1
|
Islam MR, Jackson B, Naomi MT, Schatz B, Tan N, Murdock M, Park DS, Amorim DR, Jiang X, Pineda SS, Adaikkan C, Fernandez Avalos V, Geigenmuller U, Firenze RM, Kellis M, Boyden ES, Tsai LH. Multisensory gamma stimulation enhances adult neurogenesis and improves cognitive function in male mice with Down Syndrome. PLoS One 2025; 20:e0317428. [PMID: 40273201 PMCID: PMC12021272 DOI: 10.1371/journal.pone.0317428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/27/2024] [Indexed: 04/26/2025] Open
Affiliation(s)
- Md Rezaul Islam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Brennan Jackson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Maeesha Tasnim Naomi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Brooke Schatz
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Noah Tan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mitchell Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dong Shin Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daniela Rodrigues Amorim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xueqiao Jiang
- Departments of Biological Engineering and Brain and Cognitive Sciences, McGovern Institute, Cambridge, Massachusetts, United States of America
| | - S. Sebastian Pineda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chinnakkaruppan Adaikkan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vanesa Fernandez Avalos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ute Geigenmuller
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rosalind Mott Firenze
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Edward S. Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, McGovern Institute, Cambridge, Massachusetts, United States of America
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
López-Hidalgo R, Ballestín R, Lorenzo L, Sánchez-Martí S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E. Early chronic fasudil treatment rescues hippocampal alterations in the Ts65Dn model for down syndrome. Neurochem Int 2024; 174:105679. [PMID: 38309665 DOI: 10.1016/j.neuint.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Raúl Ballestín
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Lorena Lorenzo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Sandra Sánchez-Martí
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain; CIBERSAM, Spanish National Network for Research in Mental Health, Madrid, Spain; Institute of research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain.
| |
Collapse
|
4
|
Abukhaled Y, Hatab K, Awadhalla M, Hamdan H. Understanding the genetic mechanisms and cognitive impairments in Down syndrome: towards a holistic approach. J Neurol 2024; 271:87-104. [PMID: 37561187 PMCID: PMC10769995 DOI: 10.1007/s00415-023-11890-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The most common genetic cause of intellectual disability is Down syndrome (DS), trisomy 21. It commonly results from three copies of human chromosome 21 (HC21). There are no mutations or deletions involved in DS. Instead, the phenotype is caused by altered transcription of the genes on HC21. These transcriptional variations are responsible for a myriad of symptoms affecting every organ system. A very debilitating aspect of DS is intellectual disability (ID). Although tremendous advances have been made to try and understand the underlying mechanisms of ID, there is a lack of a unified, holistic view to defining the cause and managing the cognitive impairments. In this literature review, we discuss the mechanisms of neuronal over-inhibition, abnormal morphology, and other genetic factors in contributing to the development of ID in DS patients and to gain a holistic understanding of ID in DS patients. We also highlight potential therapeutic approaches to improve the quality of life of DS patients.
Collapse
Affiliation(s)
- Yara Abukhaled
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Hatab
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Awadhalla
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine, and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Hawley LE, Stringer M, Deal AJ, Folz A, Goodlett CR, Roper RJ. Sex-specific developmental alterations in DYRK1A expression in the brain of a Down syndrome mouse model. Neurobiol Dis 2024; 190:106359. [PMID: 37992782 PMCID: PMC10843801 DOI: 10.1016/j.nbd.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.
Collapse
Affiliation(s)
- Laura E Hawley
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Megan Stringer
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Abigail J Deal
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Andrew Folz
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Charles R Goodlett
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Kurabayashi N, Fujii K, Otobe Y, Hiroki S, Hiratsuka M, Yoshitane H, Kazuki Y, Takao K. Neocortical neuronal production and maturation defects in the TcMAC21 mouse model of Down syndrome. iScience 2023; 26:108379. [PMID: 38025769 PMCID: PMC10679816 DOI: 10.1016/j.isci.2023.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/02/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Down syndrome (DS) results from trisomy of human chromosome 21 (HSA21), and DS research has been conducted by the use of mouse models. We previously generated a humanized mouse model of DS, TcMAC21, which carries the long arm of HSA21. These mice exhibit learning and memory deficits, and may reproduce neurodevelopmental alterations observed in humans with DS. Here, we performed histologic studies of the TcMAC21 forebrain from embryonic to adult stages. The TcMAC21 neocortex showed reduced proliferation of neural progenitors and delayed neurogenesis. These abnormalities were associated with a smaller number of projection neurons and interneurons. Further, (phospho-)proteomic analysis of adult TcMAC21 cortex revealed alterations in the phosphorylation levels of a series of synaptic proteins. The TcMAC21 mouse model shows similar brain development abnormalities as DS, and will be a valuable model to investigate prenatal and postnatal causes of intellectual disability in humans with DS.
Collapse
Affiliation(s)
- Nobuhiro Kurabayashi
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
- Research Center for Idling Brain Science, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yuta Otobe
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Hiroki
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masaharu Hiratsuka
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Hikari Yoshitane
- Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Alam JJ, Maruff P, Doctrow SR, Chu HM, Conway J, Gomperts SN, Teunissen C. Association of Plasma Phosphorylated Tau With the Response to Neflamapimod Treatment in Patients With Dementia With Lewy Bodies. Neurology 2023; 101:e1708-e1717. [PMID: 37657939 PMCID: PMC10624490 DOI: 10.1212/wnl.0000000000207755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In a proportion of patients, dementia with Lewy bodies (DLB) is associated with Alzheimer disease (AD) copathology, which is linked to accelerated cognitive decline and more extensive cortical atrophy. The objective was to evaluate the relationship between a biomarker of AD copathology, plasma tau phosphorylated at residue 181 (ptau181), and the treatment effects of the p38α kinase inhibitor neflamapimod, which targets the cholinergic degenerative process in DLB. METHODS The AscenD-LB study was a phase 2a, randomized (1:1), 16-week, placebo-controlled clinical trial of neflamapimod in DLB, the main results of which have been published. After the study was completed (i.e., post hoc), pretreatment plasma ptau181 levels were determined and participants were grouped based on a cutoff for AD pathology of 2.2 pg/mL (established in a separate cohort to identify AD from healthy controls). Clinical outcomes for the comparison of placebo with neflamapimod 40 mg three times daily (TID; the higher and more clinically active of 2 doses studied) were analyzed using mixed models for repeated measures within each subgroup (baseline plasma ptau181 < and ≥2.2 pg/mL). RESULTS Pretreatment plasma ptau181 levels were determined in eighty-five participants with mild-to-moderate DLB receiving cholinesterase inhibitors, with 45 participants below and 40 above the 2.2 pg/mL cutoff at baseline. In the 16-week treatment period, in the comparison of placebo with neflamapimod 40 mg TID, for all end points evaluated, improvements with neflamapimod treatment were greater in participants below the cutoff, compared with those above the cutoff. In addition, participants below the ptau181 cutoff at baseline showed significant improvement over placebo in an attention composite measure (+0.42, 95% CI 0.07-0.78, p = 0.023, d = 0.78), the Clinical Dementia Rating Scale Sum of Boxes (-0.60, 95% CI -1.04 to -0.06, p = 0.031, d = 0.70), the Timed Up and Go test (-3.1 seconds, 95% CI -4.7 to -1.6, p < 0.001, d = 0.74), and International Shopping List Test-Recognition (+1.4, 95% CI 0.2-2.5, p = 0.024, d = 1.00). DISCUSSION Exclusion of patients with elevated plasma ptau181, potentially through excluding patients with extensive cortical neurodegeneration, enriches for a patient with DLB population that is more responsive to neflamapimod. More generally, plasma biomarkers of AD copathology at study entry should be considered as stratification variables in DLB clinical trials. TRIAL REGISTRATION INFORMATION NCT04001517 at ClinicalTrials.gov.
