1
|
Sun Y, He L, Wang W, Xie Z, Zhang X, Wang P, Wang L, Yan C, Liu Z, Zhao J, Cui Z, Wang Y, Tang L, Zhang Z. Activation of Atg7-dependent autophagy by a novel inhibitor of the Keap1-Nrf2 protein-protein interaction from Penthorum chinense Pursh. attenuates 6-hydroxydopamine-induced ferroptosis in zebrafish and dopaminergic neurons. Food Funct 2022; 13:7885-7900. [PMID: 35776077 DOI: 10.1039/d2fo00357k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The death of dopaminergic neurons is a dominant factor during the occurrence and development of Parkinson's disease (PD). Previous studies demonstrated that ferroptosis is implicated in the death of dopaminergic neurons. Besides, polyphenols have been proven to be effective in preventing the death of dopaminergic neurons. This work aims to explore the neuroprotective effect and mechanism of thonningianin A (Th A), a polyphenolic compound in natural plant foods, against 6-hydroxydopamine (6-OHDA)-induced ferroptosis in dopaminergic cells. The results of molecular docking and other binding assays collectively demonstrated that Th A can strongly target the Kelch domain of Keap1. Th A treatment significantly facilitated the nuclear factor erythroid 2-like 2 (Nrf2) nuclear translocation and subsequently increased the heme oxygenase-1 (HO-1) protein level through inhibiting the protein-protein interaction (PPI) of Keap1 and Nrf2. Compared with the nomifensine (Nomi) treatment, Th A had a more potent protective effect on 6-OHDA-induced ferroptosis during PD pathology in zebrafish, which was associated with assuaging the reduction of the total swimming distance, glutathione (GSH) depletion, iron accumulation, lipid peroxidation, and aggregation of α-synuclein (α-syn). Furthermore, Th A also exhibited a strong protective effect against 6-OHDA-induced ferroptosis in vitro in the human neuroblastoma cell line SH-SY5Y. Th A degraded Keap1 protein through activating Atg7-dependent autophagy. Additionally, Th A treatment facilitated the degradation of Keap1 protein by promoting the interaction between p62/SQSTM1 (sequestosome 1, hereafter referred to as p62) and Keap1. Taken together, our findings indicated that Th A protects dopaminergic cells against 6-OHDA-induced ferroptosis through activating the Nrf2-based cytoprotective system, thus enabling a potential application of Keap1-Nrf2 PPI inhibitors in the restraint of ferroptosis and treatment of PD.
Collapse
Affiliation(s)
- Yiran Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wang Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang 330052, Jiangxi, China
| | - Zhishen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Xiaowei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Lan Wang
- College of Chemical and Food Engineering, Zhengzhou Institute of Technology, Zhengzhou 450044, China
| | - Chenchen Yan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Zhiwen Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Jie Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Zhenghao Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| | - Yida Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China.
| |
Collapse
|
2
|
Streamlining Culture Conditions for the Neuroblastoma Cell Line SH-SY5Y: A Prerequisite for Functional Studies. Methods Protoc 2022; 5:mps5040058. [PMID: 35893584 PMCID: PMC9326679 DOI: 10.3390/mps5040058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
The neuroblastoma cell line SH-SY5Y has been a well-established and very popular in vitro model in neuroscience for decades, especially focusing on neurodevelopmental disorders, such as Parkinson’s disease. The ability of this cell type to differentiate compared with other models in neurobiology makes it one of the few suitable models without having to rely on a primary culture of neuronal cells. Over the years, various, partly contradictory, methods of cultivation have been reported. This study is intended to provide a comprehensive guide to the in vitro cultivation of undifferentiated SH-SY5Y cells. For this purpose, the morphology of the cell line and the differentiation of the individual subtypes are described, and instructions for cell culture practice and long-term cryoconservation are provided. We describe the key growth characteristics of this cell line, including proliferation and confluency data, optimal initial seeding cell numbers, and a comparison of different culture media and cell viability during cultivation. Furthermore, applying an optimized protocol in a long-term cultivation over 60 days, we show that cumulative population doubling (CPD) is constant over time and does not decrease with incremental passage, enabling stable cultivation, for example, for recurrent differentiation to achieve the highest possible reproducibility in subsequent analyses. Therefore, we provide a solid guidance for future research that employs the neuroblastoma cell line SH-SY5Y.
Collapse
|
3
|
Sun Y, He L, Wang T, Hua W, Qin H, Wang J, Wang L, Gu W, Li T, Li N, Liu X, Chen F, Tang L. Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells. Mol Neurobiol 2020; 57:4628-4641. [PMID: 32770451 DOI: 10.1007/s12035-020-02049-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). However, the manner of death of dopaminergic neurons remains indistinct. Ferroptosis is a form of cell death involving in the iron-dependent accumulation of glutathione depletion and lipid peroxide. Besides, previous studies indicated that ferroptosis might be involved in the death of dopaminergic neurons. In this study, we aim to explore the protective effect of the p62-Keap1-Nrf2 pathway against 6-hydroxydopamine (6-OHDA)-induced ferroptosis in dopaminergic cells. Firstly, our results demonstrated that 6-OHDA-induced ferroptosis could be observed in vivo zebrafish and in vitro human dopaminergic cell line (SH-SY5Y cells) model. Moreover, ferroptosis induced by 6-OHDA mitigates in SH-SY5Y cells upon ferrostatin-1 (Fer, an inhibitor of ferroptosis) treatment via upregulating the protein expression of glutathione peroxidase 4 (GPX4). Then, we found that high p62/SQSTM1 (p62) expression could protect SH-SY5Y cells against ferroptosis through promoting Nrf2 nuclear transfer and upregulating the expression of the antioxidant protein heme oxygenase-1 (HO-1). Ultimately, high p62 expression activates the Nrf2/HO-1 signaling pathway through binding to Kelch-like ECH-associated protein 1 (Keap1). Collectively, the activation of the p62-Keap1-Nrf2 pathway prevents 6-OHDA-induced ferroptosis in SH-SY5Y cells, targeting this pathway in combination with a pharmacological inhibitor of ferroptosis can be a potential approach for PD therapy.
