1
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
2
|
Rudinskiy M, Pons-Vizcarra M, Soldà T, Fregno I, Bergmann TJ, Ruano A, Delgado A, Morales S, Barril X, Bellotto M, Cubero E, García-Collazo AM, Pérez-Carmona N, Molinari M. Validation of a highly sensitive HaloTag-based assay to evaluate the potency of a novel class of allosteric β-Galactosidase correctors. PLoS One 2023; 18:e0294437. [PMID: 38019733 PMCID: PMC10686464 DOI: 10.1371/journal.pone.0294437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase β-galactosidase (β-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) β-Gal and four disease-related β-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing β-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università Della Svizzera Italiana, Lugano, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maria Pons-Vizcarra
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Tatiana Soldà
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ilaria Fregno
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Timothy Jan Bergmann
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ana Ruano
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Aida Delgado
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Sara Morales
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Xavier Barril
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
- Facultat de Farmacia, IBUB & IQTC, Universitat de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Elena Cubero
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | - Maurizio Molinari
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Laur D, Pichard S, Bekri S, Caillaud C, Froissart R, Levade T, Roubertie A, Desguerre I, Héron B, Auvin S. Natural history of GM1 gangliosidosis-Retrospective cohort study of 61 French patients from 1998 to 2019. J Inherit Metab Dis 2023; 46:972-981. [PMID: 37381921 DOI: 10.1002/jimd.12646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
GM1 gangliosidosis is a rare lysosomal storage disorder associated with β-galactosidase enzyme deficiency. There are three types of GM1 gangliosidosis based on age of symptom onset, which correlate with disease severity. In 2019, we performed a retrospective multicentric study including all patients diagnosed with GM1 gangliosidosis in France since 1998. We had access to data for 61 of the 88 patients diagnosed between 1998 and 2019. There were 41 patients with type 1 (symptom onset ≤6 months), 11 with type 2a (symptom onset from 7 months to 2 years), 5 with type 2b (symptom onset from 2 to 3 years), and 4 with type 3 (symptom onset >3 years). The estimated incidence in France was 1/210000. In patients with type 1, the first symptoms were hypotonia (26/41, 63%), dyspnea (7/41, 17%), and nystagmus (6/41, 15%), whereas in patients with type 2a, these were psychomotor regression (9/11, 82%) and seizures (3/11, 27%). In types 2b and 3, the initial symptoms were mild, such as speech difficulties, school difficulties, and progressive psychomotor regression. Hypotonia was observed in all patients, except type 3. The mean overall survival was 23 months (95% confidence interval [CI]: 7, 39) for type 1 and 9.1 years (95% CI: 4.5, 13.5) for type 2a. To the best of our knowledge, this is one of the largest historical cohorts reported, which provides important information on the evolution of all types of GM1 gangliosidosis. These data could be used as a historical cohort in studies assessing potential therapies for this rare genetic disease.
Collapse
Affiliation(s)
- Domitille Laur
- Department of Paediatric Neurology, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Samia Pichard
- Reference Centre for Inborn Errors of Metabolism, Necker Enfants-Malades Hospital, AP-HP, Paris, France
| | - Soumeya Bekri
- Metabolic Biochemistry Department, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Catherine Caillaud
- Biochemistry, Metabolomic and Proteomic Department, INSERM UMRS 1151, Necker Enfants Malades, Paris, France
| | - Roseline Froissart
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, CHU de Lyon, Bron, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU de Toulouse, and INSERM UMR1037, CRCT (Cancer Research Center of Toulouse), Université Paul Sabatier, Toulouse, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CIC, CHU de Montpellier, INM, Univ Montpellier, INSERM U1298, Montpellier, France
| | - Isabelle Desguerre
- Reference Center of Neuromuscular Disorders Nord/Est/Île-de-France, Pediatric Neurology Department, Necker-Enfants-Malades Hospital, AP-HP, Paris, France
| | - Bénédicte Héron
- Centre de Référence des Maladies Lysosomales, Service de Neurologie Pédiatrique, Hôpital Armand Trousseau-La Roche Guyon, APHP, Fédération Hospitalo-Universitaire I2-D2 AP-HP.Sorbonne-Université, Paris, France
| | - Stéphane Auvin
- Université Paris-Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Stütz AE, Thonhofer M, Weber P, Wolfsgruber A, Wrodnigg TM. Pharmacological Chaperones for β-Galactosidase Related to G M1 -Gangliosidosis and Morquio B: Recent Advances. CHEM REC 2021; 21:2980-2989. [PMID: 34816592 DOI: 10.1002/tcr.202100269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A short survey on selected β-galactosidase inhibitors as potential pharmacological chaperones for GM1 -gangliosidosis and Morquio B associated mutants of human lysosomal β-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| |
Collapse
|
5
|
Nicoli ER, Annunziata I, d’Azzo A, Platt FM, Tifft CJ, Stepien KM. GM1 Gangliosidosis-A Mini-Review. Front Genet 2021; 12:734878. [PMID: 34539759 PMCID: PMC8446533 DOI: 10.3389/fgene.2021.734878] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
GM1 gangliosidosis is a progressive, neurosomatic, lysosomal storage disorder caused by mutations in the GLB1 gene encoding the enzyme β-galactosidase. Absent or reduced β-galactosidase activity leads to the accumulation of β-linked galactose-containing glycoconjugates including the glycosphingolipid (GSL) GM1-ganglioside in neuronal tissue. GM1-gangliosidosis is classified into three forms [Type I (infantile), Type II (late-infantile and juvenile), and Type III (adult)], based on the age of onset of clinical symptoms, although the disorder is really a continuum that correlates only partially with the levels of residual enzyme activity. Severe neurocognitive decline is a feature of Type I and II disease and is associated with premature mortality. Most of the disease-causing β-galactosidase mutations reported in the literature are clustered in exons 2, 6, 15, and 16 of the GLB1 gene. So far 261 pathogenic variants have been described, missense/nonsense mutations being the most prevalent. There are five mouse models of GM1-gangliosidosis reported in the literature generated using different targeting strategies of the Glb1 murine locus. Individual models differ in terms of age of onset of the clinical, biochemical, and pathological signs and symptoms, and overall lifespan. However, they do share the major abnormalities and neurological symptoms that are characteristic of the most severe forms of GM1-gangliosidosis. These mouse models have been used to study pathogenic mechanisms, to identify biomarkers, and to evaluate therapeutic strategies. Three GLB1 gene therapy trials are currently recruiting Type I and Type II patients (NCT04273269, NCT03952637, and NCT04713475) and Type II and Type III patients are being recruited for a trial utilizing the glucosylceramide synthase inhibitor, venglustat (NCT04221451).
