1
|
Ortego-Isasa I, Ortega-Morán JF, Lozano H, Stieglitz T, Sánchez-Margallo FM, Usón-Gargallo J, Pagador JB, Ramos-Murguialday A. Colonic Electrical Stimulation for Chronic Constipation: A Perspective Review. Biomedicines 2024; 12:481. [PMID: 38540095 PMCID: PMC10967790 DOI: 10.3390/biomedicines12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Chronic constipation affects around 20% of the population and there is no efficient solution. This perspective review explores the potential of colonic electric stimulation (CES) using neural implants and methods of bioelectronic medicine as a therapeutic way to treat chronic constipation. The review covers the neurophysiology of colonic peristaltic function, the pathophysiology of chronic constipation, the technical aspects of CES, including stimulation parameters, electrode placement, and neuromodulation target selection, as well as a comprehensive analysis of various animal models highlighting their advantages and limitations in elucidating the mechanistic insights and translational relevance for CES. Finally, the main challenges and trends in CES are discussed.
Collapse
Affiliation(s)
- Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | | | - Héctor Lozano
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering–IMTEK and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany;
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Jesús Usón-Gargallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
| | - J. Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
- Department of Neurology and Stroke, University of Tubingen, 72076 Tubingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, 72076 Tubingen, Germany
- Athenea Neuroclinics, 20014 San Sebastian, Spain
| |
Collapse
|
2
|
Song HJ, Kim JE, Jin YJ, Roh YJ, Seol A, Kim TR, Park KH, Park ES, An BS, Yang SY, Seo S, Jo SM, Jung YS, Hwang DY. Complement C3-Deficiency-Induced Constipation in FVB/N-C3 em1Hlee/Korl Knockout Mice Was Significantly Relieved by Uridine and Liriope platyphylla L. Extracts. Int J Mol Sci 2023; 24:15757. [PMID: 37958740 PMCID: PMC10649790 DOI: 10.3390/ijms242115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Complement component 3 (C3) deficiency has recently been known as a cause of constipation, without studies on the therapeutic efficacy. To evaluate the therapeutic agents against C3-deficiency-induced constipation, improvements in the constipation-related parameters and the associated molecular mechanisms were examined in FVB/N-C3em1Hlee/Korl knockout (C3 KO) mice treated with uridine (Urd) and the aqueous extract of Liriope platyphylla L. (AEtLP) with laxative activity. The stool parameters and gastrointestinal (GI) transit were increased in Urd- and AEtLP-treated C3 KO mice compared with the vehicle (Veh)-treated C3 KO mice. Urd and AEtLP treatment improved the histological structure, junctional complexes of the intestinal epithelial barrier (IEB), mucin secretion ability, and water retention capacity. Also, an improvement in the composition of neuronal cells, the regulation of excitatory function mediated via the 5-hydroxytryptamine (5-HT) receptors and muscarinic acetylcholine receptors (mAChRs), and the regulation of the inhibitory function mediated via the neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) were detected in the enteric nervous system (ENS) of Urd- and AEtLP-treated C3 KO mice. Therefore, the results of the present study suggest that C3-deficiency-induced constipation can improve with treatment with Urd and AEtLP via the regulation of the mucin secretion ability, water retention capacity, and ENS function.
