1
|
Kamath S, Hunter A, Collins K, Wignall A, Joyce P. The atypical antipsychotics lurasidone and olanzapine exert contrasting effects on the gut microbiome and metabolic function of rats. Br J Pharmacol 2024; 181:4531-4545. [PMID: 39075330 DOI: 10.1111/bph.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Antipsychotics such as olanzapine are associated with significant metabolic dysfunction, attributed to gut microbiome dysbiosis. A recent notion that most psychotropics are detrimental to the gut microbiome has arisen from consistent findings of metabolic adverse effects. However, unlike olanzapine, the metabolic effects of lurasidone are conflicting. Thus, this study investigates the contrasting effects of olanzapine and lurasidone on the gut microbiome to explore the hypothesis of 'gut neutrality' for lurasidone exposure. EXPERIMENTAL APPROACH Using Sprague-Dawley rats, the effects of olanzapine and lurasidone on the gut microbiome were explored. Faecal and blood samples were collected weekly over a 21-day period to analyse changes to the gut microbiome and related metabolic markers. KEY RESULTS Lurasidone triggered no significant weight gain or metabolic alterations, instead positively modulating the gut microbiome through increases in mean operational taxonomical units (OTUs) and alpha diversity. This novel finding suggests an underlying mechanism for lurasidone's metabolic inertia. In contrast, olanzapine triggered a statistically significant decrease in mean OTUs, substantial compositional variation and a depletion in short-chain fatty acid abundance. Microbiome depletion correlated with metabolic dysfunction, producing a 30% increase in weight gain, increased pro-inflammatory cytokine expression, and increased blood glycaemic and triglyceride levels. CONCLUSION AND IMPLICATIONS Our results challenge the notion that all antipsychotics disrupt the gut microbiome similarly and highlights the potential benefits of gut-neutral antipsychotics, such as lurasidone, in managing metabolic side effects. Further research is warranted to validate these findings in humans to guide personalised pharmacological treatment regimens for schizophrenia.
Collapse
Affiliation(s)
- Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Collins
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Lou K, Chi J, Wu J, Ma J, Liu S, Cui Y. Research progress on the microbiota in bladder cancer tumors. Front Cell Infect Microbiol 2024; 14:1374944. [PMID: 38650736 PMCID: PMC11033431 DOI: 10.3389/fcimb.2024.1374944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The microbiota, also referred to as the microbial community, is a crucial component of the human microenvironment. It is located predominantly in various organs, including the intestines, skin, oral cavity, respiratory tract, and reproductive tract. The microbiota maintains a symbiotic relationship with the human body, influencing physiological and pathological functions to a significant degree. There is increasing evidence linking the microbial flora to human cancers. In contrast to the traditional belief that the urethra and urine of normal individuals are sterile, recent advancements in high-throughput sequencing technology and bacterial cultivation methods have led to the discovery of specific microbial communities in the urethras of healthy individuals. Given the prevalence of bladder cancer (BCa) as a common malignancy of the urinary system, researchers have shifted their focus to exploring the connection between disease development and the unique microbial community within tumors. This shift has led to a deeper investigation into the role of microbiota in the onset, progression, metastasis, prognosis, and potential for early detection of BCa. This article reviews the existing research on the microbiota within BCa tumors and summarizes the findings regarding the roles of different microbes in various aspects of this disease.
Collapse
Affiliation(s)
- Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shu Liu
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
3
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Vasconcelos Pereira G, Martens EC, Koropatkin NM. Multiple TonB homologs are important for carbohydrate utilization by Bacteroides thetaiotaomicron. J Bacteriol 2023; 205:e0021823. [PMID: 37874167 PMCID: PMC10662123 DOI: 10.1128/jb.00218-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.
Collapse
Affiliation(s)
- Rebecca M. Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, New York, USA
- Biochemistry Program, Vassar College, Poughkeepsie, New York, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Banerjee A, Roychoudhury A. Bio-priming with a Novel Plant Growth-Promoting Acinetobacter indicus Strain Alleviates Arsenic-Fluoride Co-toxicity in Rice by Modulating the Physiome and Micronutrient Homeostasis. Appl Biochem Biotechnol 2023; 195:6441-6464. [PMID: 36870026 DOI: 10.1007/s12010-023-04410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Sustainable remediation of arsenic-fluoride from rice fields through efficient bio-extraction is the need of the hour, since these toxicants severely challenge safe cultivation of rice and food biosafety. In the present study, we screened an arsenic-fluoride tolerant strain AB-ARC of Acinetobacter indicus from the soil of a severely polluted region of West Bengal, India, which was capable of efficiently removing extremely high doses of arsenate and fluoride from the media. The strain also behaved as a plant growth-promoting rhizobacterium, since it could produce indole-3-acetic acid and solubilize phosphate, zinc, and starch. Due to these properties of the identified strain, it was used for bio-priming the seeds of the arsenic-fluoride susceptible rice cultivar, Khitish for testing the efficacy of the AB-ARC strain to promote combined arsenic-fluoride tolerance in the rice genotype. Bio-priming with AB-ARC led to accelerated uptake of crucial elements like iron, copper, and nickel which behave as co-factors of physiological and antioxidative enzymes. Thus, the activation of superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase, and glutathione-S-transferase enabled detoxification of reactive oxygen species (ROS) and reduction of the oxidative injuries like malondialdehyde and methylglyoxal generation. Overall, due to ameliorated molecular damages and low uptake of the toxic xenobiotics, the plants were able to maintain improved growth vigor and photosynthesis, as evident from the elevated levels of Hill activity and chlorophyll content. Hence, bio-priming with the A. indicus AB-ARC strain may be advocated for sustainable rice cultivation in arsenic-fluoride co-polluted fields.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India.
