1
|
Serre R, Gabro A, Andraud M, Simon JM, Spano JP, Maingon P, Chargari C. Brachytherapy: Perspectives for combined treatments with immunotherapy. Clin Transl Radiat Oncol 2025; 52:100924. [PMID: 40226301 PMCID: PMC11992541 DOI: 10.1016/j.ctro.2025.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Combining brachytherapy with immunotherapies, particularly immune checkpoint inhibitors (ICIs), is a promising approach for potentiating both local control of the tumor and fully exploiting the synergies between pharmaceutic immunomodulation and radiotherapy. Compared to other radiotherapy techniques, BT has a potential to better spare lymphatic drainage areas and gut microbiota, thus reducing the immunosuppressive effects of radiation therapy. In addition, it delivers a broad range of doses due to inherent dose inhomogeneity within the implanted volume. This variability increases the probability that immune infiltrates would be activated, particularly since the optimal dose for immune activation is not yet firmly established. Even if preclinical models show that radiotherapy can stimulate immune responses, it can also induce toxic effects on immune effectors and combination trials show conflicting outcomes. There is a need for refining radiation modalities to enhance immune potentiation. The dosimetric specificities of BT may offer various advantages and should be explored further. Scarce clinical data on combining brachytherapy with ICIs in advanced cancer suggest potential benefits, with case reports of complete local responses and abscopal effects. However, validation requires a large number of patients in randomized clinical trials for which ideal design is discussed. In parallel with ongoing clinical developments, there is a need to refine preclinical models in order to better analyze the specific biological effects involved in BT, in light of immunomodulatory systemic treatments.
Collapse
Affiliation(s)
- Raphaël Serre
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Alexandra Gabro
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Mickael Andraud
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Jean-Marc Simon
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Jean-Philippe Spano
- Medical Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Philippe Maingon
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Cyrus Chargari
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| |
Collapse
|
2
|
Li Y, Lu W, Xia F, Deng Y, Jin X, Xuan Y, Wang Y, Shen L, Wan J, Zhang H, Li Y, Li X, Huang L, Zhang Z. SIRPα + CD209 + cell: a specialized antigen-presenting cell that contributes to anti-SIRPα/RT therapy in colorectal cancer. Cancer Immunol Immunother 2025; 74:167. [PMID: 40208335 PMCID: PMC11985876 DOI: 10.1007/s00262-025-04025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a leading cause of cancer-related mortality, with a need for improved treatment strategies. Antigen-presenting cells (APCs) have emerged as important modulators of immune responses in the tumor microenvironment (TME). This study aimed to explore the role of these cells in CRC and their potential synergy with radiation therapy (RT). METHODS Single-cell sequencing was performed before and after neoadjuvant therapy (NAT) to identify changes in myeloid cells within the tumor microenvironment, which was compared with peripheral blood of the same patients. The effect of RT with/without immunotherapy on these cells was evaluated in vivo and in vitro. RESULTS Single-cell sequencing showed that SIRPα + CD209 + cells are specialized antigen-presenting cells which are found to decrease in the TME while increasing in the peripheral blood after NAT. In vitro study confirmed their resistance to RT with further upregulated SIRPα expression and enhanced antigen presentation capability induced by RT. Moreover, these cells are involved in the superior tumor control by combination of RT and anti-SIRPα treatment. CONCLUSION SIRPα + CD209 + APCs play a pivotal role in CRC immune modulation and show potential for synergy with RT. These cells could be a biomarker for antigen-presenting capacity, and enhancing their APC function could potentially improve RT/PD1 effectiveness by combination with anti-SIRPα in CRC.
Collapse
Affiliation(s)
- Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiqing Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xin Jin
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yan Xuan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaqi Li
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lili Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Camprodon G, Gabro A, El Ayachi Z, Chopra S, Nout R, Maingon P, Chargari C. Personalized strategies for brachytherapy of cervix cancer. Cancer Radiother 2024; 28:610-617. [PMID: 39395842 DOI: 10.1016/j.canrad.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Among most tailored approaches in radiation oncology, the development of brachytherapy for the treatment of cervical cancer patients has benefited from various technological innovations. The development of 3D image-guided treatments was the first step for treatment personalization. This breakthrough preceded practice homogenization and validation of predictive dose and volume parameters and prognostic factors. We review some of the most significant strategies that emerged from the ongoing research in order to increase personalization in uterovaginal brachytherapy. A better stratification based on patients and tumors characteristics may lead to better discriminate candidates for intensification or de-escalation strategies, in order to still improve patient outcome while minimizing the risk of treatment-related side effects.
Collapse
Affiliation(s)
- Guillaume Camprodon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Alexandra Gabro
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Zineb El Ayachi
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Supriya Chopra
- Department of Radiation Oncology and Medical Physics, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Remi Nout
- Department of Radiation Oncology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Philippe Maingon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Cyrus Chargari
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France.
| |
Collapse
|
4
|
Pathak P, Thomas JJ, Baghwala A, Li C, Teh BS, Butler EB, Farach AM. Personalized Brachytherapy: Applications and Future Directions. Cancers (Basel) 2024; 16:3424. [PMID: 39410041 PMCID: PMC11476498 DOI: 10.3390/cancers16193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Brachytherapy offers a highly conformal and adaptive approach to radiation therapy for various oncologic conditions. This review explores the rationale, applications, technological advances, and future directions of personalized brachytherapy. Integration of advanced imaging techniques, 3D-printed applicators, and artificial intelligence are rapidly enhancing brachytherapy delivery and efficiency, while genomic tests and molecular biomarkers are refining patient and dose selection. Emerging research on combining brachytherapy with immunotherapy offers unique synergistic potential, and technologies such as intensity-modulated and shielded brachytherapy applicators present novel opportunities to further optimize dose distributions. Despite these promising advances, the field faces challenges including a need to train more practitioners and develop new approaches to treating a broader range of malignancies. As personalized medicine evolves, brachytherapy's ability to deliver highly targeted, individualized treatments positions it as a critical component in future cancer care.