Collapse
Affiliation(s)
- Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Seung-Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Seong-Min Jo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| |
Collapse
|
3
|
Barth BB, Travis L, Spencer NJ, Grill WM. Control of colonic motility using electrical stimulation to modulate enteric neural activity. Am J Physiol Gastrointest Liver Physiol 2021; 320:G675-G687. [PMID: 33624530 PMCID: PMC8238160 DOI: 10.1152/ajpgi.00463.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Electrical stimulation of the enteric nervous system (ENS) is an attractive approach to modify gastrointestinal transit. Colonic motor complexes (CMCs) occur with a periodic rhythm, but the ability to elicit a premature CMC depends, at least in part, upon the intrinsic refractory properties of the ENS, which are presently unknown. The objectives of this study were to record myoelectric complexes (MCs, the electrical correlates of CMCs) in the smooth muscle and 1) determine the refractory periods of MCs, 2) inform and evaluate closed-loop stimulation to repetitively evoke MCs, and 3) identify stimulation methods to suppress MC propagation. We dissected the colon from male and female C57BL/6 mice, preserving the integrity of intrinsic circuitry while removing the extrinsic nerves, and measured properties of spontaneous and evoked MCs in vitro. Hexamethonium abolished spontaneous and evoked MCs, confirming the necessary involvement of the ENS for electrically evoked MCs. Electrical stimulation reduced the mean interval between evoked and spontaneous CMCs (24.6 ± 3.5 vs. 70.6 ± 15.7 s, P = 0.0002, n = 7). The absolute refractory period was 4.3 s (95% confidence interval (CI) = 2.8-5.7 s, R2 = 0.7315, n = 8). Electrical stimulation applied during fluid distention-evoked MCs led to an arrest of MC propagation, and following stimulation, MC propagation resumed at an increased velocity (n = 9). The timing parameters of electrical stimulation increased the rate of evoked MCs and the duration of entrainment of MCs, and the refractory period provides insight into timing considerations for designing neuromodulation strategies to treat colonic dysmotility.NEW & NOTEWORTHY Maintained physiological distension of the isolated mouse colon induces rhythmic cyclic myoelectric complexes (MCs). MCs evoked repeatedly by closed-loop electrical stimulation entrain MCs more frequently than spontaneously occurring MCs. Electrical stimulation delivered at the onset of a contraction temporarily suppresses the propagation of MC contractions. Controlled electrical stimulation can either evoke MCs or temporarily delay MCs in the isolated mouse colon, depending on timing relative to ongoing activity.
Collapse
Affiliation(s)
- Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Tang Y, Shi K, He F, Li M, Wen Y, Wang X, Zhu J, Jin Z. Short and long-term efficacy of massage for functional constipation: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e20698. [PMID: 32569200 PMCID: PMC7310914 DOI: 10.1097/md.0000000000020698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Functional constipation (FC) is one of the most common diseases throughout the world, which brings a bad influence on life quality as well as mental health. Massage has been widely used in the treatment of functional constipation in china. In several randomized controlled trials indicate that massage has a positive effect on FC. However, there remain exist controversy towards its effectiveness and safety. What's more, how about the short and long-term efficacy? We, therefore, design this systematic review to assess the short and long-term effects of massage for FC. METHODS The following electronic databases will be searched from their inception to May 2020, including PubMed, Cochrane Library, EMBASE, Web of Science, WHO International Clinical Trials Registry Platform, Chinese National Knowledge Infrastructure (CNKI), WanFang Database, Chinese Biomedical Literature Database (CBM), the Chongqing VIP Chinese Science, and Technology Periodical Database (VIP). RESULTS This systematic review will assess the short and long-term effects of massage in the treatment of FC. CONCLUSION This study will provide high-quality current evidence of short and long-term effects of massage for FC. ETHICS AND DISSEMINATION Ethical approval is not required, for this review will not involve individuals' information. The results will be published in a peer-reviewed publication or disseminated in relevant conferences.INPLASY Registration number: INPLASY202050001.
Collapse
|
5
|
Utility of animal gastrointestinal motility and transit models in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol 2019; 40-41:101633. [PMID: 31594654 DOI: 10.1016/j.bpg.2019.101633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Abstract
Alteration in the gastrointestinal (GI) motility and transit comprises an important component of the functional gastrointestinal disorders (FGID). Available animal GI motility and transit models are to study symptoms (delayed gastric emptying, constipation, diarrhea) rather than biological markers to develop an effective treatment that targets the underlying mechanism of altered GI motility in patients. Animal data generated from commonly used methods in human like scintigraphy, breath test and wireless motility capsule may directly translate to the clinic. However, species differences in the control mechanism or pharmacological responses of GI motility may compromise the predictive and translational value of the preclinical data to human. In this review we aim to provide a summary on animal models used to mimic GI motility alteration in FGID, and the impact of the species differences in the physiological and pharmacological responses on the translation of animal GI motility and transit data to human.
