabata R, Iimura T. Acute development of cortical porosity and endosteal naïve bone formation from the daily but not weekly short-term administration of PTH in rabbit. PLoS One 2017; 12:e0175329. [PMID: 28394900 PMCID: PMC5386260 DOI: 10.1371/journal.pone.0175329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Teriparatide [human parathyroid hormone (1–34)], which exerts an anabolic effect on bone, is used for the treatment of osteoporosis in patients who are at a high risk for fracture. That the once-daily administration of teriparatide causes an increase in cortical porosity in animal models and clinical studies has been a matter of concern. However, it is not well documented that the frequency of administration and/or the total dose of teriparatide affect the cortical porosity. The present study developed 4 teriparatide regimens [20 μg/kg/day (D20), 40 μg/kg/day (D40), 140 μg/kg/week (W140) and 280 μg/kg/week (W280)] in the rabbit as a model animal with a well-developed Haversian system and osteons. The total weekly doses were equivalent in the low-dose groups (D20 and W140) and in the high-dose groups (D40 and W280). After the short-term (1 month) administration of TPDT, micro-CT, histomorphometry and three-dimensional second harmonic generation (3D-SHG) imaging to visualize the bone collagen demonstrated that daily regimens but not weekly regimens were associated with the significant development of cortical porosity and endosteal naïve bone formation by marrow fibrosis. We concomitantly monitored the pharmacokinetics of the plasma teriparatide levels as well as the temporal changes in markers of bone formation and resorption. The analyses in the present study suggested that the daily repeated administration of teriparatide causes more deleterious changes in the cortical microarchitecture than the less frequent administration of higher doses. The findings of the present study may have some implications for use of teriparatide in clinical treatment.
Collapse
Affiliation(s)
- Hiroshi Yamane
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Aya Takakura
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
- Division of Analytical Bio-Medicine, Graduate School of Medicine, Ehime University, Shitukawa, Toon city, Ehime, Japan
| | - Yukari Shimadzu
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshiyuki Kodama
- Laboratory for Safety Assessment and ADME, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Shitukawa, Toon city, Ehime, Japan
| | - Yukihiro Isogai
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
- Medical Affairs Department, Pharmaceutical Business Administration Division, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Toshinori Ishizuya
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryoko Takao-Kawabata
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
- * E-mail: (RT-K); (TI)
| | - Tadahiro Iimura
- Division of Analytical Bio-Medicine, Graduate School of Medicine, Ehime University, Shitukawa, Toon city, Ehime, Japan
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Shitukawa, Toon city, Ehime, Japan
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Shitukawa, Toon city, Ehime, Japan
- Artificial Joint Integrated Center, Ehime University Hospital, Shitukawa, Toon city, Ehime, Japan
- * E-mail: (RT-K); (TI)
| |
Collapse
|
41
|
Osima M, Kral R, Borgen TT, Høgestøl IK, Joakimsen RM, Eriksen EF, Bjørnerem Å. Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity. Bone 2017; 97:252-260. [PMID: 28161589 DOI: 10.1016/j.bone.2017.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 01/26/2023]
Abstract
Increased cortical porosity has been suggested as a possible factor increasing fracture propensity in patients with type 2 diabetes mellitus (T2DM). This is a paradox because cortical porosity is generally associated with high bone turnover, while bone turnover is reduced in patients with T2DM. We therefore wanted to test the hypothesis that women with T2DM have lower bone turnover markers (BTM) and lower cortical porosity than those without diabetes, and that higher serum glucose and body mass index (BMI) are associated with lower BTM, and with lower cortical porosity. This cross-sectional study is based on a prior nested case-control study including 443 postmenopausal women aged 54-94years from the Tromsø Study, 211 with non-vertebral fracture and 232 fracture-free controls. Of those 443 participants, 22 women exhibited T2DM and 421 women did not have diabetes. All had fasting blood samples assayed for procollagen type I N-terminal propeptide (PINP), C-terminal cross-linking telopeptide of type I collagen (CTX) and glucose, and femoral subtrochanteric architecture was quantified using low-resolution clinical CT and StrAx1.0 software. Women with T2DM had higher serum glucose (7.2 vs. 5.3mmol/L), BMI (29.0 vs. 26.4kg/m2), and higher femoral subtrochanteric total volumetric bone mineral density (vBMD) (783 vs. 715mgHA/cm3), but lower cortical porosity (40.9 vs. 42.8%) than nondiabetic women (all p<0.05). Each standard deviation (SD) increment in glucose was associated with 0.10-0.12 SD lower PINP and CTX, and 0.13 SD lower cortical porosity (all p<0.05). Each SD increment in BMI was associated with 0.10-0.18 SD lower serum PINP and CTX, and 0.19 SD thicker cortices (all p<0.05). Increasing glucose and BMI were associated with lower bone turnover suggesting that reduced intracortical and endocortical remodeling leads to reduced porosity and thicker cortices. Using low-resolution clinical CT, cortical porosity was lower in women with T2DM compared to women without diabetes. This indicates that other changes in bone qualities, not increased cortical porosity, are likely to explain the increased fracture propensity in patients with T2DM.