Collapse
Affiliation(s)
- Elena-Raluca Nicoli
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Cynthia J. Tifft
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karolina M. Stepien
- Adult Inherited Metabolic Disorders, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, Ali BR. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Hum Genet 2020; 139:657-673. [PMID: 32219518 DOI: 10.1007/s00439-020-02153-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
GM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with β-galactosidase (β-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization. Deoxygalactonojirimycin (DGJ) and its derivatives are pharmaceutical chaperones that directly bind to mutated β-Gal in the ER promoting its folding and trafficking to lysosomes and thus enhancing its activity. An Emirati child has been diagnosed with infantile GM1-gangliosidosis carrying the reported p.D151Y variant. We show that p.D151Y β-Gal in patient's fibroblasts retained < 1% residual activity due to impaired processing and trafficking. The amino acid substitution significantly affected the enzyme conformation; however, p.D151Y β-Gal was amenable for partial rescue in the presence of glycerol or at reduced temperature where activity was enhanced with ~ 2.3 and 7 folds, respectively. The butyl (NB-DGJ) and nonyl (NN-DGJ) derivatives of DGJ chaperoning function were evaluated by measuring their IC50s and ability to stabilize the wild-type β-Gal against thermal degradation. Although NN-DGJ showed higher affinity to β-Gal, it did not show a significant enhancement in p.D151Y β-Gal activity. However, NB-DGJ promoted p.D151Y β-Gal maturation and enhanced its activity up to ~ 4.5% of control activity within 24 h which was significantly increased to ~ 10% within 6 days. NB-DGJ enhancement effect was sustained over 3 days after washing it out from culture media. We therefore conclude that NB-DGJ might be a promising therapeutic chemical chaperone in infantile GM1 amenable variants and therefore warrants further analysis for its clinical applications.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad Al Sorkhy
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Mohammad A Ghattas
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osama Al-Dirbashi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
7
|
Abumansour IS, Yuskiv N, Paschke E, Stockler-Ipsiroglu S. Morquio-B disease: Clinical and genetic characteristics of a distinct GLB1-related dysostosis multiplex. JIMD Rep 2019; 51:30-44. [PMID: 32071837 PMCID: PMC7012745 DOI: 10.1002/jmd2.12065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Background Morquio-B disease (MBD) is a distinct GLB1-related dysostosis multiplex involving the trabecular parts of long bones and spine, presenting a mild phenocopy of GALNS-related Morquio-A disease. Methods We analyzed 63 (n = 62 published) cases with MBD to describe their clinical, biochemical and genetic features. Results Forty-one of 51 cases with informative clinical data had pure MBD including progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly, odontoid hypoplasia. Ten of 51 had MBD plus neuronopathic manifestations including intellectual/developmental/speech delay, spasticity, ataxia dystonia. Corneal clouding, cardiac valve pathology, hepatosplenomegaly, spinal cord compression were infrequent and atlantooccipital dislocation, cardiomyopathy and cherry red spot were never reported. Urinary glycosaminoglycan and oligosaccharide excretion was consistently abnormal. Keratan sulphate-derived oligosaccharides were only detected using LC-MS/MS-based methods. Residual β-galactosidase activities measured against synthetic substrates were 0%-17%.Among 28 GLB1 variants, W273 L (34/94 alleles) and T500A (11/94 alleles) occurred most frequently. W273L was invariably associated with pure MBD. Pure MBD also was reported in a case homozygous for R201H, and in the majority of cases carrying the T500A variant. Homozygous Y333C and G438E were associated with MBD plus neuronopathic manifestations. T82M, R201H, and H281Y, observed in seven alleles, previously have been found sensitive to experimental chaperones. Conclusion Data provide a basis for future systematic collection of clinical, biochemical, morphologic, and genetic data of this ultra-rare condition.
Collapse
Affiliation(s)
- Iman S Abumansour
- Division of Biochemical Genetics BC Children's Hospital Vancouver British Columbia Canada.,Department of Pediatrics University of British Columbia Vancouver British Columbia Canada.,Department of Medical Genetics, Faculty of Medicine Umm Al-qura University Makkah Saudi Arabia
| | - Nataliya Yuskiv
- Division of Biochemical Genetics BC Children's Hospital Vancouver British Columbia Canada.,Department of Pediatrics University of British Columbia Vancouver British Columbia Canada
| | - Eduard Paschke
- Department of Pediatrics Medical University of Graz Graz Austria
| | - Sylvia Stockler-Ipsiroglu
- Division of Biochemical Genetics BC Children's Hospital Vancouver British Columbia Canada.,Department of Pediatrics University of British Columbia Vancouver British Columbia Canada.,BC-Children's Hospital Research Institute Vancouver British Columbia Canada
| |
Collapse
|
8
|
Mytsyk NY, Gorovenko NG. Identification and characterization of six new mutations in GLB1 gene in Ukrainian patients with GM1 gangliosidosis and Morquio B disease. BIOPOLYMERS AND CELL 2016; 32:450-460. [DOI: 10.7124/bc.00093c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- N. Y. Mytsyk
- National Children's Specialized Hospital Okhmatdyt, Ministry of Health of Ukraine
- State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | - N. G. Gorovenko
- State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| |
Collapse
|
9
|
Graziano ACE, Pannuzzo G, Avola R, Cardile V. Chaperones as potential therapeutics for Krabbe disease. J Neurosci Res 2016; 94:1220-1230. [PMID: 27638605 DOI: 10.1002/jnr.23755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
10
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
11
|
Mena-Barragán T, García-Moreno MI, Nanba E, Higaki K, Concia AL, Clapés P, García Fernández JM, Ortiz Mellet C. Inhibitor versus chaperone behaviour of d-fagomine, DAB and LAB sp2-iminosugar conjugates against glycosidases: A structure–activity relationship study in Gaucher fibroblasts. Eur J Med Chem 2016; 121:880-891. [DOI: 10.1016/j.ejmech.2015.08.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022]
|
12
|
Convertino M, Das J, Dokholyan NV. Pharmacological Chaperones: Design and Development of New Therapeutic Strategies for the Treatment of Conformational Diseases. ACS Chem Biol 2016; 11:1471-89. [PMID: 27097127 DOI: 10.1021/acschembio.6b00195] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Errors in protein folding may result in premature clearance of structurally aberrant proteins, or in the accumulation of toxic misfolded species or protein aggregates. These pathological events lead to a large range of conditions known as conformational diseases. Several research groups have presented possible therapeutic solutions for their treatment by developing novel compounds, known as pharmacological chaperones. These cell-permeable molecules selectively provide a molecular scaffold around which misfolded proteins can recover their native folding and, thus, their biological activities. Here, we review therapeutic strategies, clinical potentials, and cost-benefit impacts of several classes of pharmacological chaperones for the treatment of a series of conformational diseases.
Collapse
Affiliation(s)
- Marino Convertino
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jhuma Das
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Department of Biochemistry
and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Thonhofer M, Weber P, Gonzalez Santana A, Tysoe C, Fischer R, Pabst BM, Paschke E, Schalli M, Stütz AE, Tschernutter M, Windischhofer W, Withers SG. Synthesis of C-5a-substituted derivatives of 4-epi-isofagomine: notable β-galactosidase inhibitors and activity promotors of GM1-gangliosidosis related human lysosomal β-galactosidase mutant R201C. Carbohydr Res 2016; 429:71-80. [DOI: 10.1016/j.carres.2016.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
|
14
|
Hossain MA, Higaki K, Shinpo M, Nanba E, Suzuki Y, Ozono K, Sakai N. Chemical chaperone treatment for galactosialidosis: Effect of NOEV on β-galactosidase activities in fibroblasts. Brain Dev 2016; 38:175-80. [PMID: 26259553 DOI: 10.1016/j.braindev.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/14/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Galactosialidosis is a rare lysosomal storage disease caused by a combined deficiency of GM1 β-galactosidase (β-gal) and neuraminidase secondary to a defect of a lysosomal enzyme protective protein/cathepsin A (PPCA) and mutation in CTSA gene. Three subtypes are recognized: early infantile, late infantile, and juvenile/adult. There is no specific therapy for patients with galactosialidosis at this time. OBJECTIVES The aim of this study was to determine the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on β-gal proteins in skin fibroblasts of PPCA-deficit patients. METHODS β-Gal and neuraminidase activities were measured for the diagnosis of the patients with galactosialidosis. Western blotting for PPCA protein and direct sequencing for CTSA gene were performed. Cultured skin fibroblast were treated with NOEV. RESULTS We report four novel patients with galactosialidosis: one had the early infantile form and the other three had the juvenile/adult form. We found that NOEV stabilized β-gal activity in lysate from cultured skin fibroblasts from these patients. Treatment with NOEV significantly enhanced β-gal activity in cultured skin fibroblasts in the absence of PPCA. CONCLUSIONS Our results indicate the possibility that NOEV chaperone therapy might have a beneficial effect, at least in part, for patients with galactosialidosis.
