1
|
Yousefi Y, Haider Z, Grondin JA, Wang H, Haq S, Banskota S, Seto T, Surette M, Khan WI. Gut microbiota regulates intestinal goblet cell response and mucin production by influencing the TLR2-SPDEF axis in an enteric parasitic infection. Mucosal Immunol 2025:S1933-0219(25)00033-9. [PMID: 40164286 DOI: 10.1016/j.mucimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Alterations in goblet cell biology constitute one of the most effective host responses against enteric parasites. In the gastrointestinal (GI) tract, millions of bacteria influence these goblet cell responses by binding to pattern recognition receptors such as toll-like receptors (TLRs). Studies suggest that the gut microbiota also interacts bidirectionally with enteric parasites, including Trichuris muris. Here, we study the roles of T. muris-altered microbiota and the TLR2-SPDEF axis in parasitic host defense. In acute T. muris infection, we observed altered gut microbiota composition, which, when transferred to germ-free mice, resulted in increased goblet cell numbers, Th2 cytokines and Muc2 expression, as well as increased Tlr2. Further, antibiotic (ABX)-treated TLR2-/- mice, despite having received the same T. muris-altered microbiota, displayed diminished Th2 response, Muc2 expression, and, intriguingly, diminished SPDEF expression compared to wildtype counterparts. When infected with T. muris, SPDEF-/- mice exhibited a reduced Th2 response and altered microbial composition compared to SPDEF+/+, particularly on day 14 post-infection, and this microbiota was sufficient to alter host goblet cell response when transferred to ABX-treated mice. Taken together, our findings suggest the TLR2-SPDEF axis, via T. muris-induced microbial changes, is an important regulator of goblet cell function and host's parasitic defense.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zarin Haider
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
2
|
Ngo C, Morrell JM, Hansson I, Tummaruk P, Cojkic A. Effect of Colloid Centrifugation and Cold Storage of Boar Semen at 4 °C on Bacterial Load and Sperm Quality. Antibiotics (Basel) 2025; 14:267. [PMID: 40149078 PMCID: PMC11939358 DOI: 10.3390/antibiotics14030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Alternatives to antibiotics in semen extenders used for pig breeding are needed. Cold storage of boar semen is possible in certain extenders; however, bacteria can still survive. Colloid centrifugation can remove bacteria; therefore, a combination of colloid centrifugation and cold storage on the bacterial load and sperm quality of boar semen was investigated. Results: The sperm quality in the original samples were similar in samples with and without antibiotics, respectively. At Day 4, the bacterial count was not different between controls stored at 17 °C with antibiotics and SLC cold-stored samples without antibiotics. The proportion of dead sperm increased in controls at 16-18 °C (28.12 ± 21.72% vs. 32.88 ± 20.94%; p < 0.05), and DNA fragmentation increased from 1.5 ± 1.02% at Day 0 to 6.1 ± 3.64% at Day 4 (p < 0.01), whereas it did not deteriorate in the cold-stored samples (Day 4: %DFI 2.00 ± 1.65% and 1.90 ± 1.05% for SLC samples with and without antibiotics, respectively). Methods: Aliquots of boar ejaculates were extended in Androstar Premium with and without antibiotics. The samples without antibiotics were processed by Single Layer Centrifugation (SLC) through Porcicoll; sperm pellets were resuspended in AndroStar Premium, with or without antibiotics, cooled slowly, and stored for 4 days at 4 °C. Controls (aliquots extended in AndroStar Premium with antibiotics) were stored at 17 °C. The bacterial load and sperm quality were assessed in the original samples and after 4 days of storage. Conclusions: Single Layer Centrifugation combined with cold storage is an effective method for reducing the bacterial load in boar semen, with or without antibiotics.
Collapse
Affiliation(s)
- CongBang Ngo
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 756 51 Uppsala, Sweden; (C.N.); (A.C.)
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jane M. Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 756 51 Uppsala, Sweden; (C.N.); (A.C.)
| | - Ingrid Hansson
- Animal Biosciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, 750 07 Uppsala, Sweden;
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Aleksandar Cojkic
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 756 51 Uppsala, Sweden; (C.N.); (A.C.)
| |
Collapse
|
3
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Kushkevych I, Dvořáková M, Dordevic D, Futoma-Kołoch B, Gajdács M, Al-Madboly LA, Abd El-Salam M. Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives. Comput Struct Biotechnol J 2025; 27:851-868. [PMID: 40115534 PMCID: PMC11925123 DOI: 10.1016/j.csbj.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Michaela Dvořáková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, ul. S. Przybyszewskiego 63, Wrocław 51-148, Poland
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62-64, Szeged 6720, Hungary
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa 11152, Egypt
- Instituto de Formación Continua IL3, University of Barcelona, Barcelona 08018, Spain
| |
Collapse
|
5
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2025; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
6
|
Monaco S, Tailford LE, Bell A, Wallace M, Juge N, Angulo J. Multifrequency-STD NMR unveils the first Michaelis complex of an intramolecular trans-sialidase from Ruminococcus gnavus. Bioorg Chem 2024; 153:107906. [PMID: 39515130 DOI: 10.1016/j.bioorg.2024.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
RgNanH is an intramolecular trans-sialidase expressed by the human gut symbiont Ruminococcus gnavus, to utilise intestinal sialylated mucin glycan epitopes. Its catalytic domain, belonging to glycoside hydrolase GH33 family, cleaves off terminal sialic acid residues from mucins, releasing 2,7-anhydro-Neu5Ac which is then used as metabolic substrate by R. gnavus to proliferate in the mucosal environment. RgNanH is one of the three intramolecular trans-sialidases (IT-sialidases) characterised to date, and the first from a gut commensal organism. Here, saturation transfer difference NMR (STD NMR) in combination with computational techniques (molecular docking and CORCEMA-ST) were used to elucidate the specificity, kinetics and relative affinity of RgNanH for sialoglycans and 2,7-anhydro-Neu5Ac. We propose the first 3D model for the Michaelis complex of an IT-sialidase. This confirms the sialic acid to be the main recognition element for the interaction in the enzymatic cleft and highlights the crucial role of Trp698 to make CH-π stacking with the galactose residue of the substrate 3'-sialyllactose. The same contact is shown not to be possible for 6'-sialyllactose, due to geometrical constrains of the α-2,6 linkage. Indeed 6'-sialyllactose is not a substrate, even though it is shown to bind to RgNanH by STD NMR. These findings corroborate the role of Trp698 for the α-2,3 specificity of IT-sialidases. In this structural study, the use of Differential Epitope Mapping STD NMR (DEEP-STD NMR) approach allowed the validation of the proposed 3D models in solution. These structural approaches are shown to be instrumental in shedding light on the molecular mechanisms underpinning enzymatic reactions in the absence of enzyme-substrate X-ray structures.
Collapse
Affiliation(s)
- Serena Monaco
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK.
| | | | - Andrew Bell
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, UK
| | - Matthew Wallace
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, UK
| | - Jesús Angulo
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain.
| |
Collapse
|
7
|
Ning Y, Yang A, Liu L, Li Y, Chen Z, Ge P, Zhou D. Survival strategies of Eisenia fetida in antibiotic-contaminated soil based on screening canonical correlation analysis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117367. [PMID: 39571259 DOI: 10.1016/j.ecoenv.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Soil pollution from antibiotics has become increasingly severe, posing significant environmental and human health threats. Many soil organisms can survive and sustain their roles in maintaining soil ecosystems, even in polluted conditions. Exploring the life-sustaining mechanisms of these organisms in contaminated environments is scientifically significant. This study used Eisenia fetida as the test organism and antibiotics (oxytetracycline hydrochloride) as exogenous stress substances. Oxidative stress response experiments were conducted using the artificial soil method to examine the response of earthworms to oxidative stress. Additionally, 16S rRNA technology was employed to analyze the succession of microbial community structures inside and outside the earthworms. A screening canonical correlation analysis (SCCA) model was developed to investigate the relationship between microbial communities and earthworm oxidative stress system under oxytetracycline stress, revealing survival strategies in antibiotic-contaminated soil. The results showed that Proteobacteria and Bacteriodetes were the dominant phyla of microbial communities in earthworms under oxytetracycline stress, while Proteobacteria and Firmicutes were dominant bacterial phyla in soil. Bacteriodetes and Firmicutes in earthworms worked synergistically with catalase (CAT) and glutathione peroxidase (GPX) in oxidative stress responses. In soil, Actinobacteria, Verrucomicrobia, and Spirochaeta synergistically resisted oxytetracycline stress alongside peroxidase (POD) and glutathione S-transferase (GST). Earthworm mucus played a crucial role in this synergistic resistance. These findings provide a scientific and experimental basis for assessing the ecological safety risks of antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Aoqi Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuze Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhipeng Chen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Peizhu Ge
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Ta LP, Corrigan S, Tselepis C, Iqbal TH, Ludwig C, Horniblow RD. Gastrointestinal-inert prebiotic micro-composites improve the growth and community diversity of mucosal-associated bacteria. J Control Release 2024; 375:495-512. [PMID: 39284524 DOI: 10.1016/j.jconrel.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The process of microencapsulation and the development of microparticle-based drug formulations have gained increased pharmaceutical interest, particularly for drug delivery and bacterial-encapsulation purposes for probiotic delivery. Existing studies have examined microcomposite (MC) responses to gastrointestinal (GI) conditions with the aim of controlling disintegration, and thus release, across the small and large bowel. However, the delivery of MCs which remain intact, without degrading, could act as bacterial growth scaffolds or materials providing a prebiotic support, conferring potentially beneficial GI health properties. This present study employs prilling as a method to produce a portfolio of MCs using a variety of biopolymers (alginate, chitosan, pectin and gellan gum) with a range of MC diameters and density compositions. Fluorescent probes are co-encapsulated within each MC to enable flow-cytometry directed release profile assessments following exposure to chemical simulated gastric and intestinal digestion conditions. We observe that MC size, gel-strength, density, and biopolymer material all influence response to gastric and intestinal conditions. Gellan gum (GG) MCs demonstrated complete resistance to disintegration throughout GI-simulation in the stomach and small intestine. Considering these MCs could reach the colon intact, we then examined how such MCs, doped with prebiotic growth supporting carboxymethyl cellulose (CMC) polymers, could impact microbial communities using a bioreactor model of the colonic microbiome. Following supplementation with GGCMC MCs, mucosal bacterial diversity (using 16 s rRNA sequencing and Shannon entropy and observed feature diversity metrics) and taxonomic composition changes were observed. Concentrations of short chain fatty acid (SCFA) metabolites were also found to be altered. This is the first study to comprehensivelyexamine how MC physicochemistry can be manipulated to tailor MCs to have the desired GI release performance and subsequently, how GI-resistant MCs could have influential microbial altering properties and be adopted in novel prebiotic strategies.