Collapse
Affiliation(s)
- Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Taoyu Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Jingjin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Li Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Wanqin Gu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Na Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Xinanbei Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China. .,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
4
|
Yu-Taeger L, Gaiser V, Lotzer L, Roenisch T, Fabry BT, Stricker-Shaver J, Casadei N, Walter M, Schaller M, Riess O, Nguyen HP, Ott T, Grundmann-Hauser K. Dynamic nuclear envelope phenotype in rats overexpressing mutated human torsinA protein. Biol Open 2018; 7:bio.032839. [PMID: 29739751 PMCID: PMC6078351 DOI: 10.1242/bio.032839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A three-base-pair deletion in the human TOR1A gene is causative for the most common form of primary dystonia: the early-onset dystonia type 1 (DYT1 dystonia). The pathophysiological consequences of this mutation are still unknown. To study the pathology of the mutant torsinA (TOR1A) protein, we have generated a transgenic rat line that overexpresses the human mutant protein under the control of the human TOR1A promoter. This new animal model was phenotyped with several approaches, including behavioral tests and neuropathological analyses. Motor phenotype, cellular and ultrastructural key features of torsinA pathology were found in this new transgenic rat line, supporting that it can be used as a model system for investigating the disease’s development. Analyses of mutant TOR1A protein expression in various brain regions also showed a dynamic expression pattern and a reversible nuclear envelope pathology. These findings suggest the differential vulnerabilities of distinct neuronal subpopulations. Furthermore, the reversibility of the nuclear envelope pathology might be a therapeutic target to treat the disease. Summary: A novel transgenic rat model displaying dystonia-like phenotypes and dynamic processes in NE pathology can become a useful tool for therapy development for dystonia and other related diseases.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Viktoria Gaiser
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Larissa Lotzer
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Tina Roenisch
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Core Facility Transgenic Animals, University Hospital Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Benedikt Timo Fabry
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Janice Stricker-Shaver
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Nicolas Casadei
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Michael Walter
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany .,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Thomas Ott
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Core Facility Transgenic Animals, University Hospital Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Kathrin Grundmann-Hauser
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| |
Collapse
|
5
|
Clarke KE, Tams DM, Henderson AP, Roger MF, Whiting A, Przyborski SA. A robust and reproducible human pluripotent stem cell derived model of neurite outgrowth in a three-dimensional culture system and its application to study neurite inhibition. Neurochem Int 2016; 106:74-84. [PMID: 28011165 PMCID: PMC5455986 DOI: 10.1016/j.neuint.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
The inability of neurites to grow and restore neural connections is common to many neurological disorders, including trauma to the central nervous system and neurodegenerative diseases. Therefore, there is need for a robust and reproducible model of neurite outgrowth, to provide a tool to study the molecular mechanisms that underpin the process of neurite inhibition and to screen molecules that may be able to overcome such inhibition. In this study a novel in vitro pluripotent stem cell based model of human neuritogenesis was developed. This was achieved by incorporating additional technologies, notably a stable synthetic inducer of neural differentiation, and the application of three-dimensional (3D) cell culture techniques. We have evaluated the use of photostable, synthetic retinoid molecules to promote neural differentiation and found that 0.01 μM EC23 was the optimal concentration to promote differentiation and neurite outgrowth from human pluripotent stem cells within our model. We have also developed a methodology to enable quick and accurate quantification of neurite outgrowth derived from such a model. Furthermore, we have obtained significant neurite outgrowth within a 3D culture system enhancing the level of neuritogenesis observed and providing a more physiological microenvironment to investigate the molecular mechanisms that underpin neurite outgrowth and inhibition within the nervous system. We have demonstrated a potential application of our model in co-culture with glioma cells, to recapitulate aspects of the process of neurite inhibition that may also occur in the injured spinal cord. We propose that such a system that can be utilised to investigate the molecular mechanisms that underpin neurite inhibition mediated via glial and neuron interactions. Development of a robust, novel neurite outgrowth assay from human pluripotent stem cell derived neural cell aggregates. Synthetic retinoids induce neural differentiation of pluripotent stem cells to a greater extent than natural ATRA. Neurospheres cultured on a 3D scaffold provide a more physiologically relevant model of neurite outgrowth. Suppression of neurite outgrowth by glioma cells in 3D enables the study of neurite inhibitory mechanisms in the glial scar.
Collapse
Affiliation(s)
- Kirsty E Clarke
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Daniel M Tams
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew P Henderson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Mathilde F Roger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; ReproCELL Europe Ltd., NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK.
| |
Collapse
|
6
|
Cerebellar synaptogenesis is compromised in mouse models of DYT1 dystonia. Exp Neurol 2015; 271:457-67. [DOI: 10.1016/j.expneurol.2015.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
|
7
|
|
8
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Vo A, Sako W, Dewey SL, Eidelberg D, Uluğ AM. 18FDG-microPET and MR DTI findings in Tor1a+/- heterozygous knock-out mice. Neurobiol Dis 2014; 73:399-406. [PMID: 25447231 DOI: 10.1016/j.nbd.2014.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022] Open
Abstract
TorsinA is an important protein in brain development, and plays a role in the regulation of neurite outgrowth and synaptic function. Patients with the most common form of genetic dystonia carry a mutation (DYT1) in one copy of the Tor1a gene, a 3-bp deletion, causing removal of a single glutamic acid from torsinA. Previous imaging studies have shown that abnormal cerebellar metabolism and damaged cerebello-thalamo-cortical pathway contribute to the pathophysiology of DYT1 dystonia. However, how a mutation in one copy of the Tor1a gene causes these abnormalities is not known. We studied Tor1a heterozygous knock-out mice in vivo with FDG-PET and ex vivo with diffusion tensor imaging. We found metabolic abnormalities in cerebellum, caudate-putamen, globus pallidus, sensorimotor cortex and subthalamic nucleus. We also found that FA was increased in caudate-putamen, sensorimotor cortex and brainstem. We compared our findings with a previous imaging study of the Tor1a knock-in mice. Our study suggested that having only one normal copy of Tor1a gene may be responsible for the metabolic abnormalities observed; having a copy of mutant Tor1a, on the other hand, may be responsible for white matter pathway damages seen in DYT1 dystonia subjects.