Collapse
Affiliation(s)
- Mohammad Arif Hossain
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsumi Higaki
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Michiko Shinpo
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | | | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
15
|
Navo CD, Corzana F, Sánchez-Fernández EM, Busto JH, Avenoza A, Zurbano MM, Nanba E, Higaki K, Ortiz Mellet C, García Fernández JM, Peregrina JM. Conformationally-locked C-glycosides: tuning aglycone interactions for optimal chaperone behaviour in Gaucher fibroblasts. Org Biomol Chem 2016; 14:1473-84. [DOI: 10.1039/c5ob02281a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of conformationally locked C-glycosides based on the 3-aminopyrano[3,2-b]pyrrol-2(1H)-one (APP) scaffold has been synthesized.
Collapse
Affiliation(s)
- C. D. Navo
- Departamento de Química and Centro de Investigación en Síntesis Química
- Universidad de La Rioja
- 26006 Logroño
- Spain
| | - F. Corzana
- Departamento de Química and Centro de Investigación en Síntesis Química
- Universidad de La Rioja
- 26006 Logroño
- Spain
| | | | - J. H. Busto
- Departamento de Química and Centro de Investigación en Síntesis Química
- Universidad de La Rioja
- 26006 Logroño
- Spain
| | - A. Avenoza
- Departamento de Química and Centro de Investigación en Síntesis Química
- Universidad de La Rioja
- 26006 Logroño
- Spain
| | - M. M. Zurbano
- Departamento de Química and Centro de Investigación en Síntesis Química
- Universidad de La Rioja
- 26006 Logroño
- Spain
| | - E. Nanba
- Division of Functional Genomics
- Research Center for Bioscience and Technology
- Tottori University
- Yonago 683-8503
- Japan
| | - K. Higaki
- Division of Functional Genomics
- Research Center for Bioscience and Technology
- Tottori University
- Yonago 683-8503
- Japan
| | - C. Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - J. M. García Fernández
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- 41092 Sevilla
- Spain
| | - J. M. Peregrina
- Departamento de Química and Centro de Investigación en Síntesis Química
- Universidad de La Rioja
- 26006 Logroño
- Spain
| |
Collapse
|
16
|
Hossain MA, Higaki K, Saito S, Ohno K, Sakuraba H, Nanba E, Suzuki Y, Ozono K, Sakai N. Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations. J Hum Genet 2015; 60:539-45. [PMID: 26108143 DOI: 10.1038/jhg.2015.61] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/27/2015] [Accepted: 04/08/2015] [Indexed: 01/24/2023]
Abstract
Krabbe disease is an autosomal recessive leukodystrophy caused by a deficiency of the galactocerebrosidase (GALC) enzyme. Hematopoietic stem cells transplantation is the only available treatment option for pre-symptomatic patients. We have previously reported the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on mutant GM1 β-galactosidase proteins, and in a murine GM1-gangliosidosis model. In this study, we examined its chaperone effect on mutant GALC proteins. We found that NOEV strongly inhibited GALC activity in cell lysates of GALC-transfected COS1 cells. In vitro NOEV treatment stabilized GALC activity under heat denaturation conditions. We also examined the effect of NOEV on cultured COS1 cells expressing mutant GALC activity and human skin fibroblasts from Krabbe disease patients: NOEV significantly increased the enzyme activity of mutants of late-onset forms. Moreover, we confirmed that NOEV could enhance the maturation of GALC precursor to its mature active form. Model structural analysis showed NOEV binds to the active site of human GALC protein. These results, for the first time, provide clear evidence that NOEV is a chaperone with promising potential for patients with Krabbe disease resulting from the late-onset mutations.
Collapse
Affiliation(s)
- Mohammad Arif Hossain
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsumi Higaki
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Kazuki Ohno
- NPO for the Promotion of Research on Intellectual Property Tokyo, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | | | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Wang HZ, Rosati B, Gordon C, Valiunas V, McKinnon D, Cohen IS, Brink PR. Inhibition of histone deacetylase (HDAC) by 4-phenylbutyrate results in increased junctional conductance between rat corpora smooth muscle cells. Front Pharmacol 2015; 6:9. [PMID: 25691868 PMCID: PMC4315027 DOI: 10.3389/fphar.2015.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 01/11/2015] [Indexed: 01/02/2023] Open
Abstract
4-phenylbutyrate (4-PB) has been shown to increase the protein content in a number of cells types. One such protein is Connexin43 (Cx43). We show here that 4-phenylbutyrate exposure results in significantly elevated cell to cell coupling, as determined by dual whole cell patch clamp. Incubation with 5 mM 4PB for 24 h or more nearly doubles junctional conductance. Interestingly, mRNA levels for Cx43 declined with exposure to 4-PB while western blot analysis revealed not significant change in protein levels. These data are most consistent with stabilization of the existing Cx43 pool or alterations in the number of functional channels within an existing pool of active and silent channels. These data represent a baseline for testing the efficacy of increased connexin mediated coupling in a variety of multicellular functions including erectile function.
Collapse
Affiliation(s)
- Hong Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - Chris Gordon
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA
| | - Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - David McKinnon
- Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA ; Department of Neurobiology and Behavior, Stony Brook University Stony Brook, NY, USA
| | - Ira S Cohen
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University Stony Brook, NY, USA ; Department of Physiology and Biophysics, Molecular Cardiology Institute, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
18
|
Kwak JE, Son MY, Son YS, Son MJ, Cho YS. Biochemical and molecular characterization of novel mutations in GLB1 and NEU1 in patient cells with lysosomal storage disorders. Biochem Biophys Res Commun 2015; 457:554-60. [PMID: 25600812 DOI: 10.1016/j.bbrc.2015.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
Lysosomes are cytoplasmic compartments that contain many acid hydrolases and play critical roles in the metabolism of a wide range of macromolecules. Deficiencies in lysosomal enzyme activities cause genetic diseases, called lysosomal storage disorders (LSDs). Many mutations have been identified in the genes responsible for LSDs, and the identification of mutations is required for the accurate molecular diagnoses. Here, we analyzed cell lines that were derived from two different LSDs, GM1 gangliosidosis and sialidosis. GM1 gangliosidosis is caused by mutations in the GLB1 gene that encodes β-galactosidase. A lack of β-galactosidase activity leads to the massive accumulation of GM1 ganglioside, which results in neurodegenerative pathology. Mutations in the NEU1 gene that encodes lysosomal sialidase cause sialidosis. Insufficient activity of lysosomal sialidase progressively increases the accumulation of sialylated molecules, and various clinical symptoms, including mental retardation, appear. We sequenced the entire coding regions of GLB1 and NEU1 in GM1 gangliosidosis and sialidosis patient cells, respectively. We found the novel mutations p.E186A in GLB1 and p.R347Q in NEU1, as well as many other mutations that have been previously reported. We also demonstrated that patient cells containing the novel mutations showed the molecular phenotypes of the corresponding disease. Further structural analysis suggested that these novel mutation sites are highly conserved and important for enzyme activity.
