1
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. NPJ Parkinsons Dis 2025; 11:77. [PMID: 40240380 PMCID: PMC12003903 DOI: 10.1038/s41531-025-00933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Many drug targets in ongoing Parkinson's disease (PD) clinical trials have strong genetic links. While genome-wide association studies (GWAS) nominate regions associated with disease, pinpointing causal genes is challenging. Our aim was to prioritize additional druggable genes underlying PD GWAS signals. The polygenic priority score (PoPS) integrates genome-wide information from MAGMA gene-level associations and over 57,000 gene-level features. We applied PoPS to East Asian and European PD GWAS data and prioritized genes based on PoPS, distance to the GWAS signal, and non-synonymous credible set variants. We prioritized 46 genes, including well-established PD genes (SNCA, LRRK2, GBA1, TMEM175, VPS13C), genes with strong literature evidence supporting a mechanistic link to PD (RIT2, BAG3, SCARB2, FYN, DYRK1A, NOD2, CTSB, SV2C, ITPKB), and genes relatively unexplored in PD. Many hold potential for drug repurposing or development. We prioritized high-confidence genes with strong links to PD pathogenesis that may represent our next-best candidates for developing disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lara M Lange
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- Centre de recherche du Centre Hospitalier Universitaire de Québec, Axe Neurosciences, Département de Psychiatrie et Neurosciences, Laval University, Québec, QC, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany.
| |
Collapse
|
2
|
Wang W, Wang Y, Xu L, Liu X, Hu Y, Li J, Huang Q, Ren S, Huang Y, Guan Y, Li Y, Hua F, Ye Q, Xie F. Presynaptic terminal integrity is associated with glucose metabolism in Parkinson's disease. Eur J Nucl Med Mol Imaging 2025; 52:1510-1519. [PMID: 39572432 DOI: 10.1007/s00259-024-06993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 02/20/2025]
Abstract
OBJECTIVE To investigate the relationship of synaptic loss with glucose metabolism and dopaminergic transporters in Parkinson's disease (PD) patients. METHODS A total of 16 patients with PD and 11 age-matched healthy controls underwent positron emission tomography (PET) with the tracers [18F]SynVesT-1, a ligand for the presynaptic terminal marker synaptic vesicle protein 2 A (SV2A), and FDG. PD patients also underwent PET with the dopamine transporter (DAT) ligand [18F]FP-CIT. The difference in synaptic density between PD patients and age-matched normal controls(NCs) was determined in the selected regions of interest, and the correlations of the [18F]SynVesT-1 PET SUVRs with [18F]FP-CIT PET SUVRs and [18F]FDG PET SUVRs were evaluated. RESULTS Compared with that in the NC group, the synaptic density in the caudate region was significantly lower in the PD group (SUVR: 2.51 ± 0.36 vs. 3.18 ± 0.32, p < 0.001), especially in the pre-commissural caudate and post-commissural caudate (SUVR: 2.42 ± 0.29 vs. 2.63 ± 0.32, p < 0.01; 0.76 ± 0.31 vs. 0.97 ± 0.33, p < 0.001). A reduced synaptic density was significantly correlated with DAT (r = 0.61, p < 0.001) and glucose metabolism (r = 0.73, p < 0.001) in the post-commissural caudate. In the post-commissural regions of the caudate, there was a partial mediating effect of synaptic density on the relationship between glucose metabolism and DAT availability (indirect effect: β4 = 0.039, p = 0.024). CONCLUSION [18F]SynVesT-1 binds specifically to SV2A, reflecting synaptic density, and there is a positive correlation metabolic pattern related to the changes reflected by [18F]SynVesT-1 and [18F]FDG.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanru Wang
- Department of Nuclear Medicine, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Limin Xu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Xueling Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqing Hu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| | - Qing Ye