Collapse
Affiliation(s)
- An Vo
- Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA
| | - Wataru Sako
- Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA
| | - Stephen L Dewey
- Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA; Department of Molecular Medicine, Hofstra University, NY 11549, USA; Department of Psychiatry, New York University, NY 10012, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA
| | - Aziz M Uluğ
- Center for Neurosciences, The Feinstein Institute for Medical Research, NY 11030, USA; Department of Molecular Medicine, Hofstra University, NY 11549, USA; Department of Radiology, Albert Einstein College of Medicine, NY 10461, USA; Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
10
|
Harata NC. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:260. [PMID: 25279252 PMCID: PMC4175402 DOI: 10.7916/d8js9nr2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 12/01/2022]
Abstract
Background An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. Methods We evaluated the literature regarding the subcellular localization of torsinA. Results Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. Discussion As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.
Collapse
Affiliation(s)
- N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
11
|
Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2014; 28:968-81. [PMID: 23893453 DOI: 10.1002/mds.25547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English-language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell-cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Mark S Ledoux
- Department of Neurology, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
12
|
Koh JY, Iwabuchi S, Harata NC. Dystonia-associated protein torsinA is not detectable at the nerve terminals of central neurons. Neuroscience 2013; 253:316-29. [PMID: 24025868 DOI: 10.1016/j.neuroscience.2013.08.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023]
Abstract
Presynaptic functions of the mammalian central neurons are regulated by a network of protein interactions. Synaptic vesicle recycling in and neurotransmitter release from the presynaptic nerve terminals are altered when a glutamate-deleting mutation is present in the torsinA protein (ΔE-torsinA). This mutation is linked with a hereditary form of the movement disorder dystonia known as DYT1 dystonia. Although torsinA expression is prevalent throughout the central nervous system, its subcellular localization - in particular with respect to presynaptic nerve terminals - remains unclear. This information would be useful in narrowing down possible models for how wild-type torsinA affects presynaptic function, as well as the nature of the presynaptic dysfunction that arises in the context of ΔE-torsinA mutation. Here we report on an analysis of the presynaptic localization of torsinA in cultured neurons obtained from a knock-in mouse model of DYT1 dystonia. Primary cultures of neurons were established from heterozygous and homozygous ΔE-torsinA knock-in mice, as well as from their wild-type littermates. Neurons were obtained from the striatum, cerebral cortex and hippocampus of these mice, and were subjected to immunocytochemistry. This analysis revealed the expression of both proteins in the somata and dendrites. However, neither the nerve terminals nor axonal shafts were immunoreactive. These results were confirmed by fluorogram-based quantitation. Our findings indicate that neither the wild-type nor the ΔE-torsinA mutant protein is present at substantial levels in the presynaptic structures of cultured neurons. Thus, the effects of torsinA, in wild-type and mutant forms, appear to influence presynaptic function indirectly, without residing in presynaptic structures.
Collapse
Affiliation(s)
- J-Y Koh
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
13
|
Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, Pisani A, Mandolesi G. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS One 2013; 8:e68063. [PMID: 23840813 PMCID: PMC3686744 DOI: 10.1371/journal.pone.0068063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Torsin A (TA) is a ubiquitous protein belonging to the superfamily of proteins called "ATPases associated with a variety of cellular activities" (AAA(+) ATPase). To date, a great deal of attention has been focused on neuronal TA since its mutant form causes early-onset (DYT1) torsion dystonia, an inherited movement disorder characterized by sustained muscle contractions and abnormal postures. Interestingly, it has been proposed that TA, by interacting with the cytoskeletal network, may contribute to the control of neurite outgrowth and/or by acting as a chaperone at synapses could affect synaptic vesicle turnover and neurotransmitter release. Accordingly, both its peculiar developmental expression in striatum and cerebellum and evidence from DYT1 knock-in mice suggest that TA may influence dendritic arborization and synaptogenesis in the brain. Therefore, to better understand TA function a detailed description of its localization at synaptic level is required. Here, we characterized by means of rigorous quantitative confocal analysis TA distribution in the mouse cerebellum at postnatal day 14 (P14), when both cerebellar synaptogenesis and TA expression peak. We observed that the protein is broadly distributed both in cerebellar cortex and in the deep cerebellar nuclei (DCN). Of note, Purkinje cells (PC) express high levels of TA also in the spines and axonal terminals. In addition, abundant expression of the protein was found in the main GABA-ergic and glutamatergic inputs of the cerebellar cortex. Finally, TA was observed also in glial cells, a cellular population little explored so far. These results extend our knowledge on TA synaptic localization providing a clue to its potential role in synaptic development.
Collapse
Affiliation(s)
- Francesca Puglisi
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
- * E-mail:
| | - Georgia Mandolesi
- Department of Systems Medicine, University of Rome Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
14
|
Abstract
Dystonia has been defined as a syndrome of involuntary, sustained muscle contractions affecting one or more sites of the body, frequently causing twisting and repetitive movements or abnormal postures. Dystonia is also a clinical sign that can be the presenting or prominent manifestation of many neurodegenerative and neurometabolic disorders. Etiological categories include primary dystonia, secondary dystonia, heredodegenerative diseases with dystonia, and dystonia plus. Primary dystonia includes syndromes in which dystonia is the sole phenotypic manifestation with the exception that tremor can be present as well. Most primary dystonia begins in adults, and approximately 10% of probands report one or more affected family members. Many cases of childhood- and adolescent-onset dystonia are due to mutations in TOR1A and THAP1. Mutations in THAP1 and CIZ1 have been associated with sporadic and familial adult-onset dystonia. Although significant recent progress had been made in defining the genetic basis for most of the dystonia-plus and heredodegenerative diseases with dystonia, a major gap remains in understanding the genetic etiologies for most cases of adult-onset primary dystonia. Common themes in the cellular biology of dystonia include G1/S cell cycle control, monoaminergic neurotransmission, mitochondrial dysfunction, and the neuronal stress response.