Collapse
Affiliation(s)
- John J Alam
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paul Maruff
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Susan R Doctrow
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Hui-May Chu
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jennifer Conway
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Stephen N Gomperts
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Charlotte Teunissen
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
8
|
Ortega-Gascó A, Parcerisas A, Hino K, Herranz-Pérez V, Ulloa F, Elias-Tersa A, Bosch M, García-Verdugo JM, Simó S, Pujadas L, Soriano E. Regulation of young-adult neurogenesis and neuronal differentiation by neural cell adhesion molecule 2 (NCAM2). Cereb Cortex 2023; 33:10931-10948. [PMID: 37724425 PMCID: PMC10629901 DOI: 10.1093/cercor/bhad340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Adult neurogenesis persists in mammals in the neurogenic zones, where newborn neurons are incorporated into preexisting circuits to preserve and improve learning and memory tasks. Relevant structural elements of the neurogenic niches include the family of cell adhesion molecules (CAMs), which participate in signal transduction and regulate the survival, division, and differentiation of radial glial progenitors (RGPs). Here we analyzed the functions of neural cell adhesion molecule 2 (NCAM2) in the regulation of RGPs in adult neurogenesis and during corticogenesis. We characterized the presence of NCAM2 across the main cell types of the neurogenic process in the dentate gyrus, revealing different levels of NCAM2 amid the progression of RGPs and the formation of neurons. We showed that Ncam2 overexpression in adult mice arrested progenitors in an RGP-like state, affecting the normal course of young-adult neurogenesis. Furthermore, changes in Ncam2 levels during corticogenesis led to transient migratory deficits but did not affect the survival and proliferation of RGPs, suggesting a differential role of NCAM2 in adult and embryonic stages. Our data reinforce the relevance of CAMs in the neurogenic process by revealing a significant role of Ncam2 levels in the regulation of RGPs during young-adult neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Alba Ortega-Gascó
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Department of Biosciences, Faculty of Sciences, Technology and Engineering, University of Vic – Central University of Catalonia (UVic-UCC), 13 Laura St., Vic 08500, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 70 Roda Rd., Vic 08500, Spain
- Department of Basic Sciences, International University of Catalonia (UIC), S/N Josep Trueta St., Sant Cugat del Vallès 08195, Spain
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, 1275 Med Science Dr., Davis, CA 95616, USA
| | - Vicente Herranz-Pérez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 7 Catedràtic Agustín Escardino Benlloch St., València 46010, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Jaume I University, S/N Vicent Sos Baynat Ave., Castelló de la Plana 12006, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Alba Elias-Tersa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Miquel Bosch
- Department of Basic Sciences, International University of Catalonia (UIC), S/N Josep Trueta St., Sant Cugat del Vallès 08195, Spain
| | - José Manuel García-Verdugo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 7 Catedràtic Agustín Escardino Benlloch St., València 46010, Spain
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, 1275 Med Science Dr., Davis, CA 95616, USA
| | - Lluís Pujadas
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 70 Roda Rd., Vic 08500, Spain
- Department of Experimental Sciences and Methodology, Faculty of Heath Sciences and Wellfare, University of Vic - Central University of Catalonia (UVic-UCC), 7 Sagrada Família St., Vic 08500, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| |
Collapse
|
9
|
Campbell NB, Patel Y, Moore TL, Medalla M, Zeldich E. Extracellular Vesicle Treatment Alleviates Neurodevelopmental and Neurodegenerative Pathology in Cortical Spheroid Model of Down Syndrome. Int J Mol Sci 2023; 24:3477. [PMID: 36834891 PMCID: PMC9960302 DOI: 10.3390/ijms24043477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is manifested in a variety of anatomical and cellular abnormalities resulting in intellectual deficits and early onset of Alzheimer's disease (AD) with no effective treatments available to alleviate the pathologies associated with the disorder. The therapeutic potential of extracellular vesicles (EVs) has emerged recently in relation to various neurological conditions. We have previously demonstrated the therapeutic efficacy of mesenchymal stromal cell-derived EVs (MSC-EVs) in cellular and functional recovery in a rhesus monkey model of cortical injury. In the current study, we evaluated the therapeutic effect of MSC-EVs in a cortical spheroid (CS) model of DS generated from patient-derived induced pluripotent stem cells (iPSCs). Compared to euploid controls, trisomic CS display smaller size, deficient neurogenesis, and AD-related pathological features, such as enhanced cell death and depositions of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). EV-treated trisomic CS demonstrated preserved size, partial rescue in the production of neurons, significantly decreased levels of Aβ and p-tau, and a reduction in the extent of cell death as compared to the untreated trisomic CS. Together, these results show the efficacy of EVs in mitigating DS and AD-related cellular phenotypes and pathological depositions in human CS.
Collapse
Affiliation(s)
- Natalie Baker Campbell
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Yesha Patel
- Commonwealth Honors College, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| | - Ella Zeldich
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedesian School of Medicine, Boston University, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Oxidative-Stress-Associated Proteostasis Disturbances and Increased DNA Damage in the Hippocampal Granule Cells of the Ts65Dn Model of Down Syndrome. Antioxidants (Basel) 2022; 11:antiox11122438. [PMID: 36552646 PMCID: PMC9774833 DOI: 10.3390/antiox11122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is one of the neuropathological mechanisms responsible for the deficits in cognition and neuronal function in Down syndrome (DS). The Ts65Dn (TS) mouse replicates multiple DS phenotypes including hippocampal-dependent learning and memory deficits and similar brain oxidative status. To better understand the hippocampal oxidative profile in the adult TS mouse, we analyzed cellular OS-associated alterations in hippocampal granule cells (GCs), a neuronal population that plays an important role in memory formation and that is particularly affected in DS. For this purpose, we used biochemical, molecular, immunohistochemical, and electron microscopy techniques. Our results indicate that TS GCs show important OS-associated alterations in the systems essential for neuronal homeostasis: DNA damage response and proteostasis, particularly of the proteasome and lysosomal system. Specifically, TS GCs showed: (i) increased DNA damage, (ii) reorganization of nuclear proteolytic factories accompanied by a decline in proteasome activity and cytoplasmic aggregation of ubiquitinated proteins, (iii) formation of lysosomal-related structures containing lipid droplets of cytotoxic peroxidation products, and (iv) mitochondrial ultrastructural defects. These alterations could be implicated in enhanced cellular senescence, accelerated aging and neurodegeneration, and the early development of Alzheimer's disease neuropathology present in TS mice and the DS population.
Collapse
|
11
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
12
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
13
|
Di Franco N, Drutel G, Roullot-Lacarrière V, Julio-Kalajzic F, Lalanne V, Grel A, Leste-Lasserre T, Matias I, Cannich A, Gonzales D, Simon V, Cota D, Marsicano G, Piazza PV, Vallée M, Revest JM. Differential expression of the neuronal CB1 cannabinoid receptor in the hippocampus of male Ts65Dn Down syndrome mouse model. Mol Cell Neurosci 2022; 119:103705. [PMID: 35158060 DOI: 10.1016/j.mcn.2022.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022] Open
Abstract
Down syndrome (DS) or Trisomy 21 is the most common genetic cause of mental retardation with severe learning and memory deficits. DS is due to the complete or partial triplication of human chromosome 21 (HSA21) triggering gene overexpression and protein synthesis alterations responsible for a plethora of mental and physical phenotypes. Among the diverse brain target systems that affect hippocampal-dependent learning and memory deficit impairments in DS, the upregulation of the endocannabinoid system (ECS), and notably the overexpression of the cannabinoid type-1 receptor (CB1), seems to play a major role. Combining various protein and gene expression targeted approaches using western blot, qRT-PCR and FISH techniques, we investigated the expression pattern of ECS components in the hippocampus (HPC) of male Ts65Dn mice. Among all the molecules that constitute the ECS, we found that the expression of the CB1 is altered in the HPC of Ts65Dn mice. CB1 distribution is differentially segregated between the dorsal and ventral part of the HPC and within the different cell populations that compose the HPC. CB1 expression is upregulated in GABAergic neurons of Ts65Dn mice whereas it is downregulated in glutamatergic neurons. These results highlight a complex regulation of the CB1 encoding gene (Cnr1) in Ts65Dn mice that could open new therapeutic solutions for this syndrome.