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Cui X, Pertile RAN, Raman V, Eyles D. Vitamin D differentiates dopamine neurons in vitro, increasing neurite architecture, dopamine release and expression of relevant synaptic proteins. J Steroid Biochem Mol Biol 2025; 247:106681. [PMID: 39884561 DOI: 10.1016/j.jsbmb.2025.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Epidemiological studies often link circulatory levels of 25 hydroxy vitamin D with an overwhelming variety of disorders. Of such studies, an increasing number are now linking blood 25 hydroxy vitamin D levels with certain brain disorders. Prominent amongst such disorders are schizophrenia and Parkinson's disease. The neurotransmitter dopamine is central to understanding the eitiology of both disorders with schizophrenia representing increased subcortical dopamine function and Parkinson's disease a disorder with the pathological hallmark of dopamine cellular pathology. Our group have established the epidemiology linking vitamin D deficiency in utero and later onset of schizophrenia. We have clarified many of the mechanisms behind how vitamin D effects dopamine neuron positioning, differentiation and survival. In this study we confirm vitamin D differentiates the dendritic architecture of dopamine neurons, that vitamin D may represent a requirement for drug-mediated dopamine release and that vitamin D may sculpt presynaptic proteins related to fast or phasic dopamine release.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia
| | | | - Vanshika Raman
- Queensland Brain Institute, University of Queensland, QLD 4072, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia.
| |
Collapse
|
4
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318996. [PMID: 39711693 PMCID: PMC11661345 DOI: 10.1101/2024.12.13.24318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10-8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes (e.g., TMEM175 and VPS13C), some of which are targeted in ongoing clinical trials (i.e., SNCA, LRRK2, and GBA1), we prioritized genes with a plausible mechanistic link to PD pathogenesis (e.g., RIT2, BAG3, and SCARB2). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD (i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD (XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.
Collapse
Affiliation(s)
- Lara M. Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University, Quebec City, Quebec, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
- Current address: Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
5
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Chang CH, Lim KL, Foo JN. Synaptic Vesicle Glycoprotein 2C: a role in Parkinson's disease. Front Cell Neurosci 2024; 18:1437144. [PMID: 39301216 PMCID: PMC11410587 DOI: 10.3389/fncel.2024.1437144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Synaptic Vesicle Glycoprotein 2C (SV2C), characterized by its selective expression in discrete brain regions such as the midbrain, has recently emerged as a promising player in Parkinson's Disease (PD) - a debilitating neurodegenerative disorder affecting millions worldwide. This review aims to consolidate our current understanding of SV2C's function, its involvement in PD pathogenesis, and to evaluate its potential as a therapeutic target. Integrating previous findings of SV2C, from genetics to molecular studies, and drawing on insights from the largest East Asian genome-wide association study that highlights SV2C as a novel risk factor for PD, we explore the potential pathways through which SV2C may influence the disease. Our discussion extends to the implications of SV2C's role in synaptic vesicle trafficking, neurotransmitter release, and α-synuclein homeostasis, thereby laying the groundwork for future investigations that could pave the way for novel therapeutic strategies in combating PD.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. Neurobiol Aging 2023; 131:182-195. [PMID: 37677864 PMCID: PMC10538380 DOI: 10.1016/j.neurobiolaging.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina L Duarte
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayra J Laverde-Paz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaina A Simon
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda T Miyares
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; JJ Vance Memorial Summer Internship in Biological and Computational Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Larry D Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina M Carney
