1
|
Ranjbar M, Shab-Bidar S, Rostamian A, Mohammadi H, Tavakoli A, Djafarian K. Effects of intermittent fasting diet in overweight and obese postmenopausal women with rheumatoid arthritis: A randomized controlled clinical trial. Complement Ther Med 2025; 91:103189. [PMID: 40354829 DOI: 10.1016/j.ctim.2025.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Rheumatoid arthritis (RA), in the category of rheumatic diseases, is an autoimmune illness that affects joints and other parts of suffered patients. Intermittent fasting (IF) is a dietary pattern that has had beneficial impacts on several populations. This randomized controlled trial (RCT) hypothesized that IF can improve quality of life, clinical symptoms, inflammation, and oxidative stress in overweight and obese postmenopausal women with RA. METHOD This study was a controlled, parallel-group superiority design in which 44 overweight and obese postmenopausal women with RA were randomly allocated to receive either IF (n = 22) or the usual diet (n = 22) for 8 weeks. The intervention group received 16/8 IF, and the control group received the typical diet for 8 weeks. The primary outcome was the Health Assessment Questionnaire-Disability Index (HAQ-DI) questionnaire score. The secondary outcomes included body mass index (BMI) and morning joint stiffness (MS) and biochemical indicators, including serum concentrations of erythrocyte sedimentation rate (ESR), high sensitive c-reactive protein (hs-CRP), and total oxidant and antioxidant capacity (TOC and TAC), and oxidative stress index (OSI), and interleukin 6 (IL-6) were assessed at the baseline and end of the study. Disease severity was assessed using the Disease Activity Score-28 (DAS-28) and Clinical Disease Activity Index (CDAI). RESULTS The IF diet significantly improved BMI, DAS-28, CDAI, and HAQ (p-value<0.05 for all). However, there were no significant effects on the other study outcomes. CONCLUSION IF has beneficial effects on some outcomes related to RA patients, while it has no significant impact on inflammation and oxidative stress markers. More studies are needed to determine IF's effects on RA patients.
Collapse
Affiliation(s)
- Mahsa Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolrahman Rostamian
- Department of Internal Medicine, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Marino A, Currado D, Berardicurti O, Vomero M, Kun L, Di Corcia LP, Corberi E, Trunfio F, Saracino F, Lamberti L, Frascà L, Battista A, Alfano M, Pietramale M, Schiavone S, Giacomelli R, Navarini L. Association Between the Use of Oral Contraceptives and the Development of Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2710. [PMID: 40283539 PMCID: PMC12027927 DOI: 10.3390/jcm14082710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that significantly impacts quality of life, particularly among women. Previous studies have suggested that oral contraceptive (OC) use may influence RA risk, but conflicting findings from earlier meta-analyses necessitate an updated analysis incorporating more recent data. Methods: We conducted a systematic review and meta-analysis of observational studies on OC use and RA risk by searching MedLine (via PubMed), Scopus, and Cochrane Databases up to September 2024. Results: Our analysis demonstrated that current or prior use of OCs is associated with a statistically significant reduction in RA risk (OR 0.80, 95% CI 0.70-0.91). In contrast, the associations for current use (OR 0.59, 95% CI 0.34-1.02) and past use (OR 0.83, 95% CI 0.69-1.01) were less definitive, likely due to substantial heterogeneity among studies. Cumulative meta-analysis revealed a modest temporal trend toward a protective effect of OC use. Conclusions: This meta-analysis supports a protective association between current or prior OC use and the development of RA, highlighting the potential role of hormonal factors in RA pathogenesis.
Collapse
Affiliation(s)
- Annalisa Marino
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.); (O.B.); (R.G.); (L.N.)
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.); (O.B.); (R.G.); (L.N.)
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Onorina Berardicurti
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.); (O.B.); (R.G.); (L.N.)
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Marta Vomero
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Lyubomyra Kun
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Letizia Pia Di Corcia
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Erika Corberi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Francesca Trunfio
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Francesca Saracino
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Ludovica Lamberti
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Leonardo Frascà
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Angelo Battista
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Marta Alfano
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Manuela Pietramale
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Silvia Schiavone
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.); (O.B.); (R.G.); (L.N.)
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| | - Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (A.M.); (O.B.); (R.G.); (L.N.)
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Biomedico”, School of Medicine, 00128 Rome, Italy; (M.V.); (L.K.); (L.P.D.C.); (E.C.); (F.T.); (F.S.); (L.L.); (L.F.); (A.B.); (M.A.); (M.P.); (S.S.)
| |
Collapse
|
3
|
Wang W, Yang W, Wang F, Gao H, Liu K, Zhang J, Li Y, Zhang M, Zhou G, Hou Y, Bai G. Kunxinning granules alleviate perimenopausal syndrome by supplementing estrogen deficiency. Front Pharmacol 2025; 16:1554479. [PMID: 40206089 PMCID: PMC11979375 DOI: 10.3389/fphar.2025.1554479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Ovarian function decline results in reduced estrogen levels, leading to endocrine disorders, oxidative stress damage, and excessive activation of inflammatory factors, all of which contribute to the development of premenstrual syndrome (PMS). Kunxinning Granules (KXN) has been clinically approved for PMS treatment, but its bioactive ingredients and mechanism of action remain unclear. This study aimed to investigate the active metabolites and molecular mechanism of KXN in treating PMS rats, laying a foundation for the clinical development of PMS treatment. Methods An ovariectomized (OVX) rat model was established to evaluate the efficacy of KXN in treating PMS. Molecular network (MN) analysis, combined with UPLC/Q-TOF-MS, identified prototype compounds in the samples and constructed a chemical classification map based on their structures. A network analysis and proteomics were conducted to predict potential pathways through which KXN regulates PMS. Quantitative metabolomics assays were used to confirm these potential pathways. Additionally, target prediction and binding enzyme activity detection elucidated the key active metabolites and mechanisms of action in KXN. Results KXN exhibited significant effectiveness in supplementing estrogen deficiency and uterine atrophy in the OVX model. We identified 16 absorbed metabolites as the potential pharmacological ingredients of KXN in vivo. The steroid hormone biosynthesis pathway, a crucial pathway of KXN in PMS, played a key role in KXN's effectiveness. KXN improved hormonal metabolic disorders by regulating this pathway. The main metabolites in KXN, including astragaloside IV, icariin and baohuoside I increased estradiol levels by enhancing the activity of CYP19A1, the representative enzyme in hormone biosynthesis pathway. Discussion This study shows that KXN could relieve anxiety, depression, and osteoporosis in PMS. This pharmacological effect is exerted through steroid hormone synthesis to address estrogen deficiency. The findings provide valuable insights into the underlying mechanisms and support its clinical application.
Collapse
Affiliation(s)
- Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fangwenting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - He Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jinling Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yunjuan Li
- State Key Laboratory of Chinese Medicine Modernization, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
- Tianjin Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Guirong Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
- Tianjin Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Motta F, Di Simone N, Selmi C. The Impact of Menopause on Autoimmune and Rheumatic Diseases. Clin Rev Allergy Immunol 2025; 68:32. [PMID: 40117049 PMCID: PMC11928423 DOI: 10.1007/s12016-025-09031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
The prevalence of autoimmune and rheumatological diseases is significantly higher in women, likely due to the effect of sex hormones influencing the development and function of the immune system, a phenomenon observed particularly during pregnancy. Oestrogens, in particular, appear to be a major factor in modulating the immune response, as their receptors are present in nearly all immune cells, where they regulate the expression of genes involved in inflammation. However, there is limited data on how menopause impacts autoimmune diseases, despite evidence suggesting that the menopausal perturbation of hormone levels may lead to the development of autoimmune conditions or alter the course of an already established disease. This review focuses on rheumatic conditions, aiming to provide a comprehensive understanding of how menopause influences the onset, progression, and clinical features of autoimmune diseases. The best evidence is available for rheumatoid arthritis and systemic lupus erythematosus, two paradigmatic autoimmune diseases in which menopause elicits opposite outcomes. Despite these data, there is a notable lack of evidence and research on the impact of menopause in other inflammatory arthritis and connective tissue diseases. This gap highlights a crucial area for future research and unmet needs to be addressed. Understanding how menopausal changes impact autoimmunity and rheumatic diseases will be crucial for improving the management of autoimmune and rheumatological diseases in women.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas S. Pio X Hospital, Milan, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, Italy.
| |
Collapse
|
5
|
Yao Y, Cai X, Chen Y, Zhang M, Zheng C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med Res Rev 2025; 45:561-575. [PMID: 39234932 DOI: 10.1002/med.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/03/2023] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Postmenopausal osteoporosis (PMO) is a common disease associated with aging, and estrogen deficiency is considered to be the main cause of PMO. Recently, however, osteoimmunology has been revealed to be closely related to PMO. On the one hand, estrogen deficiency directly affects the activity of bone cells (osteoblasts, osteoclasts, osteocytes). On the other hand, estrogen deficiency-mediated osteoimmunity also plays a crucial role in bone loss in PMO. In this review, we systematically describe the progress of the mechanisms of bone loss in PMO, estrogen deficiency-mediated osteoimmunity, the differences between PMO patients and postmenopausal populations without osteoporosis, and estrogen deficiency-mediated immune cells (T cells, B cells, macrophages, neutrophils, dendritic cells, and mast cells) activity. The comprehensive summary of this paper provides a clear knowledge context for future research on the mechanism of PMO bone loss.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Kuebart T, Oezel L, Gürsoy B, Maus U, Windolf J, Bittersohl B, Grotheer V. Periostin Splice Variant Expression in Human Osteoblasts from Osteoporotic Patients and Its Effects on Interleukin-6 and Osteoprotegerin. Int J Mol Sci 2025; 26:932. [PMID: 39940700 PMCID: PMC11816753 DOI: 10.3390/ijms26030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Osteoporosis is an inflammatory disease characterised by low bone mass and quality, resulting in weaker bone strength and fragility fractures. Periostin is a matricellular protein expressed in the periosteum of bone by osteoblasts. It regulates cell recruitment and differentiation in response to fracture and contributes to extracellular matrix (ECM) formation. The aim of the following study was to determine the splice variants of Periostin expressed in human osteoblasts and Periostin's function in the pathophysiology of osteoporosis. Osteoblasts isolated from femoral heads from 29 patients with or without osteoporosis were utilised. Periostin splice variants were compared by quantitative real-time polymerase chain reaction (qPCR). Furthermore, the effect of Periostin inhibition on osteoblast differentiation was investigated using alizarin red S staining. Lastly, the interaction of IL-6 and Periostin and their effect on osteoprotegerin (OPG) secretion were analysed with the implantation of enzyme-linked immunosorbent assays (ELISAs). It could be demonstrated that human osteoblasts preferentially express Periostin isoform 4, even if splice variant expression was not altered in osteoporosis conditions, indicating that Periostin's functions in bone are primarily attributable to this isoform. The inhibition of Periostin resulted in significantly reduced osteoblast differentiation. However, Periostin was secreted in significantly higher amounts in osteoblasts from patients with osteoporosis. Additionally, Periostin significantly reduces OPG secretion and, thereby, rather promotes bone resorption. Furthermore, it could be determined that Periostin and IL-6 induce each other, and both significantly decrease OPG secretion. A positive feedback loop exacerbates the dysregulation found in human osteoblasts from patients with osteoporosis, thereby contributing to bone loss.