Collapse
Affiliation(s)
- Nadia Di Franco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Guillaume Drutel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | | | | | - Valérie Lalanne
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Agnès Grel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | | | - Isabelle Matias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Delphine Gonzales
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Vincent Simon
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Daniela Cota
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | | | - Monique Vallée
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Jean-Michel Revest
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
14
|
Goeldner C, Kishnani PS, Skotko BG, Casero JL, Hipp JF, Derks M, Hernandez MC, Khwaja O, Lennon-Chrimes S, Noeldeke J, Pellicer S, Squassante L, Visootsak J, Wandel C, Fontoura P, d’Ardhuy XL, De La Torre Fornell R, Glue P, Hoover-Fong J, Uhlmann S, Malagón Valdez J, Marshall A, Martinón-Torres F, Redondo-Collazo L, Rodriguez-Tenreiro C, Marquez Chin V, Michel Reynoso AG, Mitchell EA, Slykerman RF, Wouldes T, Loveday S, Moldenhauer F, Novell R, Ochoa C, Rafii MS, Rebillat AS, Sanlaville D, Sarda P, Shankar R, Pulsifer M, Evans CL, Silva AM, McDonough ME, Stanley M, McCary LM, Vicari S, Wilcox W, Zampino G, Zuddas A. A randomized, double-blind, placebo-controlled phase II trial to explore the effects of a GABAA-α5 NAM (basmisanil) on intellectual disability associated with Down syndrome. J Neurodev Disord 2022; 14:10. [PMID: 35123401 PMCID: PMC8903644 DOI: 10.1186/s11689-022-09418-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background There are currently no pharmacological therapies to address the intellectual disability associated with Down syndrome. Excitatory/inhibitory imbalance has been hypothesized to contribute to impairments in cognitive functioning in Down syndrome. Negative modulation of the GABAA-α5 receptor is proposed as a mechanism to attenuate GABAergic function and restore the excitatory/inhibitory balance. Methods Basmisanil, a selective GABAA-α5 negative allosteric modulator, was evaluated at 120 mg or 240 mg BID (80 or 160 mg for 12–13 years) in a 6-month, randomized, double-blind, placebo-controlled phase II trial (Clematis) for efficacy and safety in adolescents and young adults with Down syndrome. The primary endpoint was based on a composite analysis of working memory (Repeatable Battery for the Assessment of Neuropsychological Scale [RBANS]) and independent functioning and adaptive behavior (Vineland Adaptive Behavior Scales [VABS-II] or the Clinical Global Impression-Improvement [CGI-I]). Secondary measures included the Behavior Rating Inventory of Executive Functioning-Preschool (BRIEF-P), Clinical Evaluation of Language Fundamentals (CELF-4), and Pediatric Quality of Life Inventory (Peds-QL). EEG was conducted for safety monitoring and quantitatively analyzed in adolescents. Results Basmisanil was safe and well-tolerated; the frequency and nature of adverse events were similar in basmisanil and placebo arms. EEG revealed treatment-related changes in spectral power (increase in low ~ 4-Hz and decrease in high ~ 20-Hz frequencies) providing evidence of functional target engagement. All treatment arms had a similar proportion of participants showing above-threshold improvement on the primary composite endpoint, evaluating concomitant responses in cognition and independent functioning (29% in placebo, 20% in low dose, and 25% in high dose). Further analysis of the individual measures contributing to the primary endpoint revealed no difference between placebo and basmisanil-treated groups in either adolescents or adults. There were also no differences across the secondary endpoints assessing changes in executive function, language, or quality of life. Conclusions Basmisanil did not meet the primary efficacy objective of concomitant improvement on cognition and adaptive functioning after 6 months of treatment, despite evidence for target engagement. This study provides key learnings for future clinical trials in Down syndrome. Trial registration The study was registered on December 31, 2013, at clinicaltrials.gov as NCT02024789. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09418-0.
Collapse
|
15
|
Consorti A, Di Marco I, Sansevero G. Physical Exercise Modulates Brain Physiology Through a Network of Long- and Short-Range Cellular Interactions. Front Mol Neurosci 2021; 14:710303. [PMID: 34489641 PMCID: PMC8417110 DOI: 10.3389/fnmol.2021.710303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the effects of sedentary lifestyles have emerged as a critical aspect of modern society. Interestingly, recent evidence demonstrated that physical exercise plays an important role not only in maintaining peripheral health but also in the regulation of central nervous system function. Many studies have shown that physical exercise promotes the release of molecules, involved in neuronal survival, differentiation, plasticity and neurogenesis, from several peripheral organs. Thus, aerobic exercise has emerged as an intriguing tool that, on one hand, could serve as a therapeutic protocol for diseases of the nervous system, and on the other hand, could help to unravel potential molecular targets for pharmacological approaches. In the present review, we will summarize the cellular interactions that mediate the effects of physical exercise on brain health, starting from the factors released in myocytes during muscle contraction to the cellular pathways that regulate higher cognitive functions, in both health and disease.
Collapse
Affiliation(s)
- Alan Consorti
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- NEUROFARBA, University of Florence, Florence, Italy
| | | | | |
Collapse
|
16
|
Fernández-Blanco Á, Dierssen M. Rethinking Intellectual Disability from Neuro- to Astro-Pathology. Int J Mol Sci 2020; 21:E9039. [PMID: 33261169 PMCID: PMC7730506 DOI: 10.3390/ijms21239039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders arise from genetic and/or from environmental factors and are characterized by different degrees of intellectual disability. The mechanisms that govern important processes sustaining learning and memory, which are severely affected in intellectual disability, have classically been thought to be exclusively under neuronal control. However, this vision has recently evolved into a more integrative conception in which astroglia, rather than just acting as metabolic supply and structural anchoring for neurons, interact at distinct levels modulating neuronal communication and possibly also cognitive processes. Recently, genetic tools have made it possible to specifically manipulate astrocyte activity unraveling novel functions that involve astrocytes in memory function in the healthy brain. However, astrocyte manipulation has also underscored potential mechanisms by which dysfunctional astrocytes could contribute to memory deficits in several neurodevelopmental disorders revealing new pathogenic mechanisms in intellectual disability. Here, we review the current knowledge about astrocyte dysfunction that might contribute to learning and memory impairment in neurodevelopmental disorders, with special focus on Fragile X syndrome and Down syndrome.