Collapse
Affiliation(s)
- Linh P Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chris Tselepis
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tariq H Iqbal
- The Microbiome Treatment Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, & Immunology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
9
|
Calvigioni M, Mazzantini D, Celandroni F, Vozzi G, Ghelardi E. Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota. Microb Biotechnol 2024; 17:e70036. [PMID: 39435730 PMCID: PMC11494453 DOI: 10.1111/1751-7915.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Vozzi
- Department of Information BioengineeringUniversity of PisaPisaItaly
- Research Center Enrico PiaggioUniversity of PisaPisaItaly
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- Research Center Nutraceuticals and Food for Health – NutrafoodUniversity of PisaPisaItaly
| |
Collapse
|
10
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Dierick E, Callens C, Bloch Y, Savvides SN, Hark S, Pelzer S, Ducatelle R, Van Immerseel F, Goossens E. Clostridium perfringens chitinases, key enzymes during early stages of necrotic enteritis in broiler chickens. PLoS Pathog 2024; 20:e1012560. [PMID: 39283899 PMCID: PMC11426533 DOI: 10.1371/journal.ppat.1012560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/26/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The interaction between bacteria and the intestinal mucus is crucial during the early pathogenesis of many enteric diseases in mammals. A critical step in this process employed by both commensal and pathogenic bacteria focuses on the breakdown of the protective layer presented by the intestinal mucus by mucolytic enzymes. C. perfringens type G, the causative agent of necrotic enteritis in broilers, produces two glycosyl hydrolase family 18 chitinases, ChiA and ChiB, which display distinct substrate preferences. Whereas ChiB preferentially processes linear substrates such as chitin, ChiA prefers larger and more branched substrates, such as carbohydrates presented by the chicken intestinal mucus. Here, we show via crystal structures of ChiA and ChiB in the apo and ligand-bound forms that the two enzymes display structural features that explain their substrate preferences providing a structural blueprint for further interrogation of their function and inhibition. This research focusses on the roles of ChiA and ChiB in bacterial proliferation and mucosal attachment, two processes leading to colonization and invasion of the gut. ChiA and ChiB, either supplemented or produced by the bacteria, led to a significant increase in C. perfringens growth. In addition to nutrient acquisition, the importance of chitinases in bacterial attachment to the mucus layer was shown using an in vitro binding assay of C. perfringens to chicken intestinal mucus. Both an in vivo colonization trial and a necrotic enteritis trial were conducted, demonstrating that a ChiA chitinase mutant strain was less capable to colonize the intestine and was hampered in its disease-causing ability as compared to the wild-type strain. Our findings reveal that the pathogen-specific chitinases produced by C. perfringens type G strains play a fundamental role during colonization, suggesting their potential as vaccine targets.
Collapse
Affiliation(s)
- Evelien Dierick
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chana Callens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Current address: European Molecular Biology Laboratory, EMBL Hamburg, c/o DESY, Hamburg, Germany
| | - Savvas N. Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sarah Hark
- Evonik Operations GmbH, Nutrition & Care, Halle, Westfalen, Germany
| | - Stefan Pelzer
- Evonik Operations GmbH, Nutrition & Care, Halle, Westfalen, Germany
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Abbasi A, Bazzaz S, Da Cruz AG, Khorshidian N, Saadat YR, Sabahi S, Ozma MA, Lahouty M, Aslani R, Mortazavian AM. A Critical Review on Akkermansia muciniphila: Functional Mechanisms, Technological Challenges, and Safety Issues. Probiotics Antimicrob Proteins 2024; 16:1376-1398. [PMID: 37432597 DOI: 10.1007/s12602-023-10118-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Due to its physiological benefits from in vitro and in vivo points of view, Akkermansia muciniphila, a common colonizer in the human gut mucous layer, has consistently been identified as an option for the next-generation probiotic. A. muciniphila is a significant bacterium that promotes host physiology. However, it also has a great deal of potential to become a probiotic due to its physiological advantages in a variety of therapeutic circumstances. Therefore, it can be established that the abundance of A. muciniphila in the gut environment, which is controlled by many genetic and dietary variables, is related to the biological behaviors of the intestinal microbiota and gut dysbiosis/eubiosis circumstances. Before A. muciniphila is widely utilized as a next-generation probiotic, regulatory obstacles, the necessity for significant clinical trials, and the sustainability of manufacturing must be eliminated. In this review, the outcomes of recent experimental and clinical reports are comprehensively reviewed, and common colonization patterns, main factors involved in the colonization of A. muciniphila in the gut milieu, their functional mechanisms in establishing homeostasis in the metabolic and energy pathways, the promising delivery role of microencapsulation, potential genetic engineering strategies, and eventually safety issues of A. muciniphila have been discussed.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adriano G Da Cruz
- Department of Food Processing, Federal Institute of Science and Technology Education of Rio de Janeiro (IFRJ) - Campus Maracanã, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim Khorshidian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Watanabe K, Maruyama Y, Mikami R, Komatsu K, Kikuchi K, Hotta K, Yoshikawa T, Ogasawara K, Hattori A, Arakawa S. Highly purified hypochlorous acid water facilitates glucose metabolism and memory formation in type 2 diabetic mice associated with altered-gut microbiota. Sci Rep 2024; 14:16107. [PMID: 38997451 PMCID: PMC11245604 DOI: 10.1038/s41598-024-67129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Hypochlorous acid (HOCl) is an endogenous oxidant and chlorinating agent in mammals that is effective against a broad range of microorganisms. However, the effects of exogenous HOCl on biological processes have not been reported. In this study, the effects of highly purified slightly acidic hypochlorous acid water (HP-HAW) were investigated. After the safety of oral administration of HP-HAW was confirmed, the effects of HP-HAW on glucose homeostasis were assessed in mice. HP-HAW treatment significantly improved blood glucose levels in hyperglycemic condition. Based on the 16S rRNA sequencing, HP-HAW treatment significantly increased the diversity and changed the composition of gut microbiota by decreasing the abundance of genus Romboutsia in mice fed normal chow. In obese mice, HP-HAW administration tended to improve glucose tolerance. HP-HAW also attenuated memory impairments and changes N-methyl-d-aspartate (NMDA) receptor mRNA expression in obese mice. HP-HAW treatment suppressed Il-6 mRNA expression in the hippocampus in type 2 diabetic mice. Overall, these results support HP-HAW as a potential therapeutic agent to improve or prevent glucose tolerance and memory decline via gut microbiota alteration.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Ichikawa, Chiba, 272-0827, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Ichikawa, Chiba, 272-0827, Japan
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, 352-8558, Japan
| | - Risako Mikami
- Graduate School of Medical and Dental Sciences, Medical and Dental Science and Technology, Lifetime Oral Health Care Science, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Keiji Komatsu
- Graduate School of Medical and Dental Sciences, Medical and Dental Science and Technology, Lifetime Oral Health Care Science, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Kikuchi
- Louis Pasteur Center for Medical Research, Tanaka Monzencho, 103-5, Sakyo-ku, Kyoto, 606-8225, Japan
| | - Kunimoto Hotta
- Louis Pasteur Center for Medical Research, Tanaka Monzencho, 103-5, Sakyo-ku, Kyoto, 606-8225, Japan
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanaka Monzencho, 103-5, Sakyo-ku, Kyoto, 606-8225, Japan
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Ichikawa, Chiba, 272-0827, Japan.