- Mental Health & Behavioral Science Service, Bruce W. Carter VA Medical Center, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Tan Z, Lin Y, Zhou M, Guo W, Qiu J, Ding L, Wu Z, Xu P, Chen X. Correlation of SV2C rs1423099 single nucleotide polymorphism with sporadic Parkinson's disease in Han population in Southern China. Neurosci Lett 2023; 813:137426. [PMID: 37544580 DOI: 10.1016/j.neulet.2023.137426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The synaptic vesicle glycoprotein 2 (SV2) has been implicated in synaptic function throughout the brain. Accumulating evidence investigated that SV2C contributed to dopamine release and the disrupted expression of SV2C was considered to be a unique feature of PD that may facilitate dopaminergic neuron dysfunction. OBJECTIVE This study aimed to examine the relationship between the SV2C rs1423099 single nucleotide polymorphism and sporadic Parkinson's disease (PD) in the Chinese Han population. MATERIALS AND METHODS This study enrolled 351 patients with sporadic PD and 240 normal controls in Chinese Han population. Peripheral blood DNA was extracted by DNA extraction kits and the rs1423099 genotype was analyzed by Agena MassARRAY DNA mass spectrometry. The differences in genotype and allele distribution frequencies between PD patients and control groups were compared using chi-squared tests or Fisher's exact tests. RESULTS No statistical difference was revealed in age and sex distribution between the cases and control groups, and the distribution of genotype and allele frequencies was consistent with the Hardy-Weinberg equilibrium test. In SV2C rs1423099 dominant model, the frequency of the CC/CT genotype was significantly higher in the PD group compared to the control group (OR = 4.065,95% CI: 2.801-10.870, p = 0.002). Nevertheless, in the recessive model, CC or CT/TT genotypes have no statistical difference in the two groups (p = 0.09). Additionally, in allelic analysis, the C allele was investigated to increase the risk of PD (OR = 1.346, 95% CI: 1.036-1.745, p = 0.026); Furthermore, subgroup analysis suggested that those carrying the C allele in the male subgroup were at a higher risk to afflicted with PD (OR = 1.637, 95% CI: 1.147-2.336, p = 0.006). CONCLUSION SV2C rs1423099 single nucleotide polymorphism was associated with sporadic Parkinson's disease in the Chinese Han population, particularly in males.
Collapse
Affiliation(s)
- Zixin Tan
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaomiao Zhou
- Department of Neurology, Shanghai General Hospital, Shanghai 200940, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
9
|
Pertile RAN, Brigden R, Raman V, Cui X, Du Z, Eyles D. Vitamin D: A potent regulator of dopaminergic neuron differentiation and function. J Neurochem 2023; 166:779-789. [PMID: 37084159 DOI: 10.1111/jnc.15829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Vitamin D has been identified as a key factor in dopaminergic neurogenesis and differentiation. Consequently, developmental vitamin D (DVD) deficiency has been linked to disorders of abnormal dopamine signalling with a neurodevelopmental basis such as schizophrenia. Here we provide further evidence of vitamin D's role as a mediator of dopaminergic development by showing that it increases neurite outgrowth, neurite branching, presynaptic protein re-distribution, dopamine production and functional release in various in vitro models of developing dopaminergic cells including SH-SY5Y cells, primary mesencephalic cultures and mesencephalic/striatal explant co-cultures. This study continues to establish vitamin D as an important differentiation agent for developing dopamine neurons, and now for the first time shows chronic exposure to the active vitamin D hormone increases the capacity of developing neurons to release dopamine. This study also has implications for understanding mechanisms behind the link between DVD deficiency and schizophrenia.
Collapse
Affiliation(s)
| | - Rachel Brigden
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
| | - Vanshika Raman
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| | - Zilong Du
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| |
Collapse
|
10
|
Simoes Braga Boisserand L, Bouchart J, Geraldo LH, Lee S, Sanganahalli BG, Parent M, Zhang S, Xue Y, Skarica M, Guegan J, Li M, Liu X, Poulet M, Askanase M, Osherov A, Spajer M, Kamouh MRE, Eichmann A, Alitalo K, Zhou J, Sestan N, Sansing LH, Benveniste H, Hyder F, Thomas JL. VEGF-C promotes brain-derived fluid drainage, confers neuroprotection, and improves stroke outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542708. [PMID: 37398128 PMCID: PMC10312491 DOI: 10.1101/2023.05.30.542708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.