Collapse
Affiliation(s)
- Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
17
|
Shaw PR, Klein JA, Aziz NM, Haydar TF. Longitudinal neuroanatomical and behavioral analyses show phenotypic drift and variability in the Ts65Dn mouse model of Down syndrome. Dis Model Mech 2020; 13:dmm046243. [PMID: 32817053 PMCID: PMC7522024 DOI: 10.1242/dmm.046243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Mouse models of Down syndrome (DS) have been invaluable tools for advancing knowledge of the underlying mechanisms of intellectual disability in people with DS. The Ts(1716)65Dn (Ts65Dn) mouse is one of the most commonly used models as it recapitulates many of the phenotypes seen in individuals with DS, including neuroanatomical changes and impaired learning and memory. In this study, we use rigorous metrics to evaluate multiple cohorts of Ts65Dn ranging from 2014 to the present, including a stock of animals recovered from embryos frozen within ten generations after the colony was first created in 2010. Through quantification of prenatal and postnatal brain development and several behavioral tasks, our results provide a comprehensive comparison of Ts65Dn across time and show a significant amount of variability both across cohorts as well as within cohorts. The inconsistent phenotypes in Ts65Dn mice highlight specific cautions and caveats for use of this model. We outline important steps for ensuring responsible use of Ts65Dn in future research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Patricia R Shaw
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jenny A Klein
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC 20010, USA
| |
Collapse
|
18
|
Rueda N, Vidal V, García-Cerro S, Puente A, Campa V, Lantigua S, Narcís O, Bartesaghi R, Martínez-Cué C. Prenatal, but not Postnatal, Curcumin Administration Rescues Neuromorphological and Cognitive Alterations in Ts65Dn Down Syndrome Mice. J Nutr 2020; 150:2478-2489. [PMID: 32729926 DOI: 10.1093/jn/nxaa207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The cognitive dysfunction in Down syndrome (DS) is partially caused by deficient neurogenesis during fetal stages. Curcumin enhances neurogenesis and learning and memory. OBJECTIVES We aimed to test the ability of curcumin to rescue the neuromorphological and cognitive alterations of the Ts65Dn (TS) mouse model of DS when administered prenatally or during early postnatal stages, and to evaluate whether these effects were maintained several weeks after the treatment. METHODS To evaluate the effects of prenatal curcumin administration, 65 pregnant TS females were subcutaneously treated with curcumin (300 mg/kg) or vehicle from ED (Embryonic Day) 10 to PD (Postnatal Day) 2. All the analyses were performed on their TS and Control (CO) male and female progeny. At PD2, the changes in neurogenesis, cellularity, and brain weight were analyzed in 30 TS and CO pups. The long-term effects of prenatal curcumin were evaluated in another cohort of 44 TS and CO mice between PD30 and PD45. The neuromorphological effects of the early postnatal administration of curcumin were assessed on PD15 in 30 male and female TS and CO pups treated with curcumin (300 mg/kg) or vehicle from PD2 to PD15. The long-term neuromorphological and cognitive effects were assessed from PD60 to PD90 in 45 mice. Data was compared by ANOVAs. RESULTS Prenatal administration of curcumin increased the brain weight (+45%, P < 0.001), the density of BrdU (bromodeoxyuridine)- (+150%, P < 0.001) and DAPI (4',6-diamidino-2-phenylindole)- (+38%, P = 0.005) positive cells, and produced a long-term improvement of cognition in TS (+35%, P = 0.007) mice with respect to vehicle-treated mice. Postnatal administration of curcumin did not rescue any of the short- or long-term altered phenotypes of TS mice. CONCLUSION The beneficial effects of prenatal curcumin administration to TS mice suggest that it could be a therapeutic strategy to treat DS cognitive disabilities.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Víctor Campa
- Institute of Molecular Biology and Biomedicine, Santander, Cantabria, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
19
|
García-Cerro S, Rueda N, Vidal V, Puente A, Campa V, Lantigua S, Narcís O, Velasco A, Bartesaghi R, Martínez-Cué C. Prenatal Administration of Oleic Acid or Linolenic Acid Reduces Neuromorphological and Cognitive Alterations in Ts65dn Down Syndrome Mice. J Nutr 2020; 150:1631-1643. [PMID: 32243527 DOI: 10.1093/jn/nxaa074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cognitive impairments that characterize Down syndrome (DS) have been attributed to brain hypocellularity due to neurogenesis impairment during fetal stages. Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in postnatal stages. OBJECTIVES As fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering oleic or linolenic acid. METHODS In total, 85 pregnant TS females were subcutaneously treated from Embryonic Day (ED) 10 until Postnatal Day (PD) 2 with oleic acid (400 mg/kg), linolenic acid (500 mg/kg), or vehicle. All analyses were performed on their TS and Control (CO) male and female progeny. At PD2, we evaluated the short-term effects of the treatments on neurogenesis, cellularity, and brain weight, in 40 TS and CO pups. A total of 69 TS and CO mice were used to test the long-term effects of the prenatal treatments on cognition from PD30 to PD45, and on neurogenesis, cellularity, and synaptic markers, at PD45. Data were compared by ANOVAs. RESULTS Prenatal administration of oleic or linolenic acid increased the brain weight (+36.7% and +45%, P < 0.01), the density of BrdU (bromodeoxyuridine)- (+80% and +115%; P < 0.01), and DAPI (4',6-diamidino-2-phenylindole)-positive cells (+64% and +22%, P < 0.05) of PD2 TS mice with respect to the vehicle-treated TS mice. Between PD30 and PD45, TS mice prenatally treated with oleic or linolenic acid showed better cognitive abilities (+28% and +25%, P < 0.01) and a higher density of the postsynaptic marker PSD95 (postsynaptic density protein 95) (+65% and +44%, P < 0.05) than the vehicle-treated TS animals. CONCLUSION The beneficial cognitive and neuromorphological effects induced by oleic or linolenic acid in TS mice suggest that they could be promising pharmacotherapies for DS-associated cognitive deficits.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Víctor Campa
- Institute of Molecular Biology and Biomedicine (IBTECC), Santander, Cantabria, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Ana Velasco
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences of Castilla and Leon (INCYL), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| |
Collapse
|
20
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Jain S, Watts CA, Chung WCJ, Welshhans K. Neurodevelopmental wiring deficits in the Ts65Dn mouse model of Down syndrome. Neurosci Lett 2020; 714:134569. [PMID: 31644920 DOI: 10.1016/j.neulet.2019.134569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Down syndrome is the most common genetic cause of intellectual disability and occurs due to the trisomy of human chromosome 21. Adolescent and adult brains from humans with Down syndrome exhibit various neurological phenotypes including a reduction in the size of the corpus callosum, hippocampal commissure and anterior commissure. However, it is unclear when and how these interhemispheric connectivity defects arise. Using the Ts65Dn mouse model of Down syndrome, we examined interhemispheric connectivity in postnatal day 0 (P0) Ts65Dn mouse brains. We find that there is no change in the volume of the corpus callosum or anterior commissure in P0 Ts65Dn mice. However, the volume of the hippocampal commissure is significantly reduced in P0 Ts65Dn mice, and this may contribute to the impaired learning and memory phenotype of this disorder. Interhemispheric connectivity defects that arise during development may be due to disrupted axon growth. In line with this, we find that developing hippocampal neurons display reduced axon length in vitro, as compared to neurons from their euploid littermates. This study is the first to report the presence of defective interhemispheric connectivity at the time of birth in Ts65Dn mice, providing evidence that early therapeutic intervention may be an effective time window for the treatment of Down syndrome.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Christina A Watts
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA; Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA; Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
22
|
Abstract