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, 352-8558, Japan.
| | - Shinichi Arakawa
- Graduate School of Medical and Dental Sciences, Medical and Dental Science and Technology, Lifetime Oral Health Care Science, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, 113-8510, Japan.
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical Health, Nakatsu, 6-9-38, Kita-Ki, Osaka, 531-0071, Japan.
| |
Collapse
|
14
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
15
|
Lopes AA, Vendrell-Fernández S, Deschamps J, Georgeault S, Cokelaer T, Briandet R, Ghigo JM. Bile-induced biofilm formation in Bacteroides thetaiotaomicron requires magnesium efflux by an RND pump. mBio 2024; 15:e0348823. [PMID: 38534200 PMCID: PMC11078008 DOI: 10.1128/mbio.03488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.
Collapse
Affiliation(s)
- Anne-Aurélie Lopes
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
- Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France
| | - Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| | - Julien Deschamps
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Sonia Georgeault
- Plateforme IBiSA des Microscopies, Université et CHRU de Tours, Tours, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Center for Technological Resources and Research, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Center for Technological Resources and Research, Paris, France
| | - Romain Briandet
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| |
Collapse
|
16
|
Wang Z, Shen J. The role of goblet cells in Crohn' s disease. Cell Biosci 2024; 14:43. [PMID: 38561835 PMCID: PMC10985922 DOI: 10.1186/s13578-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is increasing worldwide. The pathogenesis of CD is hypothesized to be related to environmental, genetic, immunological, and bacterial factors. Current studies have indicated that intestinal epithelial cells, including columnar, Paneth, M, tuft, and goblet cells dysfunctions, are strongly associated with these pathogenic factors. In particular, goblet cells dysfunctions have been shown to be related to CD pathogenesis by direct or indirect ways, according to the emerging studies. The mucus barrier was established with the help of mucins secreted by goblet cells. Not only do the mucins mediate the mucus barrier permeability and bacterium selection, but also, they are closely linked with the endothelial reticulum stress during the synthesis process. Goblet cells also play a vital role in immune response. It was indicated that goblet cells take part in the antigen presentation and cytokines secretion process. Disrupted goblet cells related immune process were widely discovered in CD patients. Meanwhile, dysbiosis of commensal and pathogenic microbiota can induce myriad immune responses through mucus and goblet cell-associated antigen passage. Microbiome dysbiosis lead to inflammatory reaction against pathogenic bacteria and abnormal tolerogenic response. All these three pathways, including the loss of mucus barrier function, abnormal immune reaction, and microbiome dysbiosis, may have independent or cooperative effect on the CD pathogenesis. However, many of the specific mechanisms underlying these pathways remain unclear. Based on the current understandings of goblet cell's role in CD pathogenesis, substances including butyrate, PPARγagonist, Farnesoid X receptor agonist, nuclear factor-Kappa B, nitrate, cytokines mediators, dietary and nutrient therapies were all found to have potential therapeutic effects on CD by regulating the goblet cells mediated pathways. Several monoclonal antibodies already in use for the treatment of CD in the clinical settings were also found to have some goblet cells related therapeutic targets. In this review, we introduce the disease-related functions of goblet cells, their relationship with CD, their possible mechanisms, and current CD treatments targeting goblet cells.
Collapse
Affiliation(s)
- Zichen Wang
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China.
| |
Collapse
|
17
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Zha X, Su S, Wu D, Zhang P, Wei Y, Fan S, Huang Q, Peng X. The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing. BURNS & TRAUMA 2023; 11:tkad056. [PMID: 38130728 PMCID: PMC10734567 DOI: 10.1093/burnst/tkad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Background The gut microbiota is a complex ecosystem that plays a critical role in human health and disease. However, the relationship between gut microbiota and intestinal damage caused by burns is not well understood. The intestinal mucus layer is crucial for maintaining intestinal homeostasis and providing a physiological barrier against bacterial invasion. This study aims to investigate the impact of gut microbiota on the synthesis and degradation of intestinal mucus after burns and explore potential therapeutic targets for burn injury. Methods A modified histopathological grading system was employed to investigate the effects of burn injury on colon tissue and the intestinal mucus barrier in mice. Subsequently, 16S ribosomal RNA sequencing was used to analyze alterations in the gut microbiota at days 1-10 post-burn. Based on this, metagenomic sequencing was conducted on samples collected at days 1, 5 and 10 to investigate changes in mucus-related microbiota and explore potential underlying mechanisms. Results Our findings showed that the mucus barrier was disrupted and that bacterial translocation occurred on day 3 following burn injury in mice. Moreover, the gut microbiota in mice was significantly disrupted from days 1 to 3 following burn injury, but gradually recovered to normal as the disease progressed. Specifically, there was a marked increase in the abundance of symbiotic and pathogenic bacteria associated with mucin degradation on day 1 after burns, but the abundance returned to normal on day 5. Conversely, the abundance of probiotic bacteria associated with mucin synthesis changed in the opposite direction. Further analysis revealed that after a burn injury, bacteria capable of degrading mucus may utilize glycoside hydrolases, flagella and internalins to break down the mucus layer, while bacteria that synthesize mucus may help restore the mucus layer by promoting the production of short-chain fatty acids. Conclusions Burn injury leads to disruption of colonic mucus barrier and dysbiosis of gut microbiota. Some commensal and pathogenic bacteria may participate in mucin degradation via glycoside hydrolases, flagella, internalins, etc. Probiotics may provide short-chain fatty acids (particularly butyrate) as an energy source for stressed intestinal epithelial cells, promote mucin synthesis and accelerate repair of mucus layer.
Collapse
Affiliation(s)
- Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
19
|
Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Liang C, Gao L, Shang H, Xu JD. Rhubarb extract rebuilding the mucus homeostasis and regulating mucin-associated flora to relieve constipation. Exp Biol Med (Maywood) 2023; 248:2449-2463. [PMID: 38073524 PMCID: PMC10903230 DOI: 10.1177/15353702231211859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 01/23/2024] Open
Abstract
In clinical trials, rhubarb extract (Rb) was demonstrated to efficiently alleviate constipation. We would like to find out the underlying mechanism of rhubarb relieving constipation. However, there are few studies on the effects of rhubarb on colonic mucus secretion and constipation. The aim of this study was to investigate the effects of rhubarb on colonic mucus secretion and its underlying mechanism. The mice were randomly divided into four groups. Group I was the control group and Group II was the rhubarb control group, with Rb (24 g/kg body weight [b.w.]) administered through intragastric administration for three days. Group III mice were given diphenoxylate (20 mg/kg b.w.) for five days via gavage to induce constipation. Group IV received diphenoxylate lasting five days before undergoing Rb administration for three days. The condition of the colon was evaluated using an endoscope. Particularly, the diameter of blood vessels in the colonic mucosa expanded considerably in constipation mice along with diminishing mucus output, which was in line with the observation via scanning electron microscope (SEM) and transmission electron microscope (TEM). We also performed metagenomic analysis to reveal the microbiome related to mucin gene expression level referring to mucin secretion. In conclusion, Rb relieves constipation by rebuilding mucus homeostasis and regulating the microbiome.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing 100039, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
20
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
21
|
Wang CM, Fernez MT, Woolston BM, Carrier RL. Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria. Adv Drug Deliv Rev 2023; 200:114966. [PMID: 37329985 PMCID: PMC11184232 DOI: 10.1016/j.addr.2023.114966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
22
|
Calvigioni M, Panattoni A, Biagini F, Donati L, Mazzantini D, Massimino M, Daddi C, Celandroni F, Vozzi G, Ghelardi E. Development of an In Vitro Model of the Gut Microbiota Enriched in Mucus-Adhering Bacteria. Microbiol Spectr 2023; 11:e0033623. [PMID: 37289064 PMCID: PMC10433972 DOI: 10.1128/spectrum.00336-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Culturing the gut microbiota in in vitro models that mimic the intestinal environment is increasingly becoming a promising alternative approach to study microbial dynamics and the effect of perturbations on the gut community. Since the mucus-associated microbial populations in the human intestine differ in composition and functions from their luminal counterpart, we attempted to reproduce in vitro the microbial consortia adhering to mucus using an already established three-dimensional model of the human gut microbiota. Electrospun gelatin structures supplemented or not with mucins were inoculated with fecal samples and compared for their ability to support microbial adhesion and growth over time, as well as to shape the composition of the colonizing communities. Both scaffolds allowed the establishment of long-term stable biofilms with comparable total bacterial loads and biodiversity. However, mucin-coated structures harbored microbial consortia especially enriched in Akkermansia, Lactobacillus, and Faecalibacterium, being therefore able to select for microorganisms commonly considered mucosa-associated in vivo. IMPORTANCE These findings highlight the importance of mucins in shaping intestinal microbial communities, even those in artificial gut microbiota systems. We propose our in vitro model based on mucin-coated electrospun gelatin structures as a valid device for studies evaluating the effects of exogenous factors (nutrients, probiotics, infectious agents, and drugs) on mucus-adhering microbial communities.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Biagini
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Leonardo Donati
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Costanza Daddi
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center “Nutraceuticals and Food for Health – Nutrafood”, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
24
|
Sanahuja I, Ruiz A, Firmino JP, Reyes-López FE, Ortiz-Delgado JB, Vallejos-Vidal E, Tort L, Tovar-Ramírez D, Cerezo IM, Moriñigo MA, Sarasquete C, Gisbert E. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J Anim Sci Biotechnol 2023; 14:90. [PMID: 37422657 DOI: 10.1186/s40104-023-00895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The development of a sustainable business model with social acceptance, makes necessary to develop new strategies to guarantee the growth, health, and well-being of farmed animals. Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differentiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we integrated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition, through histological and microbiota state, and its transcriptomic profiling. RESULTS After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 1.1% of D. hansenii (17.2 × 105 CFU), an increase of ca. 12% in somatic growth was observed together with an improvement in feed conversion in fish fed a yeast-supplemented diet. In terms of intestinal condition, this probiotic modulated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays-based transcriptomic analysis found 232 differential expressed genes in the anterior-mid intestine of S. aurata, that were mostly related to metabolic, antioxidant, immune, and symbiotic processes. CONCLUSIONS Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency parameters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated. This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii promoted metabolic pathways, mainly protein-related, sphingolipid, and thymidylate pathways, in addition to enhance antioxidant-related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Joana P Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Isabel M Cerezo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
- SCBI, Bioinformatic Unit, University of Malaga, 29590, Malaga, Spain
| | - Miguel A Moriñigo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain.