Collapse
Affiliation(s)
- Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
15
|
Untethering the nuclear envelope and cytoskeleton: biologically distinct dystonias arising from a common cellular dysfunction. Int J Cell Biol 2012; 2012:634214. [PMID: 22611399 PMCID: PMC3352338 DOI: 10.1155/2012/634214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
Most cases of early onset DYT1 dystonia in humans are caused by a GAG deletion in the TOR1A gene leading to loss of a glutamic acid (ΔE) in the torsinA protein, which underlies a movement disorder associated with neuronal dysfunction without apparent neurodegeneration. Mutation/deletion of the gene (Dst) encoding dystonin in mice results in a dystonic movement disorder termed dystonia musculorum, which resembles aspects of dystonia in humans. While torsinA and dystonin proteins do not share modular domain architecture, they participate in a similar function by modulating a structural link between the nuclear envelope and the cytoskeleton in neuronal cells. We suggest that through a shared interaction with the nuclear envelope protein nesprin-3α, torsinA and the neuronal dystonin-a2 isoform comprise a bridge complex between the outer nuclear membrane and the cytoskeleton, which is critical for some aspects of neuronal development and function. Elucidation of the overlapping roles of torsinA and dystonin-a2 in nuclear/endoplasmic reticulum dynamics should provide insights into the cellular mechanisms underlying the dystonic phenotype.
Collapse
|
16
|
Grundmann K, Glöckle N, Martella G, Sciamanna G, Hauser TK, Yu L, Castaneda S, Pichler B, Fehrenbacher B, Schaller M, Nuscher B, Haass C, Hettich J, Yue Z, Nguyen HP, Pisani A, Riess O, Ott T. Generation of a novel rodent model for DYT1 dystonia. Neurobiol Dis 2012; 47:61-74. [PMID: 22472189 DOI: 10.1016/j.nbd.2012.03.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022] Open
Abstract
A mutation in the coding region of the Tor1A gene, resulting in a deletion of a glutamic acid residue in the torsinA protein (∆ETorA), is the major cause of the inherited autosomal-dominant early onset torsion dystonia (DYT1). The pathophysiological consequences of this amino acid loss are still not understood. Currently available animal models for DYT1 dystonia provided important insights into the disease; however, they differ with respect to key features of torsinA associated pathology. We developed transgenic rat models harboring the full length human mutant and wildtype Tor1A gene. A complex phenotyping approach including classical behavioral tests, electrophysiology and neuropathology revealed a progressive neurological phenotype in ∆ETorA expressing rats. Furthermore, we were able to replicate key pathological features of torsinA associated pathology in a second species, such as nuclear envelope pathology, behavioral abnormalities and plasticity changes. We therefore suggest that this rat model represents an appropriate new model suitable to further investigate the pathophysiology of ∆ETorA and to test for therapeutic approaches.
Collapse
|
17
|
CSN complex controls the stability of selected synaptic proteins via a torsinA-dependent process. EMBO J 2010; 30:181-93. [PMID: 21102408 DOI: 10.1038/emboj.2010.285] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 10/20/2010] [Indexed: 11/08/2022] Open
Abstract
DYT1 dystonia is caused by an autosomal dominant mutation that leads to a glutamic acid deletion in torsinA (TA), a member of the AAA+ ATPase superfamily. In this study, we identified a novel-binding partner of TA, the subunit 4 (CSN4) of CSN signalosome. TA binds CSN4 and the synaptic regulator snapin in neuroblastoma cells and in brain synaptosomes. CSN4 and TA are required for the stability of both snapin and the synaptotagmin-specific endocytic adaptor stonin 2, as downregulation of CSN4 or TA reduces the levels of both proteins. Snapin is phosphorylated by the CSN-associated kinase protein kinase D (PKD) and its expression is decreased upon PKD inhibition. In contrast, the stability of stonin 2 is regulated by neddylation, another CSN-associated activity. Overexpression of the pathological TA mutant (ΔE-TA) reduces stonin 2 expression, causing the accumulation of the calcium sensor synaptotagmin 1 on the cell surface. Retrieval of surface-stranded synaptotagmin 1 is restored by overexpression of stonin 2 in ΔE-TA-expressing cells, suggesting that the DYT1 mutation compromises the role of TA in protein stabilisation and synaptic vesicle recycling.
Collapse
|
18
|
Abstract
DYT1 dystonia is an autosomal dominant movement disorder, characterized by early onset of involuntary sustained muscle contractions. It is caused by a 3-bp deletion in the DYT1 gene, which results in the deletion of a single glutamate residue in the C-terminus of the protein TA (torsinA). TA is a member of the AAA+ (ATPase associated with various cellular activities) family of chaperones with multiple functions in the cell. There is no evidence of neurodegeneration in DYT1 dystonia, which suggests that mutant TA leads to functional neuronal abnormalities, leading to dystonic movements. In recent years, different functional roles have been attributed to TA, including being a component of the cytoskeleton and the NE (nuclear envelope), and involvement in the secretory pathway and SV (synaptic vesicle) machinery. The aim of the present review is to summarize these findings and the different models proposed, which have contributed to our current understanding of the function of TA, and also to discuss the evidence implicating TA in SV function.
Collapse
|
19
|
|
20
|
Chen XP, Hu XH, Wu SH, Zhang YW, Xiao B, Shang HF. RNA interference-mediated inhibition of wild-type Torsin A expression increases apoptosis caused by oxidative stress in cultured cells. Neurochem Res 2010; 35:1214-23. [PMID: 20455020 DOI: 10.1007/s11064-010-0177-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 02/05/2023]
Abstract
To assess RNAi mediated inhibition of the expression of wt-DYT1 on H(2)O(2)-induced toxicity in NIH 3T3 cells and primary cortical neurons. To detect the function of wild-type Torsin A and the effect of SiRNA on the wt-DYT1 gene. The shRNA expression vector was constructed by ligating annealed complementary shRNA oligonucleotides into the down-stream of the human U6 promoter (PU6) of the RNAi-ready pSIREN-Shuttle vector. Then, the pSIREN-Shuttle-DYT1-shRNA cassette was ligated to Adeno-X Viral DNA to construct the recombinant adenoviral vector pAd-DYT1-shRNA. Cultured cerebral cortical neurons and NIH 3T3 cells were transfected with pAd-DYT1-shRNA and pSIREN-Shuttle-DYT1-shRNA. We evaluated NIH 3T3 cells and neurons in the presence of oxidative stress using a TUNEL assay under different conditions. The knockdown efficacy of the DYT1 was confirmed by real-time RT-PCR and Western Blot analysis. After exposure to H(2)O(2,) the quantity of NIH 3T3 cells transfected with pSIREN-Shuttle-DYT1-shRNA, which stained positively in the TUNEL assay, was significantly higher than the cells transfected with pSIREN-Shuttle-negative control-shRNA. (44.85 +/- 1.81% vs. 8.98 +/- 2.73%, t = 26.168). There were significantly more apoptotic neurons infected with pAd-DYT1-shRNA (45.63 +/- 7.53%) than neurons infected with pAd-X-negative control-shRNA (17.33 +/- 2.43%) (t = 9.816). The observed silencing of wild-type Torsin A expression by DYT1-shRNA was sequence-specific. RNAi-mediated inhibition of the expression of wild-type Torsin A increases apoptosis caused by oxidative stress. It is reasonable to consider that wild-type Torsin A has the capacity to protect cortical neurons against oxidative stress, and in the development of DYT1-delta GAG-dystonia the neuroprotective function of wild-type Torsin A may be compromised.