Collapse
Affiliation(s)
- Piyush Pathak
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Justin J. Thomas
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Arjit Baghwala
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA; (A.B.); (C.L.); (B.S.T.); (E.B.B.)
| | - Chengfeng Li
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA; (A.B.); (C.L.); (B.S.T.); (E.B.B.)
| | - Bin S. Teh
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA; (A.B.); (C.L.); (B.S.T.); (E.B.B.)
| | - Edward B. Butler
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA; (A.B.); (C.L.); (B.S.T.); (E.B.B.)
| | - Andrew M. Farach
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA; (A.B.); (C.L.); (B.S.T.); (E.B.B.)
| |
Collapse
|
5
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
6
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
8
|
Skalina KA, Małachowska B, Sindhu KK, Thompson M, Nehlsen AD, Salgado LR, Dovey Z, Hasan S, Guha C, Tang J. Combining theranostic/particle therapy with immunotherapy for the treatment of GU malignancies. BJUI COMPASS 2024; 5:334-344. [PMID: 38481668 PMCID: PMC10927934 DOI: 10.1002/bco2.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 11/01/2024] Open
Abstract
Particle therapy and radiopharmaceuticals are emerging fields in the treatment of genitourinary cancers. With these novel techniques and the ever-growing immunotherapy options, the combinations of these therapies have the potential to improve current cancer cure rates. However, the most effective sequence and combination of these therapies is unknown and is a question that is actively being explored in multiple ongoing clinical trials. Here, we review the immunological effects of particle therapy and the available radiopharmaceuticals and discuss how best to combine these therapies.
Collapse
Affiliation(s)
- Karin A. Skalina
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Beata Małachowska
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Kunal K. Sindhu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marcher Thompson
- Department of Radiation OncologyAIS Cancer Center/Adventist HealthBakersfieldCaliforniaUSA
| | - Anthony D. Nehlsen
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lucas Resende Salgado
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Zachary Dovey
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Chandan Guha
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Justin Tang
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
9
|
Yano R, Hirooka M, Morita M, Okazaki Y, Nakamura Y, Imai Y, Watanabe T, Koizumi Y, Yoshida O, Tokumoto Y, Abe M, Hiasa Y. Hepatocellular Carcinoma Showing Tumor Shrinkage Due to an Abscopal Effect. Intern Med 2024; 63:241-246. [PMID: 37197962 PMCID: PMC10864073 DOI: 10.2169/internalmedicine.1844-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
We herein report a 63-year-old man who presented with left lower jaw pain and was diagnosed with hepatocellular carcinoma with bone metastases post-examination. All tumors grew after immunotherapy with atezolizumab and bevacizumab, and his jaw pain worsened. After palliative radiation therapy, however, the tumors shrank markedly, with no recurrence seen after stopping immunotherapy. To our knowledge, this is the first case in which a radiotherapy- and immunotherapy-mediated abscopal effect facilitated tumor shrinkage and immunotherapy discontinuation.
Collapse
Affiliation(s)
- Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Makoto Morita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yuki Okazaki
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| |
Collapse
|
10
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
11
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
12
|
Zhang W, Chen M, Xiang Q, Sun S, Cao H, Xie C, Qiu H. Boosting the abscopal effect with chemoradiotherapy/immunotherapy combination in metastatic cervical cancer: a case report. Immunotherapy 2023; 15:1239-1247. [PMID: 37491886 DOI: 10.2217/imt-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
The prognosis for patients with distant-organ metastatic cervical cancer (CC) is poor owing to the lack of effective treatment modalities. We present a case of CC with lung metastasis that achieved partial remission of the cervical mass after two cycles of chemotherapy, while the pulmonary nodules remained stable. Moreover, the level of the tumor marker squamous cell carcinoma antigen was slightly higher than before. The patient was recommended to receive pelvic concurrent chemoradiotherapy combined with camrelizumab. Remarkably, after undergoing 16 cycles of immunotherapy, the patient's primary cervical mass and pulmonary nodules were in complete remission, and the tumor marker had returned to normal levels. This inspiring case demonstrates that a combination of chemo-/radio-/immunotherapy can be effective in treating lung metastatic CC and can also enhance the abscopal effect.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation & Medical Oncology, Central Hospital of Xianning City, Tongji Xianning Hospital of Huazhong University of Science & Technology, Xianning, 437000, China
| | - Min Chen
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qingming Xiang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shaoxing Sun
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hong Cao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Conghua Xie
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Qiu
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
13
|
Ollivier L, Moreau Bachelard C, Renaud E, Dhamelincourt E, Lucia F. The abscopal effect of immune-radiation therapy in recurrent and metastatic cervical cancer: a narrative review. Front Immunol 2023; 14:1201675. [PMID: 37539054 PMCID: PMC10394237 DOI: 10.3389/fimmu.2023.1201675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Despite human papillomavirus vaccination and screening, in about 5% of cases, cervical cancer (CC) is discovered at an initial metastatic stage. Moreover, nearly one-third of patients with locally advanced CC (LACC) will have a recurrence of their disease during follow-up. At the stage of recurrent or metastatic CC, there are very few treatment options. They are considered incurable with a very poor prognosis. For many years, the standard of care was the combination of platinum-based drug and paclitaxel with the possible addition of bevacizumab. The most recent years have seen the development of the use of immune checkpoint inhibitors (ICIs) (pembrolizumab, cemiplimab and others) in patients with CC. They have shown long term responses with improved overall survival of patients in 1st line (in addition to chemotherapy) or 2nd line (as