| |
Collapse
|
25
|
Basnet TB, GC S, Basnet R, Fatima S, Safdar M, Sehar B, Alsubaie ASR, Zeb F. Interaction between gut microbiota metabolites and dietary components in lipid metabolism and metabolic diseases. Access Microbiol 2023; 5:acmi000403. [PMID: 37424550 PMCID: PMC10323789 DOI: 10.1099/acmi.0.000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/04/2023] [Indexed: 07/11/2023] Open
Abstract
Gut microbiota composition has caused perplexity in developing precision therapy to cure metabolic disorders. However, recent research has focused on using daily diet and natural bioactive compounds to correct gut microbiota dysbiosis and regulate host metabolism. Complex interactions between the gut microbiota and dietary compounds disrupt or integrate the gut barrier and lipid metabolism. In this review, we investigate the role of diet and bioactive natural compounds in gut microbiota dysbiosis and also the modulation of lipid metabolism by their metabolites. Recent studies have revealed that diet, natural compounds and phytochemicals impact significantly on lipid metabolism in animals and humans. These findings suggest that dietary components or natural bioactive compounds have a significant impact on microbial dysbiosis linked to metabolic diseases. The interaction between dietary components or natural bioactive compounds and gut microbiota metabolites can regulate lipid metabolism. Additionally, natural products can shape the gut microbiota and improve barrier integrity by interacting with gut metabolites and their precursors, even in unfavourable conditions, potentially contributing to the alignment of host physiology.
Collapse
Affiliation(s)
- Til Bahadur Basnet
- Department of Epidemiology and Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Srijana GC
- Kanti Children’s Hospital, Kathmandu, Nepal
| | - Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Sadia Fatima
- Department of Biochemistry, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mahpara Safdar
- Department of Environmental Design, Health and Nutritional Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Bedford, UK
| | - Ali Saad R. Alsubaie
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
26
|
Zhang B, Li J, Fu J, Shao L, Yang L, Shi J. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds. Chin Med J (Engl) 2023; 136:1390-1400. [PMID: 37200041 PMCID: PMC10278733 DOI: 10.1097/cm9.0000000000002711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 05/19/2023] Open
Abstract
ABSTRACT The intestinal mucus layer is a barrier that separates intestinal contents and epithelial cells, as well as acts as the "mucus layer-soil" for intestinal flora adhesion and colonization. Its structural and functional integrity is crucial to human health. Intestinal mucus is regulated by factors such as diet, living habits, hormones, neurotransmitters, cytokines, and intestinal flora. The mucus layer's thickness, viscosity, porosity, growth rate, and glycosylation status affect the structure of the gut flora colonized on it. The interaction between "mucus layer-soil" and "gut bacteria-seed" is an important factor leading to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Probiotics, prebiotics, fecal microbiota transplantation (FMT), and wash microbial transplantation are efficient methods for managing NAFLD, but their long-term efficacy is poor. FMT is focused on achieving the goal of treating diseases by enhancing the "gut bacteria-seed". However, a lack of effective repair and management of the "mucus layer-soil" may be a reason why "seeds" cannot be well colonized and grow in the host gut, as the thinning and destruction of the "mucus layer-soil" is an early symptom of NAFLD. This review summarizes the existing correlation between intestinal mucus and gut microbiota, as well as the pathogenesis of NAFLD, and proposes a new perspective that "mucus layer-soil" restoration combined with "gut bacteria-seed" FMT may be one of the most effective future strategies for enhancing the long-term efficacy of NAFLD treatment.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jinlong Fu
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li Shao
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Luping Yang
- Department of Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
27
|
Novotny-Nuñez I, Perdigón G, Matar C, Martínez Monteros MJ, Yahfoufi N, Cazorla SI, Maldonado-Galdeano C. Evaluation of Rouxiella badensis Subsp Acadiensis (Canan SV-53) as a Potential Probiotic Bacterium. Microorganisms 2023; 11:1347. [PMID: 37317321 DOI: 10.3390/microorganisms11051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
The advent of omic platforms revealed the significant benefits of probiotics in the prevention of many infectious diseases. This led to a growing interest in novel strains of probiotics endowed with health characteristics related to microbiome and immune modulation. Therefore, autochthonous bacteria in plant ecosystems might offer a good source for novel next-generation probiotics. The main objective of this study was to analyze the effect of Rouxiella badensis acadiensis Canan (R. acadiensis) a bacterium isolated from the blueberry biota, on the mammalian intestinal ecosystem and its potential as a probiotic microorganism. R. acadiensis, reinforced the intestinal epithelial barrier avoiding bacterial translocation from the gut to deep tissues, even after feeding BALB/c mice for a prolonged period of time. Moreover, diet supplementation with R. acadiensis led to increases in the number of Paneth cells, well as an increase in the antimicrobial peptide α defensin. The anti-bacterial effect of R. acadiensis against Staphylococcus aureus and Salmonella enterica serovar Typhimurium was also reported. Importantly, R. acadiensis-fed animals showed better survival in an in vivo Salmonella enterica serovar Typhimurium challenge compared with those that received a conventional diet. These results demonstrated that R. acadiensis possesses characteristics of a probiotic strain by contributing to the reinforcement and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Ivanna Novotny-Nuñez
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
| | - Gabriela Perdigón
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - María José Martínez Monteros
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
| | - Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| | - Carolina Maldonado-Galdeano
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| |
Collapse
|
28
|
Tan Z, Zhang Q, Zhao R, Huang T, Tian Y, Lin Y. A Comparative Study on the Effects of Different Sources of Carboxymethyl Poria Polysaccharides on the Repair of DSS-Induced Colitis in Mice. Int J Mol Sci 2023; 24:ijms24109034. [PMID: 37240380 DOI: 10.3390/ijms24109034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxymethyl poria polysaccharide plays important anti-tumor, antioxidant, and anti-inflammatory roles. Therefore, this study aimed to compare the healing impacts of two different sources of carboxymethyl poria polysaccharides [Carboxymethylat Poria Polysaccharides I (CMP I) and Carboxymethylat Poria Polysaccharides II (CMP II)] on ulcerative colitis in mice caused by dextran sulfate sodium (DSS). All the mice were arbitrarily split into five groups (n = 6): (a) control (CTRL), (b) DSS, (c) SAZ (sulfasalazine), (d) CMP I, and (e) CMP II. The experiment lasted for 21 days, and the body weight and final colon length were monitored. A histological analysis of the mouse colon tissue was carried out using H&E staining to assess the degree of inflammatory infiltration. The levels of inflammatory cytokines [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-4 (IL-4)] and enzymes [superoxide dismutase (SOD) and myeloperoxidase (MPO)] in the serum were examined using ELISA. Additionally, 16S ribosomal RNA sequencing was used to analyze the microorganisms in the colon. The results indicated that both CMP I and CMP II alleviated weight loss, colonic shortening, and inflammatory factor infestation in colonic tissues caused by DSS (p < 0.05). Furthermore, the ELISA results revealed that both CMP I and CMP II reduced the expression of IL-1β, IL-6, TNF-α, and MPO, and elevated the expression of IL-4 and SOD in the sera of the mice (p < 0.05). Moreover, 16S rRNA sequencing showed that CMP I and CMP II increased the plenitude of microorganisms in the mouse colon relative to that in the DSS group. The results also indicated that the therapeutic effect of CMP I on DSS-induced colitis in the mice was superior to that of CMP II. This study demonstrated that carboxymethyl poria polysaccharide from Poria cocos had therapeutic effects on DSS-induced colitis in mice, with CMP I being more effective than CMP II.
