1
|
Choudhary D, Sasibhushana RB, Shankaranarayana Rao BS, Srikumar BN. Mifepristone blocks the anxiolytic- and antidepressant-like effects of allopregnanolone in male rats. Int J Neurosci 2024; 134:839-848. [PMID: 36469636 DOI: 10.1080/00207454.2022.2153047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allopregnanolone (3α, 5α-tetrahydroprogesterone) is an inhibitory neurosteroid synthesized from progesterone via 5α-reductase activity in the brain and has anxiolytic, antidepressant, sedative, anticonvulsant, and analgesic activity. Altered levels of allopregnanolone cause anxiety, depression, premenstrual syndrome, and psychiatric disorders. Although allopregnanolone exerts most of its actions by modulating GABAA receptor, NMDA receptor, BDNF expression, and PXR activity, a recent study showed its effects are blocked by mifepristone on lordosis behavior which indicates the involvement of progestin or glucocorticoid receptors in the effects of allopregnanolone since mifepristone blocks both these receptors. However, whether these receptors are involved in acute anxiolytic or antidepressant-like effects is unknown. METHODS Adult male Wistar rats were used to study whether the prior administration of mifepristone would alter the effects of allopregnanolone in the elevated plus maze (EPM) and forced swim test (FST) was evaluated. RESULTS 10 mg/Kg dose of allopregnanolone increased percent open arm entries in the EPM, whereas 3 mg/Kg dose of allopregnanolone decreased percent immobility in the FST. Mifepristone administration resulted in a U-shaped response in the FST (with 1 mg/Kg, s.c., decreasing the immobility time) without significantly impacting the behavior in the EPM. In combination studies, mifepristone blocked the anxiolytic and antidepressant effects of allopregnanolone. CONCLUSION The current study provides evidence for the first time that progestin or glucocorticoid receptors are involved in the acute anxiolytic and antidepressant effects of allopregnanolone. Understanding the mechanism of action of allopregnanolone will help us design better therapeutic strategies to treat neuropsychiatric diseases such as depression and anxiety.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - R B Sasibhushana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
2
|
Sherman BE, Huang I, Wijaya EG, Turk-Browne NB, Goldfarb EV. Acute Stress Effects on Statistical Learning and Episodic Memory. J Cogn Neurosci 2024; 36:1741-1759. [PMID: 38713878 PMCID: PMC11223726 DOI: 10.1162/jocn_a_02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Stress is widely considered to negatively impact hippocampal function, thus impairing episodic memory. However, the hippocampus is not merely the seat of episodic memory. Rather, it also (via distinct circuitry) supports statistical learning. On the basis of rodent work suggesting that stress may impair the hippocampal pathway involved in episodic memory while sparing or enhancing the pathway involved in statistical learning, we developed a behavioral experiment to investigate the effects of acute stress on both episodic memory and statistical learning in humans. Participants were randomly assigned to one of three conditions: stress (socially evaluated cold pressor) immediately before learning, stress ∼15 min before learning, or no stress. In the learning task, participants viewed a series of trial-unique scenes (allowing for episodic encoding of each image) in which certain scene categories reliably followed one another (allowing for statistical learning of associations between paired categories). Memory was assessed 24 hr later to isolate stress effects on encoding/learning rather than retrieval. We found modest support for our hypothesis that acute stress can amplify statistical learning: Only participants stressed ∼15 min in advance exhibited reliable evidence of learning across multiple measures. Furthermore, stress-induced cortisol levels predicted statistical learning retention 24 hr later. In contrast, episodic memory did not differ by stress condition, although we did find preliminary evidence that acute stress promoted memory for statistically predictable information and attenuated competition between statistical and episodic encoding. Together, these findings provide initial insights into how stress may differentially modulate learning processes within the hippocampus.
Collapse
|
3
|
Irizarry-Méndez N, Criado-Marrero M, Hernandez A, Colón M, Porter JT. Reducing FKBP51 Expression in the Ventral Hippocampus Decreases Auditory Fear Conditioning in Male Rats. Int J Mol Sci 2024; 25:7097. [PMID: 39000204 PMCID: PMC11241630 DOI: 10.3390/ijms25137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.
Collapse
Affiliation(s)
- Nashaly Irizarry-Méndez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | | | - Anixa Hernandez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | - Maria Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| |
Collapse
|
4
|
Kim S, Yang S, Kim J, Chung KW, Jung YS, Chung HY, Lee J. Glucocorticoid Receptor Down-Regulation Affects Neural Stem Cell Proliferation and Hippocampal Neurogenesis. Mol Neurobiol 2024; 61:3198-3211. [PMID: 37979034 DOI: 10.1007/s12035-023-03785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal axis and abnormalities in the glucocorticoid receptor (GR) have been linked to major depressive disorder. Given the critical role of GR in stress response regulation, we investigated the impact of GR changes on neural stem cells (NSCs) proliferation and hippocampal neurogenesis. Stress response was induced using dexamethasone (DEX), a GR agonist, which led to reduced proliferation of neural stem cells and neural progenitor cells, as well as decreased expression of GR. Additionally, a reduction of serum concentration within the culture media resulted in suppressed cell proliferation, accompanied by decreased GR expression. The association between GR expression and cell proliferation was further confirmed through GR siRNA knockdown and overexpression experiments. Furthermore, in vivo studies utilizing young male C57BL/6 mice demonstrated that corticosterone (CORT) (35 μg/ml) administered through drinking water for four weeks induced depression-like behavior, as indicated by increased immobility times in forced swimming and tail suspension tests. CORT exposure led to reduced GR and nestin expression levels, along with diminished numbers of BrdU-positive cells in the hippocampi, indicating impaired hippocampal neurogenesis. Taken together, our findings provide the first evidence that stress-induced downregulation of GR negatively affects neurogenesis by inhibiting NSCs proliferation.