| |
Collapse
|
5
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Pereira GV, Martens EC, Koropatkin NM. Multiple TonB Homologs are Important for Carbohydrate Utilization by Bacteroides thetaiotaomicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548152. [PMID: 37461508 PMCID: PMC10350073 DOI: 10.1101/2023.07.07.548152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The human gut microbiota is able to degrade otherwise undigestible polysaccharides, largely through the activity of the Bacteroides. Uptake of polysaccharides into Bacteroides is controlled by TonB-dependent transporters (TBDT) whose transport is energized by an inner membrane complex composed of the proteins TonB, ExbB, and ExbD. Bacteroides thetaiotaomicron (B. theta) encodes 11 TonB homologs which are predicted to be able to contact TBDTs to facilitate transport. However, it is not clear which TonBs are important for polysaccharide uptake. Using strains in which each of the 11 predicted tonB genes are deleted, we show that TonB4 (BT2059) is important but not essential for proper growth on starch. In the absence of TonB4, we observed an increase in abundance of TonB6 (BT2762) in the membrane of B. theta, suggesting functional redundancy of these TonB proteins. Growth of the single deletion strains on pectin galactan, chondroitin sulfate, arabinan, and levan suggests a similar functional redundancy of the TonB proteins. A search for highly homologous proteins across other Bacteroides species and recent work in B. fragilis suggests that TonB4 is widely conserved and may play a common role in polysaccharide uptake. However, proteins similar to TonB6 are found only in B. theta and closely related species suggesting that the functional redundancy of TonB4 and TonB6 may be limited across the Bacteroides. This study extends our understanding of the protein network required for polysaccharide utilization in B. theta and highlights differences in TonB complexes across Bacteroides species.
Collapse
Affiliation(s)
- Rebecca M Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, NY, 12604, USA
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nisrine T Jabara
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
| | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
White JBR, Silale A, Feasey M, Heunis T, Zhu Y, Zheng H, Gajbhiye A, Firbank S, Baslé A, Trost M, Bolam DN, van den Berg B, Ranson NA. Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes. Nature 2023:10.1038/s41586-023-06146-w. [PMID: 37286596 DOI: 10.1038/s41586-023-06146-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
Bacteroidetes are abundant members of the human microbiota, utilizing a myriad of diet- and host-derived glycans in the distal gut1. Glycan uptake across the bacterial outer membrane of these bacteria is mediated by SusCD protein complexes, comprising a membrane-embedded barrel and a lipoprotein lid, which is thought to open and close to facilitate substrate binding and transport. However, surface-exposed glycan-binding proteins and glycoside hydrolases also play critical roles in the capture, processing and transport of large glycan chains. The interactions between these components in the outer membrane are poorly understood, despite being crucial for nutrient acquisition by our colonic microbiota. Here we show that for both the levan and dextran utilization systems of Bacteroides thetaiotaomicron, the additional outer membrane components assemble on the core SusCD transporter, forming stable glycan-utilizing machines that we term utilisomes. Single-particle cryogenic electron microscopy structures in the absence and presence of substrate reveal concerted conformational changes that demonstrate the mechanism of substrate capture, and rationalize the role of each component in the utilisome.
Collapse
Affiliation(s)
- Joshua B R White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Feasey
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Tiaan Heunis
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Yiling Zhu
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Hong Zheng
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Akshada Gajbhiye
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Susan Firbank
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - David N Bolam
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem 2023; 67:629-638. [PMID: 36866571 DOI: 10.1042/ebc20220167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.
Collapse
|
9
|
van de Velde C, Joseph C, Simoens K, Raes J, Bernaerts K, Faust K. Technical versus biological variability in a synthetic human gut community. Gut Microbes 2023; 15:2155019. [PMID: 36580382 PMCID: PMC9809966 DOI: 10.1080/19490976.2022.2155019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic communities grown in well-controlled conditions are an important tool to decipher the mechanisms driving community dynamics. However, replicate time series of synthetic human gut communities in chemostats are rare, and it is thus still an open question to what extent stochasticity impacts gut community dynamics. Here, we address this question with a synthetic human gut bacterial community using an automated fermentation system that allows for a larger number of biological replicates. We collected six biological replicates for a community initially consisting of five common gut bacterial species that fill different metabolic niches. After an initial 12 hours in batch mode, we switched to chemostat mode and observed the community to stabilize after 2-3 days. Community profiling with 16S rRNA resulted in high variability across replicate vessels and high technical variability, while the variability across replicates was significantly lower for flow cytometric data. Both techniques agree on the decrease in the abundance of Bacteroides thetaiotaomicron, accompanied by an initial increase in Blautia hydrogenotrophica. These changes occurred together with reproducible metabolic shifts, namely a fast depletion of glucose and trehalose concentration in batch followed by a decrease in formic acid and pyruvic acid concentrations within the first 12 hours after the switch to chemostat mode. In conclusion, the observed variability in the synthetic bacterial human gut community, as assessed with 16S rRNA gene sequencing, is largely due to technical variability. The low variability seen in HPLC and flow cytometry data suggests a highly deterministic system.
Collapse
Affiliation(s)
- Charlotte van de Velde
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| | - Clémence Joseph
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| | - Kenneth Simoens
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), LeuvenB-3001, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), LeuvenB-3001, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| |
Collapse
|
10
|
Geffroy L, Brown HA, DeVeaux AL, Koropatkin NM, Biteen JS. Single-molecule dynamics of surface lipoproteins in bacteroides indicate similarities and cooperativity. Biophys J 2022; 121:4644-4655. [PMID: 36266970 PMCID: PMC9748367 DOI: 10.1016/j.bpj.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota comprises hundreds of species with a composition shaped by the available glycans. The well-studied starch utilization system (Sus) is a prototype for glycan uptake in the human gut bacterium Bacteroides thetaiotaomicron (Bt). Each Sus-like system includes outer-membrane proteins, which translocate glycan into the periplasm, and one or more cell-surface glycoside hydrolases, which break down a specific (cognate) polymer substrate. Although the molecular mechanisms of the Sus system are known, how the Sus and Sus-like proteins cooperate remains elusive. Previously, we used single-molecule and super-resolution fluorescence microscopy to show that SusG is mobile on the outer membrane and slows down in the presence of starch. Here, we compare the dynamics of three glycoside hydrolases: SusG, Bt4668, and Bt1760, which target starch, galactan, and levan, respectively. We characterized the diffusion of each surface hydrolase in the presence of its cognate glycan and found that all three enzymes are mostly immobile in the presence of the polysaccharide, consistent with carbohydrate binding. Moreover, experiments in glucose versus oligosaccharides suggest that the enzyme dynamics depend on their expression level. Furthermore, we characterized enzyme diffusion in a mixture of glycans and found that noncognate polysaccharides modify the dynamics of SusG and Bt1760 but not Bt4668. We investigated these systems with polysaccharide mixtures and genetic knockouts and found that noncognate polysaccharides modify hydrolase dynamics through some combination of nonspecific protein interactions and downregulation of the hydrolase. Overall, these experiments extend our understanding of how Sus-like lipoprotein dynamics can be modified by changing carbohydrate conditions and the expression level of the enzyme.