Collapse
Affiliation(s)
- Zhijie Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiaoyi Zhang
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Rou Zhao
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Ting Huang
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
29
|
Zhang C, Gao X, Ren X, Xu T, Peng Q, Zhang Y, Chao Z, Jiang W, Jia L, Han L. Bacteria-Induced Colloidal Encapsulation for Probiotic Oral Delivery. ACS NANO 2023; 17:6886-6898. [PMID: 36947056 DOI: 10.1021/acsnano.3c00600] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Probiotic oral delivery has crucial implications in biomedical engineering, but its oral bioavailability remains unsatisfactory because of the limited survival and colonization of probiotics in the harsh gastrointestinal tract. Here, a bacteria-induced encapsulation strategy is achieved by assembling metastable colloids to enhance the oral bioavailability of probiotics. The colloids (NTc) composed of amino-modified poly-β-cyclodextrin and tannic acid are formed based on the balance of host-guest interaction-driven attraction and electrostatic repulsion between colloids. Negatively charged probiotics electrostatically attract positively charged NTc to break the balance and induce further assembly surrounding the probiotics. Through a facile one-step mixing, 97% of bacteria are rapidly encapsulated into NTc shells within 10 s, with a high utilization rate of feeding colloids of 91%. More importantly, we show that the compact, thick, and positively charged NTc shells synergistically endow the encapsulated probiotics with strong resistance against simulated gastric fluid with an excellent survival rate of up to 19%, 7500 times superior to the commercial enteric material L100. Moreover, owing to the dynamically noncovalent and self-adaptive nature of host-guest interactions, NTc shells support the proliferation of the encapsulated EcN comparable with that of the naked EcN. In vitro and in vivo experiments also confirm that the NTc-encapsulated probiotics possess durable intestinal adhesion, continuous proliferation activity, enhanced oral bioavailability, good oral biosafety, and excellent therapeutic efficacy in a colitis mouse model. This facile bacteria-induced colloidal encapsulation strategy may extend to various microbes as oral bioagents for treating various diseases.
Collapse
Affiliation(s)
- Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Xinxiu Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Yixin Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| |
Collapse
|
30
|
Sun E, Meng X, Kang Z, Gu H, Li M, Tan X, Feng L, Jia X. Zengshengping improves lung cancer by regulating the intestinal barrier and intestinal microbiota. Front Pharmacol 2023; 14:1123819. [PMID: 36992837 PMCID: PMC10040556 DOI: 10.3389/fphar.2023.1123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Lung cancer is a common malignant tumor in clinical practice, and its morbidity and mortality are in the forefront of malignant tumors. Radiotherapy, chemotherapy, and surgical treatment play an important role in the treatment of lung cancer, however, radiotherapy has many complications and even causes partial loss of function, the recurrence rate after surgical resection is high, and the toxic and side effects of chemotherapy drugs are strong. Traditional Chinese medicine has played a huge role in the prognosis and improvement of lung cancer, among them, Zengshengping (ZSP) has the effect of preventing and treating lung cancer. Based on the “gut-lung axis” and from the perspective of “treating the lung from the intestine”, the purpose of this study was to research the effect of Zengshengping on the intestinal physical, biological, and immune barriers, and explore its role in the prevention and treatment of lung cancer. The Lewis lung cancer and urethane-induced lung cancer models were established in C57BL/6 mice. The tumor, spleen, and thymus were weighed, and the inhibition rate, splenic and thymus indexes analyzed. Inflammatory factors and immunological indexes were detected by enzyme-linked immunosorbent assay. Collecting lung and colon tissues, hematoxylin and eosin staining was performed on lung, colon tissues to observe histopathological damage. Immunohistochemistry and Western blotting were carried out to detect tight junction protein expression in colon tissues and expression of Ki67 and p53 proteins in tumor tissues. Finally, the feces of mice were collected to investigate the changes in intestinal microbiota using 16SrDNA high-throughput sequencing technology. ZSP significantly reduced tumor weight and increased the splenic and thymus indexes. It decreased expression of Ki67 protein and increased expression of p53 protein. Compared with Model group, ZSP group reduced the serum levels of interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNF-α), and ZSP group increased the concentration of secretory immunoglobulin A (sIgA) in the colon and the bronchoalveolar lavage fluid (BALF). ZSPH significantly increased the level of tight junction proteins such as ZO-1, Occludin and Claudin-1. Model group significantly reduced the relative abundance of Akkermansia (p < 0.05) and significantly promoted the amount of norank_f_Muribaculaceae, norank_f_Lachnospiraceae (p < 0.05) compared with that in the Normal group. However, ZSP groups increased in probiotic strains (Akkermansia) and decreased in pathogens (norank_f_Muribaculaceae, norank_f_Lachnospiraceae). Compared with the urethane-induced lung cancer mice, the results showed that ZSP significantly increased the diversity and richness of the intestinal microbiota in the Lewis lung cancer mice. ZSP played an important role in the prevention and treatment of lung cancer by enhancing immunity, protecting the intestinal mucosa and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- E. Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xiangqi Meng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Zhaoxia Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Huimin Gu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyu Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaobin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Liang Feng, ; Xiaobin Jia,
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Liang Feng, ; Xiaobin Jia,
| |
Collapse
|
31
|
Ezzamouri B, Rosario D, Bidkhori G, Lee S, Uhlen M, Shoaie S. Metabolic modelling of the human gut microbiome in type 2 diabetes patients in response to metformin treatment. NPJ Syst Biol Appl 2023; 9:2. [PMID: 36681701 PMCID: PMC9867701 DOI: 10.1038/s41540-022-00261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/08/2022] [Indexed: 01/22/2023] Open
Abstract
The human gut microbiome has been associated with several metabolic disorders including type 2 diabetes mellitus. Understanding metabolic changes in the gut microbiome is important to elucidate the role of gut bacteria in regulating host metabolism. Here, we used available metagenomics data from a metformin study, together with genome-scale metabolic modelling of the key bacteria in individual and community-level to investigate the mechanistic role of the gut microbiome in response to metformin. Individual modelling predicted that species that are increased after metformin treatment have higher growth rates in comparison to species that are decreased after metformin treatment. Gut microbial enrichment analysis showed prior to metformin treatment pathways related to the hypoglycemic effect were enriched. Our observations highlight how the key bacterial species after metformin treatment have commensal and competing behavior, and how their cellular metabolism changes due to different nutritional environment. Integrating different diets showed there were specific microbial alterations between different diets. These results show the importance of the nutritional environment and how dietary guidelines may improve drug efficiency through the gut microbiota.
Collapse
Affiliation(s)
- Bouchra Ezzamouri
- grid.13097.3c0000 0001 2322 6764Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, SE1 9RT London, UK ,grid.420545.20000 0004 0489 3985Unit for Population-Based Dermatology, St John’s Institute of Dermatology, King’s College London and Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Dorines Rosario
- grid.13097.3c0000 0001 2322 6764Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, SE1 9RT London, UK
| | - Gholamreza Bidkhori
- grid.13097.3c0000 0001 2322 6764Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, SE1 9RT London, UK ,Present Address: AIVIVO Ltd. Unit 25, Bio-innovation centre, Cambridge Science Park, Cambridge, UK
| | - Sunjae Lee
- grid.13097.3c0000 0001 2322 6764Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, SE1 9RT London, UK
| | - Mathias Uhlen
- grid.5037.10000000121581746Science for Life Laboratory, KTH - Royal Institute of Technology, 171 21 Stockholm, Sweden
| | - Saeed Shoaie
- grid.13097.3c0000 0001 2322 6764Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, SE1 9RT London, UK ,grid.5037.10000000121581746Science for Life Laboratory, KTH - Royal Institute of Technology, 171 21 Stockholm, Sweden
| |
Collapse
|
32
|
Rothschild-Rodriguez D, Hedges M, Kaplan M, Karav S, Nobrega FL. Phage-encoded carbohydrate-interacting proteins in the human gut. Front Microbiol 2023; 13:1083208. [PMID: 36687636 PMCID: PMC9853417 DOI: 10.3389/fmicb.2022.1083208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the human gastrointestinal tract, the gut mucosa and the bacterial component of the microbiota interact and modulate each other to accomplish a variety of critical functions. These include digestion aid, maintenance of the mucosal barrier, immune regulation, and production of vitamins, hormones, and other metabolites that are important for our health. The mucus lining of the gut is primarily composed of mucins, large glycosylated proteins with glycosylation patterns that vary depending on factors including location in the digestive tract and the local microbial population. Many gut bacteria have evolved to reside within the mucus layer and thus encode mucus-adhering and -degrading proteins. By doing so, they can influence the integrity of the mucus barrier and therefore promote either health maintenance or the onset and progression of some diseases. The viral members of the gut - mostly composed of bacteriophages - have also been shown to have mucus-interacting capabilities, but their mechanisms and effects remain largely unexplored. In this review, we discuss the role of bacteriophages in influencing mucosal integrity, indirectly via interactions with other members of the gut microbiota, or directly with the gut mucus via phage-encoded carbohydrate-interacting proteins. We additionally discuss how these phage-mucus interactions may influence health and disease states.