Collapse
Affiliation(s)
- Seoyeong Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene. Transl Psychiatry 2022; 12:109. [PMID: 35296634 PMCID: PMC8927334 DOI: 10.1038/s41398-022-01864-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1C and 1F of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.
Collapse
|
6
|
Exposure to 2.45 GHz Radiation Triggers Changes in HSP-70, Glucocorticoid Receptors and GFAP Biomarkers in Rat Brain. Int J Mol Sci 2021; 22:ijms22105103. [PMID: 34065959 PMCID: PMC8151023 DOI: 10.3390/ijms22105103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023] Open
Abstract
Brain tissue may be especially sensitive to electromagnetic phenomena provoking signs of neural stress in cerebral activity. Fifty-four adult female Sprague-Dawley rats underwent ELISA and immunohistochemistry testing of four relevant anatomical areas of the cerebrum to measure biomarkers indicating induction of heat shock protein 70 (HSP-70), glucocorticoid receptors (GCR) or glial fibrillary acidic protein (GFAP) after single or repeated exposure to 2.45 GHz radiation in the experimental set-up. Neither radiation regime caused tissue heating, so thermal effects can be ruled out. A progressive decrease in GCR and HSP-70 was observed after acute or repeated irradiation in the somatosensory cortex, hypothalamus and hippocampus. In the limbic cortex; however, values for both biomarkers were significantly higher after repeated exposure to irradiation when compared to control animals. GFAP values in brain tissue after irradiation were not significantly different or were even lower than those of nonirradiated animals in all brain regions studied. Our results suggest that repeated exposure to 2.45 GHz elicited GCR/HSP-70 dysregulation in the brain, triggering a state of stress that could decrease tissue anti-inflammatory action without favoring glial proliferation and make the nervous system more vulnerable.
Collapse
|
7
|
Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Transl Psychiatry 2021; 11:106. [PMID: 33542194 PMCID: PMC7862349 DOI: 10.1038/s41398-021-01223-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorders (ASD), anorexia nervosa (AN), Alzheimer's disease (AD), and schizophrenia (SZ), are heterogeneous brain disorders with unknown etiology. Genome wide studies have revealed a wide variety of risk genes for these disorders, indicating a biological link between genetic signaling pathways and brain pathology. A unique risk gene is Contactin 4 (Cntn4), an Ig cell adhesion molecule (IgCAM) gene, which has been associated with several neuropsychiatric disorders including ASD, AN, AD, and SZ. Here, we investigated the Cntn4 gene knockout (KO) mouse model to determine whether memory dysfunction and altered brain plasticity, common neuropsychiatric symptoms, are affected by Cntn4 genetic disruption. For that purpose, we tested if Cntn4 genetic disruption affects CA1 synaptic transmission and the ability to induce LTP in hippocampal slices. Stimulation in CA1 striatum radiatum significantly decreased synaptic potentiation in slices of Cntn4 KO mice. Neuroanatomical analyses showed abnormal dendritic arborization and spines of hippocampal CA1 neurons. Short- and long-term recognition memory, spatial memory, and fear conditioning responses were also assessed. These behavioral studies showed increased contextual fear conditioning in heterozygous and homozygous KO mice, quantified by a gene-dose dependent increase in freezing response. In comparison to wild-type mice, Cntn4-deficient animals froze significantly longer and groomed more, indicative of increased stress responsiveness under these test conditions. Our electrophysiological, neuro-anatomical, and behavioral results in Cntn4 KO mice suggest that Cntn4 has important functions related to fear memory possibly in association with the neuronal morphological and synaptic plasticity changes in hippocampus CA1 neurons.
Collapse
|
8
|
Ibrahim SIA, Strong JA, Qualls KA, Ulrich-Lai YM, Zhang JM. Differential Regulation of the Glucocorticoid Receptor in a Rat Model of Inflammatory Pain. Anesth Analg 2020; 131:298-306. [PMID: 31990732 DOI: 10.1213/ane.0000000000004652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Anti-inflammatory corticosteroids are a common treatment for different conditions involving chronic pain and inflammation. Clinically used steroids target the glucocorticoid receptor (GR) for its anti-inflammatory effects. We previously reported that GR in sensory neurons may play central roles in some pain models and that GR immunoreactivity signal in dorsal root ganglia (DRG) decreased after local inflammation of the DRG (a model of low back pain). In the current study, we aimed to determine if similar changes in GR signal also exist in a skin inflammation model, the complete Freund's adjuvant (CFA) model (a model of peripheral inflammatory pain), in which the terminals of the sensory neurons rather than the somata are inflamed. METHODS A low dose of CFA was injected into the hind paw to establish the peripheral inflammation model in Sprague-Dawley rats of both sexes, as confirmed by measurements of behavior and paw swelling. Immunohistochemical and western blotting techniques were used to determine the expression pattern of the GR in the inflamed hind paw and the DRGs. Plasma corticosterone levels were measured with radioimmunoassay. RESULTS The immunohistochemical staining revealed that GR is widely expressed in the normal DRG and skin tissues. Paw injection with CFA caused upregulation of the GR in the skin tissue on postinjection day 1, mostly detected in the dermis area. However, paw inflammation significantly reduced the GR signal in the L5 DRG 1 day after the injection. The GR downregulation was still evident 14 days after CFA inflammation. On day 1, western blotting confirmed this downregulation and showed that it could also be observed in the contralateral L5 DRG, as well as in the L2 DRG (a level which does not innervate the paw). Plasma corticosterone levels were elevated in both sexes on day 14 after CFA compared to day 1, suggesting autologous downregulation of the GR by corticosterone may have contributed to the downregulation observed on day 14 but not day 1. CONCLUSIONS There are distinctive patterns of GR activation under different pain conditions, depending on the anatomical location. The observed downregulation of the GR in sensory neurons may have a significant impact on the use of steroids as treatment in these conditions and on the regulatory effects of endogenous glucocorticoids.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- From the Department of Anesthesiology, Pain Research Center.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology
| | | | - Katherine A Qualls
- From the Department of Anesthesiology, Pain Research Center.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology
| | - Yvonne M Ulrich-Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jun-Ming Zhang
- From the Department of Anesthesiology, Pain Research Center
| |
Collapse
|
9
|
Ponce-Lina R, Serafín N, Carranza M, Arámburo C, Prado-Alcalá RA, Luna M, Quirarte GL. Differential Phosphorylation of the Glucocorticoid Receptor in Hippocampal Subregions Induced by Contextual Fear Conditioning Training. Front Behav Neurosci 2020; 14:12. [PMID: 32116592 PMCID: PMC7031480 DOI: 10.3389/fnbeh.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.