Collapse
Affiliation(s)
- Xue-Ping Chen
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
21
|
Walter M, Bonin M, Pullman RS, Valente EM, Loi M, Gambarin M, Raymond D, Tinazzi M, Kamm C, Glöckle N, Poths S, Gasser T, Bressman SB, Klein C, Ozelius LJ, Riess O, Grundmann K. Expression profiling in peripheral blood reveals signature for penetrance in DYT1 dystonia. Neurobiol Dis 2010; 38:192-200. [PMID: 20053375 DOI: 10.1016/j.nbd.2009.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/14/2009] [Accepted: 12/20/2009] [Indexed: 11/27/2022] Open
Abstract
DYT1 dystonia is an autosomal-dominantly inherited movement disorder, which is usually caused by a GAG deletion in the TOR1A gene. Due to the reduced penetrance of approximately 30-40%, the determination of the mutation in a subject is of limited use with regard to actual manifestation of symptoms. In the present study, we used Affymetrix oligonucleotide microarrays to analyze global gene expression in blood samples of 15 manifesting and 15 non-manifesting mutation carriers in order to identify a susceptibility profile beyond the GAG deletion which is associated with the manifestation of symptoms in DYT1 dystonia. We identified a genetic signature which distinguished between asymptomatic mutation carriers and symptomatic DYT1 patients with 86.7% sensitivity and 100% specificity. This genetic signature could correctly predict the disease state in an independent test set with a sensitivity of 87.5% and a specificity of 85.7%. Conclusively, this genetic signature might provide a possibility to distinguish DYT1 patients from asymptomatic mutation carriers.
Collapse
Affiliation(s)
- M Walter
- Department of Medical Genetics, Institute of Human Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jungwirth M, Dear ML, Brown P, Holbrook K, Goodchild R. Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA. Hum Mol Genet 2009; 19:888-900. [DOI: 10.1093/hmg/ddp557] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Abstract
Primary dystonia is characterized by abnormal, involuntary twisting and turning movements that reflect impaired motor system function. The dystonic brain seems normal, in that it contains no overt lesions or evidence of neurodegeneration, but functional brain imaging has uncovered abnormalities involving the cortex, striatum and cerebellum, and diffusion tensor imaging suggests the presence of microstructural defects in white matter tracts of the cerebellothalamocortical circuit. Clinical electrophysiological studies show that the dystonic CNS exhibits aberrant plasticity--perhaps related to deficient inhibitory neurotransmission--in a range of brain structures, as well as the spinal cord. Dystonia is, therefore, best conceptualized as a motor circuit disorder, rather than an abnormality of a particular brain structure. None of the aforementioned abnormalities can be strictly causal, as they are not limited to regions of the CNS subserving clinically affected body parts, and are found in seemingly healthy patients with dystonia-related mutations. The study of dystonia-related genes will, hopefully, help researchers to unravel the chain of events from molecular to cellular to system abnormalities. DYT1 mutations, for example, cause abnormalities within the endoplasmic reticulum-nuclear envelope endomembrane system. Other dystonia-related gene products traffic through the endoplasmic reticulum, suggesting a potential cell biological theme underlying primary dystonia.
Collapse
Affiliation(s)
- Lauren M Tanabe
- Department of Pharmacology, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
24
|
Ferrari-Toninelli G, Bonini SA, Uberti D, Napolitano F, Stante M, Santoro F, Minopoli G, Zambrano N, Russo T, Memo M. Notch activation induces neurite remodeling and functional modifications in SH-SY5Y neuronal cells. Dev Neurobiol 2009; 69:378-91. [PMID: 19263417 DOI: 10.1002/dneu.20710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Notch proteins are definitely recognized as key regulators of the neuronal fate during embryo development, but their function in the adult brain is still largely unknown. We have previously demonstrated that Notch pathway stimulation increases microtubules stability followed by the remodeling of neuronal morphology with neurite varicosities loss, thicker neuritis, and enlarged growth cones. Here we show that the neurite remodeling is a dynamic event, dependent on transcription and translation, and with functional implications. Exposure of differentiated human SH-SY5Y neuroblastoma cells to the Notch ligand Jagged1 induces varicosities loss all along the neurites, accompanied by the redistribution of presynaptic vesicles and the decrease in neurotransmitters release. As evaluated by time lapse digital imaging, dynamic changes in neurite morphology were rapidly reversible and dependent on the activation of the Notch signaling pathway. In fact, it was prevented by the inhibition of the proteolytic gamma-secretase enzyme or the transcription machinery, and was mimicked by the transfection of the intracellular domain of Notch. One hour after treatment with Jagged1, several genes were downregulated. Many of these genes encode proteins that are known to be involved in protein synthesis. These data suggest that in adult neurons, Notch pathway activates a transcriptional program that regulates the equilibrium between varicosities formation and varicosities loss in the neuronal presynaptic compartment involving the expression and redistribution of both structural and functional proteins.