Collapse
|
11
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542316. [PMID: 37292815 PMCID: PMC10246004 DOI: 10.1101/2023.05.25.542316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
Collapse
|
12
|
Isingrini E, Guinaudie C, Perret L, Guma E, Gorgievski V, Blum ID, Colby-Milley J, Bairachnaya M, Mella S, Adamantidis A, Storch KF, Giros B. Behavioral and Transcriptomic Changes Following Brain-Specific Loss of Noradrenergic Transmission. Biomolecules 2023; 13:biom13030511. [PMID: 36979445 PMCID: PMC10046559 DOI: 10.3390/biom13030511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state, pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or a consequence of maladaptive orientations of these behaviors, many of which associated with psychiatric disorders. To address this question, we used a unique genetic model in which the brain-specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the dopamine β-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement (NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this model to identify genes that could be up- or down-regulated in the absence of NE release. We found an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening future direction to understand NE role in health and disease.
Collapse
Affiliation(s)
- Elsa Isingrini
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
| | - Chloé Guinaudie
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Léa Perret
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Elisa Guma
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Victor Gorgievski
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Ian D. Blum
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Jessica Colby-Milley
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Maryia Bairachnaya
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Sébastien Mella
- Cytometry and Biomarkers Platform, Unit of Technology and Service, Institut Pasteur, Université de Paris, F-75015 Paris, France
- Bioinformatics and Biostatistics Hub Platform, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Antoine Adamantidis
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Ng XY, Wu Y, Lin Y, Yaqoob SM, Greene LE, De Camilli P, Cao M. Mutations in Parkinsonism-linked endocytic proteins synaptojanin1 and auxilin have synergistic effects on dopaminergic axonal pathology. NPJ Parkinsons Dis 2023; 9:26. [PMID: 36792618 PMCID: PMC9932162 DOI: 10.1038/s41531-023-00465-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by defective dopaminergic (DAergic) input to the striatum. Mutations in two genes encoding synaptically enriched clathrin-uncoating factors, synaptojanin 1 (SJ1) and auxilin, have been implicated in atypical Parkinsonism. SJ1 knock-in (SJ1-KIRQ) mice carrying a disease-linked mutation display neurological manifestations reminiscent of Parkinsonism. Here we report that auxilin knockout (Aux-KO) mice display dystrophic changes of a subset of nigrostriatal DAergic terminals similar to those of SJ1-KIRQ mice. Furthermore, Aux-KO/SJ1-KIRQ double mutant mice have shorter lifespan and more severe synaptic defects than single mutant mice. These include increase in dystrophic striatal nerve terminals positive for DAergic markers and for the PD risk protein SV2C, as well as adaptive changes in striatal interneurons. The synergistic effect of the two mutations demonstrates a special lability of DAergic neurons to defects in clathrin uncoating, with implications for PD pathogenesis in at least some forms of this condition.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Yumei Wu
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Youneng Lin
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sidra Mohamed Yaqoob
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lois E Greene