Collapse
Affiliation(s)
- Renata Ponce-Lina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
10
|
Koning ASCAM, Buurstede JC, van Weert LTCM, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. J Endocr Soc 2019; 3:1917-1930. [PMID: 31598572 PMCID: PMC6777400 DOI: 10.1210/js.2019-00158] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Adrenal glucocorticoid hormones are crucial for maintenance of homeostasis and adaptation to stress. They act via the mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs)-members of the family of nuclear receptors. MRs and GRs can mediate distinct, sometimes opposite, effects of glucocorticoids. Both receptor types can mediate nongenomic steroid effects, but they are best understood as ligand-activated transcription factors. MR and GR protein structure is similar; the receptors can form heterodimers on the DNA at glucocorticoid response elements (GREs), and they share a number of target genes. The transcriptional basis for opposite effects on cellular physiology remains largely unknown, in particular with respect to MR-selective gene transcription. In this review, we discuss proven and potential mechanisms of transcriptional specificity for MRs and GRs. These include unique GR binding to "negative GREs," direct binding to other transcription factors, and binding to specific DNA sequences in conjunction with other transcription factors, as is the case for MRs and NeuroD proteins in the brain. MR- and GR-specific effects may also depend on specific interactions with transcriptional coregulators, downstream mediators of transcriptional receptor activity. Current data suggest that the relative importance of these mechanisms depends on the tissue and physiological context. Insight into these processes may not only allow a better understanding of homeostatic regulation but also the development of drugs that target specific aspects of disease.
Collapse
Affiliation(s)
- Anne-Sophie C A M Koning
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Jacobus C Buurstede
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Lisa T C M van Weert
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Onno C Meijer
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
11
|
Rosinger ZJ, Jacobskind JS, Bulanchuk N, Malone M, Fico D, Justice NJ, Zuloaga DG. Characterization and gonadal hormone regulation of a sexually dimorphic corticotropin-releasing factor receptor 1 cell group. J Comp Neurol 2018; 527:1056-1069. [PMID: 30499109 DOI: 10.1002/cne.24588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.
Collapse
Affiliation(s)
| | | | - Nicole Bulanchuk
- Department of Psychology, University at Albany, Albany, New York
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, New York
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, New York
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, Texas
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, New York
| |
Collapse
|
12
|
Ibrahim SIA, Xie W, Strong JA, Tonello R, Berta T, Zhang JM. Mineralocorticoid Antagonist Improves Glucocorticoid Receptor Signaling and Dexamethasone Analgesia in an Animal Model of Low Back Pain. Front Cell Neurosci 2018; 12:453. [PMID: 30524245 PMCID: PMC6262081 DOI: 10.3389/fncel.2018.00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Low back pain, a leading cause of disability, is commonly treated by epidural steroid injections that target the anti-inflammatory glucocorticoid receptor (GR). However, their efficacy has been controversial. All currently used epidural steroids also activate the pro-inflammatory mineralocorticoid receptor (MR) with significant potency. Local inflammation of the dorsal root ganglia (DRG), a rat model of low back pain, was used. This model causes static and dynamic mechanical allodynia, cold allodynia and guarding behavior (a measure of spontaneous pain), and activates the MR, with pro-nociceptive effects. In this study, effects of local Dexamethasone (DEX; a glucocorticoid used in epidural injections), and eplerenone (EPL; a second generation, more selective MR antagonist) applied to the DRG at the time of inflammation were examined. Mechanical and spontaneous pain behaviors were more effectively reduced by the combination of DEX and EPL than by either alone. The combination of steroids was particularly more effective than DEX alone or the model alone (3-fold improvement for mechanical allodynia) at later times (day 14). Immunohistochemical analysis of the GR in the DRG showed that the receptor was expressed in neurons of all size classes, and in non-neuronal cells including satellite glia. The GR immunoreactivity was downregulated by DRG inflammation (48%) starting on day 1, consistent with the reduction of GR (57%) observed by Western blot, when compared to control animals. On day 14, the combination of DEX and EPL resulted in rescue of GR immunoreactivity that was not seen with DEX alone, and was more effective in reducing a marker for satellite glia activation/neuroinflammation. The results suggest that EPL may enhance the effectiveness of clinically used epidural steroid injections, in part by enhancing the availability of the GR. Thus, the glucocorticoid-mineralocorticoid interactions may limit the effectiveness of epidural steroids through the regulation of the GR in the DRG.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Jacobskind JS, Rosinger ZJ, Gonzalez T, Zuloaga KL, Zuloaga DG. Chronic Methamphetamine Exposure Attenuates Neural Activation in Hypothalamic-Pituitary-Adrenal Axis-Associated Brain Regions in a Sex-specific Manner. Neuroscience 2018; 380:132-145. [PMID: 29679646 DOI: 10.1016/j.neuroscience.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
Sex differences in methamphetamine (MA) abuse and consequences of MA have been reported with females showing an increased addiction phenotype and withdrawal symptoms. One mechanism through which these effects might occur is via sex-specific alterations in the hypothalamic-pituitary-adrenal (HPA) axis and its associated brain regions. In this study, mice were administered MA (5 mg/kg) or saline for 10 consecutive days. During early withdrawal, anxiety-like behaviors were assessed in the open field, light/dark box, and elevated plus maze. At ten days of withdrawal, mice were injected with a final dose of MA (5 mg/kg) or saline. Chronic MA did not alter anxiety-like behaviors or corticosterone responses to a final dose of MA, although females showed elevated corticosterone responses compared to males. Chronic MA attenuated final MA-induced c-Fos in both sexes in the paraventricular hypothalamus (PVH), bed nucleus of the stria terminalis (BNST), cingulate cortex, central and basolateral amygdala. In CA1 and CA3 hippocampal areas, c-Fos attenuation by chronic MA occurred only in females. Within the PVH, final MA injection increased c-Fos to a greater extent in females compared to males regardless of prior MA exposure. Dual-labeling of c-Fos with glucocorticoid receptor revealed a specific attenuation of neural activation within this cell type in the PVH, central and basolateral amygdala, and BNST. Together these findings demonstrate that chronic MA can suppress subsequent activation of HPA axis-associated brain regions and cell phenotypes. Further, in select regions this reduction is sex-specific. These changes may contribute to reported sex differences in MA abuse patterns.
