1
|
Claeboe ET, Blake KL, Shah NR, Morris CW, Hens B, Atwood BK, Absalon S, Mosley AL, Doud EH, Baucum AJ. Proximity labeling and orthogonal nanobody pulldown (ID-oPD) approaches to map the spinophilin interactome uncover a putative role for spinophilin in protein homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634546. [PMID: 39896493 PMCID: PMC11785182 DOI: 10.1101/2025.01.23.634546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Spinophilin is a dendritic spine enriched scaffolding and protein phosphatase 1 targeting protein. To detail spinophilin interacting proteins, we created an Ultra-ID and ALFA-tagged spinophilin encoding construct that permits proximity labeling and orthogonal nanobody pulldown (ID-oPD) of spinophilin-associated protein complexes in heterologous cells. We identified 614 specific, and 312 specific and selective, spinophilin interacting proteins in HEK293 cells and validated a subset of these using orthogonal approaches. Many of these proteins are involved in mRNA processing and translation. In the brain, we determined that spinophilin mRNA is highly neuropil localized and that spinophilin may normally function to limit its own expression but promote the expression of other PSD-associated proteins. Overall, our use of an ID-oPD approach uncovers a novel putative role for spinophilin in mRNA translation and synaptic protein expression specifically within dendritic spines.
Collapse
Affiliation(s)
- Emily T. Claeboe
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
| | - Keyana L. Blake
- Post-Baccalaureate Research Education Program, Indiana University Indianapolis
| | - Nikhil R. Shah
- Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Cameron W. Morris
- Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Basant Hens
- Pharmacology Graduate Training Program, University of Minnesota Medical School
| | - Brady K. Atwood
- Department of Pharmacology, University of Minnesota Medical School
| | - Sabrina Absalon
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
| | - Amber L. Mosley
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Center for Proteome Analysis Indiana University School of Medicine
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
- Stark Neurosciences Research Institute, Indiana University School of Medicine
| | - Emma H. Doud
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Center for Proteome Analysis Indiana University School of Medicine
| | - Anthony J. Baucum
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Stark Neurosciences Research Institute, Indiana University School of Medicine
| |
Collapse
|
2
|
Mouzannar K, Schauer A, Liang TJ. The Post-Transcriptional Regulatory Element of Hepatitis B Virus: From Discovery to Therapy. Viruses 2024; 16:528. [PMID: 38675871 PMCID: PMC11055085 DOI: 10.3390/v16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The post-transcriptional regulatory element (PRE) is present in all HBV mRNAs and plays a major role in their stability, nuclear export, and enhancement of viral gene expression. Understanding PRE's structure, function, and mode of action is essential to leverage its potential as a therapeutic target. A wide range of PRE-based reagents and tools have been developed and assessed in preclinical and clinical settings for therapeutic and biotechnology applications. This manuscript aims to provide a systematic review of the characteristics and mechanism of action of PRE, as well as elucidating its current applications in basic and clinical research. Finally, we discuss the promising opportunities that PRE may provide to antiviral development, viral biology, and potentially beyond.
Collapse
Affiliation(s)
- Karim Mouzannar
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
3
|
Han H, Yang Y, Jiao Y, Qi H, Han Z, Wang L, Dong L, Tian J, Vanhaesebroeck B, Li X, Liu J, Ma G, Lei H. Leverage of nuclease-deficient CasX for preventing pathological angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:738-748. [PMID: 37662968 PMCID: PMC10469388 DOI: 10.1016/j.omtn.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Gene editing with a CRISPR/Cas system is a novel potential strategy for treating human diseases. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) δ suppresses retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Here we show that an innovative system of adeno-associated virus (AAV)-mediated CRISPR/nuclease-deficient (d)CasX fused with the Krueppel-associated box (KRAB) domain is leveraged to block (81.2% ± 6.5%) in vitro expression of p110δ, the catalytic subunit of PI3Kδ, encoded by Pik3cd. This CRISPR/dCasX-KRAB (4, 269 bp) system is small enough to be fit into a single AAV vector. We then document that recombinant AAV serotype (rAAV)1 efficiently transduces vascular endothelial cells from pathologic retinal vessels, which show high expression of p110δ; furthermore, we demonstrate that blockade of retinal p110δ expression by intravitreally injected rAAV1-CRISPR/dCasX-KRAB targeting the Pik3cd promoter prevents (32.1% ± 5.3%) retinal p110δ expression as well as pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. These data establish a strong foundation for treating pathological angiogenesis by AAV-mediated CRISPR interference with p110δ expression.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, the School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, People’s Republic of China
| | - Yunjuan Jiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | | | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junwen Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
| | - Gaoen Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hetian Lei
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| |
Collapse
|
4
|
Govorkova P, Candice Lam CK, Truong K. Design of Synthetic Mammalian Promoters Using Highly Palindromic Subsequences. ACS Synth Biol 2022; 11:1096-1105. [PMID: 35225601 DOI: 10.1021/acssynbio.1c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To express transgenes in specific cell types and states, promoters for endogenous genes are commonly created by truncating the sequence upstream of the transcriptional start site until the promoter is no longer functional. In this paper, we developed a method to design shorter synthetic mammalian promoters for endogenous genes by concatenating only its highly palindromic subsequences with a minimal core promoter. After developing metrics for palindromic density, analysis across all the human and mouse promoters showed higher palindromic density than expected by random. As experimental demonstrations, we applied the method to the CMV promoter (reduced to 432 nucleotides) and the mouse synapsin-1 promoter (383 nucleotides) to express fluorescent protein as reporters. Remarkably, the highly palindromic subsequences of these synthetic promoters contained sites important for strong constitutive expression and neuron-specific expression. As a resource to the community, we created enhancer sequences for all the human and mouse promoters.
Collapse
Affiliation(s)
- Polina Govorkova
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
| | - Chee Ka Candice Lam
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Dopamine D3 receptor in the nucleus accumbens alleviates neuroinflammation in a mouse model of depressive-like behavior. Brain Behav Immun 2022; 101:165-179. [PMID: 34971757 DOI: 10.1016/j.bbi.2021.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
We recently reported that dopamine D3 receptor (D3R) was involved in inflammation-related depression. Nucleus accumbens (NAc) inflammation is implicated in the development and progression of depression, but its regulatory mechanism remains largely unknown. In a mouse model of NAc neuroinflammation induced by bilateral NAc injection of lipopolysaccharide (LPS), we observed that NAc neuroinflammation triggered depressive-like behaviors, and D3R expression decline and microglial activation in the NAc. A selective knockdown of D3R in the NAc elicited depressive-like behaviors, while re-expression of D3R in the NAc of global D3RKO mice alleviated depressive-like behaviors induced by D3R deficiency. D3R downregulation in the NAc shifted microglia toward a proinflammatory state, which was validated with cultured mouse microglial cultures. Further in vitro results demonstrated that D3R inhibition induced microglia to enter a proinflammatory state primarily through the Akt signaling pathway. In conclusion, our results suggest that D3R expression in the NAc may inhibit microglial proinflammatory responses in the NAc, thus alleviating NAc neuroinflammation and subsequent depressive-like behaviors through the Akt signaling pathway.