monotherapy) treatment. Another emerging drug is tisotumab vedotin, an antibody-drug conjugate targeting tissue factor. Radiation therapy (RT) often has a limited palliative indication in metastatic cancers. However, it has been observed that RT can induce tumor shrinkage both in distant metastatic tumors beyond the radiation field and in primary irradiated tumors. This is a rarely observed phenomenon, called abscopal effect, which is thought to be related to the immune system and allows a tumor response throughout the body. It would be the activation of the immune system induced by the irradiation of cancer cells that would lead to a specific type of apoptosis, the immunogenic cell death. Today, there is a growing consensus that combining RT with ICIs may boost abscopal response or cure rates for various cancers. Here we will review the potential abscopal effect of immune-radiation therapy in metastatic cervical cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Department of Radiation Oncology, Institut De Cancérologie De L’Ouest (ICO), Saint-Herblain, France
| | | | - Emmanuelle Renaud
- Department of Medical Oncology, CHRU Morvan, University Hospital, Brest, France
| | | | - Francois Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
14
|
Yu Z, Wang D, Qi Y, Liu J, Zhou T, Rao W, Hu K. Autologous-cancer-cryoablation-mediated nanovaccine augments systematic immunotherapy. MATERIALS HORIZONS 2023; 10:1661-1677. [PMID: 36880811 DOI: 10.1039/d3mh00092c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cancer vaccines developed from autologous tumors hold tremendous promise for individualized cancer immunotherapy. Cryoablation-induced in situ autologous antigens are capable of activating systemic immunity with low damage. However, the dissipation of cancer fragments after cryoablation induces poor immunogenicity and short-time maintenance of immunological memory. To solve this challenge, a nanovaccine with functional grippers is proposed to largely enhance the in situ grasping of tumor fragments, combined with an immune adjuvant to further strengthen the immune-therapeutic effect. Herein, maleimide-modified Pluronic F127-chitosan nanoparticles encapsulating Astragalus polysaccharide (AMNPs) are developed. The AMNPs can capture multifarious and immunogenic tumor antigens generated through cryoablation, specifically target lymph nodes and facilitate lysosome escape to activate remote dendritic cells, and modulate T cell differentiation through cross-presentation, thereby breaking the immunosuppressive microenvironment to achieve durable and robust tumor-specific immunity. In the bilateral Lewis lung cancer tumor model, AMNP-mediated cryoablation can significantly regress primary tumors (with a tumor growth inhibition rate of 100%, and a recurrence rate of 0% (30 days) and 16.67% (60 days)), inhibit untreated abscopal tumor growth (a decrease of about 3.84-fold compared with the saline group), and ultimately improve the long-term survival rate (83.33%). Collectively, the development of a lymph-node-targeted in situ cancer-cryoablation-mediated nanovaccine provides a promising approach for personalized cancer immunotherapy against metastatic cancers.
Collapse
Affiliation(s)
- Zhongyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Dawei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxia Qi
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Jing Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhou
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Wei Rao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
15
|
Ros J, Balconi F, Baraibar I, Saoudi Gonzalez N, Salva F, Tabernero J, Elez E. Advances in immune checkpoint inhibitor combination strategies for microsatellite stable colorectal cancer. Front Oncol 2023; 13:1112276. [PMID: 36816981 PMCID: PMC9932591 DOI: 10.3389/fonc.2023.1112276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have reshaped the prognostic of several tumor types, including metastatic colorectal tumors with microsatellite instability (MSI). However, 90-95% of metastatic colorectal tumors are microsatellite stable (MSS) in which immunotherapy has failed to demonstrate meaningful clinical results. MSS colorectal tumors are considered immune-cold tumors. Several factors have been proposed to account for this lack of response to immune checkpoint blockade including low levels of tumor infiltrating lymphocytes, low tumor mutational burden, a high rate of WNT/β-catenin pathway mutations, and liver metastases which have been associated with immunosuppression. However, studies with novel combinations based on immune checkpoint inhibitors are showing promising activity in MSS colorectal cancer. Here, we review the underlying biological facts that preclude immunotherapy activity, and detail the different immune checkpoint inhibitor combinations evaluated, along with novel immune-based therapies, to overcome innate mechanisms of resistance in MSS colorectal cancer.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Balconi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari, Italy
| | - Iosune Baraibar
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Francesc Salva
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,*Correspondence: Elena Elez,
| |
Collapse
|
16
|
Gandini A, Puglisi S, Pirrone C, Martelli V, Catalano F, Nardin S, Seeber A, Puccini A, Sciallero S. The role of immunotherapy in microsatellites stable metastatic colorectal cancer: state of the art and future perspectives. Front Oncol 2023; 13:1161048. [PMID: 37207140 PMCID: PMC10189007 DOI: 10.3389/fonc.2023.1161048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide, despite several advances has been achieved in last decades. Few prognostic and predictive biomarkers guide therapeutic choice in metastatic CRC (mCRC), among which DNA mismatch repair deficiency and/or microsatellite instability (dMMR/MSI) holds a crucial role. Tumors characterized by dMMR/MSI benefit from immune checkpoint inhibitors. However, most of the mCRC patients (around 95%) are microsatellite stable (MSS), thereby intrinsically resistant to immunotherapy. This represents a clear unmet need for more effective treatments in this population of patients. In this review, we aim to analyze immune-resistance mechanisms and therapeutic strategies to overcome them, such as combinations of immunotherapy and chemotherapy, radiotherapy or target therapies specifically in MSS mCRC. We also explored both available and potential biomarkers that may better select MSS mCRC patients for immunotherapy. Lastly, we provide a brief overview on future perspectives in this field, such as the gut microbiome and its potential role as immunomodulator.