Collapse
Affiliation(s)
- Laurent Geffroy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
11
|
Cheng J, Hu J, Geng F, Nie S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
van de Kerkhof GT, Schertel L, Catòn L, Parton TG, Müller KH, Greer HF, Ingham CJ, Vignolini S. Polysaccharide metabolism regulates structural colour in bacterial colonies. J R Soc Interface 2022; 19:20220181. [PMID: 35611622 PMCID: PMC9131120 DOI: 10.1098/rsif.2022.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The brightest colours in nature often originate from the interaction of light with materials structured at the nanoscale. Different organisms produce such coloration with a wide variety of materials and architectures. In the case of bacterial colonies, structural colours stem for the periodic organization of the cells within the colony, and while considerable efforts have been spent on elucidating the mechanisms responsible for such coloration, the biochemical processes determining the development of this effect have not been explored. Here, we study the influence of nutrients on the organization of cells from the structurally coloured bacteria Flavobacterium strain IR1. By analysing the optical properties of the colonies grown with and without specific polysaccharides, we found that the highly ordered organization of the cells can be altered by the presence of fucoidans. Additionally, by comparing the organization of the wild-type strain with mutants grown in different nutrient conditions, we deduced that this regulation of cell ordering is linked to a specific region of the IR1 chromosome. This region encodes a mechanism for the uptake and metabolism of polysaccharides, including a polysaccharide utilization locus (PUL operon) that appears specific to fucoidan, providing new insight into the biochemical pathways regulating structural colour in bacteria.
Collapse
Affiliation(s)
- Gea T. van de Kerkhof
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Lukas Schertel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura Catòn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Hoekmine BV, Room 1.091 (iLab), Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, Heidelberglaan 7, 3584 CS, Utrecht, The Netherlands
| | - Thomas G. Parton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Heather F. Greer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Colin J. Ingham
- Hoekmine BV, Room 1.091 (iLab), Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, Heidelberglaan 7, 3584 CS, Utrecht, The Netherlands
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
13
|
Wang X, Shang Y, Wei Q, Wu X, Dou H, Zhang H, Zhou S, Sha W, Sun G, Ma S, Zhang H. Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes Vulpes) and Corsac Fox (Vulpes Corsac), that Occupy Different Ecological Niches. MICROBIAL ECOLOGY 2022; 83:753-765. [PMID: 34189610 DOI: 10.1007/s00248-021-01806-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiome is integral for the host's living and environmental adaptation and crucially important for understanding host adaptive mechanisms. The red fox (Vulpes vulpes) dominates a wider ecological niche and more complicated habitat than that of the corsac fox (V. corsac). However, the adaptive mechanisms (in particular, the gut microbiome responsible for this kind of difference) are still unclear. Therefore, we investigated the gut microbiome of these two species in the Hulunbuir grassland, China, and evaluated their microbiome composition, function, and adaptive mechanisms. We profiled the gut microbiome and metabolism function of red and corsac foxes via 16S rRNA gene and metagenome sequencing. The foxes harbored species-specific microbiomes and functions that were related to ecological niche and habitat. The red fox had abundant Bacteroides, which leads to significant enrichment of metabolic pathways (K12373 and K21572) and enzymes related to chitin and carbohydrate degradation that may help the red fox adapt to a wider niche. The corsac fox harbored large proportions of Blautia, Terrisporobacter, and ATP-binding cassette (ABC) transporters (K01990, K02003, and K06147) that can help maintain corsac fox health, allowing it to live in harsh habitats. These results indicate that the gut microbiome of the red and corsac foxes may have different abilities which may provide these species with differing capabilities to adapt to different ecological niches and habitats, thus providing important microbiome data for understanding the mechanisms of host adaptation to different niches and habitats.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shengyang Zhou
- College of Life Science, Qufu Normal University, Qufu, China
| | - Weilai Sha
- College of Life Science, Qufu Normal University, Qufu, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, China
| | - Shengchao Ma
- College of Life Science, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, China.