Collapse
Affiliation(s)
- Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Tiffany Gonzalez
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Kristen L Zuloaga
- Albany Medical College, Department of Neuroscience & Experimental Therapeutics, Albany, NY 12208, United States
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States.
| |
Collapse
|
14
|
Deng Y, Xiao Y, Yuan F, Liu Y, Jiang X, Deng J, Fejes-Toth G, Naray-Fejes-Toth A, Chen S, Chen Y, Ying H, Zhai Q, Shu Y, Guo F. SGK1/FOXO3 Signaling in Hypothalamic POMC Neurons Mediates Glucocorticoid-Increased Adiposity. Diabetes 2018; 67:569-580. [PMID: 29321171 DOI: 10.2337/db17-1069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022]
Abstract
Although the central nervous system has been implicated in glucocorticoid-induced gain of fat mass, the underlying mechanisms are poorly understood. The aim of this study was to investigate the possible involvement of hypothalamic serum- and glucocorticoid-regulated kinase 1 (SGK1) in glucocorticoid-increased adiposity. It is well known that SGK1 expression is induced by acute glucocorticoid treatment, but it is interesting that we found its expression to be decreased in the arcuate nucleus of the hypothalamus, including proopiomelanocortin (POMC) neurons, following chronic dexamethasone (Dex) treatment. To study the role of SGK1 in POMC neurons, we produced mice that developed or experienced adult-onset SGK1 deletion in POMC neurons (PSKO). As observed in Dex-treated mice, PSKO mice exhibited increased adiposity and decreased energy expenditure. Mice overexpressing constitutively active SGK1 in POMC neurons consistently had the opposite phenotype and did not experience Dex-increased adiposity. Finally, Dex decreased hypothalamic α-melanocyte-stimulating hormone (α-MSH) content and its precursor Pomc expression via SGK1/FOXO3 signaling, and intracerebroventricular injection of α-MSH or adenovirus-mediated FOXO3 knockdown in the arcuate nucleus largely reversed the metabolic alterations in PSKO mice. These results demonstrate that POMC SGK1/FOXO3 signaling mediates glucocorticoid-increased adiposity, providing new insights into the mechanistic link between glucocorticoids and fat accumulation and important hints for possible treatment targets for obesity.
Collapse
Affiliation(s)
- Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaping Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Xiaoxue Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Geza Fejes-Toth
- Department of Physiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | | | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Jacobskind JS, Rosinger ZJ, Zuloaga DG. Hypothalamic-pituitary-adrenal axis responsiveness to methamphetamine is modulated by gonadectomy in males. Brain Res 2017; 1677:74-85. [PMID: 28941573 DOI: 10.1016/j.brainres.2017.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 12/14/2022]
Abstract
Sex differences in patterns of methamphetamine (MA) abuse have been reported with females (humans and rodents) showing an elevated addiction phenotype. Previous findings indicate MA-induced hypothalamic-pituitary-adrenal (HPA) axis activation is also sexually dimorphic with females exhibiting an elevated glucocorticoid release and differential neural activation patterns within HPA axis-associated brain regions. These effects may contribute to sex differences in abuse. To determine the role of gonadal hormones in mediating sex differences in MA-induced glucocorticoids, male and female C57BL/6J mice were gonadectomized or sham-operated, and following recovery, injected with MA (5mg/kg) and sacrificed 60min or 120min later. Blood was collected for corticosterone radioimmunoassay, and brains were used to assess c-Fos, and c-Fos co-localization with glucocorticoid receptor (GR). At 120min after MA injection, corticosterone levels were elevated in females compared to males and gonadectomy in males increased corticosterone to female levels. C-Fos was greater in females than males in the medial preoptic area, bed nucleus of the stria terminalis, basolateral amygdala, and central amygdala. Female gonadectomy had little effect on either corticosterone or c-Fos, while male gonadectomy elevated c-Fos in the central amygdala. Relative to sham males, gonadectomized males also showed decreased c-Fos/GR cell number in the CA3 hippocampal area compared to sham males, indicating a central site for attenuated negative feedback. Together, these findings indicate that androgens regulate MA-induced activation of the HPA axis, potentially by enhancing negative feedback. These sex and gonadal hormone effects on the HPA axis may contribute to sex differences in MA abuse patterns.
Collapse
Affiliation(s)
- Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States.
| |
Collapse
|
16
|
Chen H, Lombès M, Le Menuet D. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol Brain 2017; 10:12. [PMID: 28403881 PMCID: PMC5389111 DOI: 10.1186/s13041-017-0295-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer’s, Huntington’s and Parkinson’s diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.