Collapse
Affiliation(s)
- Jae Eun Kwak
- Stem Cell Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| | - Ye Seul Son
- Stem Cell Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Myung Jin Son
- Stem Cell Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
19
|
Castilla J, Rísquez R, Higaki K, Nanba E, Ohno K, Suzuki Y, Díaz Y, Ortiz Mellet C, García Fernández JM, Castillón S. Conformationally-locked N-glycosides: exploiting long-range non-glycone interactions in the design of pharmacological chaperones for Gaucher disease. Eur J Med Chem 2014; 90:258-66. [PMID: 25461326 DOI: 10.1016/j.ejmech.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/13/2014] [Accepted: 11/01/2014] [Indexed: 11/16/2022]
Abstract
Pyranoid-type glycomimetics having a cis-1,2-fused glucopyranose-2-alkylsulfanyl-1,3-oxazoline (Glc-PSO) structure exhibit an unprecedented specificity as inhibitors of mammalian β-glucosidase. Notably, their inhibitory potency against human β-glucocerebrosidase (GCase) was found to be strongly dependent on the nature of aglycone-type moieties attached at the sulfur atom. In the particular case of ω-substituted hexadecyl chains, an amazing influence of the terminal group was observed. A comparative study on a series of Glc-PSO derivatives suggests that hydrogen bond acceptor functionalities, e.g. fluoro or methyloxycarbonyl, significantly stabilize the Glc-PSO:GCase complex. The S-(16-fluorohexadecyl)-PSO glycomimetic turned out to be a more potent GCase competitive inhibitor than ambroxol, a non glycomimetic drug currently in pilot trials as a pharmacological chaperone for Gaucher disease. Moreover, the inhibition constant increased by one order of magnitude when shifting from neutral (pH 7) to acidic (pH 5) media, a favorable characteristic for a chaperone candidate. Indeed, the fluoro-PSO derivative also proved superior to ambroxol in mutant GCase activity enhancement assays in N370S/N370S Gaucher fibroblasts. The results presented here represent a proof of concept of the potential of exploiting long-range non-glycone interactions for the optimization of glycosidase inhibitors with chaperone activity.
Collapse
Affiliation(s)
- Javier Castilla
- Department de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Rocío Rísquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, 41012 Sevilla, Spain
| | - Katsumi Higaki
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | | | - Yoshiyuki Suzuki
- Tokyo Metropolitan Institute of Medical Science, Tokyo 204-8588, Japan
| | - Yolanda Díaz
- Department de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, 41012 Sevilla, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, C/ Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Sergio Castillón
- Department de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Abstract
A growing body of evidence suggests that misfolding of a mutant protein followed by its aggregation or premature degradation in the endoplasmic reticulum is one of the main mechanisms that underlie inherited neurodegenerative diseases, including lysosomal storage diseases. Chemical or pharmacological chaperones are small molecules that bind to and stabilize mutant lysosomal enzyme proteins in the endoplasmic reticulum. A number of chaperone compounds for lysosomal hydrolases have been identified in the last decade. They have gained attention because they can be orally administrated, and also because they can penetrate the blood-brain barrier. In this article, we describe two chaperone candidates for the treatment of GM1-gangliosidosis. We also discuss the future direction of this strategy targeting other lysosomal storage diseases as well as protein misfolding diseases in general.
Collapse
|
21
|
Rodríguez-Lavado J, de la Mata M, Jiménez-Blanco JL, García-Moreno MI, Benito JM, Díaz-Quintana A, Sánchez-Alcázar JA, Higaki K, Nanba E, Ohno K, Suzuki Y, Ortiz Mellet C, García Fernández JM. Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Org Biomol Chem 2014; 12:2289-301. [DOI: 10.1039/c3ob42530d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient delivery of pharmacological chaperones for Gaucher disease to macrophages has been achieved.
Collapse
Affiliation(s)
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD)
- CSIC – Universidad Pablo de Olavide
- 41013 Sevilla, Spain
| | | | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF)
- CSIC – Universidad de Sevilla
- 41092 Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD)
- CSIC – Universidad Pablo de Olavide
- 41013 Sevilla, Spain
| | - Katsumi Higaki
- Division of Functional Genomics
- Research Center for Bioscience and Technology
- Faculty of Medicine
- Tottori University
- Yonago, Japan
| | - Eiji Nanba
- Division of Functional Genomics
- Research Center for Bioscience and Technology
- Faculty of Medicine
- Tottori University
- Yonago, Japan
| | - Kousaku Ohno
- Division of Child Neurology
- Institute of Neurological Sciences
- Faculty of Medicine
- Tottori University
- Yonago, Japan
| | - Yoshiyuki Suzuki
- Tokyo Metropolitan Institute of Medical Science
- Tokyo 156-0057, Japan
| | - Carmen Ortiz Mellet
- Dept. Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla, Spain
| | | |
Collapse
|
22
|
Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev 2013; 35:515-23. [PMID: 23290321 DOI: 10.1016/j.braindev.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
Chaperone therapy is a newly developed molecular therapeutic approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. Based on early molecular studies during the last decade of the 20th century and early years of the 21st century, mainly on Fabry disease and GM1-gangliosidosis, we found some mutant enzyme proteins were unstable in the cell, and unable to express catalytic activities. Subsequently galactose and other active-site binding substrate analogs were found stabilized and enhance the mutant enzyme activity in culture cells. We concluded that the mutant misfolding enzyme protein and substrate analog competitive inhibitor (chemical chaperone) form a stable complex to be transported to the lysosome, to restore the catalytic activity of mutant enzyme after spontaneous dissociation under the acidic condition. This gene mutation-specific molecular interaction is a paradoxical phenomenon that an enzyme inhibitor in vitro serves as an enzyme stabilizer in situ. First we developed a commercially available compound 1-deoxygalactonojirimycin (DGJ) for Fabry disease, and confirmed the above molecular phenomenon. Currently DGJ has become a new candidate of oral medicine for Fabry disease, generalized vasculopathy involving the kidneys, heart and central nervous system in the middle age. This drug development has reached the phase 3 of human clinical study. Then we found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (GM1-gangliosidosis and Morquio B disease) and β-glucosidase deficiency disorders (phenotypic variations of Gaucher disease), respectively. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice have been used for confirmation of clinical effectiveness, adverse effects and pharmacokinetic studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Computational analysis revealed pH-dependent enzyme-chaperone interactions. Our recent study indicated chaperone activity of a new DGJ derivative, MTD118, for β-galactosidase complementary to NOEV. NOV also showed the chaperone effect toward several β-glucosidase gene mutants in Gaucher disease. Furthermore a commercial expectorant drug ambroxol was found to be a chaperone for β-glucosidase. A few Gaucher patients responded to this drug with remarkable improvement of oculomotor dysfunction and myoclonus. We hope chaperone therapy will become available for some patients with Fabry disease, GM1-gangliosidosis, Gaucher disease, and other lysosomal storage diseases particularly with central nervous system involvement.
Collapse
|
23
|
Boyd RE, Lee G, Rybczynski P, Benjamin ER, Khanna R, Wustman BA, Valenzano KJ. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem 2013; 56:2705-25. [PMID: 23363020 DOI: 10.1021/jm301557k] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysosomal enzymes are responsible for the degradation of a wide variety of glycolipids, oligosaccharides, proteins, and glycoproteins. Inherited mutations in the genes that encode these proteins can lead to reduced stability of newly synthesized lysosomal enzymes. While often catalytically competent, the mutated enzymes are unable to efficiently pass the quality control mechanisms of the endoplasmic reticulum, resulting in reduced lysosomal trafficking, substrate accumulation, and cellular dysfunction. Pharmacological chaperones (PCs) are small molecules that bind and stabilize mutant lysosomal enzymes, thereby allowing proper cellular translocation. Such compounds have been shown to increase enzyme activity and reduce substrate burden in a number of preclinical models and clinical studies. In this Perspective, we review several of the lysosomal diseases for which PCs have been studied and the SAR of the various classes of molecules.