Collapse
Affiliation(s)
- Annalice Gandini
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Pirrone
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Catalano
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Simone Nardin
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Andreas Seeber
- Department of Haematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Medical Oncology and Haematology Unit, Rozzano, Milan, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
- *Correspondence: Stefania Sciallero,
| |
Collapse
|
17
|
van Luijk IF, Smith SM, Marte Ojeda MC, Oei AL, Kenter GG, Jordanova ES. A Review of the Effects of Cervical Cancer Standard Treatment on Immune Parameters in Peripheral Blood, Tumor Draining Lymph Nodes, and Local Tumor Microenvironment. J Clin Med 2022; 11:2277. [PMID: 35566403 PMCID: PMC9102821 DOI: 10.3390/jcm11092277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer remains a public health concern despite all the efforts to implement vaccination and screening programs. Conventional treatment for locally advanced cervical cancer consists of surgery, radiotherapy (with concurrent brachytherapy), combined with chemotherapy, or hyperthermia. The response rate to combination approaches involving immunomodulatory agents and conventional treatment modalities have been explored but remain dismal in patients with locally advanced disease. Studies exploring the immunological effects exerted by combination treatment modalities at the different levels of the immune system (peripheral blood (PB), tumor-draining lymph nodes (TDLN), and the local tumor microenvironment (TME)) are scarce. In this systemic review, we aim to define immunomodulatory and immunosuppressive effects induced by conventional treatment in cervical cancer patients to identify the optimal time point for immunotherapy administration. Radiotherapy (RT) and chemoradiation (CRT) induce an immunosuppressive state characterized by a long-lasting reduction in peripheral CD3, CD4, CD8 T cells and NK cells. At the TDLN level, CRT induced a reduction in Nrp1+Treg stability and number, naïve CD4 and CD8 T cell numbers, and an accompanying increase in IFNγ-producing CD4 helper T cells, CD8 T cells, and NK cells. Potentiation of the T-cell anti-tumor response was particularly observed in patients receiving low irradiation dosage. At the level of the TME, CRT induced a rebound effect characterized by a reduction of the T-cell anti-tumor response followed by stable radioresistant OX40 and FoxP3 Treg cell numbers. However, the effects induced by CRT were very heterogeneous across studies. Neoadjuvant chemotherapy (NACT) containing both paclitaxel and cisplatin induced a reduction in stromal FoxP3 Treg numbers and an increase in stromal and intratumoral CD8 T cells. Both CRT and NACT induced an increase in PD-L1 expression. Although there was no association between pre-treatment PD-L1 expression and treatment outcome, the data hint at an association with pro-inflammatory immune signatures, overall and disease-specific survival (OS, DSS). When considering NACT, we propose that posterior immunotherapy might further reduce immunosuppression and chemoresistance. This review points at differential effects induced by conventional treatment modalities at different immune compartments, thus, the compartmentalization of the immune responses as well as individual patient's treatment plans should be carefully considered when designing immunotherapy treatment regimens.
Collapse
Affiliation(s)
- Iske F. van Luijk
- Haaglanden Medical Center, Lijnbaan 32, 2512 VA The Hague, The Netherlands
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Sharissa M. Smith
- Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Maria C. Marte Ojeda
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Arlene L. Oei
- Laboratory for Experimental Oncology and Radiobiology, Department of Radiation Oncology, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Gemma G. Kenter
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
| | - Ekaterina S. Jordanova
- Center for Gynecologic Oncology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.C.M.O.); (G.G.K.); (E.S.J.)
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
18
|
Baraibar I, Mirallas O, Saoudi N, Ros J, Salvà F, Tabernero J, Élez E. Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:6311. [PMID: 34944931 PMCID: PMC8699573 DOI: 10.3390/cancers13246311] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, deepening knowledge of the complex interactions between the immune system and cancer cells has led to the advent of effective immunotherapies that have revolutionized the therapeutic paradigm of several cancer types. However, colorectal cancer (CRC) is one of the tumor types in which immunotherapy has proven less effective. While there is solid clinical evidence for the therapeutic role of immune checkpoint inhibitors in mismatch repair-deficient (dMMR) and in highly microsatellite instable (MSI-H) metastatic CRC (mCRC), blockade of CTLA-4 or PD-L1/PD-1 as monotherapy has not conferred any major clinical benefit to patients with MMR-proficient (pMMR) or microsatellite stable (MSS) mCRC, reflecting 95% of the CRC population. There thus remains a high unmet medical need for the development of novel immunotherapy approaches for the vast majority of patients with pMMR or MSS/MSI-low (MSI-L) mCRC. Defining the molecular mechanisms for immunogenicity in mCRC and mediating immune resistance in MSS mCRC is needed to develop predictive biomarkers and effective therapeutic combination strategies. Here we review available clinical data from combinatorial therapeutic approaches using immunotherapy-based strategies for MSS mCRC.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Oriol Mirallas
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
| | - Nadia Saoudi
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Josep Tabernero
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
19
|
Link B, Torres Crigna A, Hölzel M, Giordano FA, Golubnitschaja O. Abscopal Effects in Metastatic Cancer: Is a Predictive Approach Possible to Improve Individual Outcomes? J Clin Med 2021; 10:5124. [PMID: 34768644 PMCID: PMC8584726 DOI: 10.3390/jcm10215124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with metastatic cancers often require radiotherapy (RT) as a palliative therapy for cancer pain. RT can, however, also induce systemic antitumor effects outside of the irradiated field (abscopal effects) in various cancer entities. The occurrence of the abscopal effect is associated with a specific immunological activation in response to RT-induced cell death, which is mainly seen under concomitant immune checkpoint blockade. Even if the number of reported apscopal effects has increased since the introduction of immune checkpoint inhibition, its occurrence is still considered rare and unpredictable. The cases reported so far may nevertheless allow for identifying first biomarkers and clinical patterns. We here review biomarkers that may be helpful to predict the occurrence of abscopal effects and hence to optimize therapy for patients with metastatic cancers.