| |
Collapse
|
14
|
Grondin JM, Déjean G, Van Petegem F, Brumer H. Cell Surface Xyloglucan Recognition and Hydrolysis by the Human Gut Commensal Bacteroides uniformis. Appl Environ Microbiol 2022; 88:e0156621. [PMID: 34731054 PMCID: PMC8752140 DOI: 10.1128/aem.01566-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
Xyloglucan (XyG) is a ubiquitous plant cell wall hemicellulose that is targeted by a range of syntenic, microheterogeneous xyloglucan utilization loci (XyGUL) in Bacteroidetes species of the human gut microbiota (HGM), including Bacteroides ovatus and B. uniformis. Comprehensive biochemical and biophysical analyses have identified key differences in the protein complements of each locus that confer differential access to structurally diverse XyG side chain variants. A second, nonsyntenic XyGUL was previously identified in B. uniformis, although its function in XyG utilization compared to its syntenic counterpart was unclear. Here, complementary enzymatic product profiles and bacterial growth curves showcase the notable preference of BuXyGUL2 surface glycan-binding proteins (SGBPs) to bind full-length XyG, as well as a range of oligosaccharides produced by the glycoside hydrolase family 5 (GH5_4) endo-xyloglucanase from this locus. We use isothermal titration calorimetry (ITC) to characterize this binding capacity and pinpoint the specific contributions of each protein to nutrient capture. The high-resolution structure of BuXyGUL2 SGBP-B reveals remarkable putative binding site conservation with the canonical XyG-binding BoXyGUL SGBP-B, supporting similar roles for these proteins in glycan capture. Together, these data underpin the central role of complementary XyGUL function in B. uniformis and broaden our systems-based and mechanistic understanding of XyG utilization in the HGM. IMPORTANCE The omnipresence of xyloglucans in the human diet has led to the evolution of heterogeneous gene clusters in several Bacteroidetes species in the HGM, each specially tuned to respond to the structural variations of these complex plant cell wall polysaccharides. Our research illuminates the complementary roles of syntenic and nonsyntenic XyGUL in B. uniformis in conferring growth on a variety of XyG-derived substrates, providing evidence of glycan-binding protein microadaptation within a single species. These data serve as a comprehensive overview of the binding capacities of the SGBPs from a nonsyntenic B. uniformis XyGUL and will inform future studies on the roles of complementary loci in glycan targeting by key HGM species.
Collapse
Affiliation(s)
- Julie M. Grondin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Chia HE, Koebke KJ, Rangarajan AA, Koropatkin NM, Marsh ENG, Biteen JS. New Orange Ligand-Dependent Fluorescent Reporter for Anaerobic Imaging. ACS Chem Biol 2021; 16:2109-2115. [PMID: 34652894 PMCID: PMC11180495 DOI: 10.1021/acschembio.1c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bilin-binding fluorescent proteins like UnaG-bilirubin are noncovalent ligand-dependent reporters for oxygen-free microscopy but are restricted to blue and far-red fluorescence. Here we describe a high-throughput screening approach to provide a new UnaG-ligand pair that can be excited in the 532 nm green excitation microscopy channel. We identified a novel orange UnaG-ligand pair that maximally emits at 581 nm. Whereas the benzothiazole-based ligand itself is nominally fluorescent, the compound binds UnaG with high affinity (Kd = 3 nM) to induce a 2.5-fold fluorescence intensity enhancement and a 10 nm red shift. We demonstrated this pair in the anaerobic fluorescence microscopy of the prevalent gut bacterium Bacteroides thetaiotaomicron and in Escherichia coli. This UnaG-ligand pair can also be coupled to IFP2.0-biliverdin to differentiate cells in mixed-species two-color imaging. Our results demonstrate the versatility of the UnaG ligand-binding pocket and extend the ability to image cells at longer wavelengths in anoxic environments.
Collapse
Affiliation(s)
- Hannah E Chia
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Karl J Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aathmaja A Rangarajan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - E Neil G Marsh
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie S Biteen
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:559-581. [PMID: 34036727 DOI: 10.1111/1758-2229.12980] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.
Collapse
Affiliation(s)
- Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
| | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
17
|
Chen Z, Geffroy L, Biteen JS. NOBIAS: Analyzing Anomalous Diffusion in Single-Molecule Tracks With Nonparametric Bayesian Inference. FRONTIERS IN BIOINFORMATICS 2021; 1. [PMID: 35498544 PMCID: PMC9053523 DOI: 10.3389/fbinf.2021.742073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Single particle tracking (SPT) enables the investigation of biomolecular dynamics at a high temporal and spatial resolution in living cells, and the analysis of these SPT datasets can reveal biochemical interactions and mechanisms. Still, how to make the best use of these tracking data for a broad set of experimental conditions remains an analysis challenge in the field. Here, we develop a new SPT analysis framework: NOBIAS (NOnparametric Bayesian Inference for Anomalous Diffusion in Single-Molecule Tracking), which applies nonparametric Bayesian statistics and deep learning approaches to thoroughly analyze SPT datasets. In particular, NOBIAS handles complicated live-cell SPT data for which: the number of diffusive states is unknown, mixtures of different diffusive populations may exist within single trajectories, symmetry cannot be assumed between the x and y directions, and anomalous diffusion is possible. NOBIAS provides the number of diffusive states without manual supervision, it quantifies the dynamics and relative populations of each diffusive state, it provides the transition probabilities between states, and it assesses the anomalous diffusion behavior for each state. We validate the performance of NOBIAS with simulated datasets and apply it to the diffusion of single outer-membrane proteins in Bacteroides thetaiotaomicron. Furthermore, we compare NOBIAS with other SPT analysis methods and find that, in addition to these advantages, NOBIAS is robust and has high computational efficiency and is particularly advantageous due to its ability to treat experimental trajectories with asymmetry and anomalous diffusion.
Collapse
Affiliation(s)
- Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Laurent Geffroy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Julie S. Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Julie S. Biteen,
| |
Collapse
|
18
|
Stevenson J, Ngo M, Brandt A, Weadge JT, Suits MDL. Analysis of Two SusE-Like Enzymes From Bacteroides thetaiotaomicron Reveals a Potential Degradative Capacity for This Protein Family. Front Microbiol 2021; 12:645765. [PMID: 34149636 PMCID: PMC8211771 DOI: 10.3389/fmicb.2021.645765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteroides thetaiotaomicron is a major constituent of the human gut microbiome and recognized as a prolific degrader of diverse and complex carbohydrates. This capacity is due to the large number of glycan-depolymerization and acquisition systems that are encoded by gene clusters known as polysaccharide utilization loci (PUL), with the starch utilization system (Sus) serving as the established model. Sharing features with the Sus are Sus-like systems, that require the presence of a specific membrane transporter and surface lipoprotein to be classified as Sus-like. Sus-like import loci are extremely varied with respect to any additional protein components encoded, that would effectively modify the functionality of the degradative and import action of each locus. Herein we have identified eight Sus-like systems in B. thetaiotaomicron that share the feature of a homologous SusE-like factor encoded immediately downstream from the transporter/lipoprotein duo susC/D. Two SusE-like proteins from these systems, BT2857 and BT3158, were characterized by X-ray crystallography and BT2857 was further analyzed by small-angle X-ray scattering. The SusE-like proteins were found to be composed of a conserved three domain architecture: a partially disordered N-terminal domain that is predicted to be proximal to the membrane and structurally homologous to an FN3-like bundle, a middle β-sandwich domain, and a C-terminal domain homologous to family 32 carbohydrate-binding modules, that bind to galactose. Structural comparisons of SusE with SusE-like proteins suggested only a small structural divergence has occurred. However, functional analyses with BT2857 and BT3158 revealed that the SusE-like proteins exhibited galactosidase activity with para-nitrophenyl-β-D-galactopyranoside and α-(1,4)-lactose substrates, that has not been demonstrated for SusE proteins. Using a series of domain truncations of BT2857, the predominant β-D-galactosidase activity is suggested to be localized to the C-terminal DUF5126 domain that would be most distal from the outer membrane. The expanded functionality we have observed with these SusE-like proteins provides a plausible explanation of how Sus-like systems are adapted to target more diverse groups of carbohydrates, when compared to their Sus counterparts.