Collapse
Affiliation(s)
- Robert E Boyd
- Amicus Therapeutics, 1 Cedar Brook Drive, Cranbury, New Jersey 08512, United States.
| | | | | | | | | | | | | |
Collapse
|
24
|
Takai T, Higaki K, Aguilar-Moncayo M, Mena-Barragán T, Hirano Y, Yura K, Yu L, Ninomiya H, García-Moreno MI, Sakakibara Y, Ohno K, Nanba E, Ortiz Mellet C, García Fernández JM, Suzuki Y. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Mol Ther 2013; 21:526-32. [PMID: 23337983 DOI: 10.1038/mt.2012.263] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lysosomal β-galactosidase (β-Gal) deficiency causes a group of disorders that include neuronopathic GM1 gangliosidosis and non-neuronopathic Morquio B disease. We have previously proposed the use of small molecule ligands of β-Gal as pharmacological chaperones (PCs) for the treatment of GM1 gangliosidosis brain pathology. Although it is still under development, PC therapy has yielded promising preclinical results in several lysosomal diseases. In this study, we evaluated the effect of bicyclic 1-deoxygalactonojirimycin (DGJ) derivative of the sp(2)-iminosugar type, namely 5N,6S-(N'-butyliminomethylidene)-6-thio-1- deoxygalactonojirimycin (6S-NBI-DGJ), as a novel PC for human mutant β-Gal. In vitro, 6S-NBI-DGJ had the ability to inhibit the activity of human β-Gal in a competitive manner and was able to protect this enzyme from heat-induced degradation. Computational analysis supported that the rigid glycone bicyclic core of 6S-NBI-DGJ binds to the active site of the enzyme, with the aglycone N'-butyl substituent, in a precise E-orientation, located at a hydrophobic region nearby. Chaperone potential profiling indicated significant increases of enzyme activity in 24 of 88 β-Gal mutants, including four common mutations. Finally, oral administration of 6S-NBI-DGJ ameliorated the brain pathology of GM1 gangliosidosis model mice. These results suggest that 6S-NBI-DGJ is a novel PC that may be effective on a broad range of β-Gal mutants.
Collapse
|
25
|
Pharmacological chaperones for enzyme enhancement therapy in genetic diseases. Pharm Pat Anal 2013; 2:109-24. [DOI: 10.4155/ppa.12.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacological chaperone therapy (PCT) is a rather new approach consisting in targeting incorrectly folded proteins by small molecules, thus, facilitating the correct folding of the protein and inducing a recovery of its functionality. Many diseases result from mutations on specific genes; this patent review focuses on those pathologies where PCT has a potential application for enzymatic enhancement. Rare diseases are the main area where PCT has been applied and the most advanced compounds are aiming to cure lysosomal storage disorders such as Fabry, Pompe or Gaucher. Until now, most compounds used as pharmacological chaperones were based on substrate-like chemical structures but recently new nonsubstrate-like and non-inhibitory compounds have been disclosed for Gaucher and Pompe diseases. This initiates a new era for pharmacological chaperones with more diverse chemical structures and binding modes. This review covers the patents relating to enzyme enhancement on pharmacological chaperone therapy. Only an update is presented for Gaucher disease, where PCT is highly applied and recently reviewed.
Collapse
|
26
|
van Gelder CM, Vollebregt AAM, Plug I, van der Ploeg AT, Reuser AJJ. Treatment options for lysosomal storage disorders: developing insights. Expert Opin Pharmacother 2012; 13:2281-99. [PMID: 23009070 DOI: 10.1517/14656566.2012.729039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysosomal storage disorders (LSDs) are clinically heterogeneous disorders that result primarily from lysosomal accumulation of macromolecules in various tissues. LSDs are always progressive, and often lead to severe symptoms and premature death. The identification of the underlying genetic and enzymatic defects has prompted the development of various treatment options. AREAS COVERED To describe the current treatment options for LSDs, the authors provide a focused overview of their pathophysiology. They discuss the current applications and challenges of enzyme-replacement therapy, stem-cell therapy, gene therapy, chaperone therapy and substrate-reduction therapy, as well as future therapeutic prospects. EXPERT OPINION Over recent decades, considerable progress has been made in the treatment of LSDs and in the outcome of patients. None of the current options are completely curative yet. They are complicated by the difficulty in efficiently targeting all affected tissues (particularly the central nervous system), in reaching sufficiently high enzyme levels in the target tissues, and by their high costs. The pathways leading from the genetic mutation to the clinical symptoms should be further elucidated, as they might prompt the development of new and ultimately curative therapies.
Collapse
Affiliation(s)
- Carin M van Gelder
- Erasmus MC University Medical Center, Center for Lysosomal and Metabolic Diseases, Department of Paediatrics, Dr. Molewaterplein 60, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Rigat BA, Tropak MB, Buttner J, Crushell E, Benedict D, Callahan JW, Martin DR, Mahuran DJ. Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy. Mol Genet Metab 2012; 107:203-12. [PMID: 22784478 PMCID: PMC4010500 DOI: 10.1016/j.ymgme.2012.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 12/26/2022]
Abstract
Deficiencies of lysosomal β-D-galactosidase can result in GM1 gangliosidosis, a severe neurodegenerative disease characterized by massive neuronal storage of GM1 ganglioside in the brain. Currently there are no available therapies that can even slow the progression of this disease. Enzyme enhancement therapy utilizes small molecules that can often cross the blood brain barrier, but are also often competitive inhibitors of their target enzyme. It is a promising new approach for treating diseases, often caused by missense mutations, associated with dramatically reduced levels of functionally folded enzyme. Despite a number of positive reports based on assays performed with patient cells, skepticism persists that an inhibitor-based treatment can increase mutant enzyme activity in vivo. To date no appropriate animal model, i.e., one that recapitulates a responsive human genotype and clinical phenotype, has been reported that could be used to validate enzyme enhancement therapy. In this report, we identify a novel enzyme enhancement-agent, N-nonyl-deoxygalactonojirimycin, that enhances the mutant β-galactosidase activity in the lysosomes of a number of patient cell lines containing a variety of missense mutations. We then demonstrate that treatment of cells from a previously described, naturally occurring feline model (that biochemically, clinically and molecularly closely mimics GM1 gangliosidosis in humans) with this molecule, results in a robust enhancement of their mutant lysosomal β-galactosidase activity. These data indicate that the feline model could be used to validate this therapeutic approach and determine the relationship between the disease stage at which this therapy is initiated and the maximum clinical benefits obtainable.