Collapse
Affiliation(s)
- Giulia Ferrari-Toninelli
- Department of Biomedical Sciences and Biotechnologies, and National Institute of Neuroscience - Italy, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A GAG deletion in the DYT1 gene is responsible for the autosomal dominant movement disorder, early onset primary torsion dystonia, which is characterised by involuntary sustained muscle contractions and abnormal posturing of the limbs. The mutation leads to deletion of a single glutamate residue in the C-terminus of the protein torsinA, a member of the AAA+ ATPase family of proteins with multiple functions. Since no evidence of neurodegeneration has been found in DYT1 patients, the dystonic phenotype is likely to be the result of neuronal functional defect(s), the nature of which is only partially understood. Biochemical, structural and cell biological studies have been performed in order to characterise torsinA. These studies, together with the generation of several animal models, have contributed to identify cellular compartments and pathways, including the cytoskeleton and the nuclear envelope, the secretory pathway and the synaptic vesicle machinery where torsinA function may be crucial. However, the role of torsinA and the correlation between the dysfunction caused by the mutation and the dystonic phenotype remain unclear. This review provides an overview of the findings of the last ten years of research on torsinA, a critical evaluation of the different models proposed and insights towards future avenues of research.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK.
| | | | | |
Collapse
|
26
|
Zhao Y, Xiao J, Ueda M, Wang Y, Hines M, Nowak TS, LeDoux MS. Glial elements contribute to stress-induced torsinA expression in the CNS and peripheral nervous system. Neuroscience 2008; 155:439-53. [PMID: 18538941 PMCID: PMC2596935 DOI: 10.1016/j.neuroscience.2008.04.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/22/2008] [Accepted: 04/25/2008] [Indexed: 12/31/2022]
Abstract
DYT1 dystonia is caused by a single GAG deletion in exon 5 of TOR1A, the gene encoding torsinA, a putative chaperone protein. In this study, central and peripheral nervous system perturbations (transient forebrain ischemia and sciatic nerve transection, respectively) were used to examine the systems biology of torsinA in rats. After forebrain ischemia, quantitative real-time reverse transcriptase-polymerase chain reaction identified increased torsinA transcript levels in hippocampus, cerebral cortex, thalamus, striatum, and cerebellum at 24 h and 7 days. Expression declined toward sham values by 14 days in striatum, thalamus and cortex, and by 21 days in cerebellum and hippocampus. TorsinA transcripts were localized to dentate granule cells and pyramidal neurons in control hippocampus and were moderately elevated in these cell populations at 24 h after ischemia, after which CA1 expression was reduced, consistent with the loss of this vulnerable neuronal population. Increased in situ hybridization signal in CA1 stratum radiatum, stratum lacunosum-moleculare, and stratum oriens at 7 days after ischemia was correlated with the detection of torsinA immunoreactivity in interneurons and reactive astrocytes at 7 and 14 days. Sciatic nerve transection increased torsinA transcript levels between 24 h and 7 days in both ipsilateral and contralateral dorsal root ganglia (DRG). However, increased torsinA immunoreactivity was localized to both ganglion cells and satellite cells in ipsilateral DRG but was restricted to satellite cells contralaterally. These results suggest that torsinA participates in the response of neural tissue to central and peripheral insults and its sustained up-regulation indicates that torsinA may contribute to remodeling of neuronal circuitry. The striking induction of torsinA in astrocytes and satellite cells points to the potential involvement of glial elements in the pathobiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Yu Zhao
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| | - Jianfeng Xiao
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| | - Masayuki Ueda
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| | - Yue Wang
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| | - Melissa Hines
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| | - Thaddeus S. Nowak
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| | - Mark S. LeDoux
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, Tennessee, 38163, USA
| |
Collapse
|
27
|
Hewett JW, Nery FC, Niland B, Ge P, Tan P, Hadwiger P, Tannous BA, Sah DW, Breakefield XO. siRNA knock-down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells. Hum Mol Genet 2008; 17:1436-45. [PMID: 18258738 PMCID: PMC2861568 DOI: 10.1093/hmg/ddn032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/29/2008] [Indexed: 01/12/2023] Open
Abstract
Most cases of the dominantly inherited movement disorder, early onset torsion dystonia (DYT1) are caused by a mutant form of torsinA lacking a glutamic acid residue in the C-terminal region (torsinADeltaE). TorsinA is an AAA+ protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope apparently involved in membrane structure/movement and processing of proteins through the secretory pathway. A reporter protein Gaussia luciferase (Gluc) shows a reduced rate of secretion in primary fibroblasts from DYT1 patients expressing endogenous levels of torsinA and torsinADeltaE when compared with control fibroblasts expressing only torsinA. In this study, small interfering RNA (siRNA) oligonucleotides were identified, which downregulate the levels of torsinA or torsinADeltaE mRNA and protein by over 65% following transfection. Transfection of siRNA for torsinA message in control fibroblasts expressing Gluc reduced levels of luciferase secretion compared with the same cells non-transfected or transfected with a non-specific siRNA. Transfection of siRNA selectively inhibiting torsinADeltaE message in DYT fibroblasts increased luciferase secretion when compared with cells non-transfected or transfected with a non-specific siRNA. Further, transduction of DYT1 cells with a lentivirus vector expressing torsinA, but not torsinB, also increased secretion. These studies are consistent with a role for torsinA as an ER chaperone affecting processing of proteins through the secretory pathway and indicate that torsinADeltaE acts to inhibit this torsinA activity. The ability of allele-specific siRNA for torsinADeltaE to normalize secretory function in DYT1 patient cells supports its potential role as a therapeutic agent in early onset torsion dystonia.