Collapse
Affiliation(s)
- Marit Osima
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway.
| | - Rita Kral
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| | - Tove T Borgen
- Department of Rheumatology, Vestre Viken Hospital Trust, Hospital of Drammen, Drammen, Norway
| | - Ingvild K Høgestøl
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ragnar M Joakimsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Erik F Eriksen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Åshild Bjørnerem
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
42
|
Pentosidine as a Biomarker for Poor Bone Quality and Elevated Fracture Risk. BIOMARKERS IN BONE DISEASE 2017. [DOI: 10.1007/978-94-007-7693-7_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Marques EA, Gudnason V, Lang T, Sigurdsson G, Sigurdsson S, Aspelund T, Siggeirsdottir K, Launer L, Eiriksdottir G, Harris TB. Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: the AGES-Reykjavik longitudinal study. Osteoporos Int 2016; 27:3485-3494. [PMID: 27341810 PMCID: PMC5560053 DOI: 10.1007/s00198-016-3675-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/16/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Association between serum bone formation and resorption markers and cortical and trabecular bone loss and the concurrent periosteal apposition in a population-based cohort of 1069 older adults was assessed. BTM levels moderately reflect the cellular events at the endosteal and periosteal surfaces but are not associated with fracture risk. INTRODUCTION We assessed whether circulating bone formation and resorption markers (BTM) were individual predictors for trabecular and cortical bone loss, periosteal expansion, and fracture risk in older adults aged 66 to 93 years from the AGES-Reykjavik study. METHODS The sample for the quantitative computed tomography (QCT)-derived cortical and trabecular BMD and periosteal expansion analysis consisted of 1069 participants (474 men and 595 women) who had complete baseline (2002 to 2006) and follow-up (2007 to 2011) hip QCT scans and serum baseline BTM. During the median follow-up of 11.7 years (range 5.4-12.5), 54 (11.4 %) men and 182 (30.6 %) women sustained at least one fracture of any type. RESULTS Increase in BTM levels was associated with faster cortical and trabecular bone loss at the femoral neck and proximal femur in men and women. Higher BTM levels were positively related with periosteal expansion rate at the femoral neck in men. Markers were not associated with fracture risk. CONCLUSION This data corroborates the notion from few previous studies that both envelopes are metabolically active and that BTM levels may moderately reflect the cellular events at the endosteal and periosteal surfaces. However, our results do not support the routine use of BTM to assess fracture risk in older men and women. In light of these findings, further studies are justified to examine whether systemic markers of bone turnover might prove useful in monitoring skeletal remodeling events and the effects of current osteoporosis drugs at the periosteum.