Collapse
|
6
|
Wang X, Zhang W, Jia Y, Wang M, Yi D, Wang TY. Woodchuck hepatitis post-transcriptional regulatory element improves transgene expression and stability mediated by episomal vectors in CHO-K1 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1285-1288. [PMID: 33196825 DOI: 10.1093/abbs/gmaa105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Weili Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanlong Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, China
| | - Meng Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Dandan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
7
|
Long-term expression of melanopsin and channelrhodopsin causes no gross alterations in the dystrophic dog retina. Gene Ther 2017; 24:735-741. [PMID: 28880021 DOI: 10.1038/gt.2017.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023]
Abstract
Several preclinical studies have investigated the potential of algal channelrhodopsin and human melanopsin as optogenetic tools for vision restoration. In the present study, we assessed the potentially deleterious effects of long-term expression of these optogenes on the diseased retina in a large animal model of retinal degeneration, the RPE65-deficient Briard dog model of Leber congenital amaurosis. Intravitreal injection of adeno-associated virus vectors expressing channelrhodopsin and melanopsin had no effect on retinal thickness over a 16-month period post injection. Our data support the safety of the optogenetic approach for the treatment of blindness.
Collapse
|
8
|
Pan R, Cai J, Zhan L, Guo Y, Huang RY, Li X, Zhou M, Xu D, Zhan J, Chen H. Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats. Altern Ther Health Med 2017; 17:173. [PMID: 28351388 PMCID: PMC5371213 DOI: 10.1186/s12906-017-1680-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Loss of neural function is a critical but unsolved issue after cerebral ischemia insult. Neuronal plasticity and remodeling are crucial for recovery of neural functions after brain injury. Buyang Huanwu decoction, which is a classic formula in traditional Chinese medicine, can positively alter synaptic plasticity. This study assessed the effects of Buyang Huanwu decoction in combination with physical exercise on neuronal plasticity in cerebral ischemic rats. METHODS Cerebral ischemic rats were administered Buyang Huanwu decoction and participated in physical exercise after the induction of a permanent middle cerebral artery occlusion. The neurobehavioral functions and infarct volumes were evaluated. The presynaptic (SYN), postsynaptic (GAP-43) and cytoskeletal (MAP-2) proteins in the coronal brain samples were evaluated by immunohistochemistry and western blot analyses. The ultrastructure of the neuronal synaptic junctions in the same region were analyzed using transmission electron microscopy. RESULTS Combination treatment of Buyang Huanwu decoction and physical exercise ameliorated the neurobehavioral deficits (p < 0.05), significantly enhanced the expression levels of SYN, GAP-43 and MAP-2 (p < 0.05), and maintained the synaptic ultrastructure. CONCLUSIONS Buyang Huanwu decoction facilitated neurorehabilitation following a cerebral ischemia insult through an improvement in synaptic plasticity. Graphical abstract The Buyang Huanwu decoction (BYHWD) combined with physical exercise (PE) attenuates synaptic disruption and promotes synaptic plasticity following cerebral ischemia (stroke).
Collapse
|
9
|
Misztal K, Brozko N, Nagalski A, Szewczyk LM, Krolak M, Brzozowska K, Kuznicki J, Wisniewska MB. TCF7L2 mediates the cellular and behavioral response to chronic lithium treatment in animal models. Neuropharmacology 2016; 113:490-501. [PMID: 27793772 DOI: 10.1016/j.neuropharm.2016.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/15/2022]
Abstract
The mechanism of lithium's therapeutic action remains obscure, hindering the discovery of safer treatments for bipolar disorder. Lithium can act as an inhibitor of the kinase GSK3α/β, which in turn negatively regulates β-catenin, a co-activator of LEF1/TCF transcription factors. However, unclear is whether therapeutic levels of lithium activate β-catenin in the brain, and whether this activation could have a therapeutic significance. To address this issue we chronically treated mice with lithium. Although the level of non-phospho-β-catenin increased in all of the brain areas examined, β-catenin translocated into cellular nuclei only in the thalamus. Similar results were obtained when thalamic and cortical neurons were treated with a therapeutically relevant concentration of lithium in vitro. We tested if TCF7L2, a member of LEF1/TCF family that is highly expressed in the thalamus, facilitated the activation of β-catenin. Silencing of Tcf7l2 in thalamic neurons prevented β-catenin from entering the nucleus, even when the cells were treated with lithium. Conversely, when Tcf7l2 was ectopically expressed in cortical neurons, β-catenin shifted to the nucleus, and lithium augmented this process. Lastly, we silenced tcf7l2 in zebrafish and exposed them to lithium for 3 days, to evaluate whether TCF7L2 is involved in the behavioral response. Lithium decreased the dark-induced activity of control zebrafish, whereas the activity of zebrafish with tcf7l2 knockdown was unaltered. We conclude that therapeutic levels of lithium activate β-catenin selectively in thalamic neurons. This effect is determined by the presence of TCF7L2, and potentially contributes to the therapeutic response.
Collapse
Affiliation(s)
- Katarzyna Misztal
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland
| | - Nikola Brozko
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Andrzej Nagalski
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland
| | - Lukasz M Szewczyk
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Marta Krolak
- University of Warsaw, College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Poland
| | - Katarzyna Brzozowska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland
| | - Marta B Wisniewska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland.
| |
Collapse
|
10
|
Lu-Nguyen NB, Broadstock M, Yáñez-Muñoz RJ. Efficient Expression of Igf-1 from Lentiviral Vectors Protects In Vitro but Does Not Mediate Behavioral Recovery of a Parkinsonian Lesion in Rats. Hum Gene Ther 2015. [PMID: 26222254 DOI: 10.1089/hum.2015.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene therapy approaches delivering neurotrophic factors have offered promising results in both preclinical and clinical trials of Parkinson's disease (PD). However, failure of glial cell line-derived neurotrophic factor in phase 2 clinical trials has sparked a search for other trophic factors that may retain efficacy in the clinic. Direct protein injections of one such factor, insulin-like growth factor (IGF)-1, in a rodent model of PD has demonstrated impressive protection of dopaminergic neurons against 6-hydroxydopamine (6-OHDA) toxicity. However, protein infusion is associated with surgical risks, pump failure, and significant costs. We therefore used lentiviral vectors to deliver Igf-1, with a particular focus on the novel integration-deficient lentiviral vectors (IDLVs). A neuron-specific promoter, from the human synapsin 1 gene, excellent for gene expression from IDLVs, was additionally used to enhance Igf-1 expression. An investigation of neurotrophic effects on primary rat neuronal cultures demonstrated that neurons transduced with IDLV-Igf-1 vectors had complete protection on withdrawal of exogenous trophic support. Striatal transduction of such vectors into 6-OHDA-lesioned rats, however, provided neither protection of dopaminergic substantia nigra neurons nor improvement of animal behavior.