Collapse
Affiliation(s)
- Jeffrey W. Hewett
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Flávia C. Nery
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Brian Niland
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Pei Ge
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Pamela Tan
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Bakhos A. Tannous
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology
- Center for Molecular Imaging Research
- Department of Radiology, Massachusetts General Hospital
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
28
|
Li GN, Livi LL, Gourd CM, Deweerd ES, Hoffman-Kim D. Genomic and morphological changes of neuroblastoma cells in response to three-dimensional matrices. ACTA ACUST UNITED AC 2007; 13:1035-47. [PMID: 17439391 DOI: 10.1089/ten.2006.0251] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advances in neural tissue engineering require a comprehensive understanding of neuronal growth in 3 dimensions. This study compared the gene expression of SH-SY5Y human neuroblastoma cells cultured in 3-dimensional (3D) with those cultured in 2-dimensional (2D) environments. Microarray analysis demonstrated that, in response to varying matrix geometry, SH-SY5Y cells exhibited differential expression of 1,766 genes in collagen I, including those relevant to cytoskeleton, extracellular matrix, and neurite outgrowth. Cells extended longer neurites in 3D collagen I cultures than in 2D. Real-time reverse transcriptase polymerase chain reaction experiments and morphological analysis comparing collagen I and Matrigel tested whether the differential growth and gene expression reflected influences of culture dimension or culture material. SH-SY5Y neuroblastoma cells responded to geometry by differentially regulating cell spreading and genes associated with actin in similar patterns for both materials; however, neurite outgrowth and the expression of the gene encoding for neurofilament varied with the type of material. Electron microscopy and mechanical analysis showed that collagen I was more fibrillar than Matrigel, with larger inter-fiber distance and higher stiffness. Taken together, these results suggest complex cell-material interactions, in which the dimension of the culture material influences gene expression and cell spreading and the structural and mechanical properties of the culture material influence gene expression and neurite outgrowth.
Collapse
Affiliation(s)
- Grace N Li
- Center for Biomedical Engineering, Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
29
|
Grundmann K, Reischmann B, Vanhoutte G, Hübener J, Teismann P, Hauser TK, Bonin M, Wilbertz J, Horn S, Nguyen HP, Kuhn M, Chanarat S, Wolburg H, Van der Linden A, Riess O. Overexpression of human wildtype torsinA and human DeltaGAG torsinA in a transgenic mouse model causes phenotypic abnormalities. Neurobiol Dis 2007; 27:190-206. [PMID: 17601741 DOI: 10.1016/j.nbd.2007.04.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/13/2007] [Accepted: 04/27/2007] [Indexed: 11/30/2022] Open
Abstract
Primary torsion dystonia is an autosomal-dominant inherited movement disorder. Most cases are caused by an in-frame deletion (GAG) of the DYT1 gene encoding torsinA. Reduced penetrance and phenotypic variability suggest that alteration of torsinA amino acid sequence is necessary but not sufficient for development of clinical symptoms and that additional factors must contribute to the factual manifestation of the disease. We generated 4 independent transgenic mouse lines, two overexpressing human mutant torsinA and two overexpressing human wildtype torsinA using a strong murine prion protein promoter. Our data provide for the first time in vivo evidence that not only mutant torsinA is detrimental to neuronal cells but that also wildtype torsinA can lead to neuronal dysfunction when overexpressed at high levels. This hypothesis is supported by (i) neuropathological findings, (ii) neurochemistry, (iii) behavioral abnormalities and (iv) DTI-MRI analysis.
Collapse
Affiliation(s)
- K Grundmann
- Department of Medical Genetics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hewett JW, Tannous B, Niland BP, Nery FC, Zeng J, Li Y, Breakefield XO. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc Natl Acad Sci U S A 2007; 104:7271-6. [PMID: 17428918 PMCID: PMC1855419 DOI: 10.1073/pnas.0701185104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Indexed: 01/06/2023] Open
Abstract
TorsinA is an AAA(+) protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope responsible for early onset torsion dystonia (DYT1). Most cases of this dominantly inherited movement disorder are caused by deletion of a glutamic acid in the carboxyl terminal region of torsinA. We used a sensitive reporter, Gaussia luciferase (Gluc) to evaluate the role of torsinA in processing proteins through the ER. In primary fibroblasts from controls and DYT1 patients most Gluc activity (95%) was released into the media and processed through the secretory pathway, as confirmed by inhibition with brefeldinA and nocodazole. Fusion of Gluc to a fluorescent protein revealed coalignment and fractionation with ER proteins and association of Gluc with torsinA. Notably, fibroblasts from DYT1 patients were found to secrete markedly less Gluc activity as compared with control fibroblasts. This decrease in processing of Gluc in DYT1 cells appear to arise, at least in part, from a loss of torsinA activity, because mouse embryonic fibroblasts lacking torsinA also had reduced secretion as compared with control cells. These studies demonstrate the exquisite sensitivity of this reporter system for quantitation of processing through the secretory pathway and support a role for torsinA as an ER chaperone protein.
Collapse
Affiliation(s)
- Jeffrey W. Hewett
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Bakhos Tannous
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Brian P. Niland
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Flavia C. Nery
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Juan Zeng
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| | - Yuqing Li
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xandra O. Breakefield
- *Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114; and
| |
Collapse
|
31
|
Poliani PL, Mitola S, Ravanini M, Ferrari-Toninelli G, D'Ippolito C, Notarangelo LD, Bercich L, Wagener C, Memo M, Presta M, Facchetti F. CEACAM1/VEGF cross‐talk during neuroblastic tumour differentiation. J Pathol 2007; 211:541-549. [PMID: 17310502 DOI: 10.1002/path.2135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of angiogenesis in tumour progression is a major subject in modern oncology and a correlation between angiogenesis and poor outcome has been demonstrated for human neuroblastomas. However, the role of angiogenesis in the maturation phase of neuroblastic tumours has never been considered. Human carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a potent pro-angiogenic factor and mediator of vascular endothelial growth factor (VEGF)-induced angiogenesis, plays a crucial role during the activation phase of angiogenesis and it has been shown to be expressed in the microvessels of the developing central nervous system as well as in newly formed immature blood vessels in many different tumours and under physiological conditions. The present study has investigated the role of CEACAM1/VEGF-mediated angiogenesis across the whole spectrum of neuroblastic tumours, from undifferentiated to fully differentiated mature ganglioneuromas. CEACAM1 is peculiarly expressed in the microvessels of areas of active tumour maturation among differentiating neuroblastic/ganglion cells, whereas it is completely absent in the vessels of poorly differentiated/undifferentiated as well as in entirely mature Schwannian-rich areas. Interestingly, VEGF expression has been found in differentiating neuroblastic/ganglion cells adjacent to CEACAM1-positive microvessels. In keeping with these observations, VEGF expression was found in human neuroblastoma SH-SY5Y cells during differentiation after retinoic acid treatment. Moreover, conditioned medium from SH-SY5Y cells collected at different stages of differentiation induced progressive in vitro up-regulation of CEACAM1 expression in human umbilical vein endothelial cells (HUVECs) that was abrogated by the specific VEGF receptor-2/KDR inhibitor SU5416. Taken together, these data point to a role for CEACAM1/VEGF cross-talk during the maturation phase of neuroblastic tumours. This may mimic physiological events leading to maturation of the vasculature in the developing normal central nervous system. On the other hand, in poorly differentiated/undifferentiated lesions, VEGF-sustained angiogenesis does not reproduce physiological steps, but rather is associated with tumour aggressiveness and may involve other molecular pathways.