Collapse
Affiliation(s)
- Brigitte A. Rigat
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Michael B. Tropak
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Justin Buttner
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Ellen Crushell
- Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - Daphne Benedict
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | - John W. Callahan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
- Department of Biochemistry, University of Toronto, Toronto, Canada M5S 1A8
| | - Douglas R. Martin
- Scott-Ritchey Research Center and Dept. Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | - Don J. Mahuran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada M5G 1X8
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada M5S 1A8
- Corresponding author at: Genetics & Genome Biology Department, The Hospital for Sick Children, Room 9146 A, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Fax: +1 416 813 8700. (D.J. Mahuran)
| |
Collapse
|
28
|
Castilla J, Rísquez R, Cruz D, Higaki K, Nanba E, Ohno K, Suzuki Y, Díaz Y, Ortiz Mellet C, García Fernández JM, Castillón S. Conformationally-locked N-glycosides with selective β-glucosidase inhibitory activity: identification of a new non-iminosugar-type pharmacological chaperone for Gaucher disease. J Med Chem 2012; 55:6857-65. [PMID: 22762530 DOI: 10.1021/jm3006178] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of conformationally locked N-glycosides having a cis-1,2-fused pyranose-1,3-oxazoline-2-thione structure and bearing different substituents at the exocyclic sulfur has been prepared. The polyhydroxylated bicyclic system was built in only three steps by treatment of the corresponding readily available 1,2-anhydrosugar with KSCN using TiO(TFA)(2) as catalyst, followed by S-alkylation and acetyl deprotection. In vitro screening against several glycosidase enzymes showed highly specific inhibition of mammalian β-glucosidase with a marked dependence of the potency upon the nature of the exocyclic substituent. The most potent representative, bearing an S-(ω-hydroxyhexadecyl) substituent, was further assayed as inhibitor of the human lysosomal β-glucocerebrosidase and as pharmacological chaperone in Gaucher disease fibroblasts. Activity enhancements in N370S/N370S mutants analogous to those achieved with the reference compound ambroxol were attained with a more favorable chaperone/inhibitor balance.
Collapse
Affiliation(s)
- Javier Castilla
- Department de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Suzuki Y, Ichinomiya S, Kurosawa M, Matsuda J, Ogawa S, Iida M, Kubo T, Tabe M, Itoh M, Higaki K, Nanba E, Ohno K. Therapeutic chaperone effect of N-octyl 4-epi-β-valienamine on murine G(M1)-gangliosidosis. Mol Genet Metab 2012; 106:92-8. [PMID: 22436580 DOI: 10.1016/j.ymgme.2012.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 11/18/2022]
Abstract
Therapeutic chaperone effect of a valienamine derivative N-octyl 4-epi-β-valienamine (NOEV) was studied in G(M1)-gangliosidosis model mice. Phamacokinetic analysis revealed rapid intestinal absorption and renal excretion after oral administration. Intracellular accumulation was not observed after continuous treatment. NOEV was delivered to the central nervous system through the blood-brain barrier to induce high expression of the apparently deficient β-galactosidase activity. NOEV treatment starting at the early stage of disease resulted in remarkable arrest of neurological progression within a few months. Survival time was significantly prolonged. This result suggests that NOEV chaperone therapy will be clinically effective for prevention of neuronal damage if started early in life hopefully also in human patients with G(M1)-gangliosidosis.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School, International University of Health and Welfare, Otawara, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fantur KM, Wrodnigg TM, Stütz AE, Pabst BM, Paschke E. Fluorous iminoalditols act as effective pharmacological chaperones against gene products from GLB₁ alleles causing GM1-gangliosidosis and Morquio B disease. J Inherit Metab Dis 2012; 35:495-503. [PMID: 22033734 DOI: 10.1007/s10545-011-9409-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 12/27/2022]
Abstract
Unlike replacement therapy by infusion of exogenous recombinant lysosomal enzymes, pharmacological chaperones aim at a gain of function of endogenous gene products. Deficits resulting from missense mutations may become treatable by small, competitive inhibitors binding to the catalytical site and thus correcting the erroneous conformation of mutant enzymes. This may prevent their premature degradation and normalize intracellular trafficking as well as biological half-life. A major limitation currently arises from the huge number of individual missense mutations and the lack of knowledge on the structural requirements for specific interaction with mutant protein domains. Our previous work on mutations of the β-galactosidase (β-gal) gene, causing GM1 gangliosidosis (GM1) and Morquio B disease (MBD), respectively, characterized clinical phenotypes as well as biosynthesis, intracellular transport and subcellular localization of mutants. We recently identified an effective chaperone, DL-HexDGJ (Methyl 6-{[N(2)-(dansyl)-N(6)-(1,5-dideoxy-D-galactitol-1,5-diyl)- L-lysyl]amino} hexanoate), among a series of N-modified 1-deoxygalactonojirimycin derivatives carrying a dansyl group in its N-acyl moiety. Using novel and flexible synthetic routes, we now report on the effects of two oligofluoroalkyl-derivatives of 1-deoxygalactonojirimycin, Ph(TFM)(2)OHex-DGJ (N-(α,α-di-trifluoromethyl) benzyloxyhexyl-1,5-dideoxy-1,5-imino-D: -galactitol) and (TFM)(3)OHex-DGJ (N-(Nonafluoro-tert-butyloxy)hexyl-1,5-dideoxy-1,5-imino-D: -galactitol) on the β-gal activity of GM1 and MBD fibroblasts. Both compounds are competitive inhibitors and increase the residual enzyme activities up to tenfold over base line activity in GM1 fibroblasts with chaperone-sensitive mutations. Western blots showed that this was due to a normalization of protein transport and intralysosomal maturation. The fact that the novel compounds were effective at very low concentrations (0.5-10 μM) in the cell culture medium as well as their novel chemical character suggest future testing in animal models. This may contribute to new aspects for efficient and personalized small molecule treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
- Katrin M Fantur
- Department of Pediatrics, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
31
|
Higaki K, Li L, Bahrudin U, Okuzawa S, Takamuram A, Yamamoto K, Adachi K, Paraguison RC, Takai T, Ikehata H, Tominaga L, Hisatome I, Iida M, Ogawa S, Matsuda J, Ninomiya H, Sakakibara Y, Ohno K, Suzuki Y, Nanba E. Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat 2011; 32:843-52. [DOI: 10.1002/humu.21516] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, Benjamin ER. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 2011; 9:213-35. [PMID: 21612550 PMCID: PMC3102255 DOI: 10.1089/adt.2011.0370] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many human diseases result from mutations in specific genes. Once translated, the resulting aberrant proteins may be functionally competent and produced at near-normal levels. However, because of the mutations, the proteins are recognized by the quality control system of the endoplasmic reticulum and are not processed or trafficked correctly, ultimately leading to cellular dysfunction and disease. Pharmacological chaperones (PCs) are small molecules designed to mitigate this problem by selectively binding and stabilizing their target protein, thus reducing premature degradation, facilitating intracellular trafficking, and increasing cellular activity. Partial or complete restoration of normal function by PCs has been shown for numerous types of mutant proteins, including secreted proteins, transcription factors, ion channels, G protein-coupled receptors, and, importantly, lysosomal enzymes. Collectively, lysosomal storage disorders (LSDs) result from genetic mutations in the genes that encode specific lysosomal enzymes, leading to a deficiency in essential enzymatic activity and cellular accumulation of the respective substrate. To date, over 50 different LSDs have been identified, several of which are treated clinically with enzyme replacement therapy or substrate reduction therapy, although insufficiently in some cases. Importantly, a wide range of in vitro assays are now available to measure mutant lysosomal enzyme interaction with and stabilization by PCs, as well as subsequent increases in cellular enzyme levels and function. The application of these assays to the identification and characterization of candidate PCs for mutant lysosomal enzymes will be discussed in this review. In addition, considerations for the successful in vivo use and development of PCs to treat LSDs will be discussed.