Collapse
Affiliation(s)
- Till Kuebart
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, 40225 Duesseldorf, Germany; (T.K.)
| | - Lisa Oezel
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, 40225 Duesseldorf, Germany; (T.K.)
| | - Beyza Gürsoy
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, 40225 Duesseldorf, Germany; (T.K.)
| | - Uwe Maus
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, 40225 Duesseldorf, Germany; (T.K.)
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, 40225 Duesseldorf, Germany; (T.K.)
| | - Bernd Bittersohl
- Department of Orthopedics, Medical School and University Medical Center Ostwestalen-Lippe (OWL), Klinikum Bielefeld-Mitte, Bielefeld University, 33615 Bielefeld, Germany (V.G.)
| | - Vera Grotheer
- Department of Orthopedics, Medical School and University Medical Center Ostwestalen-Lippe (OWL), Klinikum Bielefeld-Mitte, Bielefeld University, 33615 Bielefeld, Germany (V.G.)
| |
Collapse
|
7
|
Zhang Y, Weng Q, Deng Z, Zhang H, Dai J, Chen X. Rheumatoid arthritis and the risk of fracture: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41248. [PMID: 39833078 PMCID: PMC11749589 DOI: 10.1097/md.0000000000041248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Observational epidemiological studies indicate a higher fracture incidence in rheumatoid arthritis (RA) patients compared to the general population. However, the causal relationship between RA and fracture risk, particularly traumatic and osteoporotic fractures, is not well established. We performed Mendelian randomization (MR) analysis to evaluate the causal relationship between RA and fracture risk. We performed a MR analysis using summary statistics from genome-wide association studies to investigate the causal association between RA and the risk of traumatic fractures at 9 sites and 3 types of osteoporotic fractures. The primary analysis used inverse-variance weighting, supplemented by MR-Egger regression and other methods to assess causal relationships and sensitivity analyses, including heterogeneity and pleiotropy assessments, using R software with appropriate packages. The inverse-variance weighting results demonstrated a causal relationship between genetically predicted RA and an elevated risk of fractures, particularly traumatic fractures of the long bones and osteoporotic fractures, including fractures of shoulder and upper arm (odds ratio [OR] = 1.041, 95% confidence interval [CI]: 1.020-1.062, P = 9.06e-05), fractures of forearm (OR = 1.026, 95% CI: 1.007-1.044, P = .006), fracture of femur (OR = 1.036, 95% CI: 1.009-1.064, P = .009), fractures of lower leg, including joint (OR = 1.031, 95% CI: 1.016-1.047, P = 6.38e-05), fractures of rib(s), sternum, and thoracic vertebrae (OR = 1.041, 95% CI: 1.018-1.064, P = 4.08e-04), osteoporotic with pathological features (OR = 1.128, 95% CI: 1.071-1.188, P = 5.54e-06), postmenopausal osteoporotic with pathological features (OR = 1.060, 95% CI: 1.002-1.123, P = .044), and drug-induced osteoporotic with pathological features (OR = 1.255, 95% CI: 1.124-1.400, P = 5.02e-05). This study highlights the genetic causal link between RA and an increased risk of traumatic and osteoporotic fractures, presenting a new direction for future exploration of the mechanisms underlying RA-related fractures.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Putian University, Putian, China
| | - Qin Weng
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Zhibo Deng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaizhi Zhang
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Jianhui Dai
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Xu Chen
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Putian University, Putian, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Inoue I, Yoshimura N, Iidaka T, Horii C, Muraki S, Oka H, Kawaguchi H, Akune T, Maekita T, Mure K, Nakamura K, Tanaka S, Mochida S, Ichinose M. Helicobacter pylori-Related Chronic Gastritis as a Risk Factor for Lower Bone Mineral Density. Calcif Tissue Int 2025; 116:16. [PMID: 39751686 PMCID: PMC11698759 DOI: 10.1007/s00223-024-01310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
We evaluated the role of Helicobacter pylori (H. pylori)-related chronic gastritis in the development of osteoporosis in a population-based study. A total of 1690 subjects in the cohort of the Research on Osteoarthritis/ osteoporosis Against Disability (ROAD) were investigated, and the association between gastritis and osteoporosis was evaluated by the presence of serologically assessed H. pylori-related chronic gastritis and its stage, based on H. pylori antibody titer and pepsinogen. The presence of the gastritis was associated with significantly lower bone mineral density (BMD) assessed by dual-energy x-ray absorptiometry and a significant risk of lower BMD was observed in femoral neck (adjusted odds ratio [OR]: 0.78, 95% confidence interval [CI]: 061-0.99). The progression of the gastritis appeared to further increase the risk. In the stage of non-atrophic gastritis, the risk of lower BMD was significantly high, especially in a subgroup with higher gastritis activity in the femoral neck (adjusted OR: 0.61, 95% CI: 0.42-0.89). Meanwhile, in the stage of atrophic gastritis, the highest and significant risk of lower BMD was observed in a subgroup with the most extensive and severe atrophy in femoral neck (adjusted OR: 0.62, 95% CI: 0.42-0.91). These results suggest that H. pylori-related chronic gastritis is involved in the risk of osteoporosis, with higher activity of gastritis and more extensive atrophy leading to further increased risk. The serologically assessed stage of the gastritis could be used to identify a high-risk group for osteoporosis in H. pylori-infected subjects from general population.
Collapse
Affiliation(s)
- Izumi Inoue
- Health Service Center, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477, Japan.
| | - Noriko Yoshimura
- Department of Prevention Medicine for Locomotive Organ Disorders, 22, Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Toshiko Iidaka
- Department of Prevention Medicine for Locomotive Organ Disorders, 22, Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Chiaki Horii
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shigeyuki Muraki
- Department of Prevention Medicine for Locomotive Organ Disorders, 22, Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for Musculoskeletal Pain, 22, Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8655, Japan
| | | | - Toru Akune
- National Rehabilitation Center for Persons with Disabilities, Saitama, 359-0042, Japan
| | - Takao Maekita
- Department of Gastroenterology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Kanae Mure
- Department of Public Health, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | | | - Sakae Tanaka
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Masao Ichinose
- Department of Gastroenterology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| |
Collapse
|
9
|
Xu J, Guo YQ, Guo SH, Xu MZ, Li C, Gong YQ, Lu K. Divergent associations of inflammatory markers with bone turnover markers in elderly patients with osteoporotic fractures. Sci Rep 2024; 14:24907. [PMID: 39438524 PMCID: PMC11496696 DOI: 10.1038/s41598-024-75704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The association between inflammatory markers (IMs) and bone turnover markers (BTMs) in osteoporotic fracture patients has not been comprehensively studied. Therefore, this study examined the correlation between the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), or Monocyte-to-lymphocyte ratio (MLR) and BTMs in osteoporosis (OP) fracture patients. This retrospective cross-sectional study analyzed 740 OP fracture patients admitted to the hospital from January 2017 to July 2022. MLR, NLR, and PLR were calculated based on each patient's complete blood count. The relationship between IMs and BTMs was assessed using three models by adjusting variables. Furthermore, the potential curve relationship between IMs and BTMs was also determined via the threshold effect analysis and curve fittings. In addition, stratified analysis was performed on each adjusted variable to confirm the stability of the results. After adjusting the variables, the results showed that NLR was negatively correlated with procollagen type 1 N-terminal propeptide (P1NP) (β = -1.1788, 95% CI: -1.7230 to -0.6345, P-value < 0.0001) and β-C-terminal telopeptide of type I collagen (β-CTX) (β = -0.0104, 95% CI: -0.0145 to -0.0062, P-value < 0.0001), Furthermore, MLR was negatively correlated with P1NP (β = -17.4523, 95% CI: -27.7335 to -7.1710, P-value = 0.0009) and β-CTX (β = -0.1327, 95% CI: -0.2211 to -0.0443, P-value = 0.0034). However, PLR indicated a positive correlation with P1NP (β = 0.0326, 95% CI: 0.0007 to 0.0645, P-value = 0.0458) and β-CTX (β = 0.0003, 95% CI: 0.0001 to 0.0006, P-value = 0.0204). The threshold effect analysis and curve fittings revealed the presence of a turning point between NLR, MLR, and P1NP, β-CTX. In addition, the stratified analysis validated the result's stability. In conclusion, this study indicates a negative correlation between NLR and MLR with P1NP, while PLR shows a positive correlation with P1NP. Additionally, NLR and MLR exhibit a negative correlation with β-CTX, whereas PLR demonstrates a positive correlation with β-CTX. Further research is required to assess the intricate mechanisms linking IM with bone metabolism.
Collapse
Affiliation(s)
- Jian Xu
- Department of Orthopedics, The First People's Hospital of Kunshan, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yue-Qin Guo
- Endocrine Department, The Fifth People's Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Shao-Han Guo
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Min-Zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ya-Qin Gong
- Information Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Cao Y, Gao Y, Huang J. Perturbations in gut microbiota composition in osteoporosis: a systematic review and meta-analysis. J Bone Miner Metab 2024; 42:551-563. [PMID: 38864923 DOI: 10.1007/s00774-024-01517-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Osteoporosis (OP) is a chronic bone metabolic disease, which causes a great social and economic burden. The gut microbiota (GM) has become a recent topic of interest in the role of many disease states. Changes in the GM are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial. We performed a mate-analysis to explore and compare the alterations of GM in OP patients. MATERIALS AND METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, CNKI, VIP, CBM, and Wanfang. In addition, we applied the Stata 17.0 software for data analysis. Bias controls were evaluated with the Newcastle-Ottawa scale (NOS), funnel plot analysis, and Egger's and Begg's tests. RESULTS This research ultimately considered 16 studies, which included the fecal GM data of 2340 people (664 with OP and 1676 healthy controls). The pooled estimate showed an increase of borderline significance on ACE index in patients with OP compared with control participants (SMD = 1.05; 95% CI 0.00-2.10; P = 0.05). There were no significant differences in Chao1, Shannon and Simpson indices. At the phylum level, no significant differences were observed between the OP patients and HCs in the overall analysis. At the genus level, the relative abundance of Blautia presented a decrease of borderline significance between OP and the control group (SMD = - 0.32, 95% CI - 0.65 to - 0.00, P = 0.05). CONCLUSION This systematic review and meta-analysis suggests that patients with OP may exhibit dysbiosis in their gut microbiota, characterized by a reduction in certain anti-inflammatory butyrate-producing bacteria and an enrichment of pro-inflammatory bacterial populations.