Collapse
|
6
|
Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr 2017; 8:484-494. [PMID: 28507013 PMCID: PMC5421123 DOI: 10.3945/an.116.014407] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Constipation is a common and burdensome gastrointestinal disorder that may result from altered gastrointestinal motility. The effect of probiotics on constipation has been increasingly investigated in both animal and human studies, showing promising results. However, there is still uncertainty regarding the mechanisms of action of probiotics on gut motility and constipation. Several factors are vital to normal gut motility, including immune and nervous system function, bile acid metabolism and mucus secretion, and the gastrointestinal microbiota and fermentation; an imbalance or dysfunction in any of these components may contribute to aberrant gut motility and, consequently, symptoms of constipation. For example, adults with functional constipation have significantly decreased numbers of bifidobacteria (with one study showing a mean difference of 1 log10/g) and lactobacilli (mean difference, 1.4 log10/g) in stool samples, as well as higher breath methane, compared with control subjects. Modifying the gut luminal environment with certain probiotic strains may affect motility and secretion in the gut and, hence, provide a benefit for patients with constipation. Therefore, this review explores the mechanisms through which probiotics may exert an effect on gut motility and constipation. Nevertheless, the majority of current evidence is derived from animal studies, and therefore, further human studies are needed to determine the mechanisms through specific probiotic strains that might be effective in constipation.
Collapse
Affiliation(s)
- Eirini Dimidi
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom; and,Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - Stephanos Christodoulides
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom; and,Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - S Mark Scott
- Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - Kevin Whelan
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom; and
| |
Collapse
|
7
|
Cil O, Phuan PW, Son JH, Zhu JS, Ku CK, Tabib NA, Teuthorn AP, Ferrera L, Zachos NC, Lin R, Galietta LJV, Donowitz M, Kurth MJ, Verkman AS. Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation. Transl Res 2017; 182:14-26.e4. [PMID: 27815136 PMCID: PMC5453637 DOI: 10.1016/j.trsl.2016.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 10/06/2016] [Indexed: 11/21/2022]
Abstract
Constipation is a common condition for which current treatments can have limited efficacy. By high-throughput screening, we recently identified a phenylquinoxalinone activator of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel that stimulated intestinal fluid secretion and normalized stool output in a mouse model of opioid-induced constipation. Here, we report phenylquinoxalinone structure-activity analysis, mechanism of action, animal efficacy data in acute and chronic models of constipation, and functional data in ex vivo primary cultured human enterocytes. Structure-activity analysis was done on 175 phenylquinoxalinone analogs, including 15 synthesized compounds. The most potent compound, CFTRact-J027, activated CFTR with EC50 ∼ 200 nM, with patch-clamp analysis showing a linear CFTR current-voltage relationship with direct CFTR activation. CFTRact-J027 corrected reduced stool output and hydration in a mouse model of acute constipation produced by scopolamine and in a chronically constipated mouse strain (C3H/HeJ). Direct comparison with the approved prosecretory drugs lubiprostone and linaclotide showed substantially greater intestinal fluid secretion with CFTRact-J027, as well as greater efficacy in a constipation model. As evidence to support efficacy in human constipation, CFTRact-J027 increased transepithelial fluid transport in enteroids generated from normal human small intestine. Also, CFTRact-J027 was rapidly metabolized in vitro in human hepatic microsomes, suggesting minimal systemic exposure upon oral administration. These data establish structure-activity and mechanistic data for phenylquinoxalinone CFTR activators, and support their potential efficacy in human constipation.