Collapse
Affiliation(s)
- Ngoc B Lu-Nguyen
- School of Biological Sciences, Royal Holloway, University of London , Egham, United Kingdom
| | - Martin Broadstock
- School of Biological Sciences, Royal Holloway, University of London , Egham, United Kingdom
| | - Rafael J Yáñez-Muñoz
- School of Biological Sciences, Royal Holloway, University of London , Egham, United Kingdom
| |
Collapse
|
11
|
Lu X, Jia D, Zhao C, Wang W, Liu T, Chen S, Quan X, Sun D, Gao B. Recombinant adenovirus-mediated overexpression of 3β-hydroxysteroid-Δ24 reductase. Neural Regen Res 2014; 9:504-12. [PMID: 25206847 PMCID: PMC4153515 DOI: 10.4103/1673-5374.130074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2014] [Indexed: 11/24/2022] Open
Abstract
3β-Hydroxysteroid-Δ24 reductase (DHCR24) is a multifunctional enzyme that localizes to the endoplasmic reticulum and has neuroprotective and cholesterol-synthesizing activities. DHCR24 overexpression confers neuroprotection against apoptosis caused by amyloid β deposition. The present study aimed to construct two recombinant adenoviruses driving DHCR24 expression specifically in neurons. Two SYN1 promoter DNA fragments were obtained from human (h) and rat (r). Recombinant Ad-r(h)SYN1-DHCR24 was transfected into AD-293, N2A (mouse neuroblastoma), and MIN6 (mouse pancreatic carcinoma) cells. Western blot analysis showed DHCR24 was specially expressed in 293 and N2A cells, but no specific band was found in MIN6 cells. This demonstrates that the recombinant adenoviruses successfully express DHCR24, and no expression is observed in non-neuronal cells. TUNEL assay results showed apoptosis was inhibited in adenovirus-transfected neurons. Detecting reactive oxygen species by immunofluorescence, we found that adenovirus transfection inhibits apoptosis through scavenging excess reactive oxygen species. Our findings show that the recombinant DHCR24 adenoviruses induce neuron-specific DHCR24 expression, and thereby lay the foundation for further studies on DHCR24 gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Xiuli Lu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Dan Jia
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Chenguang Zhao
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Weiqi Wang
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Ting Liu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Shuchao Chen
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Xiaoping Quan
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Deliang Sun
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Shenyang, Liaoning Province, China
| | - Bing Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Teoh J, Boulos S, Chieng J, Knuckey NW, Meloni BP. Erythropoietin increases neuronal NDPKA expression, and NDPKA up-regulation as well as exogenous application protects cortical neurons from in vitro ischemia-related insults. Cell Mol Neurobiol 2014; 34:379-92. [PMID: 24395206 PMCID: PMC11488961 DOI: 10.1007/s10571-013-0023-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
Abstract
Using proteomics, we identified nucleoside diphosphate kinase A (NDPKA; also known as NME/NM23 nucleoside diphosphate kinase 1: NME1) to be up-regulated in primary cortical neuronal cultures by erythropoietin (EPO) preconditioning. To investigate a neuroprotective role of NDPKA in neurons, we used a RNAi construct to knock-down and an adenoviral vector to overexpress the protein in cortical neuronal cultures prior to exposure to three ischemia-related injury models; excitotoxicity (L-glutamic acid), oxidative stress (hydrogen peroxide), and in vitro ischemia (oxygen-glucose deprivation). NDPKA down-regulation had no effect on neuronal viability following injury. By contrast, NDPKA up-regulation increased neuronal survival in all three-injury models. Similarly, treatment with NDPKA recombinant protein increased neuronal survival, but only against in vitro ischemia and excitotoxicity. These findings indicate that the NDPKA protein may confer a neuroprotective advantage following injury. Furthermore, as exogenous NDPKA protein was neuroprotective, it suggests that a cell surface receptor may be activated by NDPKA leading to a protective cell-signaling response. Taken together both NDPKAs intracellular and extracellular neuroprotective actions suggest that the protein is a legitimate therapeutic target for the design of drugs to limit neuronal death following stroke and other forms of brain injury.
Collapse
Affiliation(s)
- Jonathan Teoh
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
| | - Sherif Boulos
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
| | - Joanne Chieng
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
| | - Neville W. Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Bruno P. Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| |
Collapse
|
13
|
Investigation of a recombinant SMN protein delivery system to treat spinal muscular atrophy. Transl Neurosci 2014. [DOI: 10.2478/s13380-014-0201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSpinal muscular atrophy (SMA), the most common genetic cause of infant death, is a neurodegenerative disorder affecting motor neurons. SMA results from a loss in full-length survival of motor neuron (SMN) protein due to deletions/mutations in the SMN1 gene. In this study, we assessed the ability of cell-penetrating peptides (CPP) to deliver recombinant SMN protein to cultured neurons as a prelude for a potential therapeutic to treat SMA. Firstly, we confirmed that E. coli produced recombinant GFP protein fused to TAT (YGRKKRRQRRR; TAT-GFP) transduced rat cortical neurons in a concentration dependent manner. However, due to low yields of recombinant TATSMN protein obtainable from E. coli, we investigated the potential of a modified TAT (TATκ: YARKAARQARA) or R9 (RRRRRRRRR) peptide downstream of the fibronectin (FIB) secretory signal peptide to generate recombinant CPP-fused SMN protein. While U251 cells transduced with an adenoviral vector expressing CMV-FIB-TATκ-SMN secreted recombinant TATκ-SMN protein, we did not detect TATκ-SMN protein transduction of cortical neurons. Further, purified TATκ-SMN was unable to transduce SH-SY5Y cells, nor block apoptosis following LY294002 treatment of these cells. Our findings indicate that TATκ is not a suitable CPP to deliver SMN protein to neurons. Nonetheless, we have developed a novel method to generate full-length recombinant SMN protein using a mammalian expression system, which can be used to explore the application of other CPPs to deliver SMN protein as a treatment for SMA.
Collapse
|
14
|
Matsuzaki Y, Oue M, Hirai H. Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter. J Neurosci Methods 2013; 223:133-43. [PMID: 24361760 DOI: 10.1016/j.jneumeth.2013.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. RESULTS We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. CONCLUSION rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals.