Collapse
Affiliation(s)
- Yun Cao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Gao
- Department of Traditional Chinese Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jiaqin Huang
- Department of Traditional Chinese Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Zhang Z, Wu W, Li M, Du L, Li J, Yin X, Zhang W. Mesenchymal stem cell–derived extracellular vesicles: A novel nanoimmunoregulatory tool in musculoskeletal diseases. NANO TODAY 2024; 57:102343. [DOI: 10.1016/j.nantod.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zheng Z, Fan Y, Zhang J, Wang J, Li Z. Cedrol alleviates postmenopausal osteoporosis in rats through inhibiting the activation of the NF-κB signaling pathway. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00921-3. [PMID: 38814422 DOI: 10.1007/s11626-024-00921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Pharmacological studies have shown that Cedrol (CE) exhibits extensive biological activities, including anti-inflammatory and analgesic. Moreover, it can inhibit the NF-κB pathway and the expression of various associated proteins. This study aimed to investigate the role of CE in postmenopausal osteoporosis. The results showed that intragastric administration of CE (10 and 20 mg/kg) significantly improved the bone microstructure damage and increased bone mineral density, trabecular bone volume, and bone trabecular thickness in ovariectomized (OVX) rats (p < 0.05). CE treatment additionally made a well-organized arrangement of bone trabeculae and improved its thickness and density. Compared with the OVX group, the levels of tartrate-resistant acid phosphatase from 5b and C-terminal telopeptide of type I collagen were significantly reduced by 42.75% and 49.27% in the OVX + CE rats (p < 0.05). TRAP staining visually showed that the number of osteoclasts in the femur tissue of CE-treated rats was less than that of the OVX group. The expressions of nuclear factor of activated T-cells, cytoplasmic 1, acid phosphatase 5, and cathepsin K in OVX + CE rats were significantly decreased by 51.61%, 46.07%, and 50.34% compared to the OVX group (p < 0.01). In addition, CE intervention effectively reduced the phosphorylation levels of P65 and IκBα and inhibited the NF-κB signaling pathway. Meanwhile, CE diminished the number of multinucleated osteoclasts induced by receptor activator for nuclear factor-κB ligand and hindered cell fusion as well as nuclear translocation of osteoclast precursor cells P65. In conclusion, CE inhibits osteoclastogenesis by suppressing the activation of the NF-κB signaling pathway, thereby alleviating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China.
| | - Ying Fan
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jingyun Zhang
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jian Wang
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Zhenyu Li
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, China
| |
Collapse
|
13
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
14
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Aging leads to decline in bone mass and quality starting at age 30 in humans. All mammals undergo a basal age-dependent decline in bone mass. Osteoporosis is characterized by low bone mass and changes in bone microarchitecture that increases the risk of fracture. About a third of men over the age of 50 years are osteoporotic because they have higher than basal bone loss. In women, there is an additional acute decrement in bone mass, atop the basal rate, associated with loss of ovarian function (menopause) causing osteoporosis in about half of the women. Both genetics and environmental factors such as smoking, chronic infections, diet, microbiome, and metabolic disease can modulate basal age-dependent bone loss and eventual osteoporosis. Here, we review recent studies on the etiology of age-dependent decline in bone mass and propose a mechanism that integrates both genetic and environmental factors. RECENT FINDINGS Recent findings support that aging and menopause dysregulate the immune system leading to sterile low-grade inflammation. Both animal models and human studies demonstrate that certain kinds of inflammation, in both men and women, mediate bone loss. Senolytics, meant to block a wide array of age-induced effects by preventing cellular senescence, have been shown to improve bone mass in aged mice. Based on a synthesis of the recent data, we propose that aging activates long-lived tissue resident memory T-cells to become senescent and proinflammatory, leading to bone loss. Targeting this population may represent a promising osteoporosis therapy. Emerging data indicates that there are several mechanisms that lead to sterile low-grade chronic inflammation, inflammaging, that cause age- and estrogen-loss dependent osteoporosis in men and women.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., DRC605, St. Louis, MO, 63104, USA.
| | - Deborah Veis
- Division of Bone and Mineral Diseases and Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
16
|
Xu H, Tao L, Cao J, Zhang P, Zeng H, Zhao H. Yi Shen Juan Bi Pill alleviates bone destruction in inflammatory arthritis under postmenopausal conditions by regulating ephrinB2 signaling. Front Pharmacol 2022; 13:1010640. [PMID: 36249763 PMCID: PMC9561306 DOI: 10.3389/fphar.2022.1010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Yi Shen Juan Bi Pill (YSJB) is a traditional Chinese medicine (TCM) formulation that has a therapeutic effect upon rheumatoid arthritis (RA), but how YSJB affects bone destruction in arthritis under postmenopausal conditions is not known. We evaluated the therapeutic role of YSJB in bone destruction in postmenopausal arthritis, We used collagen-induced arthritis (CIA) rats who had been ovariectomized (OVX) as models and explored the possible mechanism from the synovium and bone marrow (BM). Arthritis was generated after ovariectomy or sham surgery for 12 weeks. After 14 days of primary immunization, rats were administered YSJB or estradiol valerate (EV) for 28 days. YSJB could prevent bone destruction in the inflamed joints of rats in the OVX + CIA group. CIA promoted osteoclast differentiation significantly in the synovial membrane according to tartrate resistant acid phosphatase (TRACP) staining, and OVX tended to aggravate the inflammatory reaction of CIA rats according to hematoxylin-and-eosin staining. Immunohistochemistry revealed that the synovium did not have significant changes in erythropoietin-producing hepatocellular interactor (ephrin)B2 or erythropoietin-producing hepatocellular (eph) B4 expression after YSJB treatment, but YSJB treatment reduced nuclear factor of activated T cells (NFATc)1 expression. The BM of rats in the OVX + CIA exhibited remarkable increases in the number of osteoclasts and NFATc1 expression, as well as significantly reduced expression of ephrinB2 and ephB4 compared with the CIA group and sham group. YSJB treatment reduced NFATc1 expression significantly but also increased ephrinB2 expression in the BM markedly. These data suggest that YSJB exhibit a bone-protective effect, it may be a promising therapeutic strategy for alleviating bone destruction in arthritis under postmenopausal conditions, and one of the mechanisms is associated with the modulation of ephrinB2 signaling.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Bone & Joint Surgery and National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Li Tao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Jinfeng Cao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| | - Hui Zeng
- Department of Bone & Joint Surgery and National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| |
Collapse
|
17
|
Li W, Wang K, Liu Y, Wu H, He Y, Li C, Wang Q, Su X, Yan S, Su W, Zhang Y, Lin N. A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Front Immunol 2022; 13:912933. [PMID: 35799788 PMCID: PMC9253268 DOI: 10.3389/fimmu.2022.912933] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Growing evidence shows that Baihu-Guizhi decoction (BHGZD), a traditional Chinese medicine (TCM)-originated disease-modifying anti-rheumatic prescription, may exert a satisfying clinical efficacy for rheumatoid arthritis (RA) therapy. In our previous studies, we verified its immunomodulatory and anti-inflammatory activities. However, bioactive compounds (BACs) of BHGZD and the underlying mechanisms remain unclear. Herein, an integrative research strategy combining UFLC-Q-TOF-MS/MS, gene expression profiling, network calculation, pharmacokinetic profiling, surface plasmon resonance, microscale thermophoresis, and pharmacological experiments was carried out to identify the putative targets of BHGZD and underlying BACs. After that, both in vitro and in vivo experiments were performed to determine the drug effects and pharmacological mechanisms. As a result, the calculation and functional modularization based on the interaction network of the “RA-related gene–BHGZD effective gene” screened the TLR4/PI3K/AKT/NFκB/NLRP3 signaling-mediated pyroptosis to be one of the candidate effective targets of BHGZD for reversing the imbalance network of “immune-inflammation” during RA progression. In addition, both mangiferin (MG) and cinnamic acid (CA) were identified as representative BACs acting on that target, for the strong binding affinities between compounds and target proteins, good pharmacokinetic features, and similar pharmacological effects to BHGZD. Notably, both BHGZD and the two-BAC combination of MG and CA effectively alleviated the disease severity of the adjuvant-induced arthritis-modified rat model, including elevating pain thresholds, relieving joint inflammation and bone erosion via inhibiting NF-κB via TLR4/PI3K/AKT signaling to suppress the activation of the NLRP3 inflammasome, leading to the downregulation of downstream caspase-1, the reduced release of IL-1β and IL-18, and the modulation of GSDMD-mediated pyroptosis. Consistent data were obtained based on the in vitro pyroptosis cellular models of RAW264.7 and MH7A cells induced by LPS/ATP. In conclusion, these findings offer an evidence that the MG and CA combination identified from BHGZD may interact with TLR4/PI3K/AKT/NFκB signaling to inhibit NLRP3 inflammasome activation and modulate pyroptosis, which provides the novel representative BACs and pharmacological mechanisms of BHGZD against active RA. Our data may shed new light on the mechanisms of the TCM formulas and promote the modernization development of TCM and drug discovery.
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Congchong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| |
Collapse
|
18
|
García-Rojas MD, Palma-Cordero G, Martínez-Ramírez CO, Ponce de León-Suárez V, Valdés-Flores M, Castro-Hernández C, Rubio-Lightbourn J, Hernández-Zamora E, Reyes-Maldonado E, Velázquez-Cruz R, Barredo-Prieto B, Casas-Avila L. Association of Polymorphisms in Estrogen Receptor Genes ( ESR1 and ESR2) with Osteoporosis and Fracture-Involvement of Comorbidities and Epistasis. DNA Cell Biol 2022; 41:437-446. [PMID: 35285722 DOI: 10.1089/dna.2021.1165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the ESR1/ESR2 genes play a role in osteoporosis (OP). Our objective was to determine associations of polymorphisms in ESR genes with OP and fracture, SNP-SNP interactions, and involvement of comorbidities. We analyzed 170 Mexican osteoporotic women (FNOP), 173 with hip fracture (HFx), and 210 controls. The SNPs, ESR1 rs2234693CC, rs851982CC and rs1999805AA, were associated with reduced OP risk (odds ratios [ORs] = 0.35, 0.40 and 0.32, respectively; p < 0.05); rs2234693CC was associated with reduced fracture risk (OR = 0.24; p < 0.05). The obese/overweight carriers of rs9340799GG had a lower OP (OR = 0.15, p = 0.016) and fracture (OR = 0.12, p = 0.0057) risk. The rs9479055AA and rs3020404AA hypertensive carriers had a higher OP risk (OR = 5.96, p = 0.032; and OR = 5.29, p = 0.02, respectively). In addition, rs3020404AA had a higher risk of fracture (OR = 4.90, p = 0.045). The rs2228480GG hypertensive carriers had a higher risk of fracture (OR = 6.22, p = 0.0038). We found a synergic relation between the ESR1 rs3020331 and rs1999805 in femoral neck OP and HFx. The rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms are associated with a high risk forming a haplotype. The epistasis analysis suggests the contribution of both genes (ESR1/ESR2) to the risk of OP and fracture. Epistasis and involvement of obesity and hypertension lead to a significant modification of the risk.