Collapse
|
33
|
Li L, Higaki K, Ninomiya H, Luan Z, Iida M, Ogawa S, Suzuki Y, Ohno K, Nanba E. Chemical chaperone therapy: luciferase assay for screening of β-galactosidase mutations. Mol Genet Metab 2010; 101:364-9. [PMID: 20826101 DOI: 10.1016/j.ymgme.2010.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
β-Galactosidosis is a group of disorder based on heterogeneous mutations of GLB1 gene coding for the lysosomal acid β-galactosidase (β-gal). A decrease of the β-gal enzyme activity results in progressive accumulation of substrates in somatic cells, particularly in neurons, leading to severe neuronal dysfunction. We have previously reported that N-octyl-4-epi-β-valienamine (NOEV), a chemical chaperone compound, stabilized various mutant human β-gal proteins and increased residual enzyme activities in cultured fibroblasts from human patients. These data proved a potential therapeutic benefit of chemical chaperone therapy for patients with missense β-gal. This effect is mutation specific. In this study, we have established a sensitive luciferase-based assay for measuring chaperone effect on mutant human β-gal. A dinoflagellate luciferase (Dluc) cDNA was introduced to the C-terminus of human β-gal. When COS7 cells expressing the Dluc-tagged human R201C β-gal was treated with NOEV, there happened a remarkable increase of the mutant β-gal activity. In the presence of NH(4)Cl, luciferase level in the medium increased in parallel with the enzyme activity in cell lysates. We also found that proteasome inhibitors enhance chaperone effect of NOEV. These results demonstrate that the luciferase-based assay is a reliable and convenient method for screening and evaluation of chaperone effects on human β-gal mutants, and that it will be a useful tool for finding novel chaperone compounds in the future study.
Collapse
Affiliation(s)
- Linjing Li
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Luan Z, Ninomiya H, Ohno K, Ogawa S, Kubo T, Iida M, Suzuki Y. The effect of N-octyl-β-valienamine on β-glucosidase activity in tissues of normal mice. Brain Dev 2010; 32:805-9. [PMID: 20074885 DOI: 10.1016/j.braindev.2009.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
Abstract
Gaucher disease (GD), mainly caused by a defect of acid β-glucosidase (β-Glu), is the most common sphingolipidosis. We have previously shown that a carbohydrate mimic N-octyl-β-valienamine (NOV), an inhibitor of β-Glu, could increase the protein level and enzyme activity of various mutant β-Glu in cultured GD fibroblasts, suggesting that NOV acted as a pharmacological chaperone to accelerate transport and maturation of this mutant enzymes. In the present study, the NOV effect was evaluated for β-Glu activity, tissue distribution and adverse effects in normal mice. We measured the β-Glu activity in tissues of normal mice which received water containing increasing concentrations of NOV ad libitum for 1 week. Fluid intake and body weight were measured periodically throughout the study. Measurement of tissue NOV concentration, blood chemistry and urinalysis were performed at the end of the study. The results showed that NOV had no impact on the body weight but fluid intake in the 10mM NOV group mice decreased and there was a moderate increase in blood urea nitrogen (BUN). No other adverse effect was observed during this experiment. Tissue NOV concentration increased in all tissues examined with increasing NOV doses. No inhibitory effect of NOV on β-Glu was observed. Furthermore, NOV increased the β-Glu activity in the liver, spleen, muscle and cerebellum of the mice significantly. This study on NOV showed its oral availability and wide tissue distribution, including the brain and its lack of acute toxicity. These characteristics of NOV would make it a potential therapeutic chaperone in the treatment of GD with neurological manifestations and selected mutations.
Collapse
Affiliation(s)
- Zhuo Luan
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Schitter G, Steiner AJ, Pototschnig G, Scheucher E, Thonhofer M, Tarling CA, Withers SG, Fantur K, Paschke E, Mahuran DJ, Rigat BA, Tropak MB, Illaszewicz C, Saf R, Stütz AE, Wrodnigg TM. Fluorous iminoalditols: a new family of glycosidase inhibitors and pharmacological chaperones. Chembiochem 2010; 11:2026-33. [PMID: 20715263 PMCID: PMC3198847 DOI: 10.1002/cbic.201000192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Indexed: 01/14/2023]
Abstract
A collection of new reversible glycosidase inhibitors of the iminoalditol type featuring N-substituents containing perfluorinated regions has been prepared for evaluation of physicochemical, biochemical and diagnostic properties. The vast variety of feasible oligofluoro moieties allows for modular approaches to customised structures according to the intended applications, which are influenced by the fluorine content as well as the distance of the fluorous moiety from the ring nitrogen. The first examples, in particular in the D-galacto series, exhibited excellent inhibitory activities. A preliminary screen with two human cell lines showed that, at subinhibitory concentrations, they are powerful pharmacological chaperones enhancing the activities of the catalytically handicapped lysosomal D-galactosidase mutants associated with GM1 gangliosidosis and Morquio B disease.
Collapse
Affiliation(s)
- Georg Schitter
- Glycogroup, Deparment of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Luan Z, Li L, Ninomiya H, Ohno K, Ogawa S, Kubo T, Iida M, Suzuki Y. The pharmacological chaperone effect of N-octyl-β-valienamine on human mutant acid β-glucosidases. Blood Cells Mol Dis 2010; 44:48-54. [DOI: 10.1016/j.bcmd.2009.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 09/22/2009] [Accepted: 09/28/2009] [Indexed: 01/03/2023]
|
37
|
Luan Z, Higaki K, Aguilar-Moncayo M, Ninomiya H, Ohno K, GarcÃa-Moreno MI, Ortiz Mellet C, GarcÃa Fernández JM, Suzuki Y. Chaperone Activity of Bicyclic Nojirimycin Analogues for Gaucher Mutations in Comparison withN-(n-nonyl)Deoxynojirimycin. Chembiochem 2009; 10:2780-92. [DOI: 10.1002/cbic.200900442] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Hofer D, Paul K, Fantur K, Beck M, Bürger F, Caillaud C, Fumic K, Ledvinova J, Lugowska A, Michelakakis H, Radeva B, Ramaswami U, Plecko B, Paschke E. GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid beta-galactosidase. Hum Mutat 2009; 30:1214-21. [PMID: 19472408 DOI: 10.1002/humu.21031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alterations in GLB1, the gene coding for acid beta-D-galactosidase (beta-Gal), can result in GM1 gangliosidosis (GM1), a neurodegenerative disorder, or in Morquio B disease (MBD), a phenotype with dysostosis multiplex and normal central nervous system (CNS) function. While most MBD patients carry a common allele, c.817TG>CT (p.W273L), only few of the >100 mutations known in GM1 can be related to a certain phenotype. In 25 multiethnic patients with GM1 or MBD, 11 missense mutations were found as well as one novel insertion and a transversion causing aberrant gene products. Except c.602G>A (p.R201H) and two novel alleles, c.592G>T (p.D198Y) and c.1189C>G (p.P397A), all mutants resulted in significantly reduced beta-Gal activities (<10% of normal) upon expression in COS-1 cells. Although c.997T>C (p.Y333H) expressed 3% of normal activity, the mutant protein was localized in the lysosomal-endosomal compartment. A homozygous case presented with late infantile GM1, while a heterozygous, juvenile case carried p.Y333H together with p.R201H. This allele, recently found in homozygous MBD, gives rise to rough endoplasmic reticulum (RER)-located beta-Gal precursors. Thus, unlike classical MBD, the phenotype of heterozygotes carrying p.R201H may rather be determined by poorly active, properly transported products of the counter allele than by the mislocalized p.R201H precursors.