Collapse
Affiliation(s)
- Yasunori Matsuzaki
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Miho Oue
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
15
|
Zhang Y, Gao Y, Speth RC, Jiang N, Mao Y, Sumners C, Li H. Adenoviral and adeno-associated viral vectors-mediated neuronal gene transfer to cardiovascular control regions of the rat brain. Int J Med Sci 2013; 10:607-16. [PMID: 23569423 PMCID: PMC3619099 DOI: 10.7150/ijms.5700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/11/2013] [Indexed: 02/03/2023] Open
Abstract
Viral vectors have been utilized extensively to introduce genetic material into the central nervous system. In order to investigate gene functions in cardiovascular control regions of rat brain, we applied WPRE (woodchuck hepatitis virus post-transcriptional regulatory element) enhanced-adenoviral (Ad) and adeno-assoicated virus (AAV) type 2 vectors to mediate neuronal gene delivery to the paraventricular nucleus of the hypothalamus, the nucleus tractus solitarius and the rostral ventrolateral medulla, three important cardiovascular control regions known to express renin-angiotensin system (RAS) genes. Ad or AAV2 harboring an enhanced green fluorescent protein (EGFP) reporter gene or the angiotensin type 2 receptor gene were microinjected into these brain regions in adult rats. Our results demonstrated that both AAV2 and Ad vectors elicited long-term neuronal transduction in these regions. Interestingly, we found that the WPRE caused expression of GFP driven by the synapsin1 promoter in pure glial cultures or co-cultures of neurons and glia derived from rat hypothalamus and brainstem. However, in rat paraventricular nucleus WPRE did not cause expression of GFP in glia. This demonstrates the potential use of these vectors in studies of physiological functions of certain genes in the cardiovascular control regions of the brain.
Collapse
Affiliation(s)
- Yanling Zhang
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Cheng Y, An LY, Yuan YG, Wang Y, Du FL, Yu BL, Zhang ZH, Huang YZ, Yang TJ. Hybrid expression cassettes consisting of a milk protein promoter and a cytomegalovirus enhancer significantly increase mammary-specific expression of human lactoferrin in transgenic mice. Mol Reprod Dev 2012; 79:573-85. [PMID: 22730016 DOI: 10.1002/mrd.22063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/08/2012] [Indexed: 11/06/2022]
Abstract
It is very important to develop an effective, specific, and robust expression cassette that ensures a high level of expression in the mammary glands. In this study, we designed and constructed a series of mammary gland-specific vectors containing a complex hybrid promoter/enhancer by utilizing promoter sequences from milk proteins (i.e., goat β-casein, bovine αs1-casein, or goat β-lactoglobulin) and cytomegalovirus enhancer sequences; vectors containing a single milk protein promoter served as controls. Chicken β-globin insulator sequences were also included in some of these vectors. The expression of constructs was analyzed through the generation of transgenic mice. Enzyme-linked immunosorbent assay (ELISA) analysis revealed that the hybrid promoter/enhancer could drive the expression of recombinant human lactoferrin (rhLF) cDNA at high levels (1.17-8.10 mg/ml) in the milk of transgenic mice, whereas control promoters achieved a very low rhLF expression (7-40 ng/ml). Moreover, the expression of rhLF was not detected in the serum or saliva of any transgenic animal. This result shows that all constructs, driven by the hybrid promoter/enhancer, had high mammary gland-specific expression pattern. Together, our results suggest that the use of a hybrid promoter/enhancer is a valuable alternative approach for increasing mammary-specific expression of recombinant hLF in a transgenic mouse model.
Collapse
Affiliation(s)
- Yong Cheng
- Engineering Research Centre for Transgenic Animal Pharmaceutics in Jiangsu Province, College of Veterinary Medicine, Yangzhou University, No. 12 Wenhui Rd., Yangzhou, Jiangsu, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Anderton RS, Price LL, Turner BJ, Meloni BP, Mitrpant C, Mastaglia FL, Goh C, Wilton SD, Boulos S. Co-regulation of survival of motor neuron and Bcl-xL expression: implications for neuroprotection in spinal muscular atrophy. Neuroscience 2012; 220:228-36. [PMID: 22732506 DOI: 10.1016/j.neuroscience.2012.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022]
Abstract
Spinal muscular atrophy (SMA), a fatal genetic motor disorder of infants, is caused by diminished full-length survival of motor neuron (SMN) protein levels. Normally involved in small nuclear ribonucleoprotein (snRNP) assembly and pre-mRNA splicing, recent studies suggest that SMN plays a critical role in regulating apoptosis. Interestingly, the anti-apoptotic Bcl-x isoform, Bcl-xL, is reduced in SMA. In a related finding, Sam68, an RNA-binding protein, was found to modulate splicing of SMN and Bcl-xL transcripts, promoting SMNΔ7 and pro-apoptotic Bcl-xS transcripts. Here we demonstrate that Bcl-xL expression increases SMN protein by ∼2-fold in SH-SY5Y cells. Conversely, SMN expression increases Bcl-xL protein levels by ∼6-fold in SH-SY5Y cells, and ∼2.5-fold in the brains of transgenic mice over-expressing SMN (PrP-SMN). Moreover, Sam68 protein levels were markedly reduced following SMN and Bcl-xL expression in SH-SY5Y cells, suggesting a feedback mechanism co-regulating levels of both proteins. We also found that exogenous SMN expression increased full-length SMN transcripts, possibly by promoting exon 7 inclusion. Finally, co-expression of SMN and Bcl-xL produced an additive anti-apoptotic effect following PI3-kinase inhibition in SH-SY5Y cells. Our findings implicate Bcl-xL as another potential target in SMA therapeutics, and indicate that therapeutic increases in SMN may arise from modest increases in total SMN.
Collapse
Affiliation(s)
- R S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australian Neuromuscular Research Institute, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cross JL, Boulos S, Shepherd KL, Craig AJ, Lee S, Bakker AJ, Knuckey NW, Meloni BP. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation. Neurosci Res 2012; 73:191-8. [PMID: 22561287 DOI: 10.1016/j.neures.2012.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury.