Collapse
Affiliation(s)
| | - Grecia Palma-Cordero
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | - Margarita Valdés-Flores
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Clementina Castro-Hernández
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julieta Rubio-Lightbourn
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edgar Hernández-Zamora
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Elba Reyes-Maldonado
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Blanca Barredo-Prieto
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Leonora Casas-Avila
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
19
|
Weijie W, Xiaonan Y, Yilin W, Hudan P, Liang L. Study on the compatibility principle of Wutou Decoction based on network pharmacology. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Xu Y, Yan H, Zhang X, Zhuo J, Han Y, Zhang H, Xie D, Lan X, Cai W, Wang X, Wang S, Li X. Roles of Altered Macrophages and Cytokines: Implications for Pathological Mechanisms of Postmenopausal Osteoporosis, Rheumatoid Arthritis, and Alzheimer's Disease. Front Endocrinol (Lausanne) 2022; 13:876269. [PMID: 35757427 PMCID: PMC9226340 DOI: 10.3389/fendo.2022.876269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is characterized by the uncoupling of bone resorption and bone formation induced by estrogen deficiency, which is a complex outcome related to estrogen and the immune system. The interaction between bone and immune cells is regarded as the context of PMOP. Macrophages act differently on bone cells, depending on their polarization profile and secreted paracrine factors, which may have implications for the development of PMOP. PMOP, rheumatoid arthritis (RA), and Alzheimer's disease (AD) might have pathophysiological links, and the similarity of their pathological mechanisms is partially visible in altered macrophages and cytokines in the immune system. This review focuses on exploring the pathological mechanisms of PMOP, RA, and AD through the roles of altered macrophages and cytokines secretion. First, the multiple effects on cytokines secretion by bone-bone marrow (BM) macrophages in the pathological mechanism of PMOP are reviewed. Then, based on the thought of "different tissue-same cell type-common pathological molecules-disease pathological links-drug targets" and the methodologies of "molecular network" in bioinformatics, highlight that multiple cytokines overlap in the pathological molecules associated with PMOP vs. RA and PMOP vs. AD, and propose that these overlaps may lead to a pathological synergy in PMOP, RA, and AD. It provides a novel strategy for understanding the pathogenesis of PMOP and potential drug targets for the treatment of PMOP.
Collapse
Affiliation(s)
- Yunteng Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junkuan Zhuo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haifeng Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingbang Xie
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Lan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wanping Cai
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Xihai Li,
| |
Collapse
|
21
|
Su JW, Li SF, Tao JJ, Xu YY, Wang K, Qian XW, Deng G, Peng XQ, Chen FH. Estrogen protects against acidosis-mediated articular chondrocyte injury by promoting ASIC1a protein degradation. Eur J Pharmacol 2021; 908:174381. [PMID: 34310912 DOI: 10.1016/j.ejphar.2021.174381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Epidemiological data suggest that the incidence of rheumatoid arthritis (RA) increases in postmenopausal women, which may be related to estrogen deficiency. Tissue acidosis is a common symptom of RA. Acid-sensitive ion channel 1a (ASIC1a), a member of the extracellular H+-activated cation channel family, could be activated by changes in extracellular pH and plays a crucial role in the pathogenesis of RA. As the only cellular component in cartilage tissue, chondrocytes play an extremely important role in maintaining cartilage tissue homeostasis. The aim of this study was to investigate whether estrogen could protect acid-stimulated chondrocytes by regulating the expression of ASIC1a and explore the possible mechanism. The results showed that estrogen could protect against acid-induced chondrocyte injury by reducing ASIC1a protein expression. Moreover, lysosome inhibitor chloroquine (CQ) and autophagy inhibitor 3-methyladeniine (3-MA) could reverse the reduction of ASIC1a protein caused by estrogen, indicating that autophagy-lysosome pathway contributes to estrogen-induced degradation of ASIC1a protein. Furthermore, the down-regulation of ASIC1a expression by estrogen was attenuated by MPP, a specific inhibitor of estrogen-related receptor-alpha (Esrra), indicating that Esrra is involved in the process of estrogen regulating the expression of ASIC1a. Additionally, adenosine 5'-monophosphate (AMP)-activated protein kinase/unc-51-like kinase 1 (AMPK-ULK1) signaling pathway was activated by estrogen treatment, which was abrogated by Esrra-silencing, and AMPK-specific inhibitor Compound C pretreatment could reduce estrogen-induced downregulation of ASIC1a protein. Taken together, these results indicate that estrogen could promote autophagy-lysosome pathway-dependent ASIC1a protein degradation and protect against acidosis-induced cytotoxicity, the mechanisms of which might relate to Esrra-AMPK-ULK1 signaling pathway.
Collapse
Affiliation(s)
- Jing-Wen Su
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shu-Fang Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jing-Jing Tao
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ya-Yun Xu
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ke Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xue-Wen Qian
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ge Deng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiao-Qing Peng
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fei-Hu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
22
|
Kareem R, Botleroo RA, Bhandari R, Ogeyingbo OD, Ahmed R, Gyawali M, Venkatesan N, Elshaikh AO. The Impact of Rheumatoid Arthritis on Bone Loss: Links to Osteoporosis and Osteopenia. Cureus 2021; 13:e17519. [PMID: 34603889 PMCID: PMC8476196 DOI: 10.7759/cureus.17519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic connective tissue disease that produces persistent systemic inflammation, with joint inflammation leading to function loss and joint destruction. Low bone mass causes skeletal bone loss, commonly referred to as osteopenia or osteoporosis. We conducted this literature review to examine the relationship between RA and osteoporosis and the variables contributing to this connection. We used articles from the US National Library of Medicine (PubMed), Google Scholar, Science Direct to access the required information. Eventually, our results concluded that RA could result in local periarticular and generalized bone loss. Many risk factors contribute to this association, such as chronic joints inflammation, glucocorticoid use, genetics, and estrogen hormone effects. Still, it is not clear yet whether this is due to a consequence of treatment, immobility, or the activity of the disease. There are many recommendations by the American College of Rheumatology for RA patients during the disease course to reduce the risk of osteoporosis development, which include early starts of disease-modifying anti-inflammatory drugs (DMARDs), doing a dual-energy x-ray (DXA) or quantitative ultrasound (QUS) for identifying a patient at risk of osteoporosis, taking vitamin D, calcium, and bisphosphonates. Further prospective studies and clinical trials are essential to provide a solid evidence-based recommendation that will help to prevent bone loss in RA patients.
Collapse
Affiliation(s)
- Roaa Kareem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rinky A Botleroo
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Renu Bhandari
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Manipal College of Medical Sciences, Kaski, NPL
| | - Opemipo D Ogeyingbo
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Public Health, Walden University, Minneapolis, USA.,Internal Medicine, Saint James School of Medicine, Park Ridge, USA
| | - Rowan Ahmed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mallika Gyawali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nanditha Venkatesan
- Internal Medicine, All India Institute of Medical Sciences, Raipur, IND.,Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abeer O Elshaikh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
23
|
Karim K, Giribabu N, Salleh N. Marantodes pumilum Var Alata (Kacip Fatimah) ameliorates derangement in RANK/RANKL/OPG pathway and reduces inflammation and oxidative stress in the bone of estrogen-deficient female rats with type-2 diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153677. [PMID: 34333329 DOI: 10.1016/j.phymed.2021.153677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND M. pumilum has been claimed to protect the bone against the adverse effect of estrogen deficiency. Additionally, it also exhibits anti-diabetic activity. In view of these, this study aims to identify the mechanisms underlying the bone protective effect of M. pumilum in the presence of both estrogen deficiency and diabetes mellitus (DM). METHODS Ovariectomized, diabetic female rats were given M. pumilum leave aqueous extract (MPLA) (50 and 100 mg/kg/day), estrogen, glibenclamide and estrogen plus glibenclamide for 28 consecutive days. At the end of the treatment, fasting blood glucose (FBG), serum insulin, Ca2+, PO43- and bone alkaline phosphatase (BALP) levels were measured. Rats were sacrificed and femur bones were harvested for determination of expression level and distribution of RANK, RANKL, OPG and oxidative stress and inflammatory proteins by molecular biological techniques. RESULTS 100 mg/kg/day MPLA treatment decreased the FBG and BALP levels but increased the serum insulin, Ca2+ and PO43- levels in estrogen deficient, diabetic rats. Expression and distribution of RANKL, NF-κB p65, IKKβ, IL-6, IL-1β and Keap-1 decreased however expression and distribution of RANK, OPG, BMP-2, Type-1 collagen, Runx2, TRAF6, Nrf2, NQO-1, HO-1, SOD and CAT increased in the bone of estrogen deficient, diabetic rats which received 100 mg/kg/day MPLA with greater effects than estrogen-only, glibenclamide-only and estrogen plus glibenclamide treatments. CONCLUSION MPLA helps to overcome the adverse effect of estrogen deficiency and DM on the bone and thus this herb could potentially be used for the treatment and prevention of osteoporosis in postmenopausal women with diabetes.
Collapse
Affiliation(s)
- Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, Vijayabalan S, Das S, Palanimuthu VR. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021; 13:3376. [PMID: 34684377 PMCID: PMC8539185 DOI: 10.3390/nu13103376] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral Scool of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suprava Das
- Deprtment of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamilnadu, India;
| |
Collapse
|
25
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
26
|
Jia L, Tu Y, Jia X, Du Q, Zheng X, Yuan Q, Zheng L, Zhou X, Xu X. Probiotics ameliorate alveolar bone loss by regulating gut microbiota. Cell Prolif 2021; 54:e13075. [PMID: 34101283 PMCID: PMC8249787 DOI: 10.1111/cpr.13075] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 05/15/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Oestrogen deficiency is an aetiological factor of postmenopausal osteoporosis (PMO), which not only decreases bone density in vertebrae and long bone but also aggravates inflammatory alveolar bone loss. Recent evidence has suggested the critical role of gut microbiota in osteoimmunology and its influence on bone metabolisms. The present study aimed to evaluate the therapeutic effects of probiotics on alveolar bone loss under oestrogen-deficient condition. MATERIALS AND METHODS Inflammatory alveolar bone loss was established in ovariectomized (OVX) rats, and rats were daily intragastrically administered with probiotics until sacrifice. Gut microbiota composition, intestinal permeability, systemic immune status and alveolar bone loss were assessed to reveal the underlying correlation between gut microbiota and bone metabolisms. RESULTS We found administration of probiotics significantly prevented inflammatory alveolar bone resorption in OVX rats. By enriching butyrate-producing genera and enhancing gut butyrate production, probiotics improved intestinal barrier and decreased gut permeability in the OVX rats. Furthermore, the oestrogen deprivation-induced inflammatory responses were suppressed in probiotics-treated OVX rats, as reflected by reduced serum levels of inflammatory cytokines and a balanced distribution of CD4+ IL-17A+ Th17 cells and CD4+ CD25+ Foxp3+ Treg cells in the bone marrow. CONCLUSIONS This study demonstrated that probiotics can effectively attenuate alveolar bone loss by modulating gut microbiota and further regulating osteoimmune response and thus represent a promising adjuvant in the treatment of alveolar bone loss under oestrogen deficiency.