Collapse
Affiliation(s)
- Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
20
|
Boustani J, Lecoester B, Baude J, Latour C, Adotevi O, Mirjolet C, Truc G. Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies. Cancers (Basel) 2021; 13:cancers13194893. [PMID: 34638376 PMCID: PMC8508444 DOI: 10.3390/cancers13194893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immune checkpoint blockade has yielded unprecedented and durable responses in cancer patients, the efficacy of this treatment remains limited. Radiation therapy can induce immunogenic cell death that contributes to the local efficacy of irradiation. However, radiation-induced systemic responses are scarce. Studies combining radiation with checkpoint inhibitors suggest a synergistic potential of this strategy. In this review, we focused on parameters that can be optimized to enhance the anti-tumor immune response that results from this association, in order to achieve data on dose, fractionation, target volume, lymph nodes sparing, radiation particles, and other immunomodulatory agents. These factors should be considered in future trials for better clinical outcomes. To this end, we discussed the main preclinical and clinical data available to optimize the efficacy of the treatment combination. Abstract Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- Department of Radiation Oncology, University Hospital of Besançon, 25000 Besançon, France
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
| | - Benoît Lecoester
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
| | - Jérémy Baude
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
| | - Charlène Latour
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- INSERM UMR 1231, Cadir Team, 21000 Dijon, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
- Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| | - Céline Mirjolet
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- INSERM UMR 1231, Cadir Team, 21000 Dijon, France
- Correspondence:
| | - Gilles Truc
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
| |
Collapse
|
21
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
22
|
Pourakbari R, Hajizadeh F, Parhizkar F, Aghebati-Maleki A, Mansouri S, Aghebati-Maleki L. Co-stimulatory agonists: An insight into the immunotherapy of cancer. EXCLI JOURNAL 2021; 20:1055-1085. [PMID: 34267616 PMCID: PMC8278219 DOI: 10.17179/excli2021-3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint pathways consist of stimulatory pathways, which can function like a strong impulse to promote T helper cells or killer CD8+ cells activation and proliferation. On the other hand, inhibitory pathways keep self-tolerance of the immune response. Increasing immunological activity by stimulating and blocking these signaling pathways are recognized as immune checkpoint therapies. Providing the best responses of CD8+ T cell needs the activation of T cell receptor along with the co-stimulation that is generated via stimulatory checkpoint pathways ligation including Inducible Co-Stimulator (ICOS), CD40, 4-1BB, GITR, and OX40. In cancer, programmed cell death receptor-1 (PD-1), Programmed cell death ligand-1(PD-L1) and Cytotoxic T Lymphocyte-Associated molecule-4 (CTLA-4) are the most known inhibitory checkpoint pathways, which can hinder the immune responses which have specifically anti-tumor characteristics and attenuate T cell activation and also cytokine production. The use of antagonistic monoclonal antibodies (mAbs) that block CTLA-4 or PD-1 activation is used in a variety of malignancies. It has been reported that they can lead to an increase in T cells and thereby strengthen anti-tumor immunity. Agonists of stimulatory checkpoint pathways can induce strong immunologic responses in metastatic patients; however, for achieving long-lasting benefits for the wide range of patients, efficient combinatorial therapies are required. In the present review, we focus on the preclinical and basic research on the molecular and cellular mechanisms by which immune checkpoint inhibitor blockade or other approaches with co-stimulatory agonists work together to improve T-cell antitumor immunity.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Mansouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Romano E, Honeychurch J, Illidge TM. Radiotherapy-Immunotherapy Combination: How Will We Bridge the Gap Between Pre-Clinical Promise and Effective Clinical Delivery? Cancers (Basel) 2021; 13:457. [PMID: 33530329 PMCID: PMC7865752 DOI: 10.3390/cancers13030457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential to further improve the efficacy of RT and cancer outcomes. The initial results of combining RT with immunomodulatory agents have generated promising data in pre-clinical studies, which has in turn led to a large number of RT and immunotherapy clinical trials. The overarching aim of these combinations is to enhance anti-tumor immune responses and improve responses rates and patient outcomes. In order to maximize this undoubted opportunity, there remain a number of important questions that need to be addressed, including: (i) the optimal RT dose and fractionation schedule; (ii) the optimal RT target volume; (iii) the optimal immuno-oncology (IO) agent(s) to partner with RT; (iv) the optimal site(s)/route(s) of administration of IO agents; and finally, the optimal RT schedule. In this review, we will summarize progress to date and identify current gaps in knowledge that need to be addressed in order to facilitate effective clinical translation of RT and IO agent combinations.
Collapse
Affiliation(s)
- Erminia Romano
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
| | - Jamie Honeychurch
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
| | - Timothy M. Illidge
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
- Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
24
|
Marmorino F, Boccaccino A, Germani MM, Falcone A, Cremolini C. Immune Checkpoint Inhibitors in pMMR Metastatic Colorectal Cancer: A Tough Challenge. Cancers (Basel) 2020; 12:E2317. [PMID: 32824490 PMCID: PMC7465130 DOI: 10.3390/cancers12082317] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
The introduction of checkpoint inhibitors provided remarkable achievements in several solid tumors but only 5% of metastatic colorectal cancer (mCRC) patients, i.e., those with bearing microsatellite instable (MSI-high)/deficient DNA mismatch repair (dMMR) tumors, benefit from this approach. The favorable effect of immunotherapy in these patients has been postulated to be due to an increase in neoantigens due to their higher somatic mutational load, also associated with an abundant infiltration of immune cells in tumor microenvironment (TME). While in patients with dMMR tumors checkpoint inhibitors allow achieving durable response with dramatic survival improvement, current results in patients with microsatellite stable (MSS or MSI-low)/proficient DNA mismatch repair (pMMR) tumors are disappointing. These tumors show low mutational load and absence of "immune-competent" TME, and are intrinsically resistant to immune checkpoint inhibitors. Modifying the interplay among cancer cells, TME and host immune system is the aim of multiple lines of research in order to enhance the immunogenicity of pMMR mCRC, and exploit immunotherapy also in this field. Here, we focus on the rationale behind ongoing clinical trials aiming at extending the efficacy of immunotherapy beyond the MSI-high/dMMR subgroup with particular regard to academic no-profit studies.