Collapse
Affiliation(s)
- Jane L Cross
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia and Australian Neuromuscular Research Institute, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuhn B, Hoogland TM, Wang SSH. Injection of recombinant adenovirus for delivery of genetically encoded calcium indicators into astrocytes of the cerebellar cortex. Cold Spring Harb Protoc 2011; 2011:1217-23. [PMID: 21969619 DOI: 10.1101/pdb.prot065797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellar cortex contains two astrocyte types: the Bergmann glia of the molecular layer and the velate protoplasmic astrocytes of the granule cell layer. In vivo, these cell types generate both subcellular calcium transients and trans-glial calcium waves. This protocol outlines a method for in vivo calcium imaging in cerebellar astrocytes, using the injection of a replication-incompetent recombinant adenovirus for gene transfer of the fluorescent calcium indicator protein (FCIP) G-CaMP2. The adenovirus contains a cytomegalovirus (CMV) immediate-early (IE) promoter which confines expression of G-CaMP2 to astrocytes. Expression is sufficiently high to allow calcium signals to be recorded in Bergmann glial processes as well as the processes and somata of velate protoplasmic astrocytes. To obtain structural information, G-CaMP2 fused with the brighter chromophore DsRed allows three-dimensional (3D) reconstruction of cells. G-CaMP2 expression lasts for at least 3 wk, enabling long-term functional imaging in both anesthetized and awake animals.
Collapse
|
20
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
21
|
Misztal K, Wisniewska MB, Ambrozkiewicz M, Nagalski A, Kuznicki J. WNT protein-independent constitutive nuclear localization of beta-catenin protein and its low degradation rate in thalamic neurons. J Biol Chem 2011; 286:31781-8. [PMID: 21757747 DOI: 10.1074/jbc.m111.229666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear localization of β-catenin is a hallmark of canonical Wnt signaling, a pathway that plays a crucial role in brain development and the neurogenesis of the adult brain. We recently showed that β-catenin accumulates specifically in mature thalamic neurons, where it regulates the expression of the Ca(v)3.1 voltage-gated calcium channel gene. Here, we investigated the mechanisms underlying β-catenin accumulation in thalamic neurons. We report that a lack of soluble factors produced either by glia or cortical neurons does not impair nuclear β-catenin accumulation in thalamic neurons. We next found that the number of thalamic neurons with β-catenin nuclear localization did not change when the Wnt/Dishevelled signaling pathway was inhibited by Dickkopf1 or a dominant negative mutant of Dishevelled3. These results suggest a WNT-independent cell-autonomous mechanism. We found that the protein levels of APC, AXIN1, and GSK3β, components of the β-catenin degradation complex, were lower in the thalamus than in the cortex of the adult rat brain. Reduced levels of these proteins were also observed in cultured thalamic neurons compared with cortical cultures. Finally, pulse-chase experiments confirmed that cytoplasmic β-catenin turnover was slower in thalamic neurons than in cortical neurons. Altogether, our data indicate that the nuclear localization of β-catenin in thalamic neurons is their cell-intrinsic feature, which was WNT-independent but associated with low levels of proteins involved in β-catenin labeling for ubiquitination and subsequent degradation.
Collapse
Affiliation(s)
- Katarzyna Misztal
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
22
|
Anderton RS, Meloni BP, Mastaglia FL, Greene WK, Boulos S. Survival of motor neuron protein over-expression prevents calpain-mediated cleavage and activation of procaspase-3 in differentiated human SH-SY5Y cells. Neuroscience 2011; 181:226-33. [PMID: 21333717 DOI: 10.1016/j.neuroscience.2011.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/11/2011] [Accepted: 02/14/2011] [Indexed: 01/25/2023]
Abstract
Spinal muscular atrophy (SMA), a neurodegenerative disorder primarily affecting motor neurons, is the most common genetic cause of infant death. This incurable disease is caused by the absence of a functional SMN1 gene and a reduction in full length survival of motor neuron (SMN) protein. In this study, a neuroprotective function of SMN was investigated in differentiated human SH-SY5Y cells using an adenoviral vector to over-express SMN protein. The pro-survival capacity of SMN was assessed in an Akt/PI3-kinase inhibition (LY294002) model, as well as an oxidative stress (hydrogen peroxide) and excitotoxic (glutamate) model. SMN over-expression in SH-SY5Y cells protected against Akt/phosphatidylinositol 3-kinase (PI3-kinase) inhibition, but not oxidative stress, nor against excitotoxicity in rat cortical neurons. Western analysis of cell homogenates from SH-SY5Y cultures over-expressing SMN harvested pre- and post-Akt/PI3-kinase inhibition indicated that SMN protein inhibited caspase-3 activation via blockade of calpain-mediated procaspase-3 cleavage. This study has revealed a novel anti-apoptotic function for the SMN protein in differentiated SH-SY5Y cells. Finally, the cell death model described herein will allow the assessment of future therapeutic agents or strategies aimed at increasing SMN protein levels.
Collapse
Affiliation(s)
- R S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, WA, Australia.
| | | | | | | | | |
Collapse
|
23
|
Recent developments in the understanding of astrocyte function in the cerebellum in vivo. THE CEREBELLUM 2011; 9:264-71. [PMID: 19904577 DOI: 10.1007/s12311-009-0139-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several studies have contributed to our understanding of astrocytes, especially Bergmann glia, in the cerebellum; but, until recently, none has looked at their function in vivo. Multicell bolus loading of fluorescent calcium indicators in combination with the astrocytic marker SR101 has allowed imaging of up to hundreds of astrocytes at once in the intact cerebellum. In addition, the selective targeting of astrocytes with fluorescent calcium indicator proteins has enabled the study of their function in vivo without the confounding effects of other neuropil signals and with a resolution that surpasses multicell bolus loading and SR101 staining. The two astrocyte types of the cerebellar cortex, Bergmann glia, and velate protoplasmic astrocytes display a diverse signaling repertoire in vivo, which ranges from localized calcium elevations in subcellular processes to waves, triggered by the release of purines and mediated by purinergic receptors that span multiple processes and can involve tens of astrocytes. During locomotor behavior, even larger numbers of astrocytes display calcium increases that are driven by neuronal activity and correlate with global changes in blood flow. In this review, we give an overview of our current understanding of the function of Bergmann glia and velate protoplasmic astrocytes and the promise of the tools used to study their calcium dynamics and function in vivo.
Collapse
|
24
|
Bertram CM, Hawes SM, Egli S, Peh SL, Dottori M, Kees UR, Dallas PB. Effective adenovirus-mediated gene transfer into neural stem cells derived from human embryonic stem cells. Stem Cells Dev 2010; 19:569-78. [PMID: 19594361 DOI: 10.1089/scd.2009.0183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cell-derived neural stem cells (hESC-NSCs) are an attractive cell type for studying aspects of brain development and pathology. To develop the full potential of this model system, it is important to establish a reliable methodology for the manipulation of gene expression in hNSCs. To address this issue, we used an adenoviral vector with a CMV promoter-driven green fluorescent protein (GFP) reporter gene (Ad5-GFP). We optimized conditions for Ad5-GFP infection and assessed the efficiency of infection of whole and dissociated embryonic stem cell (ESC)-derived neurospheres as well as the effect of adenoviral vectors on cell surface marker expression, proliferation, and differentiation potential. Our results demonstrate that most neurosphere cells ( approximately 70%) express the coxsackie and adenovirus receptor and can be infected with Ad5. More specifically, the CD133+ hESC-NSC population could be infected more efficiently than the CD133 population and both populations expressed GFP at high levels. At low multiplicity of infection (MOI < 25), the virus had no significant effect on stem cell marker expression (CD133 and Nestin), cell survival, cell proliferation rate, or differentiation potential. This model system provides a practical new approach to study human NSC function in the context of neurodegenerative and neoplastic disorders.