Collapse
Affiliation(s)
- Leming Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoyue Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric DentistryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Qian Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Dental ImplantologyWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric DentistryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
27
|
Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-Cell Mediated Inflammation in Postmenopausal Osteoporosis. Front Immunol 2021; 12:687551. [PMID: 34276675 PMCID: PMC8278518 DOI: 10.3389/fimmu.2021.687551] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is the most prevalent metabolic bone disease that affects half the women in the sixth and seventh decade of life. Osteoporosis is characterized by uncoupled bone resorption that leads to low bone mass, compromised microarchitecture and structural deterioration that increases the likelihood of fracture with minimal trauma, known as fragility fractures. Several factors contribute to osteoporosis in men and women. In women, menopause - the cessation of ovarian function, is one of the leading causes of primary osteoporosis. Over the past three decades there has been growing appreciation that the adaptive immune system plays a fundamental role in the development of postmenopausal osteoporosis, both in humans and in mouse models. In this review, we highlight recent data on the interactions between T cells and the skeletal system in the context of postmenopausal osteoporosis. Finally, we review recent studies on the interventions to ameliorate osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
28
|
Hu Z, Zhang L, Lin Z, Zhao C, Xu S, Lin H, Zhang J, Li W, Chu Y. Prevalence and risk factors for bone loss in rheumatoid arthritis patients from South China: modeled by three methods. BMC Musculoskelet Disord 2021; 22:534. [PMID: 34118911 PMCID: PMC8199806 DOI: 10.1186/s12891-021-04403-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022] Open
Abstract
Background To explore the prevalence of bone loss among patients with rheumatoid arthritis (RA) and healthy controls (HC) and further explored the risk factors for osteopenia and osteoporosis of RA patients. Methods A cross-sectional survey was undertaken in four hospitals in different districts in South China to reveal the prevalence of bone loss in patients. Case records, laboratory tests, and bone mineral density (BMD) results of patients were collected. Traditional multivariable logistic regression analysis and two machine learning methods, including least absolute shrinkage selection operator (LASSO) and random forest (RF) were for exploring the risk factors for osteopenia or osteoporosis in RA patients. Results Four hundred five patients with RA and 198 HC were included. RA patients had lower BMD in almost BMD measurement sites than healthy controls; the decline of lumbar spine BMD was earlier than HC. RA patients were more likely to comorbid with osteopenia and osteoporosis (p for trend < 0.001) in the lumbar spine than HC. Higher serum 25-hydroxyvitamin D3 level and using tumor necrosis factor inhibitor in the last year were protective factors; aging, lower body mass index, and increased serum uric acid might be risk factors for bone loss. Conclusions RA patients were more prone and earlier to have bone loss than HC. More attention should be paid to measuring BMD in RA patients aging with lower BMI or hyperuricemia. Besides, serum vitamin D and all three measurement sites are recommended to check routinely. TNFi usage in the last year might benefit bone mass. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04403-5.
Collapse
Affiliation(s)
- Zhuoran Hu
- Division of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Tianhe District, Guangzhou City, 51000, China
| | - Lei Zhang
- Division of Rheumatology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, No.53, Ji'Da Jingle Road, Xiangzhou District, Zhuhai City, 519015, China
| | - Zhiming Lin
- Division of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Tianhe District, Guangzhou City, 51000, China
| | - Changlin Zhao
- Division of Cardiology, the Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Tianhe District, Guangzhou City, 51000, China
| | - Shuiming Xu
- Division of Rheumatology, Ganzhou Municipal Hospital, No.49, Dagong Road, Ganzhou City, 341000, China
| | - He Lin
- Division of Rheumatology, Fujian Provincial Hospital, No. 134, Dongjie Road, Fuzhou City, 350000, China
| | - Jiejing Zhang
- Division of Rheumatology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, No.53, Ji'Da Jingle Road, Xiangzhou District, Zhuhai City, 519015, China
| | - Wenjie Li
- Division of Rheumatology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, No.53, Ji'Da Jingle Road, Xiangzhou District, Zhuhai City, 519015, China.
| | - Yongliang Chu
- Division of Rheumatology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, No.53, Ji'Da Jingle Road, Xiangzhou District, Zhuhai City, 519015, China.
| |
Collapse
|
29
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
30
|
Sun K, Zhu J, Deng Y, Xu X, Kong F, Sun X, Huan L, Ren C, Sun J, Shi J. Gamabufotalin Inhibits Osteoclastgenesis and Counteracts Estrogen-Deficient Bone Loss in Mice by Suppressing RANKL-Induced NF-κB and ERK/MAPK Pathways. Front Pharmacol 2021; 12:629968. [PMID: 33967763 PMCID: PMC8104077 DOI: 10.3389/fphar.2021.629968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Osteolytic bone disease is a condition of imbalanced bone homeostasis, characterized mainly by excessive bone-resorptive activity, which could predispose these populations, such as the old and postmenopausal women, to developing high risk of skeletal fragility and fracture. The nature of bone homeostasis is the coordination between the osteoblasts (OBs) and osteoclasts (OCs). Abnormal activation of osteoclasts (OCs) could compromise the bone homeostasis, constantly followed by a clutch of osteolytic diseases, including postmenopausal osteoporosis, osteoarthritis, and rheumatoid arthritis. Thus, it is imperatively urgent to explore effective medical interventions for patients. The traditional Chinese medicine (TCM) gamabufotalin (CS-6) is a newly identified natural product from Chansu and has been utilized for oncologic therapies owing to its good clinical efficacy with less adverse events. Previous study suggested that CS-6 could be a novel anti-osteoporotic agent. Nevertheless, whether CS-6 suppresses RANK-(receptor activator of nuclear factor-κ B ligand)/TRAF6 (TNF receptor-associated factor 6)-mediated downstream signaling activation in OCs, as well as the effects of CS-6 on OC differentiation in vivo, remains elusive. Therefore, in this present study, we aimed to explore the biological effects of CS-6 on osteoclastogenesis and RANKL-induced activation of related signaling pathways, and further to examine the potential therapeutic application in estrogen-deficient bone loss in the mice model. The results of in vitro experiment showed that CS-6 can inhibit RANKL-induced OC formation and the ability of bone resorption in a dose-dependent manner at both the early and late stages of osteoclastogenesis. The gene expression of OC-related key genes such as tartrate-resistant acid phosphatase (TRAP), CTSK, DC-STAMP, MMP9, and β3 integrin was evidently reduced. In addition, CS-6 could mitigate the systemic estrogen-dependent bone loss and pro-inframammary cytokines in mice in vivo. The molecular mechanism analysis suggested that CS-6 can suppress RANKL/TRAF6-induced early activation of NF-κB and ERK/MAPK signaling pathways, which consequently suppressed the transcription activity of c-Fos and NFATc1. Taken together, this present study provided ample evidence that CS-6 has the promise to become a therapeutic candidate in treating osteolytic conditions mediated by elevated OC formation and bone resorption.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yi Deng
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Le Huan
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changzhen Ren
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
31
|
Vacca V, Marinelli S, De Angelis F, Angelini DF, Piras E, Battistini L, Pavone F, Coccurello R. Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. Int J Mol Sci 2021; 22:ijms22094397. [PMID: 33922372 PMCID: PMC8122838 DOI: 10.3390/ijms22094397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Neuropathic pain (NeP) in humans is often a life-long condition with no effective therapy available. The higher incidence of female gender in NeP onset is worldwide reported, and although the cause is generally attributed to sex hormones, the actual mechanisms and the players involved are still unclear. Glial and immune cells take part in NeP development, and orchestrate the neuroimmune and inflammatory response, releasing pro-inflammatory factors with chemoattractant properties that activate resident immune cells and recruit immune cells from circulation. The neuro-immune crosstalk is a key contributor to pain hypersensitivity following peripheral nervous system injury. Our previous works showed that in spite of the fact that female mice had an earlier analgesic response than males following nerve lesion, the recovery from NeP was never complete, suggesting that this difference could occur in the very early stages after injury. To further investigate gender differences in immune and neuroimmune responses to NeP, we studied the main immune cells and mediators elicited both in plasma and sciatic nerves by peripheral nerve lesion. After injury, we found a different pattern of distribution of immune cell populations showing either a higher infiltration of T cells in nerves from females or a higher infiltration of macrophages in nerves from males. Moreover, in comparison to male mice, the levels of cytokines and chemokines were differently up- and down-regulated in blood and nerve lysates from female mice. Our study provides some novel insights for the understanding of gender-associated differences in the generation and perseveration of NeP as well as for the isolation of specific neurodegenerative mechanisms underlying NeP. The identification of gender-associated inflammatory profiles in neuropathy is of key importance for the development of differential biomarkers and gender-specific personalized medicine.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Sara Marinelli
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Federica De Angelis
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | | | - Eleonora Piras
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Luca Battistini
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Flaminia Pavone
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- Correspondence: (F.P.); (R.C.)
| | - Roberto Coccurello
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- CNR-National Research Council, CNR, Institute for Complex System (ISC), via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (F.P.); (R.C.)