Hippocampal abnormalities have been heavily implicated in the pathophysiology of schizophrenia. The dentate gyrus of the hippocampus was shown to manifest an immature molecular profile in schizophrenia subjects, as well as in various animal models of the disorder. In this position paper, we advance a hypothesis that this immature molecular profile is accompanied by an identifiable immature morphology of the dentate gyrus granule cell layer. We adduce evidence for arrested maturation of the dentate gyrus in the human schizophrenia-affected brain, as well as multiple rodent models of the disease. Implications of this neurohistopathological signature for current theory regarding the development of schizophrenia are discussed.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology & Neurosurgery, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hyman M. Schipper
- Department of Neurology & Neurosurgery, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Illouz T, Madar R, Biragyn A, Okun E. Restoring microglial and astroglial homeostasis using DNA immunization in a Down Syndrome mouse model. Brain Behav Immun 2019; 75:163-180. [PMID: 30389461 PMCID: PMC6358279 DOI: 10.1016/j.bbi.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/22/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Down Syndrome (DS), the most common cause of genetic intellectual disability, is characterized by over-expression of the APP and DYRK1A genes, located on the triplicated chromosome 21. This chromosomal abnormality leads to a cognitive decline mediated by Amyloid-β (Aβ) overproduction and tau hyper-phosphorylation as early as the age of 40. In this study, we used the Ts65Dn mouse model of DS to evaluate the beneficial effect of a DNA vaccination against the Aβ1-11 fragment, in ameliorating Aβ-related neuropathology and rescue of cognitive and behavioral abilities. Anti-Aβ1-11 vaccination induced antibody production and facilitated clearance of soluble oligomers and small extracellular inclusions of Aβ from the hippocampus and cortex of Ts65Dn mice. This was correlated with reduced neurodegeneration and restoration of the homeostatic phenotype of microglial and astroglial cells. Vaccinated Ts65Dn mice performed better in spatial-learning tasks, exhibited reduced motor hyperactivity typical for this strain, and restored short-term memory abilities. Our findings support the hypothesis that DS individuals may benefit from active immunotherapy against Aβ from a young age by slowing the progression of dementia.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, NIA, NIH, MD 21224, USA
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
24
|
Tramutola A, Lanzillotta C, Barone E, Arena A, Zuliani I, Mosca L, Blarzino C, Butterfield DA, Perluigi M, Di Domenico F. Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl Neurodegener 2018; 7:28. [PMID: 30410750 PMCID: PMC6218962 DOI: 10.1186/s40035-018-0133-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa) that maximizes brain delivery and reduce systemic side effects. Methods Ts65Dn mice were administered with InRapa for 12 weeks, starting at 6 months of age demonstrating, at the end of the treatment by radial arms maze and novel object recognition testing, rescued cognition. Results The analysis of mTOR signalling, after InRapa, demonstrated in Ts65Dn mice hippocampus the inhibition of mTOR (reduced to physiological levels), which led, through the rescue of autophagy and insulin signalling, to reduced APP levels, APP processing and APP metabolites production, as well as, to reduced tau hyperphosphorylation. In addition, a reduction of oxidative stress markers was also observed. Discussion These findings demonstrate that chronic InRapa administration is able to exert a neuroprotective effect on Ts65Dn hippocampus by reducing AD pathological hallmarks and by restoring protein homeostasis, thus ultimately resulting in improved cognition. Results are discussed in term of a potential novel targeted therapeutic approach to reduce cognitive decline and AD-like neuropathology in DS individuals.
Collapse
Affiliation(s)
- Antonella Tramutola
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Lanzillotta
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Eugenio Barone
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,2Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Andrea Arena
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Zuliani
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luciana Mosca
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Carla Blarzino
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- 3Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055 USA
| | - Marzia Perluigi
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Di Domenico
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Giacomini A, Stagni F, Emili M, Guidi S, Salvalai ME, Grilli M, Vidal-Sanchez V, Martinez-Cué C, Bartesaghi R. Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome. Brain Res Bull 2018; 140:378-391. [PMID: 29935232 DOI: 10.1016/j.brainresbull.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS), a genetic condition due to triplication of Chromosome 21, are characterized by intellectual disability that worsens with age. Since impairment of neurogenesis and dendritic maturation are very likely key determinants of intellectual disability in DS, interventions targeted to these defects may translate into a behavioral benefit. While most of the neurogenesis enhancers tested so far in DS mouse models may pose some caveats due to possible side effects, substances naturally present in the human diet may be regarded as therapeutic tools with a high translational impact. Linoleic acid and oleic acid are major constituents of corn oil that positively affect neurogenesis and neuron maturation. Based on these premises, the goal of the current study was to establish whether treatment with corn oil improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn model of DS. Four-month-old Ts65Dn and euploid mice were treated with saline or corn oil for 30 days. Evaluation of behavior at the end of treatment showed that Ts65Dn mice treated with corn oil underwent a large improvement in hippocampus-dependent learning and memory. Evaluation of neurogenesis and dendritogenesis showed that in treated Ts65Dn mice the number of new granule cells of the hippocampal dentate gyrus and their dendritic pattern became similar to those of euploid mice. In addition, treated Ts65Dn mice underwent an increase in body and brain weight. This study shows for the first time that fatty acids have a positive impact on the brain of the Ts65Dn mouse model of DS. These results suggest that a diet that is rich in fatty acids may exert beneficial effects on cognitive performance in individuals with DS without causing adverse effects.
Collapse
Affiliation(s)
- Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Elisa Salvalai
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Veronica Vidal-Sanchez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martinez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
26
|
Developmental excitatory-to-inhibitory GABA polarity switch is delayed in Ts65Dn mice, a genetic model of Down syndrome. Neurobiol Dis 2018; 115:1-8. [PMID: 29550538 DOI: 10.1016/j.nbd.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABAA agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS.
Collapse
|
27
|
Block A, Ahmed M, Rueda N, Hernandez MC, Martinez-Cué C, Gardiner K. The GABA A α5-selective Modulator, RO4938581, Rescues Protein Anomalies in the Ts65Dn Mouse Model of Down Syndrome. Neuroscience 2018; 372:192-212. [DOI: 10.1016/j.neuroscience.2017.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
|
28
|
Zorrilla de San Martin J, Delabar JM, Bacci A, Potier MC. GABAergic over-inhibition, a promising hypothesis for cognitive deficits in Down syndrome. Free Radic Biol Med 2018; 114:33-39. [PMID: 28993272 DOI: 10.1016/j.freeradbiomed.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022]
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability. It is also a model human disease for exploring consequences of gene dosage imbalance on complex phenotypes. Learning and memory impairments linked to intellectual disabilities in DS could result from synaptic plasticity deficits and excitatory-inhibitory alterations leading to changes in neuronal circuitry in the brain of affected individuals. Increasing number of studies in mouse and cellular models converge towards the assumption that excitatory-inhibitory imbalance occurs in DS, likely early during development. Thus increased inhibition appears to be a common trend that could explain synaptic and circuit disorganization. Interestingly using several potent pharmacological tools, preclinical studies strongly demonstrated that cognitive deficits could be restored in mouse models of DS. Clinical trials have not yet provided robust data for therapeutic application and additional studies are needed. Here we review the literature and our own published work emphasizing the over-inhibition hypothesis in DS and their links with gene dosage imbalance paving the way for future basic and clinical research.