Collapse
Affiliation(s)
- Federica Marmorino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Marco Maria Germani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alfredo Falcone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
25
|
Brachytherapy in a Single Dose of 10Gy as an "in situ" Vaccination. Int J Mol Sci 2020; 21:ijms21134585. [PMID: 32605154 PMCID: PMC7369911 DOI: 10.3390/ijms21134585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is one of the major methods of cancer treatment. RT destroys cancer cells, but also affects the tumor microenvironment (TME). The delicate balance between immunomodulation processes in TME is dependent, among other things, on a specific radiation dose. Despite many studies, the optimal dose has not been clearly determined. Here, we demonstrate that brachytherapy (contact radiotherapy) inhibits melanoma tumor growth in a dose-dependent manner. Doses of 10Gy and 15Gy cause the most effective tumor growth inhibition compared to the control group. Brachytherapy, at a single dose of ≥ 5Gy, resulted in reduced tumor blood vessel density. Only a dose of 10Gy had the greatest impact on changes in the levels of tumor-infiltrating immune cells. It most effectively reduced the accumulation of protumorogenic M2 tumor-associated macrophages and increased the infiltration of cytotoxic CD8+ T lymphocytes. To summarize, more knowledge about the effects of irradiation doses in anticancer therapy is needed. It may help in the optimization of RT treatment. Our results indicate that a single dose of 10Gy leads to the development of a robust immune response. It seems that it is able to convert a tumor microenvironment into an “in situ” vaccine and lead to a significant inhibition of tumor growth.
Collapse
|
26
|
Ellerin BE, Demandante CGN, Martins JT. Pure abscopal effect of radiotherapy in a salivary gland carcinoma: Case report, literature review, and a search for new approaches. Cancer Radiother 2020; 24:226-246. [PMID: 32192840 DOI: 10.1016/j.canrad.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
We report the case of an 84-year-old woman with poorly differentiated non-small cell carcinoma of the right parotid who presented with headache, was found to have a primary right parotid gland cancer as well as metastatic disease, and underwent palliative radiotherapy to the primary site. The patient received no chemotherapy or immunotherapy, but both the primary site and several non-irradiated foci in the lungs regressed or completely resolved. The patient remained free of disease for about one year before progression. The case is a rare instance of abscopal regression of metastatic disease in the absence of pharmacologic immunomodulation. A literature review surveys the history of the abscopal effect of radiation therapy, attempts to understand the mechanisms of its successes and failures, and points to new approaches that can inform and improve the outcomes of radioimmunotherapy.
Collapse
Affiliation(s)
| | | | - J T Martins
- UT Health HOPE Cancer Center, Tyler, TX 75701, USA
| |
Collapse
|
27
|
Akbor M, Hung KF, Yang YP, Chou SJ, Tsai PH, Chien CS, Lin LT. Immunotherapy orchestrates radiotherapy in composing abscopal effects: A strategic review in metastatic head and neck cancer. J Chin Med Assoc 2020; 83:113-116. [PMID: 31834023 DOI: 10.1097/jcma.0000000000000234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The treatment of metastatic head and neck squamous cell carcinoma (HNSCC) with a combination of radiotherapy (RT) and immunotherapy can augment treatment response and symptomatic relief. Combination therapy can also trigger a non-targeted tumor control event called the abscopal effect. This effect can be demonstrated by treatment with anti-programmed death 1/programmed death ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte-associated antigen 4 antibodies in combination with hypofractionated RT. Individual studies and clinical trials have revealed that combination radio-immunotherapy improves overall treatment response by successful initiation of the abscopal effect, which extends the treatment effects to non-targeted lesions. Growing attention to the abscopal effect may inspire innovations in current RT toward more effective and less toxic radiobiological treatment modalities for advanced HNSCC. We review the latest findings on the abscopal effect with emphases on therapeutic modalities and potential applications for treating metastatic HNSCC.
Collapse
Affiliation(s)
- Mohammady Akbor
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Jie Chou
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
28
|
Annede P, Cosset JM, Van Limbergen E, Deutsch E, Haie-Meder C, Chargari C. Radiobiology: Foundation and New Insights in Modeling Brachytherapy Effects. Semin Radiat Oncol 2020; 30:4-15. [DOI: 10.1016/j.semradonc.2019.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Yamazaki T, Buqué A, Rybstein M, Chen J, Sato A, Galluzzi L. Methods to Detect Immunogenic Cell Death In Vivo. Methods Mol Biol 2020; 2055:433-452. [PMID: 31502164 DOI: 10.1007/978-1-4939-9773-2_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In response to selected stressors, cancer cells can undergo a form of regulated cell death that-in immunocompetent syngeneic hosts-is capable of eliciting an adaptive immune response specific for dead cell-associated antigens. Thus, such variant of regulated cell death manifests with robust antigenicity and adjuvanticity. As compared to their normal counterparts, malignant cells are highly antigenic per se, implying that they express a variety of antigens that are not covered by central tolerance. However, the precise modality through which cancer cells die in response to stress has a major influence on adjuvanticity. Moreover, the adjuvanticity threshold to productively drive anticancer immune responses is considerably lower in tumor-naïve hosts as compared to their tumor-bearing counterparts, largely reflecting the establishment of peripheral tolerance to malignant lesions in the latter (but not in the former). So far, no cellular biomarker or combination thereof has been found to reliably predict the ability of cancer cell death to initiate antitumor immunity. Thus, although some surrogate biomarkers of adjuvanticity can be used for screening purposes, the occurrence of bona fide immunogenic cell death (ICD) can only be ascertained in vivo. Here, we describe two methods that can be harnessed to straightforwardly determine the immunogenicity of mouse cancer cells succumbing to stress in both tumor-naïve and tumor-bearing hosts.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Marissa Rybstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan Chen
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