| |
Collapse
|
32
|
Ge G, Yang S, Hou Z, Gan M, Tao H, Zhang W, Li W, Wang Z, Hao Y, Gu Y, Geng D. Theaflavin-3,3'-Digallate Promotes the Formation of Osteoblasts Under Inflammatory Environment and Increases the Bone Mass of Ovariectomized Mice. Front Pharmacol 2021; 12:648969. [PMID: 33833684 PMCID: PMC8021853 DOI: 10.3389/fphar.2021.648969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 12/03/2022] Open
Abstract
Postmenopausal osteoporosis is a disease of bone mass reduction and structural changes due to estrogen deficiency, which can eventually lead to increased pain and fracture risk. Chronic inflammatory microenvironment leading to the decreased activation of osteoblasts and inhibition of bone formation is an important pathological factor that leads to osteoporosis. Theaflavin-3,3′-digallate (TFDG) is an extract of black tea, which has potential anti-inflammatory and antiviral effects. In our study, we found that TFDG significantly increased the bone mass of ovariectomized (OVX) mice by micro-CT analysis. Compared with OVX mice, TFDG reduced the release of proinflammatory cytokines and increased the expression of osteogenic markers in vivo. In vitro experiments demonstrated that TFDG could promote the formation of osteoblasts in inflammatory environment and enhance their mineralization ability. In this process, TFDG activated MAPK, Wnt/β-Catenin and BMP/Smad signaling pathways inhibited by TNF-α, and then promoted the transcription of osteogenic related factors including Runx2 and Osterix, promoting the differentiation and maturation of osteoblasts eventually. In general, our study confirmed that TFDG was able to promote osteoblast differentiation under inflammatory environment, enhance its mineralization ability, and ultimately increase bone mass in ovariectomized mice. These results suggested that TFDG might have the potential to be a more effective treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sen Yang
- Suzhou Ninth People's Hospital, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, China
| | - Zhenyang Hou
- Department of Orthopaedics, Teng Zhou Central People's Hospital, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
| | - Minfeng Gan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Ye Gu
- Department of Orthopaedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Mechanism of dexmedetomidine regulating osteogenesis-angiogenesis coupling through the miR-361-5p/VEGFA axis in postmenopausal osteoporosis. Life Sci 2021; 275:119273. [PMID: 33631172 DOI: 10.1016/j.lfs.2021.119273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
AIMS Postmenopausal osteoporosis (PMOP) is a growing health problem affecting many postmenopausal women. This study intended to identify the role of dexmedetomidine (Dex) in osteoporosis (OP). MAIN METHODS Microarray analysis was performed for the gene expression profiles of PMOP patients and postmenopausal healthy volunteers, and the most differentially expressed microRNA (miR)-361-5p was verified in clinic, and its diagnostic value in PMOP patients was analyzed. After establishment of OP model by ovariectomy, Dex treatment and overexpression of miR-361-5p or vascular endothelial growth factor A (VEGFA) were performed in OP rats or isolated bone marrow mesenchymal stem cells (BMSCs). Bone mineral density (BMD) related indexes and levels of osteogenesis-angiogenesis related genes were measured. The apoptosis and osteogenic differentiation of BMSCs were detected. After human umbilical vein endothelial cells (HUVECs) and BMSCs were cocultured, the angiogenesis of BMSCs was detected by Matrigel-based angiogenesis experiment. KEY FINDINGS miR-361-5p was highly expressed in PMOP patients and OP rats, with good diagnostic effect on PMOP. After Dex treatment, the expressions of miR-361-5p, VEGFA, BMD related indexes were increased in OP rats. In BMSCs, level of osteogenesis-angiogenesis related genes were increased after adding Dex, and the apoptosis was decreased after coculture of HUVECs and BMSCs. miR-361-5p could target VEGFA. After miR-361-5p overexpression + Dex treatment, the indexes related to osteogenesis and angiogenesis in OP rats and BMSCs were decreased, which were reversed after further overexpressing VEGFA. SIGNIFICANCE Dex can enhance VEGFA by inhibiting miR-361-5p, and then promote osteogenesis-angiogenesis, thus providing potential targets for PMOP treatment.
Collapse
|
34
|
Radeva M, Predel D, Winzler S, Teichgräber U, Pfeil A, Malich A, Papageorgiou I. Reliability of a Risk-Factor Questionnaire for Osteoporosis: A Primary Care Survey Study with Dual Energy X-ray Absorptiometry Ground Truth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1136. [PMID: 33525339 PMCID: PMC7908374 DOI: 10.3390/ijerph18031136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022]
Abstract
(1) Purpose: Predisposing factors to osteoporosis (OP) as well as dual-source x-ray densitometry (DXA) steer therapeutic decisions by determining the FRAX index. This study examines the reliability of a standard risk factor questionnaire in OP-screening. (2) Methods: n = 553 eligible questionnaires encompassed 24 OP-predisposing factors. Reliability was assessed using DXA as a gold standard. Multiple logistic regression and Spearman's correlations, as well as the confounding influence of age and body mass index, were analyzed in SPSS (IBM Corporation, Armonk, NY, USA). (3) Results: Our study revealed low patient self-awareness regarding OP and its risk factors. One out of every four patients reported a positive history for osteoporosis not confirmed by DXA. The extraordinarily high incidence of rheumatoid arthritis and thyroid disorders likely reflect confusion with other diseases or health anxiety. FRAX-determining risk factors such as malnutrition, liver insufficiency, prior fracture without trauma, and glucocorticoid therapy did not correlate with increased OP incidence, altogether demonstrating how inaccurate survey information could influence therapeutic decisions on osteoporosis. (4) Conclusions: Contradictive results and a low level of patient self-awareness suggest a high degree of uncertainty and low reliability of the current OP risk factor survey.
Collapse
Affiliation(s)
- Maria Radeva
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.R.); (U.T.)
| | - Dorothee Predel
- Institute of Radiology, Suedharz Hospital Nordhausen, Dr.-Robert-Koch-Str. 39, 99734 Nordhausen, Germany; (D.P.); (S.W.); (A.M.)
| | - Sven Winzler
- Institute of Radiology, Suedharz Hospital Nordhausen, Dr.-Robert-Koch-Str. 39, 99734 Nordhausen, Germany; (D.P.); (S.W.); (A.M.)
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.R.); (U.T.)
| | - Alexander Pfeil
- Department of Internal Medicine III, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Ansgar Malich
- Institute of Radiology, Suedharz Hospital Nordhausen, Dr.-Robert-Koch-Str. 39, 99734 Nordhausen, Germany; (D.P.); (S.W.); (A.M.)
| | - Ismini Papageorgiou
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.R.); (U.T.)
- Institute of Radiology, Suedharz Hospital Nordhausen, Dr.-Robert-Koch-Str. 39, 99734 Nordhausen, Germany; (D.P.); (S.W.); (A.M.)
| |
Collapse
|
35
|
Stojanovic A, Veselinovic M, Draginic N, Rankovic M, Andjic M, Bradic J, Bolevich S, Antovic A, Jakovljevic V. The Influence of Menopause and Inflammation on Redox Status and Bone Mineral Density in Patients with Rheumatoid Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9458587. [PMID: 33505593 PMCID: PMC7810566 DOI: 10.1155/2021/9458587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
Although oxidative stress is considered to be one of the key pathogenic factors in rheumatoid arthritis (RA), there is insufficient knowledge regarding the impact of menopause on redox status in this population. Thus, this study is aimed at assessing the influence of menopause within healthy women and within RA patients as well as the impact of RA in premenopausal and postmenopausal women on redox status, with special reference to bone mineral density (BMD). A total of 90 women were included in the study, 42 with RA and 48 age-matched healthy controls. They were divided into subgroups according to the presence of menopause. Following oxidative stress parameters were measured spectrophotometrically: index of lipid peroxidation (measured as TBARS), nitrites (NO2 -), superoxide anion radical (O2 -), hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH). BMD was assessed by using a dual-energy X-ray absorptiometry scanner. Comorbidities and drug history were recorded. The levels of H2O2 and TBARS were elevated in patients with RA, while NO2 - and O2 - increased in healthy women, both in premenopausal and postmenopausal groups. SOD activity decreased in postmenopausal RA patients. BMD was reduced in postmenopausal RA women. There was a correlation between NO2 - and O2 - with Health Assessment Questionnaire (HAQ) index in RA patients. Given that postmenopausal state was associated with elevated oxidative stress within healthy women and that menopausal state did not affect redox homeostasis within RA patients, but the redox homeostasis was altered in both RA groups compared to healthy women, it can be presumed that impaired redox status in RA occurred due to presence of the disease, irrespective of age. Moreover, menopause attenuates BMD reduction in women with RA. These results may indicate the need for therapeutic use of antioxidants in the form of supplements in women with RA, regardless of age.
Collapse
Affiliation(s)
- Aleksandra Stojanovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Mirjana Veselinovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Internal Medicine, Kragujevac, Serbia, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena Draginic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marina Rankovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marijana Andjic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Jovana Bradic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Kragujevac, Serbia, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sergey Bolevich
- I.M. Sechenov First Moscow State Medical University, Department of Human Pathology, Trubetskaya str. 8, 119991 Moscow, Russia
| | - Aleksandra Antovic
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden
- Academic Specialist Center, Center for Rheumatology, Stockholm Health Services, Stockholm, Sweden
| | - Vladimir Jakovljevic
- I.M. Sechenov First Moscow State Medical University, Department of Human Pathology, Trubetskaya str. 8, 119991 Moscow, Russia
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
36
|
Li J, Ren Y, Li S, Li J. Relationship Between Sclerostin (SOST) Expression and Genetic Loci rs851056, rs1230399 Polymorphisms and Bone Mineral Density in Postmenopausal Women with Type 2 Diabetes in Xinjiang. Diabetes Metab Syndr Obes 2021; 14:4443-4450. [PMID: 34764662 PMCID: PMC8575445 DOI: 10.2147/dmso.s305831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The Wnt signaling pathway plays a valuable role in bone metabolism. SOST is a major inhibitor of the Wnt signaling pathway. The expression of SOST and genetic polymorphism might be associated with bone mineral density in postmenopausal women with type 2 diabetes mellitus (T2DM). OBJECTIVE This study aims to explore whether SOST protein expression and genetic locus rs851056, rs1230399 polymorphism is associated with bone mineral density in postmenopausal women with T2DM in Xinjiang. METHODS A total of 136 Xinjiang postmenopausal women were divided into four groups: A (-/-), B (±), C (-/+), and D (+/+) by assessing their OGTT and bone mass. Genetic polymorphisms were determined using the mass ARRAY mass spectrometer. RESULTS 1) Genotypes and allele frequencies at rs851056 were statistically significant differences in groups B and D patients compared to group A, respectively. 2) Individuals carrying the GG genotype had lower HDL, Ca, and ALP as compared to those carrying the GC/CC genotypes in group C. In contrast, individuals carrying the GG genotype had higher BMD (L1-4) as compared to those carrying the GC/CC genotypes in group D. 3) SOST protein expression levels were higher in groups C and D than in group A. 4). BMD (L1-4) was negatively correlated with SOST protein. 5) Multiple linear regression analysis for BMD-dependent variables showed that the decrease of BMI and TG were risk factors for BMD (L1-4), besides, the decrease of BMI, ALP, and extended years of menopause were all risk factors for BMD (femoral neck). CONCLUSION SOST protein expression and genetic locus rs851056, rs1230399 polymorphism are associated with bone mineral density in postmenopausal women with type 2 diabetes mellitus in Xinjiang.