Collapse
Affiliation(s)
- Cornelia M Bertram
- Brain Tumour Research Program, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. Two receptor subtypes, GABA(B(1a,2)) and GABA(B(1b,2)), are formed by the assembly of GABA(B1a) and GABA(B1b) subunits with GABA(B2) subunits. The GABA(B1b) subunit is a shorter isoform of the GABA(B1a) subunit lacking two N-terminal protein interaction motifs, the sushi domains. Selectively GABA(B1a) protein traffics into the axons of glutamatergic neurons, whereas both the GABA(B1a) and GABA(B1b) proteins traffic into the dendrites. The mechanism(s) and targeting signal(s) responsible for the selective trafficking of GABA(B1a) protein into axons are unknown. Here, we provide evidence that the sushi domains are axonal targeting signals that redirect GABA(B1a) protein from its default dendritic localization to axons. Specifically, we show that mutations in the sushi domains preventing protein interactions preclude axonal localization of GABA(B1a). When fused to CD8alpha, the sushi domains polarize this uniformly distributed protein to axons. Likewise, when fused to mGluR1a the sushi domains redirect this somatodendritic protein to axons, showing that the sushi domains can override dendritic targeting information in a heterologous protein. Cell surface expression of the sushi domains is not required for axonal localization of GABA(B1a). Altogether, our findings are consistent with the sushi domains functioning as axonal targeting signals by interacting with axonally bound proteins along intracellular sorting pathways. Our data provide a mechanistic explanation for the selective trafficking of GABA(B(1a,2)) receptors into axons while at the same time identifying a well defined axonal delivery module that can be used as an experimental tool.
Collapse
|
26
|
Abdo H, Derkinderen P, Gomes P, Chevalier J, Aubert P, Masson D, Galmiche JP, Vanden Berghe P, Neunlist M, Lardeux B. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J 2009; 24:1082-94. [PMID: 19906678 DOI: 10.1096/fj.09-139519] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enteric glial cells (EGCs) are essential in the control of gastrointestinal functions. Although lesions of EGCs are associated with neuronal degeneration in animal models, their direct neuroprotective role remains unknown. Therefore, the aims of this study were to demonstrate the direct neuroprotective effects of EGCs and to identify putative glial mediators involved. First, viral targeted ablation of EGCs in primary cultures of enteric nervous system increased neuronal death both under basal conditions and in the presence of oxidative stress (dopamine, hydrogen peroxide). Second, direct or indirect coculture experiments of EGC lines with primary cultures of enteric nervous system or neuroblastoma cell lines (SH-SY5Y) prevented neurotoxic effects induced by oxidative stress (increased membrane permeability, release of neuronal specific enolase, caspase-3 immunoreactivity, changes in [Ca(2+)](i) response). Finally, combining pharmacological inhibition and mRNA silencing methods, we demonstrated that neuroprotective effects of EGCs were mediated in part by reduced glutathione but not by oxidized glutathione or by S-nitrosoglutathione. Our study identified the neuroprotective effects of EGCs via their release of reduced glutathione, extending their critical role in physiological contexts and in enteric neuropathies.-Abdo, H., Derkinderen, P., Gomes, P., Chevalier, J., Aubert, P., Masson, D., Galmiche, J.-P., Vanden Berghe, P., Neunlist, M., Lardeux, B. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione.
Collapse
Affiliation(s)
- Hind Abdo
- INSERM U913 1, place Alexis Ricordeau, 44093 Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boulaire J, Balani P, Wang S. Transcriptional targeting to brain cells: Engineering cell type-specific promoter containing cassettes for enhanced transgene expression. Adv Drug Deliv Rev 2009; 61:589-602. [PMID: 19394380 DOI: 10.1016/j.addr.2009.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/05/2009] [Indexed: 12/16/2022]
Abstract
Transcriptional targeting using a mammalian cellular promoter to restrict transgene expression to target cells is often desirable for gene therapy. This strategy is, however, hindered by relatively weak activity of some cellular promoters, which may lead to low levels of gene expression, thus declining therapeutic efficacy. Here we outline the advances accomplished in the area of transcriptional targeting to brain cells, with a particular focus on engineering gene cassettes to augment cell type-specific expression. Among the effective approaches that improve gene expression while retaining promoter specificity are promoter engineering to change authentic sequences of a cellular promoter and the combined use of a native cellular promoter and other cis-acting elements. Success in achieving high level and sustained transgene expression only in the cell types of interest would be of importance in allowing gene therapy to have its impact on patient treatment.
Collapse
|
28
|
Hirai H. Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. THE CEREBELLUM 2009; 7:273-8. [PMID: 18418690 DOI: 10.1007/s12311-008-0012-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of a foreign gene in cerebellar Purkinje cells in vivo is a powerful method for exploring the pathophysiology of the cerebellum. Although using developmental engineering many gene-modified mice have been generated, this approach is time-consuming and requires a lot of effort for crossing different lines of mice, genotyping and maintenance of animals. If a gene of interest can be transferred to and efficiently expressed in Purkinje cells of developing and mature animals, it saves much time, effort and money. Recent advances in viral vectors have markedly contributed to selective and efficient gene transfer to Purkinje cells in vivo. There are two approaches for selective gene expression in Purkinje cells: one is to take advantage of the viral tropism for Purkinje cells, which includes the tropism of adeno-associated virus and the vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentivirus. Another method, which might be used in combination with the first one, is utilization of a Purkinje-cell-specific promoter. Focusing mainly on these points, recent progress in viral-vector-mediated transduction of Purkinje cells in vivo is reviewed.