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Olsen AL, Clemens SG, Feany MB. Nicotine-Mediated Rescue of α-Synuclein Toxicity Requires Synaptic Vesicle Glycoprotein 2 in Drosophila. Mov Disord 2023; 38:244-255. [PMID: 36416213 PMCID: PMC9974823 DOI: 10.1002/mds.29283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by α-synuclein aggregation and loss of dopamine neurons. Risk of PD arises due to a combination of genetic and environmental factors, which may interact, termed gene-environment (G×E) interactions. An inverse association between smoking and the risk of PD is well established, and a previous genome-wide G×E interaction study identified genetic variation in the synaptic-vesicle glycoprotein 2C (SV2C) locus as an important mediator of the degree to which smoking is inversely associated with PD. OBJECTIVE We sought to determine the mechanism of the smoking-SV2C interaction in a Drosophila model of PD. METHODS Flies expressing human α-synuclein in all neurons develop the hallmarks of PD, including motor dysfunction, loss of dopaminergic (DA) neurons, and formation of α-synuclein inclusions. We assessed the effects of increasing doses of nicotine on these parameters of neurodegeneration, in the presence or absence of knockdown of two Drosophila orthologues of SV2, hereafter referred to as SV2L1 and SV2L2. RESULTS The α-synuclein-expressing flies treated with nicotine had improved locomotion, DA neuron counts, and α-synuclein aggregation. However, in α-synuclein-expressing flies in which SV2L1 and SV2L2 were knocked down, nicotine failed to rescue neurodegeneration. CONCLUSIONS This work confirms a G×E interaction between nicotine and SV2, defines a role for this interaction in α-synuclein proteostasis, and suggests that future clinical trials on nicotine should consider genetic variation in SV2C. Furthermore, this provides proof of concept that our model can be used for the mechanistic study of G×E, paving the way for the investigation of additional G×E interactions or the identification of novel G×E. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Abby L. Olsen
- Brigham and Women’s Hospital, Department of Neurology
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | | | - Mel B. Feany
- Brigham and Women’s Hospital, Department of Pathology
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
15
|
Schümann F, Schmitt O, Wree A, Hawlitschka A. Distribution of Cleaved SNAP-25 in the Rat Brain, following Unilateral Injection of Botulinum Neurotoxin-A into the Striatum. Int J Mol Sci 2023; 24:1685. [PMID: 36675200 PMCID: PMC9865012 DOI: 10.3390/ijms24021685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
In Parkinson's disease, hypercholinism in the striatum occurs, with the consequence of disturbed motor functions. Direct application of Botulinum neurotoxin-A in the striatum of hemi-Parkinsonian rats might be a promising anticholinergic therapeutic option. Here, we aimed to determine the spread of intrastriatally injected BoNT-A in the brain as well as the duration of its action based on the distribution of cleaved SNAP-25. Rats were injected with 1 ng of BoNT-A into the right striatum and the brains were examined at different times up to one year after treatment. In brain sections immunohistochemically stained for BoNT-A, cleaved SNAP-25 area-specific densitometric analyses were performed. Increased immunoreactivity for cleaved SNAP-25 was found in brain regions other than the unilaterally injected striatum. Most cleaved SNAP-25-ir was found in widespread areas ipsilateral to the BoNT-A injection, in some regions, however, immunoreactivity was also measured in the contralateral hemisphere. There was a linear relationship between the distance of a special area from the injected striatum and the time until its maximum averaged immunoreactivity was reached. Moreover, we observed a positive relationship for the area-specific distance from the injected striatum and its maximum immunoreactivity as well as for the connection density with the striatum and its maximum immunoreactivity. The results speak for a bidirectional axonal transport of BoNT-A after its application into the striatum to its widespread connected parts of the brain. Even one year after BoNT-A injection, cleaved SNAP-25 could still be detected.