Collapse
Affiliation(s)
| | - Morgen Hedges
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Merve Kaplan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom,*Correspondence: Franklin L. Nobrega, ✉
| |
Collapse
|
33
|
Fu R, Wang L, Meng Y, Xue W, Liang J, Peng Z, Meng J, Zhang M. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front Nutr 2022; 9:1062961. [PMID: 36590200 PMCID: PMC9800908 DOI: 10.3389/fnut.2022.1062961] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Ulcerative colitis (UC), a chronic non-specific colorectal inflammatory disease with unclear etiology, has long plagued human health. Gut microbiota dysbiosis destroy homeostasis of the colon, which is closely related to ulcerative colitis progress. Apigenin, a flavonoid widely present in celery, has been found to improve ulcerative colitis. However, the potential molecular mechanism of apigenin ameliorating ulcerative colitis through protecting intestinal barrier and regulating gut microbiota remains undefined. Methods Dextran sodium sulfate (DSS)-induced colitis mouse model was conducted to evaluate the effect of apigenin on UC. Disease activity index score of mice, colon tissue pathological, cytokines analysis, intestinal tight junction proteins expression, and colonic content short-chain fatty acids (SCFAs) and 16S rRNA gene sequencing were conducted to reflect the protection of apigenin on UC. Results The results indicated that apigenin significantly relieved the intestinal pathological injury, increased goblet cells quantity and mucin secretion, promoted anti-inflammatory cytokines IL-10 expression, and inhibited the expression of proinflammatory cytokines, TNF-α, IL-1β, IL-6 and MPO activity of colon tissue. Apigenin increased ZO-1, claudin-1 and occludin expressions to restore the integrity of the intestinal barrier. Moreover, apigenin remodeled the disordered gut microbiota by regulating the abundance of Akkermansia, Turicibacter, Klebsiella, Romboutsia, etc., and its metabolites (SCFAs), attenuating DSS-induced colon injury. We also investigated the effect of apigenin supplementation on potential metabolic pathways of gut microbiota. Conclusion Apigenin effectively ameliorated DSS-induced UC via balancing gut microbiome to inhibit inflammation and protect gut barrier. With low toxicity and high efficiency, apigenin might serve as a potential therapeutic strategy for the treatment of UC via regulating the interaction and mechanism between host and microorganism.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ying Meng
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zimu Peng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China,Tianjin International Joint Academy of Biomedicine, Tianjin, China,*Correspondence: Jing Meng,
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China,Min Zhang,
| |
Collapse
|
34
|
Li K, Yang J, Zhou X, Wang H, Ren Y, Huang Y, Liu H, Zhong Z, Peng G, Zheng C, Zhou Z. The Mechanism of Important Components in Canine Fecal Microbiota Transplantation. Vet Sci 2022; 9:vetsci9120695. [PMID: 36548856 PMCID: PMC9786814 DOI: 10.3390/vetsci9120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a potential treatment for many intestinal diseases. In dogs, FMT has been shown to have positive regulation effects in treating Clostridioides difficile infection (CDI), inflammatory bowel disease (IBD), canine parvovirus (CPV) enteritis, acute diarrhea (AD), and acute hemorrhagic diarrhea syndrome (AHDS). FMT involves transplanting the functional components of a donor's feces into the gastrointestinal tract of the recipient. The effective components of FMT not only include commensal bacteria, but also include viruses, fungi, bacterial metabolites, and immunoglobulin A (IgA) from the donor feces. By affecting microbiota and regulating host immunity, these components can help the recipient to restore their microbial community, improve their intestinal barrier, and induce anti-inflammation in their intestines, thereby affecting the development of diseases. In addition to the above components, mucin proteins and intestinal epithelial cells (IECs) may be functional ingredients in FMT as well. In addition to the abovementioned indications, FMT is also thought to be useful in treating some other diseases in dogs. Consequently, when preparing FMT fecal material, it is important to preserve the functional components involved. Meanwhile, appropriate fecal material delivery methods should be chosen according to the mechanisms these components act by in FMT.
Collapse
Affiliation(s)
- Kerong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Xiaoxiao Zhou
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Huan Wang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Yuxin Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Yunchuan Huang
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
- Correspondence: (C.Z.); (Z.Z.)
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (C.Z.); (Z.Z.)
| |
Collapse
|
35
|
Liu Y, Li B, Wei Y. New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Front Cell Infect Microbiol 2022; 12:1022603. [PMID: 36389160 PMCID: PMC9663802 DOI: 10.3389/fcimb.2022.1022603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Anastomotic leak (AL) is a life-threatening postoperative complication following colorectal surgery, which has not decreased over time. Until now, no specific risk factors or surgical technique could be targeted to improve anastomotic healing. In the past decade, gut microbiota dysbiosis has been recognized to contribute to AL, but the exact effects are still vague. In this context, interpretation of the mechanisms underlying how the gut microbiota contributes to AL is significant for improving patients' outcomes. This review concentrates on novel findings to explain how the gut microbiota of patients with AL are altered, how the AL-specific pathogen colonizes and is enriched on the anastomosis site, and how these pathogens conduct their tissue breakdown effects. We build up a framework between the gut microbiota and AL on three levels. Firstly, factors that shape the gut microbiota profiles in patients who developed AL after colorectal surgery include preoperative intervention and surgical factors. Secondly, AL-specific pathogenic or collagenase bacteria adhere to the intestinal mucosa and defend against host clearance, including the interaction between bacterial adhesion and host extracellular matrix (ECM), the biofilm formation, and the weakened host commercial bacterial resistance. Thirdly, we interpret the potential mechanisms of pathogen-induced poor anastomotic healing.
Collapse
Affiliation(s)
- Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Bowen Li
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China,*Correspondence: Yunwei Wei,
| |
Collapse
|
36
|
Rational consideration of Akkermansia muciniphila targeting intestinal health: advantages and challenges. NPJ Biofilms Microbiomes 2022; 8:81. [PMID: 36253412 PMCID: PMC9576740 DOI: 10.1038/s41522-022-00338-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
As one of the promising next-generation probiotics (NGPs), Akkermansia muciniphila, a well-known mucin-degrading bacterium, has been proven to be closely related to the metabolic diseases of its human host. However, the role of A. muciniphila in the host’s intestinal health remains ambiguous. Here, we comprehensively summarize and discuss the characteristics, the distribution, and the colonization of A. muciniphila in the human gastrointestinal tract (GIT). We propose that the application of A. muciniphila as a biomarker for longevity, for diagnostics and prognostics of intestinal diseases, or for intestinal health should be cautiously considered. Precise dietary regulation can mediate the treatment of intestinal diseases by altering the abundance of A. muciniphila. Although the beneficial role of A. muciniphila and its component in intestinal inflammation has been discovered, in gnotobiotic mice with specific gut microbiota, certain genotype, and colorectal cancer, or in animal models infected with a specific pathogen, A. muciniphila may be related to the occurrence and development of intestinal diseases. Genomic analysis, emphasizing the strain-level phylogenetic differences of A. muciniphila, indicates that a clear description and discussion of each strain is critical before its practical application. Our review provides much needed insight for the precise application of A. muciniphila.
Collapse
|
37
|
Suriano F, Nyström EEL, Sergi D, Gustafsson JK. Diet, microbiota, and the mucus layer: The guardians of our health. Front Immunol 2022; 13:953196. [PMID: 36177011 PMCID: PMC9513540 DOI: 10.3389/fimmu.2022.953196] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal tract is an ecosystem in which the resident microbiota lives in symbiosis with its host. This symbiotic relationship is key to maintaining overall health, with dietary habits of the host representing one of the main external factors shaping the microbiome-host relationship. Diets high in fiber and low in fat and sugars, as opposed to Western and high-fat diets, have been shown to have a beneficial effect on intestinal health by promoting the growth of beneficial bacteria, improve mucus barrier function and immune tolerance, while inhibiting pro-inflammatory responses and their downstream effects. On the contrary, diets low in fiber and high in fat and sugars have been associated with alterations in microbiota composition/functionality and the subsequent development of chronic diseases such as food allergies, inflammatory bowel disease, and metabolic disease. In this review, we provided an updated overview of the current understanding of the connection between diet, microbiota, and health, with a special focus on the role of Western and high-fat diets in shaping intestinal homeostasis by modulating the gut microbiota.