Collapse
Affiliation(s)
- E A Marques
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - V Gudnason
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - T Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - G Sigurdsson
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
- University of Iceland, Reykjavik, Iceland
- Landspitalinn University Hospital, Reykjavik, Iceland
| | - S Sigurdsson
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
| | - T Aspelund
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
- Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland
| | - K Siggeirsdottir
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
| | - L Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - G Eiriksdottir
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
| | - T B Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Bjørnerem Å. The clinical contribution of cortical porosity to fragility fractures. BONEKEY REPORTS 2016; 5:846. [PMID: 27818743 PMCID: PMC5081000 DOI: 10.1038/bonekey.2016.77] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023]
Abstract
Cortical bone is not compact; rather it is penetrated by many Haversian and Volkmann canals for blood supply. The lining of these canals are the intracortical bone surfaces available for bone remodeling. Increasing intracortical bone remodeling increases cortical porosity. However, cortical bone loss occurs more slowly than trabecular loss due to the fact that less surface per unit of bone matrix volume is available for bone remodeling. Nevertheless, most of the bone loss over time is cortical because cortical bone constitutes 80% of the skeleton, and the relative proportion of trabecular bone diminishes with advancing age. Higher serum levels of bone turnover markers are associated with higher cortical porosity of the distal tibia and the proximal femur. Greater porosity of the distal radius is associated with higher odds for forearm fracture, and greater porosity of the proximal femur is associated with higher odds for non-vertebral fracture in postmenopausal women. Measurement of cortical porosity contributes to fracture risk independent of areal bone mineral density and Fracture Risk Assessment Tool. On the other hand, antiresorptive treatment reduces porosity at the distal radius and at the proximal femoral shaft. Thus, porosity is a substantial determinant of the bone fragility that underlies the risk of fractures and may be a target for fracture prevention.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
45
|
Kerckhofs G, Durand M, Vangoitsenhoven R, Marin C, Van der Schueren B, Carmeliet G, Luyten FP, Geris L, Vandamme K. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography. Sci Rep 2016; 6:35517. [PMID: 27759061 PMCID: PMC5069481 DOI: 10.1038/srep35517] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023] Open
Abstract
High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.
Collapse
Affiliation(s)
- G. Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
| | - M. Durand
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
- UMR CNRS 7052, Biomécanique et Biomatériaux Ostéo-Articulaires, Faculté de Médecine Lariboisière, 75000 Paris, France
- Institut de Recherche Biomédicale des Armées (IRBA), Département Soutien Médico-Chirurgical des Forces (SMCF), 91220 Brétigny-sur-Orge, France
| | - R. Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - C. Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
| | - B. Van der Schueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - G. Carmeliet
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - F. P. Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
| | - L. Geris
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
- Division of Biomechanics and Engineering Design, KU Leuven, 3001 Heverlee, Belgium
- Biomechanics Research Unit, University of Liège, 4000 Liège, Belgium
| | - K. Vandamme
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium
- Biomaterials – BIOMAT, Department of Oral Health Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Zebaze R, Libanati C, McClung MR, Zanchetta JR, Kendler DL, Høiseth A, Wang A, Ghasem-Zadeh A, Seeman E. Denosumab Reduces Cortical Porosity of the Proximal Femoral Shaft in Postmenopausal Women With Osteoporosis. J Bone Miner Res 2016; 31:1827-1834. [PMID: 27082709 DOI: 10.1002/jbmr.2855] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Hip fractures account for over one-half the morbidity, mortality, and cost associated with osteoporosis. Fragility of the proximal femur is the result of rapid and unbalanced bone remodeling events that excavate more bone than they deposit, producing a porous, thinned, and fragile cortex. We hypothesized that the slowing of remodeling during treatment with denosumab allows refilling of the many cavities excavated before treatment now opposed by excavation of fewer new resorption cavities. The resulting net effect is a reduction in cortical porosity and an increase in proximal femur strength. Images were acquired at baseline and 36 months using multidetector CT in 28 women receiving denosumab and 22 women receiving placebo in a substudy of FREEDOM, a randomized, double-blind, placebo-controlled trial involving women with postmenopausal osteoporosis. Porosity was quantified using StrAx1.0 software. Strength was estimated using finite element analysis. At baseline, the higher the serum resorption marker, CTx, the greater the porosity of the total cortex (r = 0.34, p = 0.02), and the higher the porosity, the lower the hip strength (r = -0.31, p = 0.03). By 36 months, denosumab treatment reduced porosity of the total cortex by 3.6% relative to baseline. Reductions in porosity relative to placebo at 36 months were 5.3% in total cortex, 7.9% in compact-appearing cortex, 5.6% in outer transitional zone, and 1.8% in inner transitional zone (all p < 0.01). The improvement in estimated hip integral strength of 7.9% from baseline (p < 0.0001) was associated with the reduction in total porosity (r = -0.41, p = 0.03). In summary, denosumab reduced cortical porosity of the proximal femoral shaft, resulting in increased mineralized matrix volume and improved strength, changes that may contribute to the reduction in hip and nonvertebral fractures reported with denosumab therapy. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Roger Zebaze