Collapse
Affiliation(s)
- James Stevenson
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Maria Ngo
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Alicia Brandt
- Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael D L Suits
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
19
|
Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, Chen Y, Escalante V, Ray J, Hern KE, Petzold CJ, Turnbaugh PJ, Huang KC, Arkin AP, Deutschbauer AM. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep 2021; 34:108789. [PMID: 33657378 PMCID: PMC8121099 DOI: 10.1016/j.celrep.2021.108789] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.
Collapse
Affiliation(s)
- Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veronica Escalante
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kelsey E Hern
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
β-Glucan from Lentinula edodes prevents cognitive impairments in high-fat diet-induced obese mice: involvement of colon-brain axis. J Transl Med 2021; 19:54. [PMID: 33541370 PMCID: PMC7863530 DOI: 10.1186/s12967-021-02724-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Long-term high fat (HF) diet intake can cause neuroinflammation and cognitive decline through the gut-brain axis. (1, 3)/(1, 6)-β-glucan, an edible polysaccharide isolated from medical mushroom, Lentinula edodes (L. edodes), has the potential to remodel gut microbiota. However, the effects of L. edodes derived β-glucan against HF diet-induced neuroinflammation and cognitive decline remain unknown. This study aimed to evaluate the neuroprotective effect and mechanism of dietary L edodes β-glucan supplementation against the obesity-associated cognitive decline in mice fed by a HF diet. Methods C57BL/6J male mice were fed with either a lab chow (LC), HF or HF with L. edodes β-glucan supplementation diets for 7 days (short-term) or 15 weeks (long-term). Cognitive behavior was examined; blood, cecum content, colon and brain were collected to evaluate metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology. Results We reported that short-term and long-term L. edodes β-glucan supplementation prevented the gut microbial composition shift induced by the HF diet. Long-term L. edodes β-glucan supplementation prevented the HF diet-induced recognition memory impairment assessed by behavioral tests (the temporal order memory, novel object recognition and Y-maze tests). In the prefrontal cortex and hippocampus, the β-glucan supplementation ameliorated the alteration of synaptic ultrastructure, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits induced by HF diet. Furthermore, the β-glucan supplementation increased the mucosal thickness, upregulated the expression of tight junction protein occludin, decreased the plasma LPS level, and inhibited the proinflammatory macrophage accumulation in the colon of mice fed by HF diet. Conclusions This study revealed that L. edodes β-glucan prevents cognitive impairments induced by the HF diet, which may occur via colon-brain axis improvement. The finding suggested that dietary L. edodes β-glucan supplementation may be an effective nutritional strategy to prevent obesity-associated cognitive decline.
Collapse
|
21
|
Gray DA, White JBR, Oluwole AO, Rath P, Glenwright AJ, Mazur A, Zahn M, Baslé A, Morland C, Evans SL, Cartmell A, Robinson CV, Hiller S, Ranson NA, Bolam DN, van den Berg B. Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nat Commun 2021; 12:44. [PMID: 33398001 PMCID: PMC7782687 DOI: 10.1038/s41467-020-20285-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a "pedal bin" transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism.
Collapse
Affiliation(s)
- Declan A Gray
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Abraham O Oluwole
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | | | - Amy J Glenwright
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Adam Mazur
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Zahn
- Biozentrum, University of Basel, Basel, Switzerland
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carl Morland
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sasha L Evans
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alan Cartmell
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | | | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David N Bolam
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
22
|
Tamura K, Dejean G, Van Petegem F, Brumer H. Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota. J Biol Chem 2021; 296:100415. [PMID: 33587952 PMCID: PMC7974029 DOI: 10.1016/j.jbc.2021.100415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Complex glycans that evade our digestive system are major nutrients that feed the human gut microbiota (HGM). The prevalence of Bacteroidetes in the HGM of populations worldwide is engendered by the evolution of polysaccharide utilization loci (PULs), which encode concerted protein systems to utilize the myriad complex glycans in our diets. Despite their crucial roles in glycan recognition and transport, cell-surface glycan-binding proteins (SGBPs) remained understudied cogs in the PUL machinery. Here, we report the structural and biochemical characterization of a suite of SGBP-A and SGBP-B structures from three syntenic β(1,3)-glucan utilization loci (1,3GULs) from Bacteroides thetaiotaomicron (Bt), Bacteroides uniformis (Bu), and B. fluxus (Bf), which have varying specificities for distinct β-glucans. Ligand complexes provide definitive insight into β(1,3)-glucan selectivity in the HGM, including structural features enabling dual β(1,3)-glucan/mixed-linkage β(1,3)/β(1,4)-glucan-binding capability in some orthologs. The tertiary structural conservation of SusD-like SGBPs-A is juxtaposed with the diverse architectures and binding modes of the SGBPs-B. Specifically, the structures of the trimodular BtSGBP-B and BuSGBP-B revealed a tandem repeat of carbohydrate-binding module-like domains connected by long linkers. In contrast, BfSGBP-B comprises a bimodular architecture with a distinct β-barrel domain at the C terminus that bears a shallow binding canyon. The molecular insights obtained here contribute to our fundamental understanding of HGM function, which in turn may inform tailored microbial intervention therapies.