Collapse
Affiliation(s)
- Onur Cil
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, Calif
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, Calif
| | - Jung-Ho Son
- Department of Chemistry, University of California, Davis, Calif
| | - Jie S Zhu
- Department of Chemistry, University of California, Davis, Calif
| | - Colton K Ku
- Department of Chemistry, University of California, Davis, Calif
| | | | | | | | - Nicholas C Zachos
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ruxian Lin
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Md
| | | | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mark J Kurth
- Department of Chemistry, University of California, Davis, Calif
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
8
|
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci Rep 2017; 7:41436. [PMID: 28216670 PMCID: PMC5316981 DOI: 10.1038/srep41436] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal.
Collapse
|
9
|
Patel BA, Fidalgo S, Wang C, Parmar L, Mandona K, Panossian A, Flint MS, Ranson RN, Saffrey MJ, Yeoman MS. The TNF-α antagonist etanercept reverses age-related decreases in colonic SERT expression and faecal output in mice. Sci Rep 2017; 7:42754. [PMID: 28198447 DOI: 10.1038/srep42754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Treatment for chronic constipation in older people is challenging and the condition has a major impact on quality of life. A lack of understanding about the causes of this condition has hampered the development of effective treatments. 5-HT is an important pro-kinetic agent in the colon. We examined whether alterations in colonic 5-HT signalling underlie age-related changes in faecal output in mice and whether these changes were due to an increase in TNF-α. Components of the 5-HT signalling system (5-HT, 5-HIAA, SERT) and TNF-α expression were examined in the distal colon of 3, 12, 18 and 24-month old mice and faecal output and water content monitored under control conditions and following the administration of etanercept (TNF-α inhibitor; 1 mg Kg-1). Faecal output and water content were reduced in aged animals. Age increased mucosal 5-HT availability and TNF-α expression and decreased mucosal SERT expression and 5-HIAA. Etanercept treatment of old mice reversed these changes, suggesting that age-related changes in TNFα expression are an important regulator of mucosal 5-HT signalling and pellet output and water content in old mice. These data point to "anti-TNFα" drugs as potential treatments for age-related chronic constipation.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Sara Fidalgo
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Chunfang Wang
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Leena Parmar
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Kasonde Mandona
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Annabelle Panossian
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Richard N Ranson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - M Jill Saffrey
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Mark S Yeoman
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| |
Collapse
|
10
|
Smith TK, Koh SD. A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol Gastrointest Liver Physiol 2017; 312:G1-G14. [PMID: 27789457 PMCID: PMC5283906 DOI: 10.1152/ajpgi.00337.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023]
Abstract
We discuss the role of multiple cell types involved in rhythmic motor patterns in the large intestine that include tonic inhibition of the muscle layers interrupted by rhythmic colonic migrating motor complexes (CMMCs) and secretomotor activity. We propose a model that assumes these motor patterns are dependent on myenteric descending 5-hydroxytryptamine (5-HT, serotonin) interneurons. Asynchronous firing in 5-HT neurons excite inhibitory motor neurons (IMNs) to generate tonic inhibition occurring between CMMCs. IMNs release mainly nitric oxide (NO) to inhibit the muscle, intrinsic primary afferent neurons (IPANs), glial cells, and pacemaker myenteric pacemaker interstitial cells of Cajal (ICC-MY). Mucosal release of 5-HT from enterochromaffin (EC) cells excites the mucosal endings of IPANs that synapse with 5-HT descending interneurons and perhaps ascending interneurons, thereby coupling EC cell 5-HT to myenteric 5-HT neurons, synchronizing their activity. Synchronized 5-HT neurons generate a slow excitatory postsynaptic potential in IPANs via 5-HT7 receptors and excite glial cells and ascending excitatory nerve pathways that are normally inhibited by NO. Excited glial cells release prostaglandins to inhibit IMNs (disinhibition) to allow full excitation of ICC-MY and muscle by excitatory motor neurons (EMNs). EMNs release ACh and tachykinins to excite pacemaker ICC-MY and muscle, leading to the simultaneous contraction of both the longitudinal and circular muscle layers. Myenteric 5-HT neurons also project to the submucous plexus to couple motility with secretion, especially during a CMMC. Glial cells are necessary for switching between different colonic motor behaviors. This model emphasizes the importance of myenteric 5-HT neurons and the likely consequence of their coupling and uncoupling to mucosal 5-HT by IPANs during colonic motor behaviors.