Collapse
Affiliation(s)
- Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
29
|
Kwiatkowski AV, Garner CC, Nelson WJ, Gertler FB. Cell autonomous defects in cortical development revealed by two-color chimera analysis. Mol Cell Neurosci 2009; 41:44-50. [PMID: 19386231 PMCID: PMC2684858 DOI: 10.1016/j.mcn.2009.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/23/2009] [Indexed: 11/16/2022] Open
Abstract
A complex program of cell intrinsic and extrinsic signals guide cortical development. Although genetic studies in mice have uncovered roles for numerous genes and gene families in multiple aspects of corticogenesis, determining their cell autonomous functions is often complicated by pleiotropic defects. Here we describe a novel lentiviral-based method to analyze cell autonomy by generating two-color chimeric mouse embryos. Ena/VASP-deficient mutant and control embryonic stem (ES) cells were labeled with different fluorescent chimeric proteins (EGFP and mCherry) that were modified to bind to the plasma membrane. These labeled ES cells were used to generate two-color chimeric embryos possessing two genetically distinct populations of cortical cells, permitting multiple aspects of neuronal morphogenesis to be analyzed and compared between the two cell populations. We observed little difference between the ability of control and Ena/VASP-deficient cells to contribute to cortical organization during development. In contrast, we observed axon fiber tracts originating from control neurons but not Ena/VASP-deficient neurons, indicating that loss of Ena/VASP causes a cell autonomous defect in cortical axon formation. This technique could be applied to determine other cell autonomous functions in different stages of cortical development.
Collapse
Affiliation(s)
| | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - W. James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Frank B. Gertler
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
30
|
Herpes simplex virus type 1 thymidine kinase sequence fused to the lacz gene increases levels of {beta}-galactosidase activity per genome of high-capacity but not first-generation adenoviral vectors in vitro and in vivo. J Virol 2008; 83:2004-10. [PMID: 19073729 DOI: 10.1128/jvi.01298-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increased transgene expression per vector genome is an important goal in the optimization of viral vectors for gene therapy. Herein we demonstrate that herpes simplex virus type 1 (HSV1) thymidine kinase (TK) gene sequences (1,131 bp) fused to the 3' end of lacZ increase transgene expression from high-capacity adenoviral vectors (HCAd), but not from first-generation (Ad) vectors. The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), in contrast, increased transgene expression levels from Ad but not HCAd vectors. The differential activity of the HSV1 TK gene and WPRE sequences was detected both in vitro and in vivo and suggests potentially different mechanisms of action or the interaction of these elements with vector genomic sequences.
Collapse
|
31
|
Sims K, Ahmed Z, Gonzalez AM, Read ML, Cooper-Charles L, Berry M, Logan A. Targeting adenoviral transgene expression to neurons. Mol Cell Neurosci 2008; 39:411-7. [PMID: 18722531 DOI: 10.1016/j.mcn.2008.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) is an efficient and safe vector for CNS gene delivery since it infects non-replicating neurons and does not cause insertional mutagenesis of host cell genomes. However, the promiscuous Ad CAR receptor targets cells non-specifically and activates a host immune response. Using Ad5 containing an expression cassette encoding the gene for green fluorescent protein, gfp, regulated by the neuron specific promoter synapsin-1 and the woodchuck post-transcriptional regulatory element (WPRE), we demonstrate efficient, prolonged and promoter-restricted gfp expression in neurons of mixed primary adult rat dorsal root ganglion (DRG) and retinal cell cultures. We also demonstrate restricted gfp expression in DRG neurons after direct injections of Ad5 containing the synapsin-1(gfp)/WPRE construct into L4 DRG in vivo, while Ad5 CMV(gfp) transfected both DRG glia and neurons. Moreover, since the effective titres of delivered Ad5 are reduced with this neuron specific promoter/WPRE expression cassette, the viral immune challenge should be attenuated when used in vivo.
Collapse
Affiliation(s)
- Karen Sims
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, Institute of Biomedical Research West, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen Q, Xiong X, Lee TH, Liu Y, Wetsel WC, Zhang X. Neural plasticity and addiction: integrin-linked kinase and cocaine behavioral sensitization. J Neurochem 2008; 107:679-89. [PMID: 18702665 DOI: 10.1111/j.1471-4159.2008.05619.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Behavioral sensitization of psychostimulants was accompanied by alterations in a variety of biochemical molecules in different brain regions. However, which change is actually related to drug-produced sensitization lacks of accurate clarification. In this study, we investigated the role of integrin-linked kinase (ILK) in both the induction and expression of cocaine sensitization. Conditional inhibition of ILK expression was established in the nucleus accumbens (NAc) core by microinjecting recombinant adeno-associated virus-carrying, tetracycline-on-regulated small interfering RNA which reversed the chronic cocaine-induced psychomotor sensitization, as well as the changes in protein kinase B Ser473 phosphorylation, dendritic density, and dendritic spine numbers locally. Importantly, the reversed psychomotor sensitization did not recover after cessation of the silencing for 8 days. We also demonstrated that inhibition of ILK expression pre- and during-chronic cocaine treatments blocked the induction of cocaine psychomotor sensitization and abolished the stimulant effect of cocaine on ILK expression. In contrast, inhibition of ILK expression in the NAc core has no significant effect on cocaine-induced stereotypical behaviors. This concludes that ILK is involved in cocaine sensitization with the earlier induction and later expression functioning as a kinase to regulate protein kinase B Ser473 phosphorylation and a scaffolding protein to regulate the reorganization of the NAc spine morphology.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
33
|
Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B. Gene transfer: the challenge of regulated gene expression. Trends Mol Med 2008; 14:410-8. [PMID: 18692441 DOI: 10.1016/j.molmed.2008.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 01/04/2023]
Abstract
Gene therapy is expected to have a major impact on human healthcare in the future. However, precise regulation of therapeutic gene expression in vivo is still a challenge. Natural and synthetic enhancer-promoters (EPs) can be utilized to drive gene transcription in a temporal, spatial or environmental signal-inducible manner in response to heat shock, hypoxia, radiation, chemotherapy, epigenetic agents or viral infection. To allow tightly regulated expression, a regulatable gene-expression system can also be implemented. Most of these systems are based on small molecule (drug)-responsive artificial transactivators. In this review, we aim to provide a brief overview of the classes of EPs and regulatable systems, along with lessons learned from these studies. We highlight the potential applications in gene transfer, gene therapy for cancer and genetic disease and the future challenges for clinical applications.
Collapse
Affiliation(s)
- Z Sheng Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
34
|
Takayama K, Torashima T, Horiuchi H, Hirai H. Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 2008; 443:7-11. [PMID: 18675313 DOI: 10.1016/j.neulet.2008.07.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/14/2008] [Accepted: 07/21/2008] [Indexed: 11/27/2022]
Abstract
Viral-vector-mediated gene delivery into Purkinje cells is a promising method for exploring the pathophysiology of the cerebellum; however, it is generally difficult to achieve sufficiently high levels of gene expression in Purkinje cells using viral vectors with a cell-type-specific promoter because of the weakness of transcriptional activity. In this study, we prepared lentiviral vectors that express GFP under the control of various ubiquitous promoters derived from murine stem cell virus (MSCV), cytomegalovirus (CMV), CMV early enhancer/chicken beta actin (CAG), and Rous sarcoma virus (RSV) and compared their potential to transduce Purkinje cells. Mice were sacrificed 7 days after lentiviral injection and the ratios of GFP(+) Purkinje cells to all transduced cells were determined. The highest transduction ratio was observed when we used lentivectors containing the MSCV promoter: approximately 70% of GFP(+) cells were Purkinje cells, the next highest ratio was for the CMV promoter (approximately 40%), then the CAG promoter (approximately 35%), and the lowest ratio was for the RSV promoter (approximately 10%). Moreover, the highest levels of GFP expression were also caused by the MSCV promoter. Thus, among the ubiquitous promoters examined, the MSCV promoter was the best for the expression of a foreign gene in Purkinje cells in vivo.