Collapse
Affiliation(s)
- Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth E. L. Nyström
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jenny K. Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation. Microorganisms 2022; 10:microorganisms10081605. [PMID: 36014023 PMCID: PMC9415379 DOI: 10.3390/microorganisms10081605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/07/2022] [Indexed: 01/07/2023] Open
Abstract
Akkermansia muciniphila is a champion of mucin degradation in the human gastrointestinal tract. Here, we report the isolation of six novel strains from healthy human donors and their genomic, proteomic and physiological characterization in comparison to the type-strains A. muciniphila MucT and A. glycaniphila PytT. Complete genome sequencing revealed that, despite their large genomic similarity (>97.6%), the novel isolates clustered into two distinct subspecies of A. muciniphila: Amuc1, which includes the type-strain MucT, and AmucU, a cluster of unassigned strains that have not yet been well characterized. CRISPR analysis showed all strains to be unique and confirmed that single healthy subjects can carry more than one A. muciniphila strain. Mucin degradation pathways were strongly conserved amongst all isolates, illustrating the exemplary niche adaptation of A. muciniphila to the mucin interface. This was confirmed by analysis of the predicted glycoside hydrolase profiles and supported by comparing the proteomes of A. muciniphila strain H2, belonging to the AmucU cluster, to MucT and A. glycaniphila PytT (including 610 and 727 proteins, respectively). While some intrinsic resistance was observed among the A. muciniphila straind, none of these seem to pose strain-specific risks in terms of their antibiotic resistance patterns nor a significant risk for the horizontal transfer of antibiotic resistance determinants, opening the way to apply the type-strain MucT or these new A. muciniphila strains as next generation beneficial microbes.
Collapse
|
39
|
Wang YJ, Li QM, Zha XQ, Luo JP. Intervention and potential mechanism of non-starch polysaccharides from natural resources on ulcerative colitis: A review. Int J Biol Macromol 2022; 210:545-564. [PMID: 35513106 DOI: 10.1016/j.ijbiomac.2022.04.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that affects the colon and rectum. It has evolved into a global burden due to the high incidence in developed countries and the highly-increased incidence in developing countries. Non-starch polysaccharides (NSPs) from natural resources, as a type of functional carbohydrates, have a significant therapeutic effect on UC because of their good anti-inflammatory and immunomodulatory activities. Based on the etiology and pathogenesis of UC, this review summarizes the intervention effects and mechanisms of NSPs in the prevention and treatment of UC. The results showed that NSPs can improve UC by protecting the intestinal mucosal barrier, regulating the immune response of the intestinal mucosa, and remodeling the intestinal flora and metabolites. These contents provide theoretical basis for the application of polysaccharides in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Yu-Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
40
|
Lourenco JM, Welch CB, Krause TR, Wieczorek MA, Fluharty FL, Rothrock MJ, Pringle TD, Callaway TR. Fecal Microbiome Differences in Angus Steers with Differing Feed Efficiencies during the Feedlot-Finishing Phase. Microorganisms 2022; 10:microorganisms10061128. [PMID: 35744646 PMCID: PMC9227454 DOI: 10.3390/microorganisms10061128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal microbiota of cattle is important for feedstuff degradation and feed efficiency determination. This study evaluated the fecal microbiome of Angus steers with distinct feed efficiencies during the feedlot-finishing phase. Angus steers (n = 65), fed a feedlot-finishing diet for 82 days, had growth performance metrics evaluated. Steers were ranked based upon residual feed intake (RFI), and the 5 lowest RFI (most efficient) and 5 highest RFI (least efficient) steers were selected for evaluation. Fecal samples were collected on 0-d and 82-d of the finishing period and microbial DNA was extracted and evaluated by 16S rRNA gene sequencing. During the feedlot trial, inefficient steers had decreased (p = 0.02) Ruminococcaceae populations and increased (p = 0.01) Clostridiaceae populations. Conversely, efficient steers had increased Peptostreptococcaceae (p = 0.03) and Turicibacteraceae (p = 0.01), and a trend for decreased Proteobacteria abundance (p = 0.096). Efficient steers had increased microbial richness and diversity during the feedlot period, which likely resulted in increased fiber-degrading enzymes in their hindgut, allowing them to extract more energy from the feed. Results suggest that cattle with better feed efficiency have greater diversity of hindgut microorganisms, resulting in more enzymes available for digestion, and improving energy harvest in the gut of efficient cattle.
Collapse
Affiliation(s)
- Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
- Correspondence:
| | - Christina B. Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Taylor R. Krause
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Michael A. Wieczorek
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Francis L. Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, Richard B. Russell Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA;
| | - T. Dean Pringle
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (T.R.K.); (M.A.W.); (F.L.F.); (T.D.P.); (T.R.C.)
| |
Collapse
|
41
|
Abstract
Akkermansia muciniphila is a commensal bacterium using mucin as its sole carbon and nitrogen source. A. muciniphila is a promising candidate for next-generation probiotics to prevent inflammatory and metabolic disorders, including diabetes and obesity, and to increase the response to cancer immunotherapy. In this study, a comparative pan-genome analysis was conducted to investigate the genomic diversity and evolutionary relationships between complete genomes of 27 A. muciniphila strains, including KGMB strains isolated from healthy Koreans. The analysis showed that A. muciniphila strains formed two clades of group A and B in a phylogenetic tree constructed using 1,219 orthologous single-copy core genes. Interestingly, group A comprised of strains from human feces in Korea, whereas most of group B comprised strains from human feces in Europe and China, and from mouse feces. As group A and B branched, mucin hydrolysis played an important role in the stability of the core genome and drove evolution in the direction of defense against invading pathogens, survival in, and colonization in the mucus layer. In addition, WapA and anSME, which function in competition and post-translational modification of sulfatase, respectively, have been a particularly important selective pressure in the evolution of group A. KGMB strains in group A with anSME gene showed sulfatase activity, but KCTC 15667T in group B without anSME did not. Our findings revealed that KGMB strains evolved to gain an edge in the competition with other gut bacteria by increasing the utilization of sulfated mucin, which will allow it to become highly colonized in the gut environment.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea,Department of Environmental Biotechnology, University of Science and Technology, Yuseong-gu, Republic of Korea,CONTACT Jung-Sook Lee Korean Collection for Type Cultures,Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si56212Republic of Korea
| |
Collapse
|
42
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Intestinal Enteroid Monolayers Model the Human Intestinal Environment for Escherichia coli Infection. J Bacteriol 2022; 204:e0062021. [PMID: 35389257 DOI: 10.1128/jb.00620-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 is an enteric pathogen responsible for bloody diarrhea, hemolytic uremic syndrome, and in severe cases, even death. The study of O157:H7 is difficult due to the high specificity of the bacteria for the human intestine, along with our lack of sufficiently complex human cell culture models. The recent development of human intestinal enteroids derived from intestinal crypt multipotent stem cells has allowed us to construct two-dimensional differentiated epithelial monolayers grown in transwells that mimic the human intestine. Unlike previous studies, saline was added to the apical surface, while maintaining culture media in the basolateral well. The monolayers continued to grow and differentiate with apical saline. Apical infection with O157:H7 or commensal E. coli resulted in robust bacterial growth from 105 to over 108 over 24 h. Despite this robust bacterial growth, commensal E. coli neither adhered to nor damaged the epithelial barrier over 30 h. However, O157:H7 was almost fully adhered (>90%) by 18 h with epithelial damage observed by 30 h. O157:H7 contains the locus of enterocyte effacement (LEE) pathogenicity island responsible for attachment and damage to the intestinal epithelium. Previous studies report the ability of nutrients such as biotin, d-serine, and L-fucose to downregulate LEE gene expression. O157:H7 treated with biotin or L-fucose, but not d-serine displayed both decreased attachment and reduced epithelial damage over 36 h. These data illustrate enteroid monolayers can serve as a suitable model for the study of O157:H7 pathogenesis, and identification of potential therapeutics. IMPORTANCE O157:H7 is difficult to study due to its high specificity for the human intestine and the lack of sufficiently complex human cell culture models. The recent development of human intestinal enteroids derived from intestinal crypt multipotent stem cells has allowed us to construct two-dimensional differentiated epithelial monolayers grown in transwells that mimic the human intestine. Our data illustrates enteroid monolayers can serve as a suitable model for the study of O157:H7 pathogenesis, and allow for identification of potential therapeutics.