- Austin Health, University of Melbourne, Melbourne, Australia
| | | | | | - José R Zanchetta
- Instituto de Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | | | | | | | - Ego Seeman
- Austin Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
47
|
Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech 2016; 49:2748-2755. [PMID: 27344202 PMCID: PMC5056137 DOI: 10.1016/j.jbiomech.2016.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023]
Abstract
Changes in the distribution of bone mineralization occurring with aging, disease, or treatment have prompted concerns that alterations in mineralization heterogeneity may affect the fracture resistance of bone. Yet, so far, studies assessing bone from hip fracture cases and fracture-free women have not reached a consensus on how heterogeneity in tissue mineralization relates to skeletal fragility. Owing to the multifactorial nature of toughening mechanisms occurring in bone, we assessed the relative contribution of heterogeneity in mineralization to fracture resistance with respect to age, porosity, and area fraction of osteonal tissue. The latter parameters were extracted from quantitative backscattered electron imaging of human cortical bone sections following R-curve tests of single-edge notched beam specimens to determine fracture toughness properties. Microstructural heterogeneity was determined as the width of the mineral distribution (bulk) and as the sill of the variogram (local). In univariate analyses of measures from 62 human donors (21 to 101 years), local but not bulk heterogeneity as well as pore clustering negatively correlated with fracture toughness properties. With age as covariate, heterogeneity was a significant predictor of crack initiation, though local had a stronger negative contribution than bulk. When considering all potential covariates, age, cortical porosity and area fraction of osteons explained up to 50% of the variance in bone׳s crack initiation toughness. However, including heterogeneity in mineralization did not improve upon this prediction. The findings of the present work stress the necessity to account for porosity and microstructure when evaluating the potential of matrix-related features to affect skeletal fragility.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| | - Alexander J Makowski
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
48
|
Shigdel R, Osima M, Lukic M, Ahmed LA, Joakimsen RM, Eriksen EF, Bjørnerem Å. Determinants of Transitional Zone Area and Porosity of the Proximal Femur Quantified In Vivo in Postmenopausal Women. J Bone Miner Res 2016; 31:758-66. [PMID: 26588794 DOI: 10.1002/jbmr.2751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023]
Abstract
Bone architecture as well as size and shape is important for bone strength and risk of fracture. Most bone loss is cortical and occurs by trabecularization of the inner part of the cortex. We therefore wanted to identify determinants of the bone architecture, especially the area and porosity of the transitional zone, an inner cortical region with a large surface/matrix volume available for intracortical remodeling. In 211 postmenopausal women aged 54 to 94 years with nonvertebral fractures and 232 controls from the Tromsø Study, Norway, we quantified femoral subtrochanteric architecture in CT images using StrAx1.0 software, and serum levels of bone turnover markers (BTM, procollagen type I N-terminal propeptide and C-terminal cross-linking telopeptide of type I collagen). Multivariable linear and logistic regression analyses were used to quantify associations of age, weight, height, and bone size with bone architecture and BTM, and odds ratio (OR) for fracture. Increasing age, height, and larger total cross-sectional area (TCSA) were associated with larger transitional zone CSA and transitional zone CSA/TCSA (standardized coefficients [STB] = 0.11 to 0.80, p ≤ 0.05). Increasing weight was associated with larger TCSA, but smaller transitional zone CSA/TCSA and thicker cortices (STB = 0.15 to 0.22, p < 0.01). Increasing height and TCSA were associated with higher porosity of the transitional zone (STB = 0.12 to 0.46, p < 0.05). Increasing BTM were associated with larger TCSA, larger transitional zone CSA/TCSA, and higher porosity of each of the cortical compartments (p < 0.01). Fracture cases exhibited larger transitional zone CSA and higher porosity than controls (p < 0.001). Per SD increasing CSA and porosity of the transitional zone, OR for fracture was 1.71 (95% CI, 1.37 to 2.14) and 1.51 (95% CI, 1.23 to 1.85), respectively. Cortical bone architecture is determined mainly by bone size as built during growth and is modified by lifestyle factors throughout life through bone turnover. Fracture cases exhibited larger transitional zone area and porosity, highlighting the importance of cortical bone architecture for fracture propensity.
Collapse
Affiliation(s)
- Rajesh Shigdel
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marit Osima
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marko Lukic
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Luai A Ahmed
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ragnar M Joakimsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Erik F Eriksen
- Department of Clinical Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Åshild Bjørnerem
- Department of Health and Care Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|