Collapse
Affiliation(s)
- Terence Keith Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
11
|
Characterization the response of Korl:ICR mice to loperamide induced constipation. Lab Anim Res 2016; 32:231-240. [PMID: 28053617 PMCID: PMC5206230 DOI: 10.5625/lar.2016.32.4.231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022] Open
Abstract
Animal models of constipation induced with drugs and diet have been widely employed to investigate therapeutic effects and the action mechanism of drugs against this disease. ICR mice were selected to produce this disease model through oral administration of loperamide (Lop), even though SD rats are commonly utilized in studies of constipation. To compare the responses of ICR mice obtained from three different sources to constipation inducers, alterations in stool number, histopathological structure, mucin secretion and opioid-receptor downstream signaling pathway were measured in Korl:ICR (Korea FDA source), A:ICR (USA source) and B:ICR (Japan source) injected with low and high concentrations of Lop (LoLop and HiLop). The number, weight and moisture content of stools decreased significantly in the Lop treated group of all ICR relative to the Vehicle treated group. Additionally, decreased mucosa layer thickness, muscle thickness, and mucin secretion were observed in the transverse colon of Lop treated ICR mice, while a similar number of goblet cells and crypt of lieberkuhn were detected in the same group. Furthermore, a similar change in the level of Gα expression and PKC phosphorylation was detected in the Lop treated group relative to the vehicle treated group, while some differences in the change pattern were observed in the B:ICR group. Therefore, these results of the present study provide strong additional evidence that Korl:ICR, A:ICR and B:ICR derived from different sources have a similar overall response to constipation induced by Lop injection, although there were a few differences in the magnitude of their responses.
Collapse
|
12
|
Lee HJ, Park KS. [Current Status of Translational Research on Constipation]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 68:143-7. [PMID: 27646583 DOI: 10.4166/kjg.2016.68.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Constipation is one of the most common gastrointestinal disorders with a prevalence up to 16.5% in the general population. It is frequently multifactorial and the pathophysiologic mechanism of constipation is not fully understood. Many preclinical studies of constipation have used animal models. Translational research using these animal models is essential to the investigation of neurogenic and myogenic mechanisms of colon, and to the estimation of the clinical efficacy of new drugs. In this review, we discuss some of the current translational research projects on constipation using animal models.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Kyung Sik Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
13
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
14
|
Nimrouzi M, Zarshenas MM. Holistic Approach to Functional Constipation: Perspective of Traditional Persian Medicine. Chin J Integr Med 2015; 25:867-872. [PMID: 26597285 DOI: 10.1007/s11655-015-2302-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
Traditional Persian medicine (TPM) proposes a different viewpoint to the chronic diseases. Diagnosis and implemented treatment are based on individual differences among patients. Constipation or Ea'teghal-e-batn is a condition in which the patient develops difficult or painful defecation. Based on TPM concepts, the fifirst digestion step starts from halq (oral cavity), and ends via defecation from the maq'ad (anus). Avicenna believed that four faculties, ha'zemeh (digestive), ja'zebeh (absorptive), ma'sekeh (retentive) and da'fe'eh (propulsive), are involved in the process of digestion and absorption of the ingested food and expelling the waste materials. The bowel movement and appearance of the stool is a measure for evaluating the gastrointestinal healthy function. Defecation should be with no pain and fecal material should have no burning and acuity. Low food intake or foods with dry temperament, dryness of gastrointestinal tract, diaphoresis and heavy exercise as well as intestine sensory loss were discussed as main causes of constipation. Management of constipation in TPM includes dietary schemes, oil massages and subsequently simple herbal medicines. According to TPM theories, the fifirst step in treating a disease is the elimination of disease causes (asbabe- maraz) and also providing the causes of health (asbab-e-sehhat). Health care providers should know the proper condition which the herbal medicines should be administered in and be able to guide the patients about the benefifits and hazards of herbal remedies, commonly used in their living origin.