Collapse
Affiliation(s)
- Javier Zorrilla de San Martin
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Maurice Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alberto Bacci
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Marie-Claude Potier
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| |
Collapse
|
29
|
Stagni F, Giacomini A, Emili M, Guidi S, Bartesaghi R. Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radic Biol Med 2018; 114:15-32. [PMID: 28756311 DOI: 10.1016/j.freeradbiomed.2017.07.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is characterized by brain hypotrophy and intellectual disability starting from early life stages. Accumulating evidence shows that the phenotypic features of the DS brain can be traced back to the fetal period since the DS brain exhibits proliferation potency reduction starting from the critical time window of fetal neurogenesis. This defect is worsened by the fact that neural progenitor cells exhibit reduced acquisition of a neuronal phenotype and an increase in the acquisition of an astrocytic phenotype. Consequently, the DS brain has fewer neurons in comparison with the typical brain. Although apoptotic cell death may be increased in DS, this does not seem to be the major cause of brain hypocellularity. Evidence obtained in brains of individuals with DS, DS-derived induced pluripotent stem cells (iPSCs), and DS mouse models has provided some insight into the mechanisms underlying the developmental defects due to the trisomic condition. Although many triplicated genes may be involved, in the light of the studies reviewed here, DYRK1A, APP, RCAN1 and OLIG1/2 appear to be particularly important determinants of many neurodevelopmental alterations that characterize DS because their triplication affects both the proliferation and fate of neural precursor cells as well as apoptotic cell death. Based on the evidence reviewed here, pathways downstream to these genes may represent strategic targets, for the design of possible interventions.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
30
|
Vacano GN, Gibson DS, Turjoman AA, Gawryluk JW, Geiger JD, Duncan M, Patterson D. Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. Neurobiol Aging 2017; 63:96-109. [PMID: 29245059 DOI: 10.1016/j.neurobiolaging.2017.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
This study was designed to investigate the brain proteome of the Ts65Dn mouse model of Down syndrome. We profiled the cerebellum and hippocampus proteomes of 6- and 12-month-old trisomic and disomic mice by difference gel electrophoresis. We quantified levels of 2082 protein spots and identified 272 (170 unique UniProt accessions) by mass spectrometry. Four identified proteins are encoded by genes trisomic in the Ts65Dn mouse. Three of these (CRYZL11, EZR, and SOD1) were elevated with p-value <0.05, and 2 proteins encoded by disomic genes (MAPRE3 and PHB) were reduced. Intergel comparisons based on age (6 vs. 12 months) and brain region (cerebellum vs. hippocampus) revealed numerous differences. Specifically, 132 identified proteins were different between age groups, and 141 identified proteins were different between the 2 brain regions. Our results suggest that compensatory mechanisms exist, which ameliorate the effect of trisomy in the Ts65Dn mice. Differences observed during aging may play a role in the accelerated deterioration of learning and memory seen in Ts65Dn mice.
Collapse
Affiliation(s)
- Guido N Vacano
- Knoebel Institute for Healthy Aging, Eleanor Roosevelt Institute, and Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - David S Gibson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Abdullah Arif Turjoman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jeremy W Gawryluk
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mark Duncan
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging, Eleanor Roosevelt Institute, and Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
31
|
Stringer M, Abeysekera I, Thomas J, LaCombe J, Stancombe K, Stewart RJ, Dria KJ, Wallace JM, Goodlett CR, Roper RJ. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Physiol Behav 2017; 177:230-241. [PMID: 28478033 PMCID: PMC5525541 DOI: 10.1016/j.physbeh.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.
Collapse
Affiliation(s)
- Megan Stringer
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Irushi Abeysekera
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jared Thomas
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jonathan LaCombe
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Kailey Stancombe
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Robert J Stewart
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Karl J Dria
- IUPUI, Department of Chemistry and Chemical Biology, 402 North Blackford Street, LD 326, Indianapolis, IN 46202-3275, United States
| | - Joseph M Wallace
- IUPUI, Department of Biomedical Engineering, 723 West Michigan Street, SL 220B, Indianapolis, IN 46202-3275, United States
| | - Charles R Goodlett
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Randall J Roper
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States.
| |
Collapse
|
32
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|
33
|
Smith-Hicks CL, Cai P, Savonenko AV, Reeves RH, Worley PF. Increased Sparsity of Hippocampal CA1 Neuronal Ensembles in a Mouse Model of Down Syndrome Assayed by Arc Expression. Front Neural Circuits 2017; 11:6. [PMID: 28217086 PMCID: PMC5289947 DOI: 10.3389/fncir.2017.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS) is the leading chromosomal cause of intellectual disability, yet the neural substrates of learning and memory deficits remain poorly understood. Here, we interrogate neural networks linked to learning and memory in a well-characterized model of DS, the Ts65Dn mouse. We report that Ts65Dn mice exhibit exploratory behavior that is not different from littermate wild-type (WT) controls yet behavioral activation of Arc mRNA transcription in pyramidal neurons of the CA1 region of the hippocampus is altered in Ts65Dn mice. In WT mice, a 5 min period of exploration of a novel environment resulted in Arc mRNA transcription in 39% of CA1 neurons. By contrast, the same period of exploration resulted in only ~20% of CA1 neurons transcribing Arc mRNA in Ts65Dn mice indicating increased sparsity of the behaviorally induced ensemble. Like WT mice the CA1 pyramidal neurons of Ts65Dn mice reactivated Arc transcription during a second exposure to the same environment 20 min after the first experience, but the size of the reactivated ensemble was only ~60% of that in WT mice. After repeated daily exposures there was a further decline in the size of the reactivated ensemble in Ts65Dn and a disruption of reactivation. Together these data demonstrate reduction in the size of the behaviorally induced network that expresses Arc in Ts65Dn mice and disruption of the long-term stability of the ensemble. We propose that these deficits in network formation and stability contribute to cognitive symptoms in DS.
Collapse
Affiliation(s)
- Constance L Smith-Hicks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Peiling Cai
- The State Key Laboratory of Biotherapy, West-China Hospital, Sichuan University Chengdu, China
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Roger H Reeves
- Department of Physiology and Institute of Genetic Medicine, Johns Hopkins University, School of Medicine Baltimore, MD, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
34
|
Ernst C, Pike J, Aitken SJ, Long HK, Eling N, Stojic L, Ward MC, Connor F, Rayner TF, Lukk M, Klose RJ, Kutter C, Odom DT. Successful transmission and transcriptional deployment of a human chromosome via mouse male meiosis. eLife 2016; 5:e20235. [PMID: 27855777 PMCID: PMC5161449 DOI: 10.7554/elife.20235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Most human aneuploidies originate maternally, due in part to the presence of highly stringent checkpoints during male meiosis. Indeed, male sterility is common among aneuploid mice used to study chromosomal abnormalities, and male germline transmission of exogenous DNA has been rarely reported. Here we show that, despite aberrant testis architecture, males of the aneuploid Tc1 mouse strain produce viable sperm and transmit human chromosome 21 to create aneuploid offspring. In these offspring, we mapped transcription, transcriptional initiation, enhancer activity, non-methylated DNA, and transcription factor binding in adult tissues. Remarkably, when compared with mice derived from female passage of human chromosome 21, the chromatin condensation during spermatogenesis and the extensive epigenetic reprogramming specific to male germline transmission resulted in almost indistinguishable patterns of transcriptional deployment. Our results reveal an unexpected tolerance of aneuploidy during mammalian spermatogenesis, and the surprisingly robust ability of mouse developmental machinery to accurately deploy an exogenous chromosome, regardless of germline transmission.