Collapse
|
44
|
The Role of Aeromonas-Goblet Cell Interactions in Melatonin-Mediated Improvements in Sleep Deprivation-Induced Colitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8133310. [PMID: 35355860 PMCID: PMC8958064 DOI: 10.1155/2022/8133310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Background. Our previous studies demonstrated that melatonin could effectively ameliorate sleep deprivation- (SD-) caused oxidative stress-mediated gut microbiota disorder and colitis. The research further clarified the mechanism of melatonin in improving colitis from the perspective of the interaction between Aeromonas and goblet cells. Methods. A seventy-two hours SD mouse model with or without melatonin intervention and fecal microbiota transplantation (FMT) to explore the vital position of Aeromonas-goblet cell interactions in melatonin improving SD-induced colitis. Moreover, Aeromonas or LPS-supplied mice were assessed, and the influence of melatonin on Aeromonas-goblet cell interactions-mediated oxidative stress caused colitis. Furthermore, in vitro experiment investigated the regulation mechanism of melatonin.Results. Our study showed that SD induced colitis, with upregulation of Aeromonas and LPS levels and reductions in goblet cells number and MUC2 protein. Similarly, FMT from SD mice, Aeromonas veronii colonization, and LPS treatment restored the SD-like goblet cells number and MUC2 protein decrease and colitis. Moreover, LPS treatment downregulated the colonic antioxidant capacity. Yet, melatonin intervention reversed all consequence in SD, A.veronii colonization, and LPS-treated mice. In vitro, melatonin reversed A. veronii- or LPS-induced MUC2 depletion in mucus-secreting human HT-29 cells via increasing the expression level of Villin, Tff3, p-GSK-3β, β-catenin, and melatonin receptor 2 (MT2) and decreasing the level of p-IκB, p-P65, ROS, TLR4, and MyD88 proteins, while the improvement effect was blocked with pretreatment with a MT2 antagonist but were mimicked by TLR4 and GSK-3β antagonists and ROS scavengers. Conclusions. Our results demonstrated that melatonin-mediated MT2 inhibits Aeromonas-goblet cell interactions to restore the level of MUC2 production via LPS/TLR4/MyD88/GSK-3β/ROS/NF-κB loop, further improving colitis in SD mice.
Collapse
|
45
|
Nakamura M, Maeda K, Yamamoto K, Yamamura T, Sawada T, Ishikawa E, Kakushima N, Furukawa K, Iida T, Mizutani Y, Ishikawa T, Ohno E, Honda T, Ishigami M, Kawashima H. Preliminary Comparison of Endoscopic Brush and Net Catheters as the Sampling Tool to Analyze the Intestinal Mucus in the Rectum with Ulcerative Colitis Patients. Digestion 2022; 103:232-243. [PMID: 35184056 PMCID: PMC9153359 DOI: 10.1159/000521929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The pathophysiology of ulcerative colitis (UC) remains unclear, but early lesions on the colorectal mucosal surface may play an important role in its etiology. Intestinal mucus samples, including inner and outer layers, are collected by net or brush catheters, but the quality of the samples obtained by each method has not been fully investigated. OBJECTIVE The purpose of this study was to compare the microbiome and protein content of intestinal mucus collected by net and brush catheters during colonoscopy. METHODS Intestinal mucus samples from the lower rectum of 4 patients with UC were collected using a net catheter, a brush catheter, and intestinal fluid suction. Microbiome and protein content were analyzed using 16S rRNA gene sequencing and mass spectrometry. RESULTS The patients demonstrated significant differences in microbiome alpha diversity (p < 0.05), but this difference was not observed between the sampling methods. Net catheter samples demonstrated higher total protein concentrations than brush catheter samples. The brush catheter group had more Lachnospira, a butyrate-producing bacterium, when compared to the net group. The brush catheter group also had more oral bacteria of Staphylococcus and Dialister in those with active phase when compared to the net group. CONCLUSIONS Brush catheters are more likely to collect the intestinal mucus inner layer, whereas net catheters are more likely to collect larger samples that include the outer mucus layer, as well as the intestinal fluid. Two sampling methods with different types of collection of the mucosa may lead to different results among patients with mucosal vulnerabilities.
Collapse
Affiliation(s)
- Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan,
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Kenta Yamamoto
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Kakushima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
46
|
Zou YF, Li CY, Fu YP, Feng X, Peng X, Feng B, Li LX, Jia RY, Huang C, Song X, Lv C, Ye G, Zhao L, Li YP, Zhao XH, Yin LZ, Yin ZQ. Restorative Effects of Inulin From Codonopsis pilosula on Intestinal Mucosal Immunity, Anti-Inflammatory Activity and Gut Microbiota of Immunosuppressed Mice. Front Pharmacol 2022; 13:786141. [PMID: 35237158 PMCID: PMC8882912 DOI: 10.3389/fphar.2022.786141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula, was characterized and demonstrated with potential prebiotic activity in vitro before. Based on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in vivo on immunosuppressed mice were investigated after oral administration of 200, 100 and 50 mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in different intestine parts were revealed. The intestine before colon could be the target active position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect was also presented by mainly modulating the relative abundance of Eubacteriales, including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota modulatory activities.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Feng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| |
Collapse
|
47
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
48
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
49
|
Galosi L, Desantis S, Roncarati A, Robino P, Bellato A, Nebbia P, Ferrocino I, Santamaria N, Biagini L, Filoni L, Attili AR, Rossi G. Positive Influence of a Probiotic Mixture on the Intestinal Morphology and Microbiota of Farmed Guinea Fowls ( Numida meleagris). Front Vet Sci 2021; 8:743899. [PMID: 34778432 PMCID: PMC8586554 DOI: 10.3389/fvets.2021.743899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022] Open
Abstract
To understand the effectiveness of a probiotic mixture on intestinal morphology, mucus layer composition, and cecal microbiota diversity, 40 10-day-old Guinea fowls (Numida meleagris) were assigned to two groups: the control group (C), receiving drinking water, and the treated group (P), receiving water plus a commercial multi-strain probiotic (Slab51®, 2 × 1011 CFU/L). Birds were slaughtered after 4 months, and the intestines were collected. Samples from the duodenum, ileum, and cecum were processed for morphological and morphometric studies, and conventional glycohistochemistry. Cecal samples were also used to assess the microbiota by 16S metataxonomic approach. Group P showed significant increase in the villus height (p < 0.001 in the duodenum and p < 0.05 in the ileum and cecum), villus width (p < 0.05 in all investigated tracts), depth of crypts (p < 0.001 in the duodenum and cecum; p < 0.05 in the ileum), and goblet cells per villus (p < 0.001 in all investigated tracts) compared with group C. Cecal microbiota of the birds varied considerably and comparing the relative abundance of the main observational taxonomic units (OTUs), a positive enrichment of several beneficial taxa, such as Oscillospira, Eubacterium, Prevotella, and members of the Ruminococcaceae, was observed. The enrichment of those taxa can improve microbiota stability and resilience facing environmental stresses, enhancing its resistance against invading pathogens. Ruminococcaceae, which represent the most important taxon in both groups, and Prevotella have a key role in the gut physiology due to the production of short-chain fatty acids (SCFAs), which are a vital energy source for enterocytes, improve glucose metabolism, and exert an overall anti-inflammatory effect. Probiotic administration enriches the presence of Coprococcus, Oscillospira, and Eubacterium taxa that produce butyrate, which exerts a beneficial effect on growth performance, structure of villi, and pathogen control and has anti-inflammatory properties too. This study indicates that Slab51® supplementation positively affects the morphology and microbiota diversity of the guinea fowl intestine.
Collapse
Affiliation(s)
- Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Salvatore Desantis
- Department of Emergency and Organ Trasplants (DETO), University of Bari Aldo Moro, Valenzano, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Alessandro Bellato
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agriculture, Forestry and Food Science, University of Torino, Grugliasco, Italy
| | - Nicoletta Santamaria
- Department of Emergency and Organ Trasplants (DETO), University of Bari Aldo Moro, Valenzano, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Lorenzo Filoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Anna Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
50
|
Mabwi HA, Hitayezu E, Mauliasari IR, Mwaikono KS, Yoon HS, Komba EVG, Pan CH, Cha KH. Simulation of the mucosal environment in the re-construction of the synthetic gut microbial ecosystem. J Microbiol Methods 2021; 191:106351. [PMID: 34710513 DOI: 10.1016/j.mimet.2021.106351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
Human gut surface-attached mucosal microbiota plays significant roles in human health and diseases. This study sought to simulate the mucosal environment using mucin-agar gel and synthetic mucosal microbial community in vitro. To select suitable culture media, microbial communities were assembled and cultured in seven different media at 37 °C for 36 h. Among the seven media, Bryant & Burkey (BB) and Gifu Anaerobic Media (GAM) were selected considering their microbial biomass and bacterial composition. The communities were again assembled and cultured in these two media with mucin-agar. The results showed that some bacterial genus such as Bifidobacterium, Collinsella, and Roseburia could efficiently colonize in the solid mucin-agar part while Enterococcus, Clostridium, and Veilonella dominated in the liquid part. Metabolic functional prediction for the microbial community in each medium part showed that the gene expression involved in metabolism and cell motility pathways were distinctively differentiated between the liquid and solid medium part, and the functional potential was highly related to the microbial composition. The current results demonstrate that the simulation of the gut microbial ecosystem in vitro can be beneficial to the mucosal environment mimicking and the study on the mechanistic potential of the human gut microbiota for easy translation of microbiome research to therapies.
Collapse
Affiliation(s)
- Humphrey A Mabwi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea; SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, P.O. Box 3019, Tanzania.
| | - Emmanuel Hitayezu
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Intan Rizki Mauliasari
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam 11000, Tanzania.
| | - Hyo Shin Yoon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Erick V G Komba
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania.
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| |
Collapse
|