Collapse
Affiliation(s)
- Hui Chen
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Damien Le Menuet
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
17
|
Nikolopoulou E, Mytilinaios D, Calogero AE, Kamilaris TC, Troupis T, Chrousos GP, Johnson EO. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism. Endocrine 2015; 49:828-41. [PMID: 25722011 DOI: 10.1007/s12020-015-0528-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/10/2015] [Indexed: 01/25/2023]
Abstract
Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.
Collapse
Affiliation(s)
- Elena Nikolopoulou
- Department of Anatomy, School of Medicine, University of Athens, 75 Mikras Asias Str., Goudi, 11572, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
18
|
Bitencourt RM, Alpár A, Cinquina V, Ferreira SG, Pinheiro BS, Lemos C, Ledent C, Takahashi RN, Sialana FJ, Lubec G, Cunha RA, Harkany T, Köfalvi A. Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents. Neurochem Int 2015. [PMID: 26196379 DOI: 10.1016/j.neuint.2015.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Corticosteroid and endocannabinoid actions converge on prefrontocortical circuits associated with neuropsychiatric illnesses. Corticosteroids can also modulate forebrain synapses by using endocannabinoid effector systems. Here, we determined whether corticosteroids can modulate transmitter release directly in the frontal cortex and, in doing so, whether they affect presynaptic CB1 cannabinoid receptor- (CB1R) mediated neuromodulation. By Western blotting of purified subcellular fractions of the rat frontal cortex, we found glucocorticoid receptors (GcRs) and CB1Rs enriched in isolated frontocortical nerve terminals (synaptosomes). CB1Rs were predominantly presynaptically located while GcRs showed preference for the post-synaptic fraction. Additional confocal microscopy analysis of cortical and hippocampal regions revealed vesicular GABA transporter-positive and vesicular glutamate transporter 1-positive nerve terminals endowed with CB1R immunoreactivity, apposing GcR-positive post-synaptic compartments. In functional transmitter release assay, corticosteroids, corticosterone (0.1-10 microM) and dexamethasone (0.1-10 microM) did not significantly affect the evoked release of [(3)H]GABA and [(14)C]glutamate in superfused synaptosomes, isolated from both rats and mice. In contrast, the synthetic cannabinoid, WIN55212-2 (1 microM) diminished the release of both [(3)H]GABA and [(14)C]glutamate, evoked with various depolarization paradigms. This effect of WIN55212-2 was abolished by the CB1R neutral antagonist, O-2050 (1 microM), and was absent in the CB1R KO mice. CB2R-selective agonists did not affect the release of either neurotransmitter. The lack of robust presynaptic neuromodulation by corticosteroids was unchanged upon either CB1R activation or genetic inactivation. Altogether, corticosteroids are unlikely to exert direct non-genomic presynaptic neuromodulation in the frontal cortex, but they may do so indirectly, via the stimulation of trans-synaptic endocannabinoid signaling.
Collapse
Affiliation(s)
- Rafael M Bitencourt
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Psychopharmacology, Dept. Pharmacology, Universidade Federal de Santa Catarina, Florianopolis 88049-900, Brazil
| | - Alán Alpár
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria; University of Insubria, Via Ravasi, 2, 21100 Varese, Italy
| | - Samira G Ferreira
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; FMUC, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bárbara S Pinheiro
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Reinaldo N Takahashi
- Laboratory of Psychopharmacology, Dept. Pharmacology, Universidade Federal de Santa Catarina, Florianopolis 88049-900, Brazil
| | - Fernando J Sialana
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria
| | - Rodrigo A Cunha
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; FMUC, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Attila Köfalvi
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
19
|
Li H, Scholl JL, Tu W, Hassell JE, Watt MJ, Forster GL, Renner KJ. Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. Eur J Neurosci 2014; 40:3684-92. [PMID: 25234335 DOI: 10.1111/ejn.12735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 12/26/2022]
Abstract
Withdrawal from amphetamine increases anxiety and reduces the ability to cope with stress, which are factors that are believed to contribute to drug relapse. Stress-induced serotonergic transmission in the central nucleus of the amygdala is associated with anxiety states and fear. Conversely, stress-induced increases in ventral hippocampal serotonin (5-HT) levels have been linked to coping mechanisms. The goal of this study was to investigate the neurobiological changes induced by amphetamine that contribute to stress sensitivity during withdrawal. We tested the hypothesis that limbic serotonergic responses to restraint stress would be altered in male Sprague-Dawley rats chronically pretreated with amphetamine (2.5 mg/kg, intraperitoneal) and then subjected to 2 weeks of withdrawal. Amphetamine withdrawal resulted in increased stress-induced behavioral arousal relative to control treatment, suggesting that drug withdrawal induced greater sensitivity to the stressor. When microdialysis was used to determine the effects of restraint on extracellular 5-HT, stress-induced increases in 5-HT levels were abolished in the ventral hippocampus and augmented in the central amygdala during amphetamine withdrawal. Reverse dialysis of the glucocorticoid receptor antagonist mifepristone into the ventral hippocampus blocked the stress-induced increase in 5-HT levels in saline-pretreated rats, suggesting that glucocorticoid receptors mediate stress-induced increases in 5-HT levels in the ventral hippocampus. However, mifepristone had no effect on stress-induced increases in 5-HT levels in the central amygdala, indicating that stress increases 5-HT levels in this region independently of glucocorticoid receptors. During amphetamine withdrawal, the absence of stress-induced increases in ventral hippocampal 5-HT levels combined with enhanced stress-induced serotonergic responses in the central amygdala may contribute to drug relapse by decreasing stress-coping ability and heightening stress responsiveness.