Collapse
Affiliation(s)
- Doris Hofer
- Department of Paediatrics, Medical University of Graz, Graz A-8036, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Suzuki Y, Ogawa S, Sakakibara Y. Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:7-19. [PMID: 19812739 PMCID: PMC2754921 DOI: 10.4137/pmc.s2332] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chaperone therapy is a newly developed molecular approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. We found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (mainly GM1-gangliosidosis) and β-glucosidase deficiency disorders (Gaucher disease), respectively. We briefly reviewed the historical background of research in carbasugar glycosidase inhibitors. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice were developed and useful for experimental studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Furthermore, we executed computational analysis for prediction of molecular interactions between β-galactosidase and NOEV. Some preliminary results of computational analysis of molecular interaction mechanism are presented in this article. NOV also showed the chaperone effect toward several β-glucosidase gene mutations in Gaucher disease. We hope chaperone therapy will become available for some patients with GM1-gangliosidosis, Gaucher disease, and potentially other lysosomal storage diseases with central nervous system involvement.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- International University of Health and Welfare Graduate School, Kita Kanemaru, Otawara, 324-8501 Japan
| | | | | |
Collapse
|
40
|
Abstract
Lysosomal storage disorders are rare inborn errors of metabolism, with a combined incidence of 1 in 1500 to 7000 live births. These relatively rare disorders are seldom considered when evaluating a sick newborn. A significant number of the >50 different lysosomal storage disorders, however, do manifest in the neonatal period and should be part of the differential diagnosis of several perinatal phenotypes. We review the earliest clinical features, diagnostic tests, and treatment options for lysosomal storage disorders that can present in the newborn. Although many of the lysosomal storage disorders are characterized by a range in phenotypes, the focus of this review is on the specific symptoms and clinical findings that present in the perinatal period, including neurologic, respiratory, endocrine, and cardiovascular manifestations, dysmorphic features, hepatosplenomegaly, skin or ocular involvement, and hydrops fetalis/congenital ascites. A greater awareness of these features may help to reduce misdiagnosis and promote the early detection of lysosomal storage disorders. Implementing therapy at the earliest stage possible is crucial for several of the lysosomal storage disorders; hence, an early appreciation of these disorders by physicians who treat newborns is essential.
Collapse
Affiliation(s)
- Orna Staretz-Chacham
- Office of the Clinical Director, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Tess C. Lang
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary E. LaMarca
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Donna Krasnewich
- Office of the Clinical Director, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Caciotti A, Donati MA, d'Azzo A, Salvioli R, Guerrini R, Zammarchi E, Morrone A. The potential action of galactose as a "chemical chaperone": increase of beta galactosidase activity in fibroblasts from an adult GM1-gangliosidosis patient. Eur J Paediatr Neurol 2009; 13:160-4. [PMID: 18571950 DOI: 10.1016/j.ejpn.2008.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/29/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND The glycosphingolipid storage disorder GM1-gangliosidosis is a severe neurodegenerative condition for which no therapy is currently available. Protein misfolding in lysosomal defects may have the potential to be corrected by chemical chaperones: in vitro and clinical approaches are being investigated. AIMS We investigated the in vitro effect of galactose on some lysosomal hydrolases, and its in vitro efficacy as a chemical chaperone in GM1-gangliosidosis. METHODS Galactose was added to the culture medium of fibroblasts from patients, controls and transfected COS-1 cells. Enzyme assays of lysosomal hydrolases, beta galactosidase in particular, were performed. RESULTS Our data show that galactose alters selectively alpha and beta galactosidases. A significant increase (2,5 fold) in beta galactosidase activity occurred when galactose was added to the cultured fibroblasts of an adult patient. Chemical chaperone therapy requires the presence of residual enzyme activity. The adult patient here reported is heterozygous for the p.T329A mutation that showed no beta galactosidase activity, and for the p.R442Q mutation with residual enzyme activity. The p.R442Q mutation was therefore selected as a potential target for the galactose chaperone; after the addition of galactose, COS-1 cells transfected with this mutation showed an increase in beta galactosidase activity from 6.9% to 12% of control values. CONCLUSIONS These results suggest that galactose or its derivatives with potential chaperone properties could be used in the development of non-invasive therapies for GM1-gangliosidosis.
Collapse
Affiliation(s)
- Anna Caciotti
- Metabolic and Muscular Unit, Clinic of Pediatric Neurology, AOU Meyer, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Gucev ZS, Tasic V, Jancevska A, Zafirovski G, Kremensky I, Sinigerska I, Nanba E, Higaki K, Gucev F, Suzuki Y. Novel beta-galactosidase gene mutation p.W273R in a woman with mucopolysaccharidosis type IVB (Morquio B) and lack of response to in vitro chaperone treatment of her skin fibroblasts. Am J Med Genet A 2008; 146A:1736-40. [PMID: 18546276 DOI: 10.1002/ajmg.a.32318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The patient is a 24-year-old woman who first came for consultation at age 10 years. Based on clinical phenotype and thin-layer chromatography of urinary oligosaccharides, peripheral leukocytes were sent for beta-galactosidase assay. This testing showed a deficiency in enzyme activity, and gene mutation analysis identified a previously reported mutation p.H281Y (875C > T) and a novel mutation p.W273R (817T > C). Unlike previously reported patients, mutant enzymes in this patient's cultured skin fibroblasts did not respond to treatment with a chaperone compound, N-octyl-4-epi-beta-valienamine.
Collapse
Affiliation(s)
- Zoran S Gucev
- Medical Genetics Service, HCPA, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Suzuki Y, Ichinomiya S, Kurosawa M, Ohkubo M, Watanabe H, Iwasaki H, Matsuda J, Noguchi Y, Takimoto K, Itoh M, Tabe M, Iida M, Kubo T, Ogawa S, Nanba E, Higaki K, Ohno K, Brady RO. Chemical chaperone therapy: clinical effect in murine GM1-gangliosidosis. Ann Neurol 2007; 62:671-5. [DOI: 10.1002/ana.21284] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Ichinomiya S, Watanabe H, Maruyama K, Toda H, Iwasaki H, Kurosawa M, Matsuda J, Suzuki Y. Motor and reflex testing in GM1-gangliosidosis model mice. Brain Dev 2007; 29:210-6. [PMID: 17027211 DOI: 10.1016/j.braindev.2006.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/02/2006] [Accepted: 08/20/2006] [Indexed: 11/24/2022]
Abstract
A large number of genetic disease model mice have been produced by genetic engineering. However, phenotypic analysis is not sufficient, particularly for brain dysfunction in neurogenetic diseases. We tried to develop a new assessment system mainly for motor and reflex functions in G(M1)-gangliosidosis model mice. Two genetically engineered model mouse strains were used for this study: the beta-galactosidase-deficient knockout mouse representing infantile G(M1)-gangliosidosis (severe form), and transgenic mouse representing juvenile G(M1)-gangliosidosis (mild form). We modified human child neurology techniques, and selected eleven tests for motor assessment and reflex testing. The test results were scored in four grades: 0 (normal), 1 (slightly abnormal), 2 (moderately abnormal), and 3 (severely abnormal). Both disease model mouse strains showed high scores even at the apparently pre-symptomatic stage of the disease, particularly with abnormal tail and hind limb postures. Individual and total test scores were well correlated with the progression of the disease. This method is simple, quick, and reproducible. The testing is sensitive enough to detect early neurological abnormalities, and will be useful for monitoring the natural clinical course and effect of therapeutic experiments in various neurogenetic disease model mice, such as chemical chaperone therapy for G(M1)-gangliosidosis model mice.
Collapse
Affiliation(s)
- Satoshi Ichinomiya
- Graduate School, International University of Health and Welfare, Otawara, Japan
| | | | | | | | | | | | | | | |
Collapse
|