Collapse
Affiliation(s)
- Jun Li
- Endocrinology and Metabolism Department, First Affiliated Hosptital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, People’s Republic of China
- Correspondence: Jun Li Email
| | - YanXia Ren
- Endocrinology and Metabolism Department, First Affiliated Hosptital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - SiYuan Li
- Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - JiaJia Li
- Endocrinology and Metabolism Department, Second People’s Hospital of Nanyang, Nanyang, Henan Province, People’s Republic of China
| |
Collapse
|
37
|
Zhang X, Chen K, Chen X, Kourkoumelis N, Li G, Wang B, Zhu C. Integrative Analysis of Genomics and Transcriptome Data to Identify Regulation Networks in Female Osteoporosis. Front Genet 2020; 11:600097. [PMID: 33329745 PMCID: PMC7734180 DOI: 10.3389/fgene.2020.600097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Osteoporosis is a highly heritable skeletal muscle disease. However, the genetic mechanisms mediating the pathogenesis of osteoporosis remain unclear. Accordingly, in this study, we aimed to clarify the transcriptional regulation and heritability underlying the onset of osteoporosis. Methods: Transcriptome gene expression data were obtained from the Gene Expression Omnibus database. Microarray data from peripheral blood monocytes of 73 Caucasian women with high and low bone mineral density (BMD) were analyzed. Differentially expressed messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) were identified. Differences in BMD were then attributed to several gene modules using weighted gene co-expression network analysis (WGCNA). LncRNA/mRNA regulatory networks were constructed based on the WGCNA and subjected to functional enrichment analysis. Results: In total, 3,355 mRNAs and 999 lncRNAs were identified as differentially expressed genes between patients with high and low BMD. The WGCNA yielded three gene modules, including 26 lncRNAs and 55 mRNAs as hub genes in the blue module, 36 lncRNAs and 31 mRNAs as hub genes in the turquoise module, and 56 mRNAs and 30 lncRNAs as hub genes in the brown module. JUN and ACSL5 were subsequently identified in the modular gene network. After functional pathway enrichment, 40 lncRNAs and 16 mRNAs were found to be related to differences in BMD. All three modules were enriched in metabolic pathways. Finally, mRNA/lncRNA/pathway networks were constructed using the identified regulatory networks of lncRNAs/mRNAs and pathway enrichment relationships. Conclusion: The mRNAs and lncRNAs identified in this WGCNA could be novel clinical targets in the diagnosis and management of osteoporosis. Our findings may help elucidate the complex interactions between transcripts and non-coding RNAs and provide novel perspectives on the regulatory mechanisms of osteoporosis.
Collapse
Affiliation(s)
- Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoxuan Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bing Wang
- School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Han J, Wan M, Ma Z, Hu C, Yi H. Prediction of Targets of Curculigoside A in Osteoporosis and Rheumatoid Arthritis Using Network Pharmacology and Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5235-5250. [PMID: 33273808 PMCID: PMC7705647 DOI: 10.2147/dddt.s282112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Purpose Network pharmacology is considered to be the next-generation drug development model that uses bioinformatics to predict and identify multiple drug targets and interactions in diseases. Here, network pharmacology was used to investigate the mechanism by which Curculigoside A (CA) acts in rheumatoid arthritis (RA) and osteoporosis. Methods First, TCMSP and SwissADME were applied to predict the druggability of CA. Then, potential targets were identified from overlapping data in SwissTarget and TargetNet, and targets were analyzed using Genemania and DAVID6.8 to obtain information about the GO and KEGG pathways. Ultimately, the drug-target-pathway network was identified after using Cytoscape 3.0 for visualization. Besides, qPCR was used to validate the predicted five major genes targets (EGFR, MAP2K1, MMP2, FGFR1, and MCL1). Results The results of TCMSP and SwissADME demonstrated that CA exhibits good druggability; 26 potential protein targets were classified by SwissTarget and TargetNet. The results of Genemania and DAVID6.8 indicated that CA probably caused anti-osteoporosis and anti-RA effects by regulating some biological pathways, especially nitrogen metabolism, estrogen signaling pathway, Rap1 signaling pathway, and PI3K/Akt signaling pathway. Besides, the result of Cytoscape 3.0 showed that the 26 targets participate in osteoporosis and RA-related pathways, metabolism, and other physiological processes. In vitro induced inflammation cell model experiments, the qPCR results showed that CA pretreatment significantly decreased the expression of EGFR, MAP2K1, MMP2, FGFR1, and MCL1 genes. Conclusion These results suggested that network pharmacology may provide possible mechanism of how CA exerts therapeutic effects in osteoporosis and RA.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| | - Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China.,Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
39
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
40
|
Hu C, Zhu F, Liu L, Zhang M, Chen G. Relationship between dietary magnesium intake and rheumatoid arthritis in US women: a cross-sectional study. BMJ Open 2020; 10:e039640. [PMID: 33168559 PMCID: PMC7654130 DOI: 10.1136/bmjopen-2020-039640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Diet has been shown to be associated with rheumatoid arthritis (RA), and magnesium has been shown to inhibit inflammatory responses, but research on the relationship between dietary magnesium and RA is limited and controversial. In this study, we aimed to explore the non-linear relationship between dietary magnesium intake and RA in US women. DESIGN Cross-sectional survey. SETTING National Health and Nutrition Examination Survey (NHANES). PRIMARY AND SECONDARY OUTCOME MEASURES Non-linear relationship between dietary magnesium intake and prevalence of RA. PARTICIPANTS A total of 13 324 women aged 18-80 years (RA n=12 306, non-RA n=1018) were included in this study. RESULTS Overall, the absolute risk (AR) of RA was 7.24% in all participants. In the multivariable logistic regression analysis, we found a negative correlation between dietary magnesium intake and RA (OR=0.84, 95% CI 0.75 to 0.95, p=0.006). When we converted dietary magnesium intake into a categorical variable (tertiles), the ARs of the low group, the middle group and the high group were 9%, 7.1% and 4.9%, respectively. We noticed that the ORs between the three groups were not equidistant; then, we detected a U-shaped linking by smooth curve fitting and obtained inflection points at 181 and 446 mg/day. The prevalence of RA decreased when dietary magnesium intake was <181 mg/day (OR=0.7, 95% CI 0.5 to 0.8, p<0.001) and increased when it was >446 mg/day (OR=2.8, 95% CI 1.2 to 6.6, p=0.020), remaining at a minimum when it was between 181 and 446 mg/day (OR=1.0, 95% CI 0.7 to 1.2, p=0.700). CONCLUSION There was a U-shaped relationship between dietary magnesium and RA in women, and our study highlights the importance of moderate dietary magnesium intake in possibly exerting a protective role in women with RA.
Collapse
Affiliation(s)
- Congqi Hu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangfang Zhu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lijuan Liu
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingying Zhang
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangxing Chen
- Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI JOURNAL 2020; 19:1017-1037. [PMID: 32788914 PMCID: PMC7415937 DOI: 10.17179/excli2020-2591] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a metabolic bone disease that, on a cellular level, results from osteoclastic bone resorption not compensated by osteoblastic bone formation. This causes bones to become weak and fragile, thus increasing the risk of fractures. Traditional pathophysiological concepts of osteoporosis focused on endocrine mechanisms such as estrogen or vitamin D deficiency as well as secondary hyperparathyroidism. However, research over the last decades provided exiting new insights into mechanisms contributing to the onset of osteoporosis, which go far beyond this. Selected mechanisms such as interactions between bone and the immune system, the gut microbiome, and cellular senescence are reviewed in this article. Furthermore, an overview on currently available osteoporosis medications including antiresorptive and bone forming drugs is provided and an outlook on potential future treatment options is given.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Dovjak
- Department of Acute Geriatrics, Salzkammergut Klinikum Gmunden, Gmunden, Austria
| | - Ursula Azizi-Semrad
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Hu Z, Xu S, Lin H, Ni W, Yang Q, Qi J, Du K, Gu J, Lin Z. Prevalence and risk factors for bone loss in Southern Chinese with rheumatic diseases. BMC Musculoskelet Disord 2020; 21:416. [PMID: 32605558 PMCID: PMC7329556 DOI: 10.1186/s12891-020-03403-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUD This study is to explore the prevalence of different stages of bone loss and the potential risk factors in rheumatic patients. METHOD A cross-sectional study recruits 1398 rheumatic patients and 302 healthy subjects. Demographic data, blood, and bone mineral density (BMD) tests are collected. Risk factors for bone loss in rheumatic patients are analyzed by logistic regression. RESULTS (1) Rheumatic patients are consisted of 40.0% rheumatoid arthritis (RA), 14.7% systemic lupus erythematosus (SLE), 14.2% osteoarthritis (OA), 9.2% ankylosing spondylosis (AS), 7.9% gout, 7.0% primary Sjogren syndrome (pSS), 3.8% systemic sclerosis (SSc), and 3.2% mixed connective tissue disease (MCTD). (2) In male patients aged under 50 and premenopausal female patients, the bone mineral density score of AS (53.9%, P < 0.001) and SLE (39.6%, P = 0.034) patients is lower than the healthy controls (18.2%). (3) Osteopenia and osteoporosis are more prevailing in male patients aged or older than 50 and postmenopausal female patients with RA (P < 0.001), OA (P = 0.02) and SLE (P = 0.011) than healthy counterparts. (4) Those with SLE, RA and AS gain the highest odd ratio of 'score below the expected range for age', osteopenia and osteoporosis, respectively. (5) Age, female, low BMI and hypovitaminosis D are found negatively associated with bone loss. Dyslipidemia and hyperuricemia could be protective factors. CONCLUSION Young patients with AS and SLE have a significant higher occurrence of bone loss, and older patients with RA, OA and SLE had higher prevalence than healthy counterparts. SLE, RA, SSc and AS were founded significant higher risks to develop into bone loss after adjustment. Age, BMI and gender were commonly-associated with bone loss in all age-stratified rheumatic patients. These findings were not markedly different from those of previous studies.
Collapse
Affiliation(s)
- Zhuoran Hu
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Shuiming Xu
- Division of Rheumatology, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - He Lin
- Division of Rheumatology, Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Weifeng Ni
- Division of Rheumatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Qingyuan Yang
- Division of Rheumatology, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - Jun Qi
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Keqian Du
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Jieruo Gu
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China.
| | - Zhiming Lin
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
43
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The Effect of Abnormal Iron Metabolism on Osteoporosis. Biol Trace Elem Res 2020; 195:353-365. [PMID: 31473898 DOI: 10.1007/s12011-019-01867-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Iron is one of the important trace elements in life activities. Abnormal iron metabolism increases the incidence of many skeletal diseases, especially for osteoporosis. Iron metabolism plays a key role in the bone homeostasis. Disturbance of iron metabolism not only promotes osteoclast differentiation and apoptosis of osteoblasts but also inhibits proliferation and differentiation of osteoblasts, which eventually destroys the balance of bone remodeling. The strength and density of bone can be weakened by the disordered iron metabolism, which increases the incidence of osteoporosis. Clinically, compounds or drugs that regulate iron metabolism are used for the treatment of osteoporosis. The goal of this review summarizes the new progress on the effect of iron overload or deficiency on osteoporosis and the mechanism of disordered iron metabolism on osteoporosis. Explaining the relationship of iron metabolism with osteoporosis may provide ideas for clinical treatment and development of new drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China.