Collapse
Affiliation(s)
- Christina Ernst
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy Pike
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Histopathology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Hannah K Long
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United states
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Nils Eling
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michelle C Ward
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Timothy F Rayner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Margus Lukk
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
López-Hidalgo R, Ballestín R, Vega J, Blasco-Ibáñez JM, Crespo C, Gilabert-Juan J, Nácher J, Varea E. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis. Front Neurosci 2016; 10:75. [PMID: 26973453 PMCID: PMC4773601 DOI: 10.3389/fnins.2016.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Raul Ballestín
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Jessica Vega
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - José M. Blasco-Ibáñez
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Carlos Crespo
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Javier Gilabert-Juan
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVAValència, Spain
- CIBERSAM, Spanish National Network for Research in Mental HealthValència, Spain
- Genetics Department, CIBERSAM, Universitat de ValènciaValència, Spain
| | - Juan Nácher
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVAValència, Spain
- CIBERSAM, Spanish National Network for Research in Mental HealthValència, Spain
- Genetics Department, CIBERSAM, Universitat de ValènciaValència, Spain
| | - Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| |
Collapse
|
36
|
Giacomini A, Stagni F, Trazzi S, Guidi S, Emili M, Brigham E, Ciani E, Bartesaghi R. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2015; 82:385-396. [PMID: 26254735 PMCID: PMC4768084 DOI: 10.1016/j.nbd.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/01/2015] [Indexed: 11/28/2022] Open
Abstract
Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3–P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS. Derangement of the mitogenic Shh pathway reduces neurogenesis in Down syndrome (DS). APP triplication causes excessive formation of its cleavage products AICD. AICD causes excessive transcription of Ptch1, the repressor of the Shh pathway. ELND006, a gamma secretase inhibitor, reduces AICD levels and Ptch1 expression. Treatment with ELND006 restores neurogenesis in the Ts65Dn mouse model of DS.
Collapse
Affiliation(s)
- Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
37
|
Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice. EBioMedicine 2015; 2:1048-62. [PMID: 26501103 PMCID: PMC4588457 DOI: 10.1016/j.ebiom.2015.07.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. Down syndrome model neurons display altered action potential shape, are less excitable and have decreased potassium currents. The data is accurately described by a numerical simulation that changes conductance of four potassium and the HCN currents. Measurements of the currents related to these four channels, and RT-pcr for a fifth (KCNJ15), confirm the numerical model.
In Down syndrome (DS) cognitive function is impaired, leading us to use cultured hippocampal neuronal networks to investigate the cellular basis of its pathology. DS mouse model neurons are less excitable, produce fewer spikes and generate less network activity. Alterations in several types of potassium currents were detected in these neurons. Numerical simulation of a DS neuron successfully reproduced the experimental results. Beyond extending our understanding of neuronal function and pathology, the alterations in channel conductance can now be targeted with specific drugs so as to point to new directions in therapy of cognitive disabilities of DS.
Collapse
Key Words
- 1D, one-dimensional
- 2D, two-dimensional
- DC, direct current
- DS, Down syndrome
- Down syndrome
- EPSC, excitatory post synaptic current
- GABA, gamma-aminobutyric acid
- GIRK, G protein-coupled inwardly-rectifying potassium channels
- HCN, hyperpolarization-activated cyclic nucleotide-gated
- Hippocampus
- Inward rectifiers
- Potassium channels
- Potassium currents
- ROI, region of interest
- RT-PCR, real time polymerase chain reaction
- Reduced excitability
- SEM, standard error of mean
- TTX, tetrodotoxin
- Tc1
- Ts65Dn
- WT, wild type
Collapse
|
38
|
Fernandez F, Reeves RH. Assessing cognitive improvement in people with Down syndrome: important considerations for drug-efficacy trials. Handb Exp Pharmacol 2015; 228:335-80. [PMID: 25977089 DOI: 10.1007/978-3-319-16522-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental research over just the past decade has raised the possibility that learning deficits connected to Down syndrome (DS) might be effectively managed by medication. In the current chapter, we touch on some of the work that paved the way for these advances and discuss the challenges associated with translating them. In particular, we highlight sources of phenotypic variability in the DS population that are likely to impact performance assessments. Throughout, suggestions are made on how to detect meaningful changes in cognitive-adaptive function in people with DS during drug treatment. The importance of within-subjects evaluation is emphasized.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
39
|
Liu B, Filippi S, Roy A, Roberts I. Stem and progenitor cell dysfunction in human trisomies. EMBO Rep 2014; 16:44-62. [PMID: 25520324 DOI: 10.15252/embr.201439583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Sarah Filippi
- Department of Statistics, University of Oxford, Oxford, UK
| | - Anindita Roy
- Centre for Haematology, Imperial College London, London, UK
| | - Irene Roberts
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|
40
|
Hernández-González S, Ballestín R, López-Hidalgo R, Gilabert-Juan J, Blasco-Ibáñez JM, Crespo C, Nácher J, Varea E. Altered distribution of hippocampal interneurons in the murine Down Syndrome model Ts65Dn. Neurochem Res 2014; 40:151-64. [PMID: 25399236 DOI: 10.1007/s11064-014-1479-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
Abstract
Down Syndrome, with an incidence of one in 800 live births, is the most common genetic alteration producing intellectual disability. We have used the Ts65Dn model, that mimics some of the alterations observed in Down Syndrome. This genetic alteration induces an imbalance between excitation and inhibition that has been suggested as responsible for the cognitive impairment present in this syndrome. The hippocampus has a crucial role in memory processing and is an important area to analyze this imbalance. In this report we have analysed, in the hippocampus of Ts65Dn mice, the expression of synaptic markers: synaptophysin, vesicular glutamate transporter-1 and isoform 67 of the glutamic acid decarboxylase; and of different subtypes of inhibitory neurons (Calbindin D-28k, parvalbumin, calretinin, NPY, CCK, VIP and somatostatin). We have observed alterations in the inhibitory neuropil in the hippocampus of Ts65Dn mice. There was an excess of inhibitory puncta and a reduction of the excitatory ones. In agreement with this observation, we have observed an increase in the number of inhibitory neurons in CA1 and CA3, mainly interneurons expressing calbindin, calretinin, NPY and VIP, whereas parvalbumin cell numbers were not affected. These alterations in the number of interneurons, but especially the alterations in the proportion of the different types, may influence the normal function of inhibitory circuits and underlie the cognitive deficits observed in DS.
Collapse
Affiliation(s)
- Samuel Hernández-González
- Neurobiology Unit, Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Dr. Moliner, 50, 46100, Burjassot, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Z, Tao D. Inactivition of CDKL3 mildly inhibits proliferation of cells at VZ/SVZ in brain. Neurol Sci 2014; 36:297-302. [PMID: 25270654 DOI: 10.1007/s10072-014-1952-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
CDKL3 has an important role in regulating cell growth and/or differentiation, and its inactivation is recently reported to be related to non-syndromic mild mental retardation (MR). MR is a common neurological disorder, predominantly characterized by impaired cognitive function. Though genetic factors play a very important role in the pathogenesis of MR, to date, only few genes linked to MR have been characterized and understood very well. Here, we investigated the role of the CDKL3 in the proliferation of cells surrounding the brain ventricle, and the results showed down-regulating CDKL3 by the method of RNAi in the cells surrounding the brain ventricle of the mouse embryo at E15 may inhibit their proliferation. As our previous study had shown that Cdkl3 mRNA expression is developmentally regulated in the central nervous system, peaking during late embryonic and early postnatal stages which are the key stages of neurite formation and maturation, furtherly, the present findings indicated that CDKL3 may be involved in proliferation of cells surrounding the brain ventricle where neuronal progenitor cells are enriched during the late embryo stage, supporting the notion that CDKL3 inactivation contributes to non-syndromic mild MR.