30
|
Choi C, Yoo GS, Cho WK, Park HC. Optimizing radiotherapy with immune checkpoint blockade in hepatocellular carcinoma. World J Gastroenterol 2019; 25:2416-2429. [PMID: 31171886 PMCID: PMC6543238 DOI: 10.3748/wjg.v25.i20.2416] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and its incidence is rapidly increasing in North America and Western Europe as well as South-East Asia. Patients with advanced stage HCC have very poor outcomes; therefore, the discovery of new innovative approaches is urgently needed. Cancer immunotherapy has become a game-changer and revolutionized cancer treatment. A comprehensive understanding of tumor-immune interactions led to the development of immune checkpoint inhibitors (ICIs) as new therapeutic tools, which have been used with great success. Targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T lymphocyte-associated protein-4 (CTLA-4) reinvigorates anti-tumor immunity by restoring exhausted T cells. Despite their effectiveness in several types of cancer, of the many immune suppressive mechanisms limit the efficacy of ICI monotherapy. Radiation therapy (RT) is an essential local treatment modality for a broad range of malignancies, and it is currently gaining extensive attention as a promising combination partner with ICIs because of its ability to trigger immunogenic cell death. The efficacy of combination approaches using RT and ICIs has been well documented in numerous preclinical and clinical studies on various types of cancers but not HCC. The application of ICIs has now expanded to HCC, and RT is recognized as a promising modality in HCC. This review will highlight the current roles of PD-1 and CTLA-4 therapies and their combination with RT in the treatment of cancers, including HCC. In addition, this review will discuss the future perspectives of the combination of ICIs and RT in HCC treatment.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| |
Collapse
|
31
|
Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, Ponz-Sarvise M, Azpilikueta A, Bolaños E, Sanmamed MF, Berraondo P, Calvo FA, Barcelos-Hoff MH, Perez-Gracia JL, Melero I. TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies. Mol Cancer Ther 2019; 18:621-631. [PMID: 30683810 DOI: 10.1158/1535-7163.mct-18-0558] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/07/2018] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
Abstract
Radiotherapy can be synergistically combined with immunotherapy in mouse models, extending its efficacious effects outside of the irradiated field (abscopal effects). We previously reported that a regimen encompassing local radiotherapy in combination with anti-CD137 plus anti-PD-1 mAbs achieves potent abscopal effects against syngeneic transplanted murine tumors up to a certain tumor size. Knowing that TGFβ expression or activation increases in irradiated tissues, we tested whether TGFβ blockade may further enhance abscopal effects in conjunction with the anti-PD-1 plus anti-CD137 mAb combination. Indeed, TGFβ blockade with 1D11, a TGFβ-neutralizing mAb, markedly enhanced abscopal effects and overall treatment efficacy against subcutaneous tumors of either 4T1 breast cancer cells or large MC38 colorectal tumors. Increases in CD8 T cells infiltrating the nonirradiated lesion were documented upon combined treatment, which intensely expressed Granzyme-B as an indicator of cytotoxic effector capability. Interestingly, tumor tissue but not healthy tissue irradiation results in the presence of higher concentrations of TGFβ in the nonirradiated contralateral tumor that showed smad2/3 phosphorylation increases in infiltrating CD8 T cells. In conclusion, radiotherapy-induced TGFβ hampers abscopal efficacy even upon combination with a potent immunotherapy regimen. Therefore, TGFβ blockade in combination with radioimmunotherapy results in greater efficacy.
Collapse
Affiliation(s)
- María E Rodríguez-Ruiz
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Inmaculada Rodríguez
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Cellular Therapy, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Lina Mayorga
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Tania Labiano
- Department of Oncology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Benigno Barbes
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Mariano Ponz-Sarvise
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantza Azpilikueta
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Felipe A Calvo
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Mary Helen Barcelos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Jose L Perez-Gracia
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| |
Collapse
|
32
|
Zhu Y, Dong M, Yang J, Zhang J. Evaluation of Iodine-125 Interstitial Brachytherapy Using Micro-Positron Emission Tomography/Computed Tomography with 18F-Fluorodeoxyglucose in Hepatocellular Carcinoma HepG2 Xenografts. Med Sci Monit 2019; 25:371-380. [PMID: 30636171 PMCID: PMC6339452 DOI: 10.12659/msm.912590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Iodine-125 interstitial brachytherapy (125I-IBT) is a promising treatment option for unresectable hepatocellular carcinoma (HCC). This study evaluated the usefulness of micro-positron emission tomography/computed tomography (micro-PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) in assessing response to 125I-IBT in HCC HepG2 xenograft. MATERIAL AND METHODS Twelve mice with bilateral HepG2 xenografts were divided into 3 equal groups implanted with iodine-125 seeds into the left xenografts with a dose of 30, 50, and 80 Gy, respectively, and the right xenografts were used as internal controls. Before and 28 days after treatment, the 18F-FDG micro-PET/CT was performed. The ratios of left to right xenografts of tumor volume (RTV), maximum standardized uptake value (RSUVmax), mean optical density of caspase-3 expression (RMODcaspase-3), and apoptosis index (RAI) were compared. RESULTS The RTV means of the 50 and 80 Gy groups were significantly lower than in the 30 Gy group after treatment (P<0.01) and the RTV means after treatment were lower than baseline in the 50 and 80 Gy groups (P<0.05). The RSUVmax mean after treatment was lower than baseline in the 80 Gy group (P<0.05). The RMODCaspase-3 and RAI means of the 80 Gy group were higher than in the 30 Gy group (P<0.05). The RSUVmax was correlated negatively to RMODcaspase-3 (r=-0.624, P<0.05) and RAI (r=-0.651, P<0.05). CONCLUSIONS This study suggest that 125I-IBT inhibits tumor growth via upregulating caspase-3 expression and prompting apoptosis in HCC HepG2 xenografts. The 18F-FDG micro-PET/CT may be a useful functional imaging modality to assess early response to 125I-IBT in HCC HepG2 xenograft.