Collapse
Affiliation(s)
- Friederike Schümann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
- Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| |
Collapse
|
16
|
Dickson E, Dwijesha AS, Andersson N, Lundh S, Björkqvist M, Petersén Å, Soylu-Kucharz R. Microarray profiling of hypothalamic gene expression changes in Huntington's disease mouse models. Front Neurosci 2022; 16:1027269. [PMID: 36408416 PMCID: PMC9671106 DOI: 10.3389/fnins.2022.1027269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 09/11/2024] Open
Abstract
Structural changes and neuropathology in the hypothalamus have been suggested to contribute to the non-motor manifestations of Huntington's disease (HD), a neurodegenerative disorder caused by an expanded cytosine-adenine-guanine (CAG) repeat in the huntingtin (HTT) gene. In this study, we investigated whether hypothalamic HTT expression causes transcriptional changes. Hypothalamic RNA was isolated from two different HD mouse models and their littermate controls; BACHD mice with ubiquitous expression of full-length mutant HTT (mHTT) and wild-type mice with targeted hypothalamic overexpression of either wild-type HTT (wtHTT) or mHTT fragments. The mHTT and wtHTT groups showed the highest number of differentially expressed genes compared to the BACHD mouse model. Gene Set Enrichment Analysis (GSEA) with leading-edge analysis showed that suppressed sterol- and cholesterol metabolism were shared between hypothalamic wtHTT and mHTT overexpression. Most distinctive for mHTT overexpression was the suppression of neuroendocrine networks, in which qRT-PCR validation confirmed significant downregulation of neuropeptides with roles in feeding behavior; hypocretin neuropeptide precursor (Hcrt), tachykinin receptor 3 (Tacr3), cocaine and amphetamine-regulated transcript (Cart) and catecholamine-related biological processes; dopa decarboxylase (Ddc), histidine decarboxylase (Hdc), tyrosine hydroxylase (Th), and vasoactive intestinal peptide (Vip). In BACHD mice, few hypothalamic genes were differentially expressed compared to age-matched WT controls. However, GSEA indicated an enrichment of inflammatory- and gonadotropin-related processes at 10 months. In conclusion, we show that both wtHTT and mHTT overexpression change hypothalamic transcriptome profile, specifically mHTT, altering neuroendocrine circuits. In contrast, the ubiquitous expression of full-length mHTT in the BACHD hypothalamus moderately affects the transcriptomic profile.
Collapse
Affiliation(s)
- Elna Dickson
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amoolya Sai Dwijesha
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Natalie Andersson
- Pathways of Cancer Cell Evolution, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sofia Lundh
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maria Björkqvist
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu-Kucharz
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Castro PA, Pinto-Borguero I, Yévenes GE, Moraga-Cid G, Fuentealba J. Antiseizure medication in early nervous system development. Ion channels and synaptic proteins as principal targets. Front Pharmacol 2022; 13:948412. [PMID: 36313347 PMCID: PMC9614143 DOI: 10.3389/fphar.2022.948412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The main strategy for the treatment of epilepsy is the use of pharmacological agents known as antiseizure medication (ASM). These drugs control the seizure onset and improves the life expectancy and quality of life of patients. Several ASMs are contraindicated during pregnancy, due to a potential teratogen risk. For this reason, the pharmacological treatments of the pregnant Women with Epilepsy (WWE) need comprehensive analyses to reduce fetal risk during the first trimester of pregnancy. The mechanisms by which ASM are teratogens are still under study and scientists in the field, propose different hypotheses. One of them, which will be addressed in this review, corresponds to the potential alteration of ASM on ion channels and proteins involved in relevant signaling and cellular responses (i.e., migration, differentiation) during embryonic development. The actual information related to the action of ASM and its possible targets it is poorly understood. In this review, we will focus on describing the eventual presence of some ion channels and synaptic proteins of the neurotransmitter signaling pathways present during early neural development, which could potentially interacting as targets of ASM. This information leads to elucidate whether these drugs would have the ability to affect critical signaling during periods of neural development that in turn could explain the fetal malformations observed by the use of ASM during pregnancy.
Collapse
Affiliation(s)
- Patricio A. Castro
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Patricio A. Castro,
| | - Ingrid Pinto-Borguero
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
18
|
Li X, Wang Q, Zhang D, Wu D, Liu N, Chen T. Effects of long-term administration of Q808 on hippocampal transcriptome in healthy rats. Chem Pharm Bull (Tokyo) 2022; 70:642-649. [PMID: 35831127 DOI: 10.1248/cpb.c22-00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epilepsy treatment with antiepileptic drugs (AEDs) is usually requires for many years. Q808 is an innovative antiepileptic chemical. It exerts effective antiepileptic effect against various epilepsy models. Exploring the gene transcriptomic profile of long-term treatment of Q808 is necessary. In the present study, hippocampus RNA-sequencing was performed to reveal the transcriptome profile of rats before and after treatment of Q808 for 28 days. