1
|
Zhu YY, Zhang Q, Jia YC, Hou MJ, Zhu BT. Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Commun Signal 2024; 22:431. [PMID: 39243059 PMCID: PMC11378433 DOI: 10.1186/s12964-024-01798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024] Open
Abstract
Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.
Collapse
Affiliation(s)
- Yan-Yin Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Qi Zhang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Chen Jia
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Singh R, Kaur N, Choubey V, Dhingra N, Kaur T. Endoplasmic reticulum stress and its role in various neurodegenerative diseases. Brain Res 2024; 1826:148742. [PMID: 38159591 DOI: 10.1016/j.brainres.2023.148742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The Endoplasmic reticulum (ER), a critical cellular organelle, maintains cellular homeostasis by regulating calcium levels and orchestrating essential functions such as protein synthesis, folding, and lipid production. A pivotal aspect of ER function is its role in protein quality control. When misfolded proteins accumulate within the ER due to factors like protein folding chaperone dysfunction, toxicity, oxidative stress, or inflammation, it triggers the Unfolded protein response (UPR). The UPR involves the activation of chaperones like calnexin, calreticulin, glucose-regulating protein 78 (GRP78), and Glucose-regulating protein 94 (GRP94), along with oxidoreductases like protein disulphide isomerases (PDIs). Cells employ the Endoplasmic reticulum-associated degradation (ERAD) mechanism to counteract protein misfolding. ERAD disruption causes the detachment of GRP78 from transmembrane proteins, initiating a cascade involving Inositol-requiring kinase/endoribonuclease 1 (IRE1), Activating transcription factor 6 (ATF6), and Protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathways. The accumulation and deposition of misfolded proteins within the cell are hallmarks of numerous neurodegenerative diseases. These aberrant proteins disrupt normal neuronal signalling and contribute to impaired cellular homeostasis, including oxidative stress and compromised protein degradation pathways. In essence, ER stress is defined as the cellular response to the accumulation of misfolded proteins in the endoplasmic reticulum, encompassing a series of signalling pathways and molecular events that aim to restore cellular homeostasis. This comprehensive review explores ER stress and its profound implications for the pathogenesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Ravila 19, 51014 Tartu, Estonia
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University Chandigarh, India.
| |
Collapse
|
3
|
Wolzak K, Vermunt L, Campo MD, Jorge-Oliva M, van Ziel AM, Li KW, Smit AB, Chen-Ploktkin A, Irwin DJ, Lemstra AW, Pijnenburg Y, van der Flier W, Zetterberg H, Gobom J, Blennow K, Visser PJ, Teunissen CE, Tijms BM, Scheper W. Protein disulfide isomerases as CSF biomarkers for the neuronal response to tau pathology. Alzheimers Dement 2023; 19:3563-3574. [PMID: 36825551 DOI: 10.1002/alz.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2021] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarkers for specific cellular disease processes are lacking for tauopathies. In this translational study we aimed to identify CSF biomarkers reflecting early tau pathology-associated unfolded protein response (UPR) activation. METHODS We employed mass spectrometry proteomics and targeted immunoanalysis in a combination of biomarker discovery in primary mouse neurons in vitro and validation in patient CSF from two independent large multicentre cohorts (EMIF-AD MBD, n = 310; PRIDE, n = 771). RESULTS First, we identify members of the protein disulfide isomerase (PDI) family in the neuronal UPR-activated secretome and validate secretion upon tau aggregation in vitro. Next, we demonstrate that PDIA1 and PDIA3 levels correlate with total- and phosphorylated-tau levels in CSF. PDIA1 levels are increased in CSF from AD patients compared to controls and patients with tau-unrelated frontotemporal and Lewy body dementia (LBD). HIGHLIGHTS Neuronal unfolded protein response (UPR) activation induces the secretion of protein disulfide isomerases (PDIs) in vitro. PDIA1 is secreted upon tau aggregation in neurons in vitro. PDIA1 and PDIA3 levels correlate with total and phosphorylated tau levels in CSF. PDIA1 levels are increased in CSF from Alzheimer's disease (AD) patients compared to controls. PDIA1 levels are not increased in CSF from tau-unrelated frontotemporal dementia (FTD) and Lewy body dementia (LBD) patients.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Lisa Vermunt
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Marta Del Campo
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo- CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Marta Jorge-Oliva
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Anna Maria van Ziel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Ka Wan Li
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alice Chen-Ploktkin
- Department of Neurology, Perelman school of medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman school of medicine, University of Pennsylvania, Philadelphia, USA
- Penn Frontotemporal Degeneration Center, Perelman school of medicine, University of Pennsylvania, Philadelphia, USA
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Yolande Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Wiesje van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Pieter Jelle Visser
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Betty M Tijms
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) location Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system. J Biol Chem 2022; 298:102087. [PMID: 35654139 PMCID: PMC9253707 DOI: 10.1016/j.jbc.2022.102087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
Collapse
|
6
|
Ma Z, Tan Y, Qu B, Gao Z, Zhang S. Identification of amphioxus protein disulfide isomerase as both an enzyme and an immunocompotent factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104238. [PMID: 34428528 DOI: 10.1016/j.dci.2021.104238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have shown that protein disulfide isomerase (PDI), a member of the thioredoxin (TRX) superfamily, are broadly associated with immune responses in a variety of animals. However, it remains largely unknown about the direct roles of PDIs during a bacterial infection. In this study, we identified the presence of a single pdi gene in the amphioxus Branchiostoma japonicum, Bjpdi. The deduced protein BjPDI is structurally characterized by the presence of four Trx-like domains in the order of a, b, b' and a' and a short acidic C-terminal tail, that are characteristic of PDIs. We demonstrated that rBjPDI displayed both thiol reductase and disulfide bond isomerase activities, indicating comparability of BjPDI with PDIs in term of enzymatic activities. We also showed that rBjPDI induced bacterial agglutination and exhibited a lectin-like activity capable of binding both bacteria (E. coli and S. aureus) and their signature molecules LPS and LTA. Furthermore, BjPDI could kill S. aureus via inducing membrane depolarization and intracellular ROS production in vitro, and treatment of amphioxus with a blocking anti-PDI antibody in vivo markedly reduced the survival rate of amphioxus following attack by S. aureus. Collectively, our study demonstrates that amphioxus protein disulfide isomerase acts as both an enzyme and an immunocompotent factor, and reports the specific function and mode of action of PDIs in immune responses.
Collapse
Affiliation(s)
- Zengyu Ma
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China; Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Yunxia Tan
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
7
|
Leung HM, Kwok FSL, Mo WY, Cheung KC, Yue YK, Wong YK, Au CK, Tsui MTK, Yung KKL. Feasibility of Sijunzi Tang (Chinese medicine) to enhance protein disulfide isomerase activities for reactivating malate dehydrogenase deactivated by polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25116-25123. [PMID: 30341759 DOI: 10.1007/s11356-018-3230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The objective of this research is to investigate the enzymatic activities between protein disulfide isomerase (PDI) found in animals and plants and the properties found in a commonly used Chinese medicine called Sijunzi Tang. During the investigation, PDI, which is a monomer with a molecular mass of 57.0 kDa, was used to reactivate malate dehydrogenase (MDH). However, with the interference of polycyclic aromatic hydrocarbons (PAHs), evidence indicates that such chemicals are carcinogenic, mutagenic, and toxic to humans. The enzymatic activity of PDI found in animal's liver and plant was 1657 folds of purification; 0.284 unit/mg of enzyme activity, and 5694.4 folds of purification; 1.00 unit/mg of enzyme activity, respectively. PDI extracted in treated animal and plant tissue revealed 2.40% and 80.44% of regaining MDH enzymatic activity, respectively. Although in its initial phase of investigation, it is assumed that the properties found in Sijunzi Tang can help regain enzymatic activity in those affected by xenobiotic substances, thus, making it a potential ingredient in assisting with PDI functions.
Collapse
Affiliation(s)
- Ho Man Leung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Department of History, Hong Kong Shue Yan University, North Point, Hong Kong, China.
- Upper Iowa University, 605 Washington St, Fayette, IA, 52142, USA.
| | - Francis Siu Lai Kwok
- Department of Applied Sciences, Institute of Vocational Education, Hong Kong, China
| | - Wing Yin Mo
- Department of Science and Environmental Studies, The Hong Kong Education University, Tai Po, Hong Kong, China
| | - Kwai Chung Cheung
- Department of Applied Sciences, Institute of Vocational Education, Hong Kong, China
| | - Yik Kit Yue
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yee Keung Wong
- School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Hong Kong
| | - Chi Kin Au
- Department of History, Hong Kong Shue Yan University, North Point, Hong Kong, China
| | - Martin Tsz Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
8
|
Wang L, Yu J, Wang CC. Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions. Bioessays 2020; 43:e2000147. [PMID: 33155310 DOI: 10.1002/bies.202000147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple ways, including posttranslational modification and substrate/ligand binding. Here, we summarize recent advances in understanding the function and regulation of PDI in different pathological and physiological events. We propose that the multifunctional roles of PDI are regulated by multiple mechanisms. Furthermore, we discuss future directions for the study of PDI, emphasizing how different regulatory modes are linked to the conformational changes and biological functions of PDI in the context of diverse pathophysiologies.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Liang T, Xue F, Hang W, Wen B, Zhang Q, Chen J, Liu X, Chen J. Neuron-Specific Apolipoprotein E4 (1-272) Fragment Induces Tau Hyperphosphorylation and Axonopathy via Triggering Endoplasmic Reticulum Stress. J Alzheimers Dis 2020; 71:597-611. [PMID: 31424401 DOI: 10.3233/jad-190419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). It is shown that apoE4 preferentially undergoes aberrant cleavage in neurons, yielding neurotoxic C-terminal-truncated apoE4 fragment. Endoplasmic reticulum (ER) stress has also been known to be involved in the pathogenesis of AD. However, little is known about the contribution of ER stress to the neurotoxicity of apoE4 fragment. In the present study, we established the neuron-specific expression human C-terminal-truncated apoE4(1-272) fragment transgenic mice and also transfected apoE4(1-272) fragment in neuroblastoma N2a cells. We found that human apoE4(1-272) fragment could trigger ER stress as evidenced by increasing the expression of ER stress markers both in vivo and in vitro. Meanwhile, the apoE4(1-272) transgenic mice presented obviously AD-like neuropathological changes, including the impairment of spatial learning and memory, prominent axonal morphological changes, and hyperphosphorylation of tau. At the same time, we also found that glycogen synthase kinase-3 activities were significantly increased. Furthermore, these neuropathological changes, especially tau hyperphosphorylation and axonal transport impairment, were significantly rescued by the ER stress protector 4-phenylbutyric acid (4-PBA) in apoE4(1-272)-transfected N2a cells. Pretreatment with 4-PBA not only decreased the protein expression of immunoglobulin binding protein (BiP) and C/EBP-homologous protein (CHOP), but also significantly reversed these defects in axonal transport. These results suggested that the neurotoxic effects of apoE4(1-272) fragment found in AD subjects, at least in part, through triggering ER stress and inducing tau hyperphosphorylation, led to the enduring impairment of axonal transport.
Collapse
Affiliation(s)
- Tao Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Clinical laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiao Xue
- Department of Clinical laboratory, Xi'an No.3 Hospital, Xi'an, Shanxi, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Laboratory Medicine and Gene Diagnostic Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M, Safar J, Ueberheide B, Wisniewski T. Phosphorylated tau interactome in the human Alzheimer's disease brain. Brain 2020; 143:2803-2817. [PMID: 32812023 PMCID: PMC7526722 DOI: 10.1093/brain/awaa223] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Accumulation of phosphorylated tau is a key pathological feature of Alzheimer's disease. Phosphorylated tau accumulation causes synaptic impairment, neuronal dysfunction and formation of neurofibrillary tangles. The pathological actions of phosphorylated tau are mediated by surrounding neuronal proteins; however, a comprehensive understanding of the proteins that phosphorylated tau interacts with in Alzheimer's disease is surprisingly limited. Therefore, the aim of this study was to determine the phosphorylated tau interactome. To this end, we used two complementary proteomics approaches: (i) quantitative proteomics was performed on neurofibrillary tangles microdissected from patients with advanced Alzheimer's disease; and (ii) affinity purification-mass spectrometry was used to identify which of these proteins specifically bound to phosphorylated tau. We identified 542 proteins in neurofibrillary tangles. This included the abundant detection of many proteins known to be present in neurofibrillary tangles such as tau, ubiquitin, neurofilament proteins and apolipoprotein E. Affinity purification-mass spectrometry confirmed that 75 proteins present in neurofibrillary tangles interacted with PHF1-immunoreactive phosphorylated tau. Twenty-nine of these proteins have been previously associated with phosphorylated tau, therefore validating our proteomic approach. More importantly, 34 proteins had previously been associated with total tau, but not yet linked directly to phosphorylated tau (e.g. synaptic protein VAMP2, vacuolar-ATPase subunit ATP6V0D1); therefore, we provide new evidence that they directly interact with phosphorylated tau in Alzheimer's disease. In addition, we also identified 12 novel proteins, not previously known to be physiologically or pathologically associated with tau (e.g. RNA binding protein HNRNPA1). Network analysis showed that the phosphorylated tau interactome was enriched in proteins involved in the protein ubiquitination pathway and phagosome maturation. Importantly, we were able to pinpoint specific proteins that phosphorylated tau interacts with in these pathways for the first time, therefore providing novel potential pathogenic mechanisms that can be explored in future studies. Combined, our results reveal new potential drug targets for the treatment of tauopathies and provide insight into how phosphorylated tau mediates its toxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY, USA
- Alzheimer’s and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Claire MacMurray
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY, USA
| | | | - Shruti Nayak
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Marie Bourdon
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Beatrix Ueberheide
- Biomedical Hosting LLC, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM, Ashraf GM. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2020; 57:2902-2919. [PMID: 32430843 DOI: 10.1007/s12035-020-01929-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Sharma
- Department of Physiology, AIIMS Jodhpur, Jodhpur, India
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
β-Amyloid Peptide: the Cell Compartment Multi-faceted Interaction in Alzheimer's Disease. Neurotox Res 2019; 37:250-263. [PMID: 31811589 DOI: 10.1007/s12640-019-00116-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most widespread form of dementia, characterized by memory loss and reduction of cognitive functions that strongly interfere with normal daily life. Numerous evidences show that aggregates of the amyloid beta peptide, formed by 39 to 42 amino acid residues (Aβ39-43), from soluble small oligomers to large fibrils are characteristic markers of this pathology. However, AD is a complex disease and its neurodegenerative molecular mechanism is not yet fully understood. Growing evidence suggests a link between Aβ polymorphic nature, oligomers and fibrils, and specific mechanisms of neurodegeneration. The Aβ variable nature and its multiplicity of interactions with different proteins and organelles reflect the complexity of this pathology. In this review, we analyze the effects of the interaction between Aβ peptide and different cellular compartments in relation to the different kinds and sizes of amyloid aggregates. In particular, Aβ interaction with different cell structures such as the plasma membrane, mitochondria, lysosomes, nucleus, and endoplasmic reticulum is discussed. Further, we analyze the Aβ peptide ability to modify the structure and function of the target organelle, inducing alteration of its physiological role thus contributing to the pathological event. Dysfunction of cellular components terminating with the activation of the cellular death mechanism and subsequent neurodegeneration is also taken into consideration.
Collapse
|
13
|
Robinson RM, Reyes L, Duncan RM, Bian H, Strobel ED, Hyman SL, Reitz AB, Dolloff NG. Tuning isoform selectivity and bortezomib sensitivity with a new class of alkenyl indene PDI inhibitor. Eur J Med Chem 2019; 186:111906. [PMID: 31787362 DOI: 10.1016/j.ejmech.2019.111906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Protein disulfide isomerase (PDI, PDIA1) is an emerging therapeutic target in oncology. PDI inhibitors have demonstrated a unique propensity to selectively induce apoptosis in cancer cells and overcome resistance to existing therapies, although drug candidates have not yet progressed to the stage of clinical development. We recently reported the discovery of lead indene compound E64FC26 as a potent pan-PDI inhibitor that enhances the cytotoxic effects of proteasome inhibitors in panels of Multiple Myeloma (MM) cells and MM mouse models. An extensive medicinal chemistry program has led to the generation of a diverse library of indene-containing molecules with varying degrees of proteasome inhibitor potentiating activity. These compounds were generated by a novel nucleophilic aromatic ring cyclization and dehydration reaction from the precursor ketones. The results provide detailed structure activity relationships (SAR) around this indene pharmacophore and show a high degree of correlation between potency of PDI inhibition and bortezomib (Btz) potentiation in MM cells. Inhibition of PDI leads to ER and oxidative stress characterized by the accumulation of misfolded poly-ubiquitinated proteins and the induction of UPR biomarkers ATF4, CHOP, and Nrf2. This work characterizes the synthesis and SAR of a new chemical class and further validates PDI as a therapeutic target in MM as a single agent and in combination with proteasome inhibitors.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leticia Reyes
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ravyn M Duncan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Haiyan Bian
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Eric D Strobel
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Sarah L Hyman
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc, Doylestown, PA, USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
15
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
16
|
Chiaradia E, Renzone G, Scaloni A, Caputo M, Costanzi E, Gambelunghe A, Muzi G, Avellini L, Emiliani C, Buratta S. Protein carbonylation in dopaminergic cells exposed to rotenone. Toxicol Lett 2019; 309:20-32. [PMID: 30951809 DOI: 10.1016/j.toxlet.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic neurons and the most common features of Parkinson's disease in animal models. It acts as a mitochondrial complex I inhibitor that impairs cellular respiration, with consequent increase of reactive oxygen species and oxidative stress. This study evaluates the rotenone-induced oxidative damage in PC12 cells, focusing particularly on protein oxidation. The identification of specific carbonylated proteins highlighted putative alterations of important cellular processes possibly associated with Parkinson's disease. Carbonylation of ATP synthase and of enzymes acting in pyruvate and glucose metabolism suggested a failure of mechanisms ensuring cellular energy supply. Concomitant oxidation of cytoskeletal proteins and of enzymes involved in the synthesis of neuroactive molecules indicated alterations of the neurotransmission system. Carbonylation of chaperon proteins as well as of proteins acting in the autophagy-lysosome pathway and the ubiquitin-proteasome system suggested the possible formation of cytosolic unfolded protein inclusions as result of defective processes assisting recovery/degradation of damaged molecules. In conclusion, this study originally evidences specific protein targets of rotenone-induced oxidative damage, suggesting some possible molecular mechanisms involved in rotenone toxicity.
Collapse
Affiliation(s)
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Mara Caputo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Giacomo Muzi
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
17
|
Hashimoto S, Saido TC. Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer's disease. Open Biol 2019; 8:rsob.180024. [PMID: 29695619 PMCID: PMC5936719 DOI: 10.1098/rsob.180024] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response is regarded as an important process in the aetiology of Alzheimer's disease (AD). The accumulation of pathogenic misfolded proteins and the disruption of intracellular calcium (Ca2+) signalling are considered to be fundamental mechanisms that underlie the induction of ER stress, leading to neuronal cell death. Indeed, a number of studies have proposed molecular mechanisms linking ER stress to AD pathogenesis based on results from in vitro systems and AD mouse models. However, stress responsivity was largely different between each mouse model, even though all of these models display AD-related pathologies. While several reports have shown elevated ER stress responses in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (Tg) AD mouse models, we and other groups, in contrast, observed no such ER stress response in APP-single-Tg or App-knockin mice. Therefore, it is debatable whether the ER stress observed in APP and PS1 double-Tg mice is due to AD pathology. From these findings, the roles of ER stress in AD pathogenesis needs to be carefully addressed in future studies. In this review, we summarize research detailing the relationship between ER stress and AD, and analyse the results in detail.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Virgolini MJ, Feliziani C, Cambiasso MJ, Lopez PH, Bollo M. Neurite atrophy and apoptosis mediated by PERK signaling after accumulation of GM2-ganglioside. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:225-239. [PMID: 30389374 DOI: 10.1016/j.bbamcr.2018.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear. In vitro experiments, using microsomes from Sandhoff mouse model brain, showed that increase of GM2 content negatively modulates sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Pelled et al., 2003). Furthermore, Ca2+ depletion in endoplasmic reticulum (ER) triggers Unfolded Protein Response (UPR), which tends to restore homeostasis in the ER; however, if cellular damage persists, an apoptotic response is initiated. We found that ER GM2 accumulation in cultured neurons induces luminal Ca2+ depletion, which in turn activates PERK (protein kinase RNA [PKR]-like ER kinase), one of three UPR sensors. PERK signaling displayed biphasic activation; i.e., early upregulation of cytoprotective calcineurin (CN) and, under prolonged ER stress, enhanced expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Moreover, GM2 accumulation in neuronal cells induced neurite atrophy and apoptosis. Both processes were effectively modulated by treatment with the selective PERK inhibitor GSK2606414, by CN knockdown, and by CHOP knockdown. Overall, our findings demonstrate the essential role of PERK signaling pathway contributing to neurodegeneration in a model of GM2-gangliosidosis.
Collapse
Affiliation(s)
- María José Virgolini
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Universidad Nacional de Villa María, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Cambiasso
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo H Lopez
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
19
|
Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia 2018; 33:1011-1022. [PMID: 30315229 DOI: 10.1038/s41375-018-0263-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 11/08/2022]
Abstract
Multiple Myeloma (MM) is highly sensitive to disruptions in cellular protein homeostasis. Proteasome inhibitors (PIs) are initially effective in the treatment of MM, although cures are not achievable and the emergence of resistance limits the durability of responses. New therapies are needed for refractory patients, and those that combat resistance to standard of care agents would be particularly valuable. Screening of multiple chemical libraries for PI re-sensitizing compounds identified E61 as a potent enhancer of multiple PIs and MM specific activity. Using a tandem approach of click chemistry and peptide mass fingerprinting, we identified multiple protein disulfide isomerase (PDI) family members as the primary molecular targets of E61. PDIs mediate oxidative protein folding, and E61 treatment induced robust ER and oxidative stress responses as well as the accumulation of ubiquitinylated proteins. A chemical optimization program led to a new structural class of indene (exemplified by lead E64FC26), which are highly potent pan-style inhibitors of PDIs. In mice with MM, E64FC26 improved survival and enhanced the activity of bortezomib without any adverse effects. This work demonstrates the potential of E64FC26 as an early drug candidate and the strategy of targeting multiple PDI isoforms for the treatment of refractory MM and beyond.
Collapse
|
20
|
Honjo Y, Ayaki T, Horibe T, Ito H, Takahashi R, Kawakami K. FKBP12-immunopositive inclusions in patients with α-synucleinopathies. Brain Res 2017; 1680:39-45. [PMID: 29246765 DOI: 10.1016/j.brainres.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023]
Abstract
α-Synuclein (α-SYN), a presynaptic protein with the tendency to aggregate, is linked to α-synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). α-SYN is the main component of round intracytoplasmic inclusions called Lewy bodies (LBs), which are the hallmark of PD and DLB. In addition, accumulation of amyloid-β and neurofibrillary tangles as in the pathology of Alzheimer's disease has been found in the DLB brain. Glial cytoplasmic inclusions are an MSA-specific type of inclusion found in oligodendrocytes and mainly comprise α-SYN. FK506-binding protein (FKBP) 12 is a member of the immunophilin family with peptidyl-prolyl isomerase activity that promotes protein folding and is believed to act as a chaperone protein. Previous in vitro work indicated that FKBP12 accelerated α-SYN aggregation more than other peptidyl-prolyl isomerases. The enzymatic activity of FKBP12 increases the formation of α-SYN fibrils at subnanomolar concentrations. In this study, we found that FKBP12 colocalized with α-SYN in LBs and neurites in PD and DLB brains. Furthermore, FKBP12-immunopositive neurofibrillary tangles colocalized with phosphorylated tau in DLB and FKBP12-immunopositive glial cytoplasmic inclusions colocalized with α-SYN in MSA. These findings suggest that FKBP12 is linked to the accumulation of α-SYN and phosphorylated tau protein in α-synucleinopathies. FKBP12 may play important roles in the pathogenesis of α-synucleinopathies through its strong aggregation function. Thus, FKBP12 could be an important drug target for α-synucleinopathies.
Collapse
Affiliation(s)
- Yasuyuki Honjo
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan; Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Tomohisa Horibe
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan.
| | - Hidefumi Ito
- Department of Neurology, Graduate School of Medicine, Wakayama Medical University, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan
| |
Collapse
|
21
|
Amyloid-β42 clearance and neuroprotection mediated by X-box binding protein 1 signaling decline with aging in the Drosophila brain. Neurobiol Aging 2017; 60:57-70. [DOI: 10.1016/j.neurobiolaging.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 07/28/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
|
22
|
Honjo Y, Ayaki T, Tomiyama T, Horibe T, Ito H, Mori H, Takahashi R, Kawakami K. Decreased levels of PDI and P5 in oligodendrocytes in Alzheimer's disease. Neuropathology 2017; 37:495-501. [DOI: 10.1111/neup.12395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Yasuyuki Honjo
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health; Kyoto University; Japan
- Department of Neurology, Graduate School of Medicine; Kyoto University; Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine; Kyoto University; Japan
| | - Takami Tomiyama
- Department of Neuroscience; Osaka City University Graduate School of Medicine; Japan
| | - Tomohisa Horibe
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health; Kyoto University; Japan
| | - Hidefumi Ito
- Department of Neurology, Graduate School of Medicine; Wakayama Medical University; Japan
| | - Hiroshi Mori
- Department of Clinical Neuroscience; Osaka City University Medical School; Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine; Kyoto University; Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health; Kyoto University; Japan
| |
Collapse
|
23
|
Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer's Disease? Int J Mol Sci 2017; 18:ijms18061168. [PMID: 28561773 PMCID: PMC5485992 DOI: 10.3390/ijms18061168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER) stress and autophagy dysfunction, resulting in more complicated pathogenesis. Currently, few treatments can modify the complicated pathogenic progress of AD. Compared to the treatment with exogenous antioxidants, the activation of global antioxidant defense system via Nrf2 looks more promising in attenuating oxidative stress in AD brains. Accompanying the activation of the Nrf2-mediated antioxidant defense system that reduce the AD-causative factor, oxidative stress, it is also necessary to activate the neurotrophic signaling pathway that replaces damaged organelles and molecules with new ones. Thus, the dual actions to activate both the Nrf2 antioxidant system and neurotrophic signaling pathway are expected to provide a better strategy to modify AD pathogenesis. Here, we review the current understanding of AD pathogenesis and neuronal defense systems and discuss a possible way to co-activate the Nrf2 antioxidant system and neurotrophic signaling pathway with the hope of helping to find a better strategy to slow AD.
Collapse
|
24
|
Cabral-Miranda F, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship? Curr Top Microbiol Immunol 2017; 414:131-157. [PMID: 28864830 DOI: 10.1007/82_2017_52] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Nitric Oxide: Exploring the Contextual Link with Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7205747. [PMID: 28096943 PMCID: PMC5209623 DOI: 10.1155/2016/7205747] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
Neuronal inflammation is a systematically organized physiological step often triggered to counteract an invading pathogen or to rid the body of damaged and/or dead cellular debris. At the crux of this inflammatory response is the deployment of nonneuronal cells: microglia, astrocytes, and blood-derived macrophages. Glial cells secrete a host of bioactive molecules, which include proinflammatory factors and nitric oxide (NO). From immunomodulation to neuromodulation, NO is a renowned modulator of vast physiological systems. It essentially mediates these physiological effects by interacting with cyclic GMP (cGMP) leading to the regulation of intracellular calcium ions. NO regulates the release of proinflammatory molecules, interacts with ROS leading to the formation of reactive nitrogen species (RNS), and targets vital organelles such as mitochondria, ultimately causing cellular death, a hallmark of many neurodegenerative diseases. AD is an enervating neurodegenerative disorder with an obscure etiology. Because of accumulating experimental data continually highlighting the role of NO in neuroinflammation and AD progression, we explore the most recent data to highlight in detail newly investigated molecular mechanisms in which NO becomes relevant in neuronal inflammation and oxidative stress-associated neurodegeneration in the CNS as well as lay down up-to-date knowledge regarding therapeutic approaches targeting NO.
Collapse
|
26
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
27
|
An 11-mer Amyloid Beta Peptide Fragment Provokes Chemical Mutations and Parkinsonian Biomarker Aggregation in Dopaminergic Cells: A Novel Road Map for "Transfected" Parkinson's. ACS Chem Neurosci 2016; 7:1519-1530. [PMID: 27635664 DOI: 10.1021/acschemneuro.6b00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid beta (Aβ) aggregation is generally associated with Alzheimer's onset. Here, we demonstrate that incubation of dopaminergic SH-SY5Y cells with an Aβ peptide fragment (an 11-mer composed of residues 25-35; Aβ (25-35)) results in elevated intracellular nitrosative stress and induces chemical mutation of protein disulfide isomerase (PDI), an endoplasmic reticulum-resident oxidoreductase chaperone. Furthermore, Aβ (25-35) provokes aggregation of both the minor and major biomarkers of Parkinson's disease, namely, synphilin-1 and α-synuclein, respectively. Importantly, fluorescence studies demonstrate that Aβ (25-35) triggers colocalization of these Parkinsonian biomarkers to form Lewy-body-like aggregates, a key and irreversible milestone in the neurometabolic cascade leading to Parkinson's disease. In addition, fluorescence assays also reveal direct, aggregation-seeding interactions between Aβ (25-35), PDI and α-synuclein, suggesting neuronal pathogenesis occurs via prion-type cross-transfectivity. These data indicate that the introduction of an Alzheimer's-associated biomarker in dopaminergic cells is proliferative, with the percolative effect exercised via dual, independent, Parkinson-pathogenic pathways, one stress-derived and the other prion-like. The results define a novel molecular roadmap for Parkinsonian transfectivity via an Alzheimeric burden and reveal the involvement of PDI in amyloid beta induced Parkinson's.
Collapse
|
28
|
Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD. The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Front Cell Dev Biol 2016; 3:80. [PMID: 26779479 PMCID: PMC4705227 DOI: 10.3389/fcell.2015.00080] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and its dysregulation is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER) is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR), distinct signaling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulfide Isomerase (PDI) is an ER chaperone induced during ER stress that is responsible for the formation of disulfide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However, specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.
Collapse
Affiliation(s)
- Emma R Perri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University Melbourne, VIC, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Human Science, Macquarie University Sydney, NSW, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - Julie D Atkin
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia; Department of Biomedical Sciences, Faculty of Medicine and Human Science, Macquarie UniversitySydney, NSW, Australia
| |
Collapse
|
29
|
Milisav I, Šuput D, Ribarič S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015; 20:22718-56. [PMID: 26694349 PMCID: PMC6332363 DOI: 10.3390/molecules201219865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Proteostasis are integrated biological pathways within cells that control synthesis, folding, trafficking and degradation of proteins. The absence of cell division makes brain proteostasis susceptible to age-related changes and neurodegeneration. Two key processes involved in sustaining normal brain proteostasis are the unfolded protein response and autophagy. Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases (PrDs) have different clinical manifestations of neurodegeneration, however, all share an accumulation of misfolded pathological proteins associated with perturbations in unfolded protein response and macroautophagy. While both the unfolded protein response and macroautophagy play an important role in the prevention and attenuation of AD and PD progression, only macroautophagy seems to play an important role in the development of PrDs. Macroautophagy and unfolded protein response can be modulated by pharmacological interventions. However, further research is necessary to better understand the regulatory pathways of both processes in health and neurodegeneration to be able to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
- Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenija.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
30
|
Honjo Y, Ayaki T, Tomiyama T, Horibe T, Ito H, Mori H, Takahashi R, Kawakami K. Increased GADD34 in oligodendrocytes in Alzheimer's disease. Neurosci Lett 2015; 602:50-5. [PMID: 26142647 DOI: 10.1016/j.neulet.2015.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/21/2015] [Accepted: 06/29/2015] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) and abnormally phosphorylated tau which contribute to endoplasmic reticulum (ER) stress. Previous studies demonstrated that Aβ and a truncated fragment of Aβ induced death of oligodendrocytes in vitro. In addition, a triple-transgenic AD mouse model exhibits significant region-specific alterations in myelination patterns at time points preceding the appearance of Aβ accumulation. The growth arrest and DNA damage protein (GADD) 34 is up-regulated in response to ER stress and regulates subunit of protein phosphatase 1 (PP1) complex that dephosphorylates eukaryotic translation initiator factor 2α (elF2α). Thus, GADD34 is known as an ER stress regulator or ER stress marker. In a recent study, GADD34 was induced in the spinal cord glial cells of an amyotrophic lateral sclerosis (ALS) mouse model. It is interesting that reduced GADD34 delayed the onset of ALS and prolonged the survival period in the mouse model. In this study, we have demonstrated that GADD34 was increased in neurons of human AD brains. Additionally, this finding was also observed in oligodendrocytes in human AD brains. Furthermore, we showed that the expression levels of GADD34 in neurons and oligodendrocytes were significantly increased in the early stage of AD in the mouse model. As oligodendrocytes were more affected in the early stages of AD in this experimental model, ER stress of Aβ oligomers may be more related to oligodendrocytes than to neurons. These results suggest that GADD34 could be a therapeutic target for preventing ER stress in neuronal cells in AD.
Collapse
Affiliation(s)
- Yasuyuki Honjo
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan; Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Takami Tomiyama
- Department of Neurology and Neuroscience, Osaka City University Medical School, Japan
| | - Tomohisa Horibe
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan
| | - Hidefumi Ito
- Department of Neurology, Graduate School of Medicine, Wakayama Medical University, Japan
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Japan.
| |
Collapse
|
31
|
Conway ME, Harris M. S-nitrosylation of the thioredoxin-like domains of protein disulfide isomerase and its role in neurodegenerative conditions. Front Chem 2015; 3:27. [PMID: 25932462 PMCID: PMC4399332 DOI: 10.3389/fchem.2015.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Correct protein folding and inhibition of protein aggregation is facilitated by a cellular “quality control system” that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulfide isomerases (PDI) and their homologs, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like CGHC active site of PDI and how our understanding of this structural motif will play a key role in unraveling the pathogenic mechanisms that underpin these neurodegenerative conditions.
Collapse
Affiliation(s)
- Myra E Conway
- Department of Applied Sciences, University of the West of England Bristol, UK
| | - Matthew Harris
- Department of Applied Sciences, University of the West of England Bristol, UK
| |
Collapse
|
32
|
Satoh J, Tabunoki H, Ishida T, Saito Y, Arima K. Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in Alzheimer's disease brains. Neuropathol Appl Neurobiol 2014; 39:817-30. [PMID: 23421764 DOI: 10.1111/nan.12036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
AIMS Ubiquilin-1 acts as an adaptor protein that mediates the translocation of polyubiquitinated proteins to the proteasome for degradation. Although previous studies suggested a key role of ubiquilin-1 in the pathogenesis of Alzheimer's disease (AD), a direct relationship between ubiquilin-1 and Hirano bodies in AD brains remains unknown. METHODS By immunohistochemistry, we studied ubiquilin-1 and ubiquilin-2 expression in the frontal cortex and the hippocampus of six AD and 13 control cases. RESULTS Numerous Hirano bodies, accumulated in the hippocampal CA1 region of AD brains, expressed intense immunoreactivity for ubiquilin-1. They were much less frequently found in control brains. However, Hirano bodies did not express a panel of markers for proteasome, autophagosome or pathogenic proteins, such as ubiquilin-2, ubiquitin, p62, LC3, beclin-1, HDAC6, paired helical filament (PHF)-tau, protein-disulphide isomerase (PDI) and phosphorylated TDP-43, but some of them expressed C9orf72. Ubiquilin-1-immunoreactive deposits were classified into four distinct morphologies, such as rod-shaped structures characteristic of Hirano bodies, dystrophic neurites contacting senile plaques, fragmented structures accumulated in the lesions affected with severe neuronal loss, and thread-shaped structures located mainly in the molecular layer of the hippocampus. CONCLUSIONS Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in AD brains, suggesting that aberrant expression of ubiquilin-1 serves as one of pathological hallmarks of AD.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
Gerson JE, Castillo-Carranza DL, Kayed R. Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. ACS Chem Neurosci 2014; 5:752-69. [PMID: 25075869 DOI: 10.1021/cn500143n] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative disease is one of the greatest health concerns today and with no effective treatment in sight, it is crucial that researchers find a safe and successful therapeutic. While neurofibrillary tangles are considered the primary tauopathy hallmark, more evidence continues to come to light to suggest that soluble, intermediate tau aggregates--tau oligomers--are the most toxic species in disease. These intermediate tau species may also be responsible for the spread of pathology, suggesting that oligomeric tau may be the best therapeutic target. Here, we summarize results for the modulation of tau by molecular chaperones, small molecules and aggregation inhibitors, post-translational modifications, immunotherapy, other techniques, and future directions.
Collapse
Affiliation(s)
- Julia E. Gerson
- Department
of Neurology, George and Cynthia Mitchell
Center for Alzheimer’s Disease Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Diana L. Castillo-Carranza
- Department
of Neurology, George and Cynthia Mitchell
Center for Alzheimer’s Disease Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Department
of Neurology, George and Cynthia Mitchell
Center for Alzheimer’s Disease Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
34
|
Iqbal A, Paviani V, Moretti AI, Laurindo FR, Augusto O. Oxidation, inactivation and aggregation of protein disulfide isomerase promoted by the bicarbonate-dependent peroxidase activity of human superoxide dismutase. Arch Biochem Biophys 2014; 557:72-81. [DOI: 10.1016/j.abb.2014.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
|
35
|
Plácido A, Pereira C, Duarte A, Candeias E, Correia S, Santos R, Carvalho C, Cardoso S, Oliveira C, Moreira P. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1444-53. [DOI: 10.1016/j.bbadis.2014.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022]
|
36
|
Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X, Ye LB, Xiao J. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol 2014; 51:1343-52. [PMID: 25048984 DOI: 10.1007/s12035-014-8813-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an important role in a range of neurological disorders, such as neurodegenation diseases, cerebral ischemia, spinal cord injury, sclerosis, and diabetic neuropathy. Protein misfolding and accumulation in the ER lumen initiate unfolded protein response in energy-starved neurons which are relevant to toxic effects. In neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, ER dysfunction is well recognized, but the mechanisms remain unclear. In stroke and ischemia, spinal cord injury, and amyotrophic lateral sclerosis, chronic activation of ER stress is considered as main pathogeny which causes neuronal disorders. By targeting components of these ER signaling responses, to explore clinical treatment strategies or new drugs in CNS neurological diseases might become possible and valuable in the future.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Braconi D, Millucci L, Ghezzi L, Santucci A. Redox proteomics gives insights into the role of oxidative stress in alkaptonuria. Expert Rev Proteomics 2014; 10:521-35. [PMID: 24206226 DOI: 10.1586/14789450.2013.858020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alkaptonuria (AKU) is an ultra-rare metabolic disorder of the catabolic pathway of tyrosine and phenylalanine that has been poorly characterized at molecular level. As a genetic disease, AKU is present at birth, but its most severe manifestations are delayed due to the deposition of a dark-brown pigment (ochronosis) in connective tissues. The reasons for such a delayed manifestation have not been clarified yet, though several lines of evidence suggest that the metabolite accumulated in AKU sufferers (homogentisic acid) is prone to auto-oxidation and induction of oxidative stress. The clarification of the pathophysiological molecular mechanisms of AKU would allow a better understanding of the disease, help find a cure for AKU and provide a model for more common rheumatic diseases. With this aim, we have shown how proteomics and redox proteomics might successfully overcome the difficulties of studying a rare disease such as AKU and the limitations of the hitherto adopted approaches.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
38
|
Tufo G, Jones AWE, Wang Z, Hamelin J, Tajeddine N, Esposti DD, Martel C, Boursier C, Gallerne C, Migdal C, Lemaire C, Szabadkai G, Lemoine A, Kroemer G, Brenner C. The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ 2014; 21:685-95. [PMID: 24464223 PMCID: PMC3978299 DOI: 10.1038/cdd.2013.193] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Intrinsic and acquired chemoresistance are frequent causes of cancer eradication failure. Thus, long-term cis-diaminedichloroplatine(II) (CDDP) or cisplatin treatment is known to promote tumor cell resistance to apoptosis induction via multiple mechanisms involving gene expression modulation of oncogenes, tumor suppressors and blockade of pro-apoptotic mitochondrial membrane permeabilization. Here, we demonstrate that CDDP-resistant non-small lung cancer cells undergo profound remodeling of their endoplasmic reticulum (ER) proteome (>80 proteins identified by proteomics) and exhibit a dramatic overexpression of two protein disulfide isomerases, PDIA4 and PDIA6, without any alteration in ER-cytosol Ca(2+) fluxes. Using pharmacological and genetic inhibition, we show that inactivation of both proteins directly stimulates CDDP-induced cell death by different cellular signaling pathways. PDIA4 inactivation restores a classical mitochondrial apoptosis pathway, while knockdown of PDIA6 favors a non-canonical cell death pathway sharing some necroptosis features. Overexpression of both proteins has also been found in lung adenocarcinoma patients, suggesting a clinical importance of these proteins in chemoresistance.
Collapse
Affiliation(s)
- G Tufo
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| | - A W E Jones
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Z Wang
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| | - J Hamelin
- APHP Hôpital P. Brousse, Biochimie et oncogénétique, INSERM U1004, Villejuif, France
| | - N Tajeddine
- INSERM U848, Institut Gustave Roussy, Université Paris-Sud 11, PR1, 39 rue Camille Desmoulins, Villejuif, France
| | - D D Esposti
- APHP Hôpital P. Brousse, Biochimie et oncogénétique, INSERM U1004, Villejuif, France
| | - C Martel
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
- Montreal Heart Institute, Centre de Recherche, Montreal, Quebec, Canada
| | | | - C Gallerne
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| | - C Migdal
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
- INSERM U 996, Châtenay-Malabry, France
| | - C Lemaire
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Department of Biology, University of Versailles–St Quentin, Versailles, France
| | - G Szabadkai
- Department of Cell and Developmental Biology, University College London, London, UK
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - A Lemoine
- APHP Hôpital P. Brousse, Biochimie et oncogénétique, INSERM U1004, Villejuif, France
| | - G Kroemer
- INSERM U848, Institut Gustave Roussy, Université Paris-Sud 11, PR1, 39 rue Camille Desmoulins, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - C Brenner
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| |
Collapse
|
39
|
Budrikis Z, Costantini G, La Porta CAM, Zapperi S. Protein accumulation in the endoplasmic reticulum as a non-equilibrium phase transition. Nat Commun 2014; 5:3620. [PMID: 24722051 PMCID: PMC4048836 DOI: 10.1038/ncomms4620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 03/11/2014] [Indexed: 12/03/2022] Open
Abstract
Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system. Misfolded protein accumulation is a hallmark of many neurodegenerative diseases. Here Budrikis et al. model protein aggregation in the endoplasmic reticulum and show that it is the result of a non-equilibrium phase transition caused by tipping the balance from the rates of protein production to degradation.
Collapse
Affiliation(s)
- Zoe Budrikis
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, Torino 10126, Italy
| | - Giulio Costantini
- Istituto per l'Energetica e le Interfasi, CNR-Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, Milano 20125, Italy
| | - Caterina A M La Porta
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - Stefano Zapperi
- 1] Institute for Scientific Interchange Foundation, Via Alassio 11/C, Torino 10126, Italy [2] Istituto per l'Energetica e le Interfasi, CNR-Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, Milano 20125, Italy
| |
Collapse
|
40
|
Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014; 15:233-49. [PMID: 24619348 DOI: 10.1038/nrn3689] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
Collapse
Affiliation(s)
- Claudio Hetz
- 1] Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. [2] Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile. [3] Neurounion Biomedical Foundation, Santiago, Chile. [4] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UMS3444 Biosciences Lyon Gerland, University of Lyon, Lyon 69364, France
| |
Collapse
|
41
|
Grek C, Townsend D. Protein Disulfide Isomerase Superfamily in Disease and the Regulation of Apoptosis. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014; 1:4-17. [PMID: 25309899 PMCID: PMC4192724 DOI: 10.2478/ersc-2013-0001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis requires the balance of a multitude of signaling cascades that are contingent upon the essential proteins being properly synthesized, folded and delivered to appropriate subcellular locations. In eukaryotic cells the endoplasmic reticulum (ER) is a specialized organelle that is the central site of synthesis and folding of secretory, membrane and a number of organelletargeted proteins. The integrity of protein folding is enabled by the presence of ATP, Ca++, molecular chaperones, as well as an oxidizing redox environment. The imbalance between the load and capacity of protein folding results in a cellular condition known as ER stress. Failure of these pathways to restore ER homeostasis results in the activation of apoptotic pathways. Protein disulfide isomerases (PDI) compose a superfamily of oxidoreductases that have diverse sequences and are localized in the ER, nucleus, cytosol, mitochondria and cell membrane. The PDI superfamily has multiple functions including, acting as molecular chaperones, protein-binding partners, and hormone reservoirs. Recently, PDI family members have been implicated in the regulation of apoptotic signaling events. The complexities underlying the molecular mechanisms that define the switch from pro-survival to pro-death response are evidenced by recent studies that reveal the roles of specific chaperone proteins as integration points in signaling pathways that determine cell fate. The following review discusses the dual role of PDI in cell death and survival during ER stress.
Collapse
Affiliation(s)
- C. Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - D.M. Townsend
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
42
|
Halloran M, Parakh S, Atkin JD. The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int J Cell Biol 2013; 2013:797914. [PMID: 24348565 PMCID: PMC3852308 DOI: 10.1155/2013/797914] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER) stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI) is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO-) containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI) in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- M. Halloran
- Department of Neuroscience in the School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - S. Parakh
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| | - J. D. Atkin
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
43
|
Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 2013; 49:796-807. [PMID: 24091828 DOI: 10.1007/s12035-013-8562-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/22/2013] [Indexed: 12/11/2022]
Abstract
Aggregation of misfolded protein and resultant intracellular inclusion body formation are common hallmarks of mutant superoxide dismutase (mSOD1)-linked familial amyotrophic lateral sclerosis (FALS) and have been associated with the selective neuronal death. Protein disulfide isomerase (PDI) represents a family of enzymatic chaperones that can fold nascent and aberrant proteins in the endoplasmic reticulum (ER) lumen. Recently, our group found that S-nitrosylated PDI could contribute to protein misfolding and subsequent neuronal cell death. However, the exact role of PDI in the pathogenesis of ALS remains unclear. In this study, we propose that PDI attenuates aggregation of mutant/misfolded SOD1 and resultant neurotoxicity associated with ER stress. ER stress resulting in PDI dysfunction therefore provides a mechanistic link between deficits in molecular chaperones, accumulation of misfolded proteins, and neuronal death in neurodegenerative diseases. In contrast, S-nitrosylation of PDI inhibits its activity, increases mSOD1 aggregation, and increases neuronal cell death. Specifically, our data show that S-nitrosylation abrogates PDI-mediated attenuation of neuronal cell death triggered by thapsigargin. Biotin switch assays demonstrate S-nitrosylated PDI both in the spinal cords of SOD1 (G93A) mice and human patients with sporadic ALS. Therefore, denitrosylation of PDI may have therapeutic implications. Taken together, our results suggest a novel strategy involving PDI as a therapy to prevent mSOD1 aggregation and neuronal degeneration. Moreover, the data demonstrate that inactivation of PDI by S-nitrosylation occurs in both mSOD1-linked and sporadic forms of ALS in humans as well as mice.
Collapse
|
44
|
Xu LR, Liu XL, Chen J, Liang Y. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization. PLoS One 2013; 8:e76657. [PMID: 24098548 PMCID: PMC3788760 DOI: 10.1371/journal.pone.0076657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/30/2013] [Indexed: 01/20/2023] Open
Abstract
Background Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. Methodology/Principal Findings As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI. Conclusions/Significance We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.
Collapse
Affiliation(s)
- Li-Rong Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
45
|
Disulfide bonding in neurodegenerative misfolding diseases. Int J Cell Biol 2013; 2013:318319. [PMID: 23983694 PMCID: PMC3747422 DOI: 10.1155/2013/318319] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023] Open
Abstract
In recent years an increasing number of neurodegenerative diseases has been linked to the misfolding of a specific protein and its subsequent accumulation into aggregated species, often toxic to the cell. Of all the factors that affect the behavior of these proteins, disulfide bonds are likely to be important, being very conserved in protein sequences and being the enzymes devoted to their formation among the most conserved machineries in mammals. Their crucial role in the folding and in the function of a big fraction of the human proteome is well established. The role of disulfide bonding in preventing and managing protein misfolding and aggregation is currently under investigation. New insights into their involvement in neurodegenerative diseases, their effect on the process of protein misfolding and aggregation, and into the role of the cellular machineries devoted to disulfide bond formation in neurodegenerative diseases are emerging. These studies mark a step forward in the comprehension of the biological base of neurodegenerative disorders and highlight the numerous questions that still remain open.
Collapse
|
46
|
Cornejo VH, Hetz C. The unfolded protein response in Alzheimer’s disease. Semin Immunopathol 2013; 35:277-92. [DOI: 10.1007/s00281-013-0373-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
47
|
Abstract
Amyloid plaques and neurofibrillary tangles are the major pathological hallmarks of Alzheimer's disease. Neurofibrillary tangles are composed of filaments and paired helical filaments containing polymerized hyperphosphorylated tau protein. Derlin proteins are a family of proteins that are conserved in all eukaryotes, in which they function in endoplasmic reticulum-associated degradation. Protein disulfide isomerase (PDI) is a member of the thioredoxin superfamily and is believed to accelerate the folding of disulfide-bonded proteins in the luminal space of the endoplasmic reticulum. In this study, we found that derlin-1 and PDI were colocalized in neurofibrillary tangles in the brain of patients with Alzheimer's disease. Derlin-1 and PDI may work as partners to avoid the accumulation of unfolded proteins in Alzheimer's disease. Furthermore, we found that derlin-1 was immunopositive for neurofibrillary tangles and upregulated in Alzheimer's disease and that derlin-1 may play an important role in endoplasmic reticulum-associated degradation during the pathogenesis of Alzheimer's disease. We hypothesize that derlin-1 was upregulated to avoid the aggregation of unfolded proteins. Despite the upregulation of derlin-1, the functions of chaperone proteins and Alzheimer tau protein were lost and these proteins were also accumulated. Finally, they were involved in neurofibrillary tangles. These results suggest that derlin-1 may be associated with endoplasmic reticulum stress in neuronal cells in Alzheimer's disease.
Collapse
|
48
|
Bernardoni P, Fazi B, Costanzi A, Nardacci R, Montagna C, Filomeni G, Ciriolo MR, Piacentini M, Di Sano F. Reticulon1-C modulates protein disulphide isomerase function. Cell Death Dis 2013; 4:e581. [PMID: 23559015 PMCID: PMC3641336 DOI: 10.1038/cddis.2013.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) is the primary site for the synthesis and folding of secreted and membrane-bound proteins. Accumulation of unfolded and misfolded proteins in ER underlies a wide range of human neurodegenerative disorders. Hence, molecules regulating the ER stress response represent potential candidates as drug targets for tackling these diseases. Protein disulphide isomerase (PDI) is a chaperone involved in ER stress pathway, its activity being an important cellular defense against protein misfolding. Here, we demonstrate that human neuroblastoma SH-SY5Y cells overexpressing the reticulon protein 1-C (RTN1-C) reticulon family member show a PDI punctuate subcellular distribution identified as ER vesicles. This represents an event associated with a significant increase of PDI enzymatic activity. We provide evidence that the modulation of PDI localization and activity does not only rely upon ER stress induction or upregulation of its synthesis, but tightly correlates to an alteration in its nitrosylation status. By using different RTN1-C mutants, we demonstrate that the observed effects depend on RTN1-C N-terminal region and on the integrity of the microtubule network. Overall, our results indicate that RTN1-C induces PDI redistribution in ER vesicles, and concomitantly modulates its activity by decreasing the levels of its S-nitrosylated form. Thus RTN1-C represents a promising candidate to modulate PDI function.
Collapse
Affiliation(s)
- P Bernardoni
- Department of Biology, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 2013; 12:105-18. [PMID: 23237905 DOI: 10.1016/s1474-4422(12)70238-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum (ER) dysfunction might have an important part to play in a range of neurological disorders, including cerebral ischaemia, sleep apnoea, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, the prion diseases, and familial encephalopathy with neuroserpin inclusion bodies. Protein misfolding in the ER initiates the well studied unfolded protein response in energy-starved neurons during stroke, which is relevant to the toxic effects of reperfusion. The toxic peptide amyloid β induces ER stress in Alzheimer's disease, which leads to activation of similar pathways, whereas the accumulation of polymeric neuroserpin in the neuronal ER triggers a poorly understood ER-overload response. In other neurological disorders, such as Parkinson's and Huntington's diseases, ER dysfunction is well recognised but the mechanisms by which it contributes to pathogenesis remain unclear. By targeting components of these signalling responses, amelioration of their toxic effects and so the treatment of a range of neurodegenerative disorders might become possible.
Collapse
Affiliation(s)
- Benoit D Roussel
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
50
|
Andreu CI, Woehlbier U, Torres M, Hetz C. Protein disulfide isomerases in neurodegeneration: from disease mechanisms to biomedical applications. FEBS Lett 2012; 586:2826-34. [PMID: 22828277 DOI: 10.1016/j.febslet.2012.07.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Abstract
Protein disulfide isomerases (PDIs) are a family of foldases and chaperones primarily located at the endoplasmic reticulum that catalyze the formation and isomerization of disulfide bonds thereby facilitating protein folding. PDIs also perform important physiological functions in protein quality control, cell death, and cell signaling. Protein misfolding is involved in the etiology of the most common neurodegenerative diseases, including Alzheimer, Parkinson, amyotrophic lateral sclerosis, Prion-related disorders, among others. Accumulating evidence indicate altered expression of PDIs as a prominent and common feature of these neurodegenerative conditions. Here we overview most recent advances in our understanding of the possible functional contribution of PDIs to neurodegeneration, depicting a complex and poorly understood scenario. Possible therapeutic benefits of targeting PDIs in a disease context and their use as biomarkers are discussed.
Collapse
Affiliation(s)
- Catherine I Andreu
- Institute of Biomedical Sciences, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|