Collapse
Affiliation(s)
- Majid Nimrouzi
- Essence of Parsiyan Wisdom Institute, Traditional Medicine and Medicinal Plant Incubator, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Essence of Parsiyan Wisdom Institute, Traditional Medicine and Medicinal Plant Incubator, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Traditional Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Zhu X, Liu Z, Qu H, Niu W, Gao L, Wang Y, Zhang A, Bai L. The effect and mechanism of electroacupuncture at LI11 and ST37 on constipation in a rat model. Acupunct Med 2015; 34:194-200. [PMID: 26561562 PMCID: PMC4941155 DOI: 10.1136/acupmed-2015-010897] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 01/03/2023]
Abstract
Background Electroacupuncture (EA) is used clinically for the treatment of constipation. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in colonic motility; however it is unknown whether alterations in colonic 5-HT are associated with EA. In this study, the effect and mechanism of EA at acupuncture points LI11 and ST37 were examined using a cold saline-induced rat model of constipation. Methods A rat constipation model was induced by cold saline gavage in 24 Sprague-Dawley rats. A further six rats were included as a Control group. The constipated rats were divided into four groups (n=6 each): a Constipation group that remained untreated; a Constipation+LI11 group that received EA at LI11; a Constipation+ST37 groups that received EA at ST37; and a Constipation+LI11+ST37 group that received EA at both LI11 and ST37. After EA treatment, faecal water content, defaecation frequency, and gastrointestinal (GI) transit were measured, as well as the expression of tryptophan hydroxylase (TPH) in colonic tissues (by Western blot analysis) and 5-HT in both faeces and colonic tissues (by ELISA). Results All three EA-treated groups demonstrated significant improvements in faecal water content, defaecation frequency and GI transit (p<0.05). In addition, TPH and 5-HT expression were both increased by EA at LI11 and/or ST37 (p<0.05). There were no significant differences between the three EA groups for any outcomes. Conclusions EA at LI11 and/or ST37 had a positive effect on objective markers of constipation in a rat model. In addition, EA increased 5-HT and TPH in the colonic tissues.
Collapse
Affiliation(s)
- Xianwei Zhu
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Zhibin Liu
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Hongyan Qu
- Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Wenmin Niu
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Li Gao
- Department of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Yuan Wang
- Innovation Research Centre of Acupuncture combined with Medicine, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Aimin Zhang
- Department of Urologic Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Lu Bai
- Department of English, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| |
Collapse
|
16
|
Barriga-Rivera A, Vinuesa JL, Lopez-Alonso M. Anorectal Manometry in Wistar Rats with Inexpensive Setup: A Physiological Description of the Mechanical Activity. J Med Biol Eng 2015. [DOI: 10.1007/s40846-015-0025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 2014; 20:423-46. [PMID: 25273115 PMCID: PMC4204412 DOI: 10.5056/jnm14092] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation.
Collapse
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kyu Joo Park
- Department of Surgery, School of Medicine, Seoul National University, Seoul Korea
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
18
|
Bassotti G, Villanacci V, Creƫoiu D, Creƫoiu SM, Becheanu G. Cellular and molecular basis of chronic constipation: Taking the functional/idiopathic label out. World J Gastroenterol 2013; 19:4099-4105. [PMID: 23864772 PMCID: PMC3710411 DOI: 10.3748/wjg.v19.i26.4099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/22/2013] [Accepted: 05/19/2013] [Indexed: 02/06/2023] Open
Abstract
In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called “functional” or “idiopathic” disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of “functional” gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors’ work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality.