Collapse
Affiliation(s)
- P L Poliani
- Department of Pathology, University of Brescia, Brescia, Italy
| | - S Mitola
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - M Ravanini
- Department of Pathology, University of Brescia, Brescia, Italy
| | - G Ferrari-Toninelli
- Unit of Pharmacology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - C D'Ippolito
- Department of Paediatrics, University of Brescia, Brescia, Italy
| | - L D Notarangelo
- Department of Paediatrics, University of Brescia, Brescia, Italy
| | - L Bercich
- Department of Pathology, University of Brescia, Brescia, Italy
| | - C Wagener
- Department of Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - M Memo
- Unit of Pharmacology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - M Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - F Facchetti
- Department of Pathology, University of Brescia, Brescia, Italy
| |
Collapse
|
32
|
Muraro NI, Moffat KG. Down-regulation of torp4a, encoding the Drosophila homologue of torsinA, results in increased neuronal degeneration. ACTA ACUST UNITED AC 2006; 66:1338-53. [PMID: 16967506 DOI: 10.1002/neu.20313] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Early-onset torsion dystonia is a dominant motor disorder linked to mutations in torsinA. TorsinA is weakly related to a superfamily of chaperone-like proteins. The function of the torsin group remains largely unknown. Here we use RNAi and over-expression to analyze the function of torp4a, the only Drosophila torsin. Targeted down-regulation in the eye causes progressive degeneration of the retina. Conversely, over-expression of torp4a protects from age-related degeneration. In the retinas of young animals, a correlation with the lysosome-related organelle, the pigment granule, is also observed. Lowering torp4a causes an increase in pigment granules, while over-expression causes loss of granules. We have performed a screen for genetic interactors of torp4a identifying a number mutants, including two members of the AP-3 complex. Other genetic interactors found included genes related to actin and myosin function. Our findings implicate the Drosophila torsin, torp4a, to function with molecules consistent with already predicted roles in the endoplasmic reticulum/nuclear envelope compartment, and have identified potential new interactions with AP-3 like components.
Collapse
Affiliation(s)
- Nara I Muraro
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
33
|
Vasudevan A, Breakefield XO, Bhide PG. Developmental patterns of torsinA and torsinB expression. Brain Res 2006; 1073-1074:139-45. [PMID: 16458269 PMCID: PMC1472621 DOI: 10.1016/j.brainres.2005.12.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/16/2005] [Accepted: 12/16/2005] [Indexed: 01/08/2023]
Abstract
Early onset torsion dystonia is characterized by involuntary movements and distorted postures and is usually caused by a 3-bp (GAG) deletion in the DYT1 (TOR1A) gene. DYT1 codes for torsinA, a member of the AAA+ family of proteins, implicated in membrane recycling and chaperone functions. A close relative, torsinB may be involved in similar cellular functions. We investigated torsinA and torsinB message and protein levels in the developing mouse brain. TorsinA expression was highest during prenatal and early postnatal development (until postnatal day 14; P14), whereas torsinB expression was highest during late postnatal periods (from P14 onwards) and in the adult. In addition, significant regional variation in the expression of the two torsins was seen within the developing brain. Thus, torsinA expression was highest in the cerebral cortex from embryonic day 15 (E15)-E17 and in the striatum from E17-P7, while torsinB was highest in the cerebral cortex between P7-P14 and in the striatum from P7-P30. TorsinA was also highly expressed in the thalamus from P0-P7 and in the cerebellum from P7-P14. Although functional significance of the patterns of torsinA and B expression in the developing brain remains to be established, our findings provide a basis for investigating the role of torsins in specific processes such as neurogenesis, neuronal migration, axon/dendrite development, and synaptogenesis.
Collapse
Affiliation(s)
- Anju Vasudevan
- Developmental Neurobiology, Massachusetts General Hospital, 13th street, Building 149, 6th floor, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
34
|
Hewett JW, Zeng J, Niland BP, Bragg DC, Breakefield XO. Dystonia-causing mutant torsinA inhibits cell adhesion and neurite extension through interference with cytoskeletal dynamics. Neurobiol Dis 2005; 22:98-111. [PMID: 16361107 DOI: 10.1016/j.nbd.2005.10.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/05/2005] [Accepted: 10/16/2005] [Indexed: 01/05/2023] Open
Abstract
Early onset torsion dystonia is a movement disorder inherited as an autosomal dominant syndrome with reduced penetrance. Symptoms appear to result from altered neuronal circuitry within the brain with no evidence of neuronal loss. Most cases are caused by loss of a glutamic acid residue in the AAA+ chaperone protein, torsinA, encoded in the DYT1 gene. In this study, torsinA was found to move in conjunction with vimentin in three cell culture paradigms-recovery from microtubule depolymerization, expression of a dominant-negative form of kinesin light chain and respreading after trypsinization. Co-immune precipitation studies revealed association between vimentin and torsinA in a complex including other cytoskeletal elements, actin and tubulin, as well as two proteins previously shown to interact with torsinA-the motor protein, kinesin light chain 1, and the nuclear envelope protein, LAP1. Morphologic and functional differences related to vimentin were noted in primary fibroblasts from patients carrying this DYT1 mutation as compared with controls, including an increased perinuclear concentration of vimentin and a delayed rate of adhesion to the substratum. Overexpression of mutant torsinA inhibited neurite extension in human neuroblastoma cells, with torsinA and vimentin immunoreactivity enriched in the perinuclear region and in cytoplasmic inclusions. Collectively, these studies suggest that mutant torsinA interferes with cytoskeletal events involving vimentin, possibly by restricting movement of these particles/filaments, and hence may affect development of neuronal pathways in the brain.
Collapse
Affiliation(s)
- Jeffrey W Hewett
- Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|