Collapse
Affiliation(s)
- Hao Li
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St, Vermillion, SD, 57069, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Tsiarli MA, Monaghan AP, DeFranco DB. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo. Brain Res 2013; 1523:10-27. [PMID: 23751362 PMCID: PMC3749785 DOI: 10.1016/j.brainres.2013.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/16/2013] [Accepted: 06/01/2013] [Indexed: 01/12/2023]
Abstract
Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation.
Collapse
Affiliation(s)
- Maria A. Tsiarli
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - A. Paula Monaghan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donald B. DeFranco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
21
|
Polman JAE, de Kloet ER, Datson NA. Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology 2013; 154:1832-44. [PMID: 23525215 DOI: 10.1210/en.2012-2187] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, genomic binding sites of glucocorticoid receptors (GR) were identified in vivo in the rat hippocampus applying chromatin immunoprecipitation followed by next-generation sequencing. We identified 2470 significant GR-binding sites (GBS) and were able to confirm GR binding to a random selection of these GBS covering a wide range of P values. Analysis of the genomic distribution of the significant GBS revealed a high prevalence of intragenic GBS. Gene ontology clusters involved in neuronal plasticity and other essential neuronal processes were overrepresented among the genes harboring a GBS or located in the vicinity of a GBS. Male adrenalectomized rats were challenged with increasing doses of the GR agonist corticosterone (CORT) ranging from 3 to 3000 μg/kg, resulting in clear differences in the GR-binding profile to individual GBS. Two groups of GBS could be distinguished: a low-CORT group that displayed GR binding across the full range of CORT concentrations, and a second high-CORT group that displayed significant GR binding only after administering the highest concentration of CORT. All validated GBS, in both the low-CORT and high-CORT groups, displayed mineralocorticoid receptor binding, which remained relatively constant from 30 μg/kg CORT upward. Motif analysis revealed that almost all GBS contained a glucocorticoid response element resembling the consensus motif in literature. In addition, motifs corresponding with new potential GR-interacting proteins were identified, such as zinc finger and BTB domain containing 3 (Zbtb3) and CUP (CG11181 gene product from transcript CG11181-RB), which may be involved in GR-dependent transactivation and transrepression, respectively. In conclusion, our results highlight the existence of 2 populations of GBS in the rat hippocampal genome.
Collapse
Affiliation(s)
- J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
22
|
Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB. Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem 2013; 125:518-31. [PMID: 23398290 DOI: 10.1111/jnc.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
Vitamin A metabolite retinoic acid (RA) plays a major role in the aging adult brain plasticity. Conversely, chronic excess of glucocorticoids (GC) elicits some deleterious effects in the hippocampus. We questioned here the involvement of RA and GC in the expression of target proteins in hippocampal neurons. We investigated proteins involved either in the signaling pathways [RA receptor β (RARβ) and glucocorticoid receptor (GR)] or in neuron differentiation and plasticity [tissue transglutaminase 2 (tTG) and brain-derived neurotrophic factor (BDNF)] in a hippocampal cell line, HT22. We applied RA and/or dexamethasone (Dex) as activators of the pathways and investigated mRNA and protein expression of their receptors and of tTG and BDNF as well as tTG activity and BDNF secretion. Our results confirm the involvement of RA- and GC-dependent pathways and their interaction in our neuronal cell model. First, both pathways regulate the transcription and expression of own and reciprocal receptors: RA and Dex increased RARβ and decreased GR expressions. Second, Dex reduces the expression of tTG when associated with RA despite stimulating its expression when used alone. Importantly, when they are combined, RA counteracts the deleterious effect of glucocorticoids on BDNF regulation and thus may improve neuronal plasticity under stress conditions. In conclusion, GC and RA both interact through regulations of the two receptors, RARβ and GR. Furthermore, they both act, synergistically or oppositely, on other target proteins critical for neuronal plasticity, tTG and BDNF.
Collapse
Affiliation(s)
- Julie Brossaud
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
23
|
Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab DF, Lucassen PJ. Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging 2013; 34:1662-73. [PMID: 23290588 DOI: 10.1016/j.neurobiolaging.2012.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/18/2012] [Accepted: 11/25/2012] [Indexed: 01/22/2023]
Abstract
The glucocorticoid receptor (GR) exerts numerous functions in the body and brain. In the brain, it has been implicated, amongst others, in feedback regulation of the hypothalamic-pituitary-adrenal axis, with potential deficits during aging and in depression. GRs are abundantly expressed in the hippocampus of rodent, except for the Ammon's horn (CA) 3 subregion. In rhesus monkey however, GR protein was largely absent from all hippocampal subregions, which prompted us to investigate its distribution in human hippocampus. After validation of antibody specificity, we investigated GRα protein distribution in the postmortem hippocampus of 26 human control subjects (1-98 years of age) and quantified changes with age and sex. In contrast to monkey, abundant GR-immunoreactivity was present in nuclei of almost all neurons of the hippocampal CA subfields and dentate gyrus (DG), although neurons of the CA3 subregion displayed lower levels of immunoreactivity. Colocalization with glial fibrillary acidic protein confirmed that GR was additionally expressed in approximately 50% of the astrocytes in the CA regions, with lower levels of colocalization (approximately 20%) in the DG. With increased age, GR expression remained stable in the CA regions in both sexes, whereas a significant negative correlation was found with age only in the DG of females. Thus, in contrast to the very low levels previously reported in monkey, GR protein is prominently expressed in human hippocampus, indicating that this region can form an important target for corticosteroid effects in human.
Collapse
Affiliation(s)
- Qian Wang
- Swammerdam Institute for Life Sciences (SILS)-Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jafari M, Seese RR, Babayan AH, Gall CM, Lauterborn JC. Glucocorticoid receptors are localized to dendritic spines and influence local actin signaling. Mol Neurobiol 2012; 46:304-15. [PMID: 22717988 PMCID: PMC3973133 DOI: 10.1007/s12035-012-8288-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
Abstract
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13 % of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GRα mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15-30 min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.