Collapse
|
19
|
Diss LB, Robinson SD, Wu Y, Fidalgo S, Yeoman MS, Patel BA. Age-related changes in melatonin release in the murine distal colon. ACS Chem Neurosci 2013; 4:879-87. [PMID: 23631514 DOI: 10.1021/cn4000617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Constipation and fecal impaction are conditions of the bowel whose prevalence increases with age. Limited information is known about how these conditions manifest; however, functional deficits are likely to be due to changes in signaling within the bowel. This study investigated the effects of age on colonic mucosal melatonin (MEL) release and the consequences this had on colonic motility. Electrochemical measurements of MEL overflow demonstrated that both basal and mechanically stimulated MEL release decreased with age. The MEL/serotonin also decreased with increasing age, and the trend was similar to that of MEL overflow, suggestive that age-related changes were primarily due to a reduction in MEL levels. Levels of N-acetylserotonin and the N-acetylserotonin/serotonin ratio were reduced with age, providing an explanation for the reduction in MEL release. Decreases in colonic motility were observed in animals between 3 and 24 months old. Exogenous application of MEL could reverse this deficit in aged colon. In summary, we propose that the age-related decline in MEL release may be due to either decreases or alterations in mechanosensory channels and/or a loss in levels/activity of the N-acetyltransferase enzyme responsible for the synthesis of N-acetylserotonin. Decreases in MEL release may explain the decreases in colonic motility observed in 24 month old animals and could offer a new potential therapeutic treatment for age-related constipation.
Collapse
Affiliation(s)
- Lucy B. Diss
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Stephen D. Robinson
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Yukyee Wu
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Sara Fidalgo
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Mark S. Yeoman
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Bhavik Anil Patel
- School of Pharmacy and
Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
20
|
Heredia DJ, Grainger N, McCann CJ, Smith TK. Insights from a novel model of slow-transit constipation generated by partial outlet obstruction in the murine large intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1004-16. [PMID: 22961801 PMCID: PMC3517665 DOI: 10.1152/ajpgi.00238.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms underlying slow-transit constipation (STC) are unclear. In 50% of patients with STC, some form of outlet obstruction has been reported; also an elongated colon has been linked to patients with STC. Our aims were 1) to develop a murine model of STC induced by partial outlet obstruction and 2) to determine whether this leads to colonic elongation and, consequently, activation of the inhibitory "occult reflex," which may contribute to STC in humans. Using a purse-string suture, we physically reduced the maximal anal sphincter opening in C57BL/6 mice. After 4 days, the mice were euthanized (acutely obstructed), the suture was removed (relieved), or the suture was removed and replaced repeatedly (chronically obstructed, over 24-31 days). In partially obstructed mice, we observed increased cyclooxygenase (COX)-2 levels in muscularis and mucosa, an elongated impacted large bowel, slowed transit, nonpropagating colonic migrating motor complexes (CMMCs), a lack of mucosal reflexes, a depolarized circular muscle with slow-wave activity due to a lack of spontaneous inhibitory junction potentials, muscle hypertrophy, and CMMCs in mucosa-free preparations. Elongation of the empty obstructed colon produced a pronounced occult reflex. Removal of the obstruction or addition of a COX-2 antagonist (in vitro and in vivo) restored membrane potential, spontaneous inhibitory junction potentials, CMMC propagation, and mucosal reflexes. We conclude that partial outlet obstruction increases COX-2 leading to a hyperexcitable colon. This hyperexcitability is largely due to suppression of only descending inhibitory nerve pathways by prostaglandins. The upregulation of motility is suppressed by the occult reflex activated by colonic elongation.
Collapse
Affiliation(s)
- Dante J. Heredia
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Conor J. McCann
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Terence K. Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
21
|
Zagorodnyuk VP, Kyloh M, Brookes SJ, Nicholas SJ, Spencer NJ. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon. Am J Physiol Gastrointest Liver Physiol 2012; 303:G404-11. [PMID: 22628035 DOI: 10.1152/ajpgi.00047.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, Flinders Medical Science and Technology Cluster, Flinders University, South Australia, Australia
| | | | | | | | | |
Collapse
|
22
|
Morais TC, Lopes SC, Carvalho KMMB, Arruda BR, de Souza FTC, Trevisan MTS, Rao VS, Santos FA. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism. World J Gastroenterol 2012; 18:3207-14. [PMID: 22783044 PMCID: PMC3391757 DOI: 10.3748/wjg.v18.i25.3207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/25/2012] [Accepted: 05/06/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice, together with the possible mechanism.