Collapse
Affiliation(s)
- Kiyohiko Takayama
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
35
|
Chen Q, Xiong X, Lee TH, Liu Y, Sun QA, Wetsel W, Zhang X. Adeno-associated virus-mediated ILK gene silencing in the rat NAc core. J Neurosci Methods 2008; 173:208-14. [PMID: 18602949 DOI: 10.1016/j.jneumeth.2008.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/01/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
In this study we established conditional silencing of integrin-linked kinase (ILK) expression in Sprague-Dawley rat brain by microinjection of rAAV-2-carrying, Tet-On-regulated siRNA expression cassette into nucleus accumbens (NAc) core and induction with doxycycline. We demonstrated that inhibition of ILK expression was effectively induced by administration of doxycycline for 2 weeks while ILK expression was restored after withdrawing doxycycline for 8 days. Increases in GFAP and OX42 expression were observed 5 weeks post virus injection. Importantly, inhibition of ILK expression in the NAc core had no significant effect on cell apoptosis and animal basal locomotion and stereotypical behaviors, but decreased dendritic density of medium spiny neurons. Our studies suggest that: (1) rAAV-delivered Tet-On-regulated siRNA expression can conditionally regulate gene expression in rat brain; (2) inhibition of ILK expression has no significant effect on cell apoptosis and basal locomotor and stereotypical behaviors, but decreases dendritic density; and (3) microinjection of rAAV-2 causes inflammatory response around the injection track.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, PO Box 3870, Research Drive, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J Neurosci Res 2008; 85:3089-97. [PMID: 17663478 DOI: 10.1002/jnr.21429] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that peroxiredoxin 2 (PRDX2) and Cu/Zn superoxide dismutase 1 (SOD1) proteins are up-regulated in rat primary neuronal cultures following erythropoietin (EPO) preconditioning. In the present study, we have demonstrated that adenovirally mediated overexpression of PRDX2 in cortical neuronal cultures can protect neurons from in vitro ischemia (oxygen-glucose deprivation) and an oxidative insult (cumene hydroperoxide) but not glutamate excitotoxicity. We have also demonstrated that adenovirally mediated overexpression of SOD1 in cortical neuronal cultures protected neurons only against the oxidative insult. Interestingly, we did not detect up-regulation of PRDX2 or SOD1 protein in the rat hippocampus following exposure to either 3 min or 8 min of global cerebral ischemia. Further characterization of PRDX2's neuroprotective mechanisms may aid in the development of a neuroprotective therapy.
Collapse
Affiliation(s)
- Sherif Boulos
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Australian Neuromuscular Research Institute, Nedlands, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
37
|
Ravenscroft G, Nowak KJ, Jackaman C, Clément S, Lyons MA, Gallagher S, Bakker AJ, Laing NG. Dissociated flexor digitorum brevis myofiber culture system—A more mature muscle culture system. ACTA ACUST UNITED AC 2007; 64:727-38. [PMID: 17654606 DOI: 10.1002/cm.20223] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable knowledge regarding skeletal muscle physiology and disease has been gleaned from cultured myoblastic cell lines or isolated primary myoblasts. Such muscle cultures can be induced to differentiate into multinucleated myotubes that become striated. However they in general do not fully mature and therefore do not model mature muscle. Contrastingly, fresh and cultured dissociated adult mouse flexor digitorum brevis (FDB) myofibers have been studied for many years. We aimed to investigate the possibility of using the FDB myofiber culture system for drug screening and thus long-term cultures of enzymatically dissociated FDB myofibers were established in 96-well plates. Ca2+ handling experiments were used to investigate the functional state of the myofibers. Imaging of intracellular Ca2+ during electric field stimulation revealed that calcium handling was maintained throughout the culture period of at least 8 days. Western blot and immunostaining analysis showed that the FDB cultures maintained expression of mature proteins throughout the culture period, including alpha-sarcoglycan, dystrophin, fast myosin heavy chain and skeletal muscle alpha-actin. The high levels of the fetal proteins cardiac alpha-actin and utrophin, seen in cultured C2C12 myotubes, were absent in the FDB cultures. The expression of developmentally mature proteins and the absence of fetal proteins, in addition to the maintenance of normal calcium handling, highlights the FDB culture system as a more mature and perhaps more relevant culture system for the study of adult skeletal muscle function. Moreover, it may be a useful system for screening therapeutic agents for the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, West Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Boulos S, Meloni BP, Arthur PG, Majda B, Bojarski C, Knuckey NW. Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis 2006; 25:54-64. [PMID: 17011206 DOI: 10.1016/j.nbd.2006.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/01/2006] [Accepted: 08/20/2006] [Indexed: 10/24/2022] Open
Abstract
We previously reported that cyclophilin A protein is up-regulated in cortical neuronal cultures following several preconditioning treatments. In the present study, we have demonstrated that adenoviral-mediated over-expression of cyclophilin A in rat cortical neuronal cultures can protect neurons from oxidative stress (induced by cumene hydroperoxide) and in vitro ischemia (induced by oxygen glucose deprivation). We subsequently demonstrated that cultured neurons, but not astrocytes, express the recently identified putative cyclophilin A receptor, CD147 (also called neurothelin, basigin and EMMPRIN), and that administration of purified cyclophilin A protein to neuronal cultures induces a rapid but transient phosphorylation of the extracellular signal-regulated kinase (ERK) 1/2. Furthermore, administration of purified cyclophilin A protein to neuronal cultures protects neurons from oxidative stress and in vitro ischemia. Interestingly, we detected up-regulation of cyclophilin A mRNA, but not protein in the hippocampus following a 3-min period of sublethal global cerebral ischemia in the rat. Despite our in vivo findings, our in vitro data show that cyclophilin A has both intracellular- and extracellular-mediated neuroprotective mechanisms. To this end, we propose cyclophilin A's extracellular-mediated neuroprotection occurs via CD147 receptor signalling, possibly by activation of ERK1/2 pro-survival pathways. Further characterization of cyclophilin A's neuroprotective mechanisms may aid the development of a neuroprotective therapy.
Collapse
Affiliation(s)
- Sherif Boulos
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Australian Neuromuscular Research Institute, WA, Australia.
| | | | | | | | | | | |
Collapse
|