Collapse
Affiliation(s)
- Zanhua Liu
- Department of Neurology, The First Hospital Affiliated to Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | | |
Collapse
|
42
|
Alldred MJ, Lee SH, Petkova E, Ginsberg SD. Expression profile analysis of vulnerable CA1 pyramidal neurons in young-Middle-Aged Ts65Dn mice. J Comp Neurol 2014; 523:61-74. [PMID: 25131634 DOI: 10.1002/cne.23663] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
Down syndrome (DS) is the most prevalent cause of intellectual disability (ID). Individuals with DS show a variety of cognitive deficits, most notably in hippocampal learning and memory, and display pathological hallmarks of Alzheimer's disease (AD), with neurodegeneration of cholinergic basal forebrain (CBF) neurons. Elucidation of the molecular and cellular underpinnings of neuropathology has been assessed via gene expression analysis in a relevant animal model, termed the Ts65Dn mouse. The Ts65Dn mouse is a segmental trisomy model of DS that mimics DS/AD pathology, notably age-related cognitive dysfunction and degeneration of basal forebrain cholinergic neurons (BFCNs). To determine expression level changes, molecular fingerprinting of cornu ammonis 1 (CA1) pyramidal neurons was performed in adult (4-9 month-old) Ts65Dn mice, at the initiation of BFCN degeneration. To quantitate transcriptomic changes during this early time period, laser capture microdissection (LCM), terminal continuation (TC) RNA amplification, custom-designed microarray analysis, and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting was performed. The results indicate significant alterations within CA1 pyramidal neurons of Ts65Dn mice compared with normal disomic (2N) littermates, notably in the downregulation of neurotrophins and their cognate neurotrophin receptors among other classes of transcripts relevant to neurodegeneration. The results of this single-population gene expression analysis at the time of septohippocampal deficits in a trisomic mouse model shed light on a vulnerable circuit that may cause the AD-like pathology invariably seen in DS that could help to identify mechanisms of degeneration, and provide novel gene targets for therapeutic interventions. J. Comp. Neurol. 523:61-74, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962; Department of Psychiatry, New York University Langone Medical Center, New York, New York, 10016
| | | | | | | |
Collapse
|
43
|
Alldred MJ, Lee SH, Petkova E, Ginsberg SD. Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD). Brain Struct Funct 2014; 220:2983-96. [PMID: 25031177 DOI: 10.1007/s00429-014-0839-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/02/2014] [Indexed: 11/29/2022]
Abstract
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | | | | | | |
Collapse
|
44
|
Trazzi S, Fuchs C, De Franceschi M, Mitrugno VM, Bartesaghi R, Ciani E. APP-dependent alteration of GSK3β activity impairs neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2014; 67:24-36. [DOI: 10.1016/j.nbd.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/02/2014] [Indexed: 12/31/2022] Open
|
45
|
Yang Y, Conners FA, Merrill EC. Visuo-spatial ability in individuals with Down syndrome: is it really a strength? RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:1473-500. [PMID: 24755229 PMCID: PMC4041586 DOI: 10.1016/j.ridd.2014.04.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 05/14/2023]
Abstract
Down syndrome (DS) is associated with extreme difficulty in verbal skills and relatively better visuo-spatial skills. Indeed, visuo-spatial ability is often considered a strength in DS. However, it is not clear whether this strength is only relative to the poor verbal skills, or, more impressively, relative to cognitive ability in general. To answer this question, we conducted an extensive literature review of studies on visuo-spatial abilities in people with Down syndrome from January 1987 to May 2013. Based on a general taxonomy of spatial abilities patterned after Lohman, Pellegrino, Alderton, and Regian (1987) and Carroll (1993) and existing studies of DS, we included five different domains of spatial abilities - visuo-spatial memory, visuo-spatial construction, mental rotation, closure, and wayfinding. We evaluated a total of 49 studies including 127 different comparisons. Most comparisons involved a group with DS vs. a group with typical development matched on mental age and compared on a task measuring one of the five visuo-spatial abilities. Although further research is needed for firm conclusions on some visuo-spatial abilities, there was no evidence that visuo-spatial ability is a strength in DS relative to general cognitive ability. Rather, the review suggests an uneven profile of visuo-spatial abilities in DS in which some abilities are commensurate with general cognitive ability level, and others are below.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Psychology, Box 870348, University of Alabama, Tuscaloosa, AL 35487-0348, United States.
| | - Frances A Conners
- Department of Psychology, Box 870348, University of Alabama, Tuscaloosa, AL 35487-0348, United States
| | - Edward C Merrill
- Department of Psychology, Box 870348, University of Alabama, Tuscaloosa, AL 35487-0348, United States
| |
Collapse
|
46
|
Lee Y, Lee B, Lee CJ. Valproic acid decreases cell proliferation and migration in the cerebellum of zebrafish larvae. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.905491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
47
|
Das I, Park JM, Shin JH, Jeon SK, Lorenzi H, Linden DJ, Worley PF, Reeves RH. Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model. Sci Transl Med 2014; 5:201ra120. [PMID: 24005160 DOI: 10.1126/scitranslmed.3005983] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Down syndrome (DS) is among the most frequent genetic causes of intellectual disability, and ameliorating this deficit is a major goal in support of people with trisomy 21. The Ts65Dn mouse recapitulates some major brain structural and behavioral phenotypes of DS, including reduced size and cellularity of the cerebellum and learning deficits associated with the hippocampus. We show that a single treatment of newborn mice with the Sonic hedgehog pathway agonist SAG 1.1 (SAG) results in normal cerebellar morphology in adults. Further, SAG treatment at birth rescued phenotypes associated with hippocampal deficits that occur in untreated adult Ts65Dn mice. This treatment resulted in behavioral improvements and normalized performance in the Morris water maze task for learning and memory. SAG treatment also produced physiological effects and partially rescued both N-methyl-d-aspartate (NMDA) receptor-dependent synaptic plasticity and NMDA/AMPA receptor ratio, physiological measures associated with memory. These outcomes confirm an important role for the hedgehog pathway in cerebellar development and raise the possibility for its direct influence in hippocampal function. The positive results from this approach suggest a possible direction for therapeutic intervention to improve cognitive function for this population.
Collapse
Affiliation(s)
- Ishita Das
- Department of Physiology and Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Guedj F, Bianchi DW. Noninvasive prenatal testing creates an opportunity for antenatal treatment of Down syndrome. Prenat Diagn 2014; 33:614-8. [PMID: 23595836 DOI: 10.1002/pd.4134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trisomy 21 (T21) is the most common autosomal aneuploidy that is associated with intellectual disability. It is the focus of many prenatal screening programs across the globe. Pregnant women who receive a prenatal diagnosis of T21 in their fetus currently have the option of continuing or terminating their pregnancy, but no fetal treatment is available. In this paper, we review compelling morphogenetic, cellular, and molecular studies that, taken together, suggest that there is an important window of opportunity during fetal life to positively impact brain development to improve postnatal neurocognition and behavior. Although substantial progress has been made in understanding the basic neurobiology of Down syndrome (DS), the majority of pre-clinical trials is currently focused on adults. There are a number of challenges in the identification and development of novel antenatal therapies for DS, including the lack of toxicity and teratogenicity for the pregnant woman and the fetus, evidence that the compounds can cross the placenta and achieve therapeutic levels, and the demonstration of clinical improvement. Preliminary experiments in mouse models suggest that prenatal treatment of DS is an achievable goal.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and Floating Hospital for Children, Boston, MA, USA
| | | |
Collapse
|
49
|
Corrales A, Vidal R, García S, Vidal V, Martínez P, García E, Flórez J, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome. J Pineal Res 2014; 56:51-61. [PMID: 24147912 DOI: 10.1111/jpi.12097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022]
Abstract
The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age-related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive-enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guidi S, Stagni F, Bianchi P, Ciani E, Giacomini A, De Franceschi M, Moldrich R, Kurniawan N, Mardon K, Giuliani A, Calzà L, Bartesaghi R. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. ACTA ACUST UNITED AC 2013; 137:380-401. [PMID: 24334313 DOI: 10.1093/brain/awt340] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.
Collapse
Affiliation(s)
- Sandra Guidi
- 1 Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|