METHODS: Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice. In the first experiments, mangiferin (3 mg/kg, 10 mg/kg, 30 mg/kg, and 100 mg/kg, po) or tegaserod (1 mg/kg, ip) were administered 30 min before the charcoal meal to study their effects on normal transit. In the second series, mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine, clonidine, capsaicin) or antagonists (ondansetron, verapamil, and atropine) whereas in the third series, mangiferin (30 mg/kg, 100 mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice. The ratio of wet to dry weight was calculated and used as a marker of fecal water content.
RESULTS: Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89% and 93%, respectively), similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%). Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine, 5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT, but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine, and calcium antagonist verapamil. However, co-administered atropine completely blocked the stimulant effect of mangiferin on GIT, suggesting the involvement of muscarinic acetylcholine receptor activation. Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ± 10.82 mg of vehicle-treated control, at 30 and 100 mg/kg, P < 0.05, respectively), the effect of tegaserod was more potent (297.4 ± 7.42 mg vs 161.9 ± 10.82 mg of vehicle-treated control, P < 0.05). Unlike tegaserod, which showed an enhanced water content in fecal pellets (59.20% ± 1.09% vs 51.44% ± 1.19% of control, P < 0.05), mangiferin evidenced no such effect, indicating that it has only a motor and not a secretomotor effect.
CONCLUSION: Our data indicate the prokinetic action of mangiferin. It can stimulate the normal GIT and also overcome the drug-induced transit delay, via a cholinergic physiological mechanism.
Collapse
|
23
|
Spencer NJ, Kyloh M, Wattchow DA, Thomas A, Sia TC, Brookes SJ, Nicholas SJ. Characterization of motor patterns in isolated human colon: are there differences in patients with slow-transit constipation? Am J Physiol Gastrointest Liver Physiol 2012; 302:G34-43. [PMID: 21960519 DOI: 10.1152/ajpgi.00319.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The patterns of motor activity that exist in isolated full-length human colon have not been described. Our aim was to characterize the spontaneous motor patterns in isolated human colon and determine whether these patterns are different in whole colons obtained from patients with slow-transit constipation (STC). The entire colon (excluding the anus), was removed from patients with confirmed STC and mounted longitudinally in an organ bath ∼120 cm in length, containing oxygenated Krebs' solution at 36°C. Changes in circular muscle tension were recorded from multiple sites simultaneously along the length of colon, by use of isometric force transducers. Recordings from isolated colons from non-STC patients revealed cyclical colonic motor complexes (CMCs) in 11 of 17 colons, with a mean interval and half-duration of contractions of 4.0 ± 0.6 min and 51.5 ± 15 s, respectively. In the remaining six colons, spontaneous irregular phasic contractions occurred without CMCs. Interestingly, in STC patients robust CMCs were still recorded, although their CMC pacemaker frequencies were slower. Intraluminal balloon distension of the ascending or descending colon evoked an ascending excitatory reflex contraction, or evoked CMC, in 8 of 30 trials from non-STC (control) colons, but not from colons obtained from STC patients. In many control segments of descending colon, spontaneous CMCs consisted of simultaneous ascending excitatory and descending inhibitory phases. In summary, CMCs can be recorded from isolated human colon, in vitro, but their intrinsic pacemaker frequency is considerably faster in vitro compared with previous human recordings of CMCs in vivo. The observation that CMCs occur in whole colons removed from STC patients suggests that the intrinsic pacemaker mechanisms underlying their generation and propagation are preserved in vitro, despite impaired transit along these same regions in vivo.
Collapse
Affiliation(s)
- Nick J Spencer
- Dept. of Human Physiology, School of Medicine, Flinders Univ., South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|