Collapse
Affiliation(s)
- Matiar Jafari
- Department of Anatomy and Neurobiology, 3226 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-1275, USA
| | | | | | | | | |
Collapse
|
25
|
Djikić D, Budeč M, Vranješ-Djurić S, Todorović V, Drndarević N, Vignjević S, Mitrović O. Ethanol and nitric oxide modulate expression of glucocorticoid receptor in the rat adrenal cortex. Pharmacol Rep 2012; 64:896-901. [DOI: 10.1016/s1734-1140(12)70884-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/23/2012] [Indexed: 01/18/2023]
|
26
|
Speksnijder N, Christensen KV, Didriksen M, De Kloet ER, Datson NA. Glucocorticoid receptor and myocyte enhancer factor 2 cooperate to regulate the expression of c-JUN in a neuronal context. J Mol Neurosci 2012; 48:209-18. [PMID: 22622902 PMCID: PMC3413818 DOI: 10.1007/s12031-012-9809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 12/31/2022]
Abstract
The glucocorticoid receptor (GR) and myocyte enhancer factor 2 (MEF2) are transcription factors involved in neuronal plasticity. c-JUN, a target gene of GR and MEF2, plays a role in regulating both synaptic strength and synapse number. The aim of this study was to investigate the nature of this dual regulation of c-JUN by GR and MEF2 in a neuronal context. First, we showed that GR mediates the dexamethasone-induced suppression of c-JUN mRNA expression. Next, we observed that GR activation resulted in an increase in phosphorylation of MEF2, a post-translational modification known to change MEF2 from a transcriptional enhancer to a repressor. In addition, we observed an enhanced binding of MEF2 to genomic sites directly upstream of the c-JUN gene upon GR activation. Finally, in primary hippocampal neuronal cultures, knockdown of MEF2 not only reduced c-JUN expression levels but abolished GR regulation of c-JUN expression. This suggests that MEF2 is necessary for GR regulation of c-JUN. In conclusion, for the first time, we show that activated GR requires MEF2 to regulate c-JUN. At the same time, GR influences MEF2 activity and DNA binding. These results give novel insight into the molecular interplay of GR and MEF2 in the control of genes important for neuronal plasticity.
Collapse
Affiliation(s)
- Niels Speksnijder
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University Medical Center, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Characterization of the "sporadically lurking HAP1-immunoreactive (SLH) cells" in the hippocampus, with special reference to the expression of steroid receptors, GABA, and progenitor cell markers. Neuroscience 2012; 210:67-81. [PMID: 22421101 DOI: 10.1016/j.neuroscience.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/29/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor that is widely expressed as a core molecule of the stigmoid body (a neurocytoplasmic inclusion) in the limbic and hypothalamic regions and has putative protective functions against some neurodegenerative diseases (HAP1 protection hypothesis). Although HAP1 has been reported to be intimately associated with several steroid receptors, HAP1-immunoreactive (HAP1-ir) cells remain to be identified in the hippocampus, which is one of the major steroidal targets. In this study, we determined the distribution of hippocampal HAP1-ir cells in light and fluorescence microscopy and characterized their morphological relationships with steroid receptors, markers of adult neurogenesis, and the GABAergic system in adult male and female Wistar rats. HAP1-ir cells, which were sporadically distributed particularly in the subgranular zone (SGZ) of the dentate gyrus and in the interface between the stratum lacunosum-moleculare and stratum radiatum of Ammon's horn, were identified as the "sporadically lurking HAP1-ir (SLH)" cells. The SLH cells showed no clear association with neural progenitor/proliferating or migrating cell markers of adult neurogenesis, such as Ki-67, proliferating cell nuclear antigen, doublecortin, and glial fibrillary acidic protein in the SGZ, whereas all the SLH cells expressed a neuronal specific nuclear protein (NeuN). More than 90% of the SLH cells expressed nuclear estrogen receptor (ER) α but neither ERβ nor the androgen receptor, whereas glucocorticoid receptor was differently stained in the SLH cells depending on the antibodies. More than 60% of them exhibited GABA immunoreactivity in the SGZ, suggestive of basket cells, but they were distinct from the ones expressing cholecystokinin or parvalbumin. We conclude that SLH cells, which should be stable against apoptosis due to putative HAP1 protectivity, might be involved in estrogen-dependent maturation, remodeling and activation of hippocampal memory and learning functions via ERα and partly through GABAergic regulation.
Collapse
|
28
|
Shahbazi M, Schmidt M, Carruth LL. Distribution and subcellular localization of glucocorticoid receptor-immunoreactive neurons in the developing and adult male zebra finch brain. Gen Comp Endocrinol 2011; 174:354-61. [PMID: 21986090 DOI: 10.1016/j.ygcen.2011.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 01/14/2023]
Abstract
Stress has long lasting effects on physiology, development, behavior, reproductive success and the survival of an individual. These effects are mediated by glucocorticoids, such as corticosterone, via glucocorticoid receptors (GR), however the exact mechanisms underlying these effects are unknown. GR have been widely studied in mammals but little is known about GR in other vertebrate groups, especially songbirds. We investigated the distribution, quantity, and subcellular-localization of GR-immunoreactive (GRir) neurons in the brains of male zebra finches on P10 (post-hatch day 10, song nuclei formed), and in adulthood (post-hatch day 90 or older) using immunohistochemistry. GRir neurons were widely distributed in the brains of male zebra finches including two song nuclei HVC (acronym is a proper name) and RA (nucleus robustus arcopallii) and brain regions including HP (hippocampal formation), BSTl (lateral part of the bed nucleus of the stria terminalis), POM (nucleus preopticus medialis), PVN (nucleus paraventricularis magnocellularis), TeO (optic tectum), S (nucleus of the solitary tract), LoC (Locus coeruleus). Distribution did not vary at the two age points examined, however there were significant differences in staining intensity. Subcellular GR-immunoreactivity patterns were classified as cytoplasmic, nuclear, or both (cytoplasmic and nuclear) and there were significant differences in the overall number of GRir neurons and neurons with both nuclear and cytoplasmic staining in P10 and adult brains. However, there were no significant differences in the percentage of subcellular GR immunoreactivity patterns between P10 and adults. Our study of GRir neuronal distribution in the zebra finch brain may contribute towards understanding of the complex and adverse effects of stress on brain during two different stages of life history.