Collapse
Affiliation(s)
- Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume Dejean
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Tamura K, Brumer H. Glycan utilization systems in the human gut microbiota: a gold mine for structural discoveries. Curr Opin Struct Biol 2020; 68:26-40. [PMID: 33285501 DOI: 10.1016/j.sbi.2020.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022]
Abstract
The complex glycans comprising 'dietary fiber' evade the limited repertoire of human digestive enzymes and hence feed the vast community of microbes in the lower gastrointestinal tract. As such, complex glycans drive the composition of the human gut microbiota and, in turn, influence diverse facets of our nutrition and health. To access these otherwise recalcitrant carbohydrates, gut bacteria produce coordinated, substrate-specific arsenals of carbohydrate-active enzymes, glycan-binding proteins, oligosaccharide transporters, and transcriptional regulators. A recent explosion of biochemical and enzymological studies of these systems has led to the discovery of manifold new carbohydrate-active enzyme (CAZyme) families. Crucially underpinned by structural biology, these studies have also provided unprecedented molecular insight into the exquisite specificity of glycan recognition in the diverse CAZymes and non-catalytic proteins from the HGM. The revelation of a multitude of new three-dimensional structures and substrate complexes constitutes a 'gold rush' in the structural biology of the human gut microbiota.
Collapse
Affiliation(s)
- Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
24
|
Briggs JA, Grondin JM, Brumer H. Communal living: glycan utilization by the human gut microbiota. Environ Microbiol 2020; 23:15-35. [PMID: 33185970 DOI: 10.1111/1462-2920.15317] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.
Collapse
Affiliation(s)
- Jonathon A Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Julie M Grondin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
25
|
Glowacki RWP, Martens EC. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol 2020; 203:JB.00481-20. [PMID: 33168637 PMCID: PMC8092160 DOI: 10.1128/jb.00481-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to persist, successful bacterial inhabitants of the human gut need to adapt to changing nutrient conditions, which are influenced by host diet and a variety of other factors. For members of the Bacteroidetes and several other phyla, this has resulted in diversification of a variety of enzyme-based systems that equip them to sense and utilize carbohydrate-based nutrients from host, diet, and bacterial origin. In this review, we focus first on human gut Bacteroides and describe recent findings regarding polysaccharide utilization loci (PULs) and the mechanisms of the multi-protein systems they encode, including their regulation and the expanding diversity of substrates that they target. Next, we highlight previously understudied substrates such as monosaccharides, nucleosides, and Maillard reaction products that can also affect the gut microbiota by feeding symbionts that possess specific systems for their metabolism. Since some pathogens preferentially utilize these nutrients, they may represent nutrient niches competed for by commensals and pathogens. Finally, we address recent work to describe nutrient acquisition mechanisms in other important gut species such as those belonging to the Gram-positive anaerobic phyla Actinobacteria and Firmicutes, as well as the Proteobacteria Because gut bacteria contribute to many aspects of health and disease, we showcase advances in the field of synthetic biology, which seeks to engineer novel, diet-controlled nutrient utilization pathways within gut symbionts to create rationally designed live therapeutics.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Whole grain cereal fibers and their support of the gut commensal Clostridia for health. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Chia HE, Zuo T, Koropatkin NM, Marsh EG, Biteen JS. Imaging living obligate anaerobic bacteria with bilin-binding fluorescent proteins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:1-6. [PMID: 33313576 PMCID: PMC7731933 DOI: 10.1016/j.crmicr.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescent tools such as green fluorescent protein (GFP) have been used extensively as reporters in biochemistry and microbiology, but GFP and other conventional fluorescent proteins are restricted to aerobic environments. This limitation precludes fluorescence studies of anaerobic ecologies including polymicrobial communities in the human gut microbiome and in soil microbiomes, which profoundly affect health, disease, and the environment. To address this limitation, we describe the first implementation of two bilin-binding fluorescent proteins (BBFPs), UnaG and IFP2.0, as oxygen-independent fluorescent labels for live-cell imaging in anaerobic bacteria. Expression of UnaG or IFP2.0 in the prevalent gut bacterium Bacteroides thetaiotaomicron (B. theta) results in detectable fluorescence upon the addition of the bilirubin or biliverdin ligand, even in anaerobic conditions. Furthermore, these BBFPs can be used in two-color imaging to differentiate cells expressing either UnaG or IFP2.0; UnaG and IFP2.0 can also be used to distinguish B. theta from other common gut bacterial species in mixed-culture live-cell imaging. BBFPs are promising fluorescent tools for live-cell imaging investigations of otherwise inaccessible anaerobic polymicrobial communities.
Collapse
Affiliation(s)
- Hannah E. Chia
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Julie S. Biteen
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Yang X, Zheng M, Hao S, Shi H, Lin D, Chen X, Becvarovski A, Pan W, Zhang P, Hu M, Huang XF, Zheng K, Yu Y. Curdlan Prevents the Cognitive Deficits Induced by a High-Fat Diet in Mice via the Gut-Brain Axis. Front Neurosci 2020; 14:384. [PMID: 32477045 PMCID: PMC7239995 DOI: 10.3389/fnins.2020.00384] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
A high-fat (HF) diet is a major predisposing factor of neuroinflammation and cognitive deficits. Recently, changes in the gut microbiota have been associated with neuroinflammation and cognitive impairment, through the gut-brain axis. Curdlan, a bacterial polysaccharide widely used as food additive, has the potential to alter the composition of the microbiota and improve the gut-brain axis. However, the effects of curdlan against HF diet-induced neuroinflammation and cognitive decline have not been investigated. We aimed to evaluate the neuroprotective effect and mechanism of dietary curdlan supplementation against the obesity-associated cognitive decline observed in mice fed a HF diet. C57Bl/6J male mice were fed with either a control, HF, or HF with curdlan supplementation diets for 7 days (acute) or 15 weeks (chronic). We found that acute curdlan supplementation prevented the gut microbial composition shift induced by HF diet. Chronic curdlan supplementation prevented cognitive declines induced by HF diet. In addition, curdlan protected against the HF diet-induced abnormities in colonic permeability, hyperendotoxemia, and colonic inflammation. Furthermore, in the prefrontal cortex (PFC) and hippocampus, curdlan mitigated microgliosis, neuroinflammation, and synaptic impairments induced by a HF diet. Thus, curdlan—as a food additive and prebiotic—can prevent cognitive deficits induced by HF diet via the colon-brain axis.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongli Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Danhong Lin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI), School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Alec Becvarovski
- Illawarra Health and Medical Research Institute (IHMRI), School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI), School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Shi H, Wang Q, Zheng M, Hao S, Lum JS, Chen X, Huang XF, Yu Y, Zheng K. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation 2020; 17:77. [PMID: 32127019 PMCID: PMC7055120 DOI: 10.1186/s12974-020-01760-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Western pattern diets induce neuroinflammation and impair cognitive behavior in humans and animals. Neuroinflammation and cognitive impairment have been associated with microbiota dysbiosis, through the gut-brain axis. Furthermore, microbiota-accessible carbohydrates (MACs) found in dietary fiber are important in shaping the microbial ecosystem and have the potential to improve the gut-brain-axis. However, the effects of MACs on neuroinflammation and cognition in an obese condition have not yet been investigated. The present study aimed to evaluate the effect of MACs on the microbiota-gut-brain axis and cognitive function in obese mice induced by a high-fat and fiber deficient (HF-FD) diet. Methods C57Bl/6 J male mice were fed with either a control HF-FD or a HF-MAC diet for 15 weeks. Moreover, an additional group was fed with the HF-MAC diet in combination with an antibiotic cocktail (HF-MAC + AB). Following the 15-week treatment, cognitive behavior was investigated; blood, cecum content, colon, and brain samples were collected to determine metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology. Results We report MACs supplementation prevented HF-FD-induced cognitive impairment in nesting building and temporal order memory tests. MACs prevented gut microbiota dysbiosis, including increasing richness, α-diversity and composition shift, especially in Bacteroidetes and its lower taxa. Furthermore, MACs increased colonic mucus thickness, tight junction protein expression, reduced endotoxemia, and decreased colonic and systemic inflammation. In the hippocampus, MACs suppressed HF-FD-induced neuroglia activation and inflammation, improved insulin IRS-pAKT-pGSK3β-pTau synapse signaling, in addition to the synaptic ultrastructure and associated proteins. Furthermore, MACs’ effects on improving colon–cognitive parameters were eliminated by wide spectrum antibiotic microbiota ablation. Conclusions These results suggest that MACs improve cognitive impairments via the gut microbiota-brain axis induced by the consumption of an HF-FD. Supplemental MACs to combat obesity-related gut and brain dysfunction offer a promising approach to prevent neurodegenerative diseases associated with Westernized dietary patterns and obesity.
Collapse
Affiliation(s)
- Hongli Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qiao Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shanshan Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jeremy S Lum
- Illawarra Health and Medical Research Institute (IHMRI), School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI), School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Illawarra Health and Medical Research Institute (IHMRI), School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
30
|
Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. Trends Microbiol 2020; 28:95-108. [DOI: 10.1016/j.tim.2019.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
|
31
|
Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:63-98. [PMID: 32386606 DOI: 10.1016/bs.aambs.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The secretion of extracellular enzymes by soil microbes is rate-limiting in the recycling of biomass. Fungi and bacteria compete and collaborate for nutrients in the soil, with wide ranging ecological impacts. Within soil microbiota, the Bacteroidetes tend to be a dominant phylum, just like in human and animal intestines. The Bacteroidetes thrive because of their ability to secrete diverse arrays of carbohydrate-active enzymes (CAZymes) that target the highly varied glycans in the soil. Bacteroidetes use an energy-saving system of genomic organization, whereby most of their CAZymes are grouped into Polysaccharide Utilization Loci (PULs). These loci enable high level production of specific CAZymes only when their substrate glycans are abundant in the local environment. This gives the Bacteroidetes a clear advantage over other species in the competitive soil environment, further enhanced by the phylum-specific Type IX Secretion System (T9SS). The T9SS is highly effective at secreting CAZymes and/or tethering them to the cell surface, and is tightly coupled to the ability to rapidly glide over solid surfaces, a connection that promotes an active hunt for nutrition. Although the soil Bacteroidetes are less well studied than human gut symbionts, research is uncovering important biochemical and physiological phenomena. In this review, we summarize the state of the art on research into the CAZymes secreted by soil Bacteroidetes in the contexts of microbial soil ecology and the discovery of novel CAZymes for use in industrial biotechnology. We hope that this review will stimulate further investigations into the somewhat neglected enzymology of non-gut Bacteroidetes.