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
45
|
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D, Aurora R. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res 2020; 35:1174-1187. [PMID: 31995253 PMCID: PMC8061311 DOI: 10.1002/jbmr.3966] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The loss of estrogen (E2 ) initiates a rapid phase of bone loss leading to osteoporosis in one-half of postmenopausal women, but the mechanism is not fully understood. Here, we show for the first time how loss of E2 activates low-grade inflammation to promote the acute phase of bone catabolic activity in ovariectomized (OVX) mice. E2 regulates the abundance of dendritic cells (DCs) that express IL-7 and IL-15 by inducing the Fas ligand (FasL) and apoptosis of the DC. In the absence of E2 , DCs become long-lived, leading to increased IL-7 and IL-15. We find that IL-7 and IL-15 together, but not alone, induced antigen-independent production of IL-17A and TNFα in a subset of memory T cells (TMEM ). OVX of mice with T-cell-specific ablation of IL15RA showed no IL-17A and TNFα expression, and no increase in bone resorption or bone loss, confirming the role of IL-15 in activating the TMEM and the need for inflammation. Our results provide a new mechanism by which E2 regulates the immune system, and how menopause leads to osteoporosis. The low-grade inflammation is likely to cause or contribute to other comorbidities observed postmenopause. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ariel Axelbaum
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena Shashkova
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mousumi Chakraborty
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Prabhjyot Panesar
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Macey Peterson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Angel Baldan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Fragility fractures in psoriatic arthritis patients: a matched retrospective cohort study. Clin Rheumatol 2020; 39:3685-3691. [PMID: 32462424 DOI: 10.1007/s10067-020-05074-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To compare incidental fragility fractures in psoriatic arthritis (PsA) patients with matched controls from a university hospital. METHODS Consecutive PsA patients were matched (age and sex) with controls (1:2). Follow-up began at index date, defined as the date of PsA diagnosis for cases and their respective controls, until the last hospital visit, death or the end of the study (31 December 2017). Electronic medical records were reviewed for osteoporotic fractures. Incidence rates per 100,000 persons-years (PY) of distinct types of fractures after index dates were calculated and compared between groups. A multivariate Cox regression analysis was performed to investigate determinants of fractures. RESULTS Ninety-two PsA patients and 184 controls were included. No difference was found in the overall fracture incidence rate per 100,000 PY between PsA and controls (1020 95% CI 510-1930, vs 870 95% CI 520-1390, p = 0.36). Vertebral fractures were numerically more frequent in PsA patients with an incidence rate of 1020 (95% CI 510-1930) per 100,000 PY versus 460 (95% CI 240-920), per 100,000 PY in the control group but it did not reach statistical significance (p = 0.06). In the Cox regression analysis, after adjusting for bisphosphonate use, only age (HR 1.10, 1.05-1.16, p < 0.001) and female sex (HR 3.94, 1.11-13.91, p = 0.03) were associated with fractures while PsA diagnosis and use of glucocorticoids were not. CONCLUSION In this cohort of PsA patients, no overall increased risk of fractures was found in comparison with matched controls. Key Points • PsA could have different effects on bone, leading to confusing results in bone densitometry readings contributing to the difficulty in establishing the real prevalence of OP in PsA. • Vertebral fractures were more frequent in PsA patients compared to controls, but it did not reach statistical significance. No difference was found in the overall fracture incidence rate.
Collapse
|
47
|
Song SJ, Tao JJ, Li SF, Qian XW, Niu RW, Wang C, Zhang YH, Chen Y, Wang K, Zhu F, Zhu CJ, Ma GG, Peng XQ, Zhou RP, Chen FH. 17β-estradiol attenuates rat articular chondrocyte injury by targeting ASIC1a-mediated apoptosis. Mol Cell Endocrinol 2020; 505:110742. [PMID: 32006608 DOI: 10.1016/j.mce.2020.110742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Epidemiological evidence suggests that the etiology and pathogenesis of rheumatoid arthritis (RA) are closely associated with estrogen metabolism and deficiency. Estrogen protects against articular damage. Estradiol replacement therapy ameliorates local inflammation and knee joint swelling in ovariectomized models of RA. The mechanistic basis for the protective role of 17β-estradiol (17β-E2) is poorly understood. Acid-sensing ion channel 1a (ASIC1a), a sodium-permeable channel, plays a pivotal role in acid-induced articular chondrocyte injury. The aims of this study were to evaluate the role of 17β-E2 in acid-induced chondrocyte injury and to determine the effect of 17β-E2 on the level and activity of ASIC1a protein. Results showed that pretreatment with 17β-E2 attenuated acid-induced damage, suppressed apoptosis, and restored mitochondrial function. Further, 17β-E2 was shown to reduce protein levels of ASIC1a through the ERα receptor, to protect chondrocytes from acid-induced apoptosis, and to induce ASIC1a protein degradation through the autophagy-lysosomal pathway. Taken together, these results show that the use of 17β-E2 may be a novel strategy for the treatment of RA by reducing cartilage destruction through down-regulation of ASIC1a protein levels.
Collapse
Affiliation(s)
- Su-Jing Song
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jing-Jing Tao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shu-Fang Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xue-Wen Qian
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ruo-Wen Niu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cong Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yi-Hao Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ke Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Fei Zhu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Chuan-Jun Zhu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiao-Qing Peng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Fei-Hu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
48
|
Hydrogen gas protects against ovariectomy-induced osteoporosis by inhibiting NF-κB activation. Menopause 2020; 26:785-792. [PMID: 31083022 DOI: 10.1097/gme.0000000000001310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Osteoporosis is a prevalent condition among postmenopausal women, and lacks satisfactory therapeutic options. Hydrogen (H2) has been shown to be effective in alleviating many diseases. This study aimed to investigate the effects of H2 on inhibiting osteoclastogenesis and bone loss in ovariectomized mice. METHODS Osteoclast differentiation from Raw264.7 cells was induced with receptor activator NF-κB ligand (RANKL) with or without 60% H2. The number and resorption activity of osteocalsts were assessed by tartrate-resistant acid phosphatase staining and pit formation assay, respectively. The expression of osteoclast markers and NF-κB phosphorylation were detected by western blot. NF-κB nuclear translocation was assessed by immunofluorescence. NF-κB transcriptional activity was analyzed by luciferase assay. Bone loss in mice was induced by ovariectomy (OVX). OVX mice were given either regular air or 60% H2. Bone structure was analyzed by micro-computed tomography and hematoxylin and eosin staining. Cytokine levels were measured by enzyme-linked immunosorbent assay. The data were analyzed with one-way or two-way ANOVA followed by Bonferroni post hoc tests. RESULTS H2 did not have any measurable effect on the proliferation of Raw264.7 cells. The number of osteoclasts and size of resorption pits of RANKL+H2-treated cells were 3 to 4 times less than RANKL treated cells. The expression of osteoclast marker genes of RANKL+H2-treated cells was 30% to 60% lower than RANKL-treated cells (P < 0.05). H2 markedly inhibited RANKL-induced activation, nuclear translocation, and transcriptional activity of NF-κB (P < 0.05, RANKL+H2 vs RANKL). The amount and density of trabecular bone and bone mineral density of ovariectomized mice were significantly less than sham-operated mice (P < 0.05 OVX vs sham). The amount of trabecular bone and bone mineral density of OVX mice that inhaled H2 were more than 40% higher, whereas the levels of serum proinflammatory cytokine interleukin 1β, IL-6, and tumor necrosis factor-α were more than 50% lower than those of OVX mice (P < 0.05). CONCLUSIONS These results demonstrated that H2 could be an effective therapeutic agent of postmenopausal osteoporosis.
Collapse
|
49
|
Zhai X, Yan Z, Zhao J, Chen K, Yang Y, Cai M, He C, Huang C, Li B, Yang M, Zhou X, Zhao Y, Wei X, Bai Y, Li M. Muscone Ameliorates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-κb Ligand-Induced Osteoclastogenesis by Suppressing TNF Receptor-Associated Factor 6-Mediated Signaling Pathways. Front Pharmacol 2020; 11:348. [PMID: 32265718 PMCID: PMC7099619 DOI: 10.3389/fphar.2020.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Postmenopausal osteoporosis is caused by the deficiency of estrogen, which breaks bone homeostasis and induces levels of pro-inflammatory cytokines. Muscone is a potent anti-inflammatory agent and is used to treat bone fracture in traditional Chinese medicine. However, its anti-osteoclastogenic effects remain unclear. For in vitro study, morphology tests of osteoclastogenesis were firstly performed. And then, factors in RANK-induced NF-κB and MAPK pathways were examined by RT-PCR and Western blot, and the binding of TNF receptor–associated factor (TRAF)6 to RANK was inspected by coimmunoprecipitation and immunofluorescence staining. For in vivo experiments, C57BL/6 ovariectomized (OVX) mice were used for detection, including H&E staining, TRAP staining, and micro CT. As a result, muscone reduced OVX-induced bone loss in mice and osteoclast differentiation in vitro, by inhibiting TRAF6 binding to RANK, and then suppressed NF-κB and MAPK signaling pathways. The expression of the downstream biomarkers was finally inhibited, including NFATc1, CTR, TRAP, cathepsin K, and MMP-9. The inflammatory factors, TNF-a and IL-6, were also reduced by muscone. Taken together, muscone inhibited the binding of TRAF6 to RANK induced by RANKL, thus blocking NF-kB and MAPK pathways, and down-regulating related gene expression. Finally, muscone inhibited osteoclastogenesis and osteoclast function by blocking RANK-TRAF6 binding, as well as downstream signaling pathways in vitro. Muscone also reduced ovariectomy-induced bone loss in vivo.
Collapse
Affiliation(s)
- Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zijun Yan
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jian Zhao
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yilin Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Mengxi Cai
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Chen He
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Chunyou Huang
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Bo Li
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Mingyuan Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yingchuan Zhao
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xiaozhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
50
|
Lee CS, Lee SH, Kim SH. Bone‐protective effects of
Lactobacillus plantarum
B719‐fermented milk product. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12701] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chul Sang Lee
- College of Life Sciences and Biotechnology Korea University Seoul 02841 Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul 02841 Korea
| | - Sun Ho Lee
- College of Life Sciences and Biotechnology Korea University Seoul 02841 Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology Korea University Seoul 02841 Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul 02841 Korea
| |
Collapse
|