Collapse
Affiliation(s)
- Mahin Shahbazi
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030, USA
| | | | | |
Collapse
|
29
|
Montero-Pedrazuela A, Fernández-Lamo I, Alieva M, Pereda-Pérez I, Venero C, Guadaño-Ferraz A. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala. PLoS One 2011; 6:e26582. [PMID: 22039511 PMCID: PMC3200331 DOI: 10.1371/journal.pone.0026582] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/29/2011] [Indexed: 12/20/2022] Open
Abstract
Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.
Collapse
Affiliation(s)
- Ana Montero-Pedrazuela
- Department of Nervous System and Endocrine Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván Fernández-Lamo
- Department of Nervous System and Endocrine Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Alieva
- Department of Nervous System and Endocrine Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Ana Guadaño-Ferraz
- Department of Nervous System and Endocrine Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Occlusal disharmony increases amyloid-β in the rat hippocampus. Neuromolecular Med 2011; 13:197-203. [PMID: 21751079 DOI: 10.1007/s12017-011-8151-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/25/2011] [Indexed: 12/20/2022]
Abstract
Amyloid-β plays a causative role in Alzheimer's disease. Occlusal disharmony causes chronic psychological stress, and psychological stress increases amyloid-β accumulation. The purpose of the present study was to investigate whether occlusal disharmony-induced psychological stress affects the accumulation of amyloid-β and its related gene expressions in the rat hippocampus. Eight-week-old male Wistar rats (n = 18) were divided into three groups of six rats each: (1) a control group that received no treatment for 8 weeks; (2) an occlusal disharmony group that underwent cutoff maxillary molar cusps for 8 weeks; and (3) a recovered group that underwent cutoff maxillary molar cusps for 4 weeks followed by recovery for 4 weeks. Occlusal disharmony increased plasma corticosterone levels in a time-dependent manner. Levels of amyloid-β 40 and 42, glucocorticoid receptor (Gr) protein, and cleaved caspase 3 (Casp3) as well as gene expressions of amyloid precursor protein, beta-secretase, Casp3, and Gr in the hippocampus in the occlusal disharmony group were significantly higher than those in the control group (P < 0.016). These findings were significantly improved by recovery of occlusion (P < 0.016). These results indicate that psychological stress induced by occlusal disharmony reversibly induces amyloid-β 40 and 42 in the rat hippocampus through the glucocorticoid signal.
Collapse
|
31
|
Shin SY, Han TH, Lee SY, Han SK, Park JB, Erdelyi F, Szabo G, Ryu PD. Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:163-9. [PMID: 21860595 DOI: 10.4196/kjpp.2011.15.3.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p< 0.01 by χ(2)-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.
Collapse
Affiliation(s)
- Seung Yub Shin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Verhoog NJD, Du Toit A, Avenant C, Hapgood JP. Glucocorticoid-independent repression of tumor necrosis factor (TNF) alpha-stimulated interleukin (IL)-6 expression by the glucocorticoid receptor: a potential mechanism for protection against an excessive inflammatory response. J Biol Chem 2011; 286:19297-310. [PMID: 21474440 PMCID: PMC3103308 DOI: 10.1074/jbc.m110.193672] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/30/2011] [Indexed: 01/04/2023] Open
Abstract
TNFα signaling and cytokine levels play a crucial role in cervical immunity and the host response to infections. We investigated the role of liganded and unliganded glucocorticoid receptor (GR) in IL-6 and IL-8 gene regulation in response to TNFα in the End1/E6E7 immortalized human endocervical epithelial cell line. In the absence of glucocorticoids, both decreasing GR protein levels by an siRNA strategy and results with the GR antagonist RU486 suggest a role for the unliganded GR in reduction of TNFα-induced IL-6 and IL-8 mRNA levels in End1/E6E7 cells. Moreover, GR-dependent repression of endogenous IL-6 mRNA as well as a minimal IL-6 promoter-reporter gene is also demonstrated in COS-1 cells in the absence of GR ligand, suggesting a transcriptional mechanism that is not cell-specific. TNFα induced recruitment of both the unliganded GR and GR-interacting protein type 1 (GRIP-1) to the IL-6 promoter. This, together with GRIP-1 overexpression studies, suggests a function for GRIP-1 as a GR co-repressor in this context. TNFα was shown to induce phosphorylation of the unliganded human GR at Ser-226 but not Ser-211, unlike dexamethasone, which induced hyperphosphorylation at both serine residues. Ser-226 is shown to be required for the ligand-independent GR-mediated repression of IL-6 in response to TNFα. Taken together, these results support a model whereby the unliganded GR attenuates TNFα-stimulated IL-6 transcription by a mechanism involving selective phosphorylation and recruitment of the unliganded GR and GRIP-1 to the IL-6 promoter. These findings suggest the presence of a novel autoregulatory mechanism that may prevent overproduction of IL-6 in the endocervix, possibly protecting against negative effects of excessive inflammation.
Collapse
Affiliation(s)
- Nicolette J. D. Verhoog
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Andrea Du Toit
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Chanel Avenant
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Janet P. Hapgood
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| |
Collapse
|
33
|
Kimura M, Moteki H, Ogihara M. Inhibitory Effects of Dexamethasone on Epidermal Growth Factor-Induced DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes. Biol Pharm Bull 2011; 34:682-7. [DOI: 10.1248/bpb.34.682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mitsutoshi Kimura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Masahiko Ogihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|