Collapse
Affiliation(s)
- Johan Larsbrink
- Wallenberg Wood Science Center, Gothenburg and Stockholm, Sweden; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lauren Sara McKee
- Wallenberg Wood Science Center, Gothenburg and Stockholm, Sweden; Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
32
|
Zeng H, Huang L, Zhou L, Wang P, Chen X, Ding K. A galactoglucan isolated from of Cistanche deserticola Y. C. Ma. and its bioactivity on intestinal bacteria strains. Carbohydr Polym 2019; 223:115038. [DOI: 10.1016/j.carbpol.2019.115038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023]
|
33
|
Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Curr Opin Chem Biol 2019; 51:98-104. [DOI: 10.1016/j.cbpa.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022]
|
34
|
Foley MH, Déjean G, Hemsworth GR, Davies GJ, Brumer H, Koropatkin NM. A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus. J Mol Biol 2019; 431:981-995. [PMID: 30668971 PMCID: PMC6478033 DOI: 10.1016/j.jmb.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Dietary fiber is an important food source for members of the human gut microbiome. Members of the dominant Bacteroidetes phylum capture diverse polysaccharides via the action of multiple cell surface proteins encoded within polysaccharide utilization loci (PUL). The independent activities of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) for the harvest of various glycans have been studied in detail, but how these proteins work together to coordinate uptake is poorly understood. Here, we combine genetic and biochemical approaches to discern the interplay between the BoGH9 endoglucanase and the xyloglucan-binding proteins SGBP-A and SGBP-B from the Bacteroides ovatus xyloglucan utilization locus (XyGUL). The expression of BoGH9, a weakly active xyloglucanase in isolation, is required in a strain that expresses a non-binding version of SGBP-A (SGBP-A*). The crystal structure of the BoGH9 enzyme suggests the molecular basis for its robust activity on mixed-linkage β-glucan compared to xyloglucan. However, catalytically inactive site-directed mutants of BoGH9 fail to complement the deletion of the active BoGH9 in a SGBP-A* strain. We also find that SGBP-B is needed in an SGBP-A* background to support growth on xyloglucan, but that the non-binding SGBP-B* protein acts in a dominant negative manner to inhibit growth on xyloglucan. We postulate a model whereby the SGBP-A, SGBP-B, and BoGH9 work together at the cell surface, likely within a discrete complex, and that xyloglucan binding by SGBP-B and BoGH9 may facilitate the orientation of the xyloglucan for transfer across the outer membrane.
Collapse
Affiliation(s)
- Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Glyn R Hemsworth
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Kappelmann L, Krüger K, Hehemann JH, Harder J, Markert S, Unfried F, Becher D, Shapiro N, Schweder T, Amann RI, Teeling H. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME JOURNAL 2018; 13:76-91. [PMID: 30111868 PMCID: PMC6298971 DOI: 10.1038/s41396-018-0242-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/17/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Marine algae convert a substantial fraction of fixed carbon dioxide into various polysaccharides. Flavobacteriia that are specialized on algal polysaccharide degradation feature genomic clusters termed polysaccharide utilization loci (PULs). As knowledge on extant PUL diversity is sparse, we sequenced the genomes of 53 North Sea Flavobacteriia and obtained 400 PULs. Bioinformatic PUL annotations suggest usage of a large array of polysaccharides, including laminarin, α-glucans, and alginate as well as mannose-, fucose-, and xylose-rich substrates. Many of the PULs exhibit new genetic architectures and suggest substrates rarely described for marine environments. The isolates’ PUL repertoires often differed considerably within genera, corroborating ecological niche-associated glycan partitioning. Polysaccharide uptake in Flavobacteriia is mediated by SusCD-like transporter complexes. Respective protein trees revealed clustering according to polysaccharide specificities predicted by PUL annotations. Using the trees, we analyzed expression of SusC/D homologs in multiyear phytoplankton bloom-associated metaproteomes and found indications for profound changes in microbial utilization of laminarin, α-glucans, β-mannan, and sulfated xylan. We hence suggest the suitability of SusC/D-like transporter protein expression within heterotrophic bacteria as a proxy for the temporal utilization of discrete polysaccharides.
Collapse
Affiliation(s)
| | - Karen Krüger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Zentrum für Marine Umweltwissenschaften, Bremen, Germany
| | - Jens Harder
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Frank Unfried
- Pharmaceutical Biotechnology, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, University Greifswald, Greifswald, Germany
| | | | - Thomas Schweder
- Pharmaceutical Biotechnology, University Greifswald, Greifswald, Germany. .,Institute of Marine Biotechnology, Greifswald, Germany.
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
36
|
Foley MH, Martens EC, Koropatkin NM. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol Microbiol 2018; 108:551-566. [PMID: 29528148 PMCID: PMC5980745 DOI: 10.1111/mmi.13949] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model system for nutrient acquisition by gut Bacteroidetes, a dominant phylum of gut bacteria. The Sus includes SusCDEFG, which assemble on the cell surface to capture, degrade and import starch. While SusD is an essential starch-binding protein, the precise role(s) of the partially homologous starch-binding proteins SusE and SusF has remained elusive. We previously reported that a non-binding version of SusD (SusD*) supports growth on starch when other members of the multi-protein complex are present. Here we demonstrate that SusE supports SusD* growth on maltooligosaccharides, and determine the domains of SusE essential for this function. Furthermore, we demonstrate that SusE does not need to bind starch to support growth in the presence of SusD*, suggesting that the assembly of SusCDE is most important for maltooligosaccharide uptake in this context. However, starch binding by proteins SusDEF directs the uptake of maltooligosaccharides of specific lengths, suggesting that these proteins equip the cell to scavenge a range of starch fragments. These data demonstrate that the assembly of core Sus proteins SusCDE is secondary to their glycan binding roles, but glycan binding by Sus proteins may fine tune the selection of glycans from the environment.
Collapse
Affiliation(s)
- Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Santilli AD, Dawson EM, Whitehead KJ, Whitehead DC. Nonmicrobicidal Small Molecule Inhibition of Polysaccharide Metabolism in Human Gut Microbes: A Potential Therapeutic Avenue. ACS Chem Biol 2018; 13:1165-1172. [PMID: 29660284 DOI: 10.1021/acschembio.8b00309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new approach for the nonmicrobicidal phenotypic manipulation of prominent gastrointestinal microbes is presented. Low micromolar concentrations of a chemical probe, acarbose, can selectively inhibit the Starch Utilization System and ablate the ability of Bacteroides thetaiotaomicron and B. fragilis strains to metabolize potato starch and pullulan. This strategy has potential therapeutic relevance for the selective modulation of the GI microbiota in a nonmicrobicidal manner.
Collapse
Affiliation(s)
- Anthony D. Santilli
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Elizabeth M. Dawson
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Kristi J. Whitehead
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|