Collapse
Affiliation(s)
- Yangjun Zhu
- Department of Ultrasonography, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Mengjie Dong
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
33
|
Liu Y, Dong Y, Kong L, Shi F, Zhu H, Yu J. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J Hematol Oncol 2018; 11:104. [PMID: 30115069 PMCID: PMC6097415 DOI: 10.1186/s13045-018-0647-8] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is used routinely as a standard treatment for more than 50% of patients with malignant tumors. The abscopal effect induced by local RT, which is considered as a systemic anti-tumor immune response, reflects the regression of non-irradiated metastatic lesions at a distance from the primary site of irradiation. Since the application of immunotherapy, especially with immune checkpoint inhibitors, can enhance the systemic anti-tumor response of RT, the combination of RT and immunotherapy has drawn extensive attention by oncologists and cancer researchers. Nevertheless, the exact underlying mechanism of the abscopal effect remains unclear. In general, we speculate that the immune mechanism of RT is responsible for, or at least associated with, this effect. In this review, we discuss the anti-tumor effect of RT and immune checkpoint blockade and discuss some published studies on the abscopal effect for this type of combination therapy. In addition, we also evaluate the most appropriate time window for the combination of RT and immune checkpoint blockade, as well as the optimal dose and fractionation of RT in the context of the combined treatment. Finally, the most significant purpose of this review is to identify the potential predictors of the abscopal effect to help identify the most appropriate patients who would most likely benefit from the combination treatment modality.
Collapse
Affiliation(s)
- Yang Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Yinping Dong
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Fang Shi
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Hui Zhu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China. .,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| | - Jinming Yu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China. .,Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
34
|
Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng 2018; 2:611-621. [PMID: 31015634 DOI: 10.1038/s41551-018-0262-6] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 06/11/2018] [Indexed: 01/04/2023]
Abstract
Radiation therapy for cancer can lead to off-target toxicity and can be ineffective against hypoxic solid tumours and distant metastases. Here, we show that intratumoral injection, in mouse and rabbit xenografts and in patient-derived mouse xenografts, of a sodium alginate formulation containing catalase (Cat) labelled with the therapeutic 131I radioisotope enables long-term relief of tumour hypoxia and complete tumour elimination at low radioactivity doses. On injection, the soluble polysaccharide rapidly transforms into a hydrogel in the presence of endogenous Ca2+, fixing 131I-Cat within the tumours. We also show that local radiotherapy with a formulation that includes the immunostimulatory CpG oligonucleotide combined with systemic checkpoint-blockade therapy using an anti-CTLA-4 antibody leads to metastasis inhibition and protection against tumour rechallenge. The local therapy, which uses only biocompatible components, might enable new strategies for local tumour treatments that can be combined with systemic therapeutic responses, for the inhibition of tumour metastasis and the prevention of tumour recurrence in patients with advanced-stage cancer.
Collapse
|
35
|
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18:313-322. [PMID: 29449659 PMCID: PMC5912991 DOI: 10.1038/nrc.2018.6] [Citation(s) in RCA: 825] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 60 years ago, the effect whereby radiotherapy at one site may lead to regression of metastatic cancer at distant sites that are not irradiated was described and called the abscopal effect (from 'ab scopus', that is, away from the target). The abscopal effect has been connected to mechanisms involving the immune system. However, the effect is rare because at the time of treatment, established immune-tolerance mechanisms may hamper the development of sufficiently robust abscopal responses. Today, the growing consensus is that combining radiotherapy with immunotherapy provides an opportunity to boost abscopal response rates, extending the use of radiotherapy to treatment of both local and metastatic disease. In this Opinion article, we review evidence for this growing consensus and highlight emerging limitations to boosting the abscopal effect using immunotherapy. This is followed by a perspective on current and potential cross-disciplinary approaches, including the use of smart materials to address these limitations.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Omoruyi Credit Irabor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jonathan D. Schoenfeld
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jürgen Hesser
- University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3. D-68167, Mannheim, Germany
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| |
Collapse
|
36
|
Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 2018; 10:1758834017742575. [PMID: 29383033 PMCID: PMC5784573 DOI: 10.1177/1758834017742575] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is currently used in more than 50% of cancer patients during the course of their disease in the curative, adjuvant or palliative setting. RT achieves good local control of tumor growth, conferring DNA damage and impacting tumor vasculature and the immune system. Formerly regarded as a merely immunosuppressive treatment, pre- and clinical observations indicate that the therapeutic effect of RT is partially immune mediated. In some instances, RT synergizes with immunotherapy (IT), through different mechanisms promoting an effective antitumor immune response. Cell death induced by RT is thought to be immunogenic and results in modulation of lymphocyte effector function in the tumor microenvironment promoting local control. Moreover, a systemic immune response can be elicited or modulated to exert effects outside the irradiation field (so called abscopal effects). In this review, we discuss the body of evidence related to RT and its immunogenic potential for the future design of novel combination therapies.
Collapse
Affiliation(s)
- Thomas Walle
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Adelheid Cerwenka
- German Cancer Research Center (DKFZ), Research Group Innate Immunity, Heidelberg, Germany
| | - Daniel Ajona
- Division of Oncology, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainIdiSNA, Navarra Institute for Health Research, Pamplona, SpainDepartment of Biochemistry and Genetics, University of Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Ignacio Melero
- Programme in Immunotherapy, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainDepartment of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), IdiSNA, Navarra Institute for Health Research, Department of Histology and Pathology, University of Navarra, School of Medicine, Pamplona, Spain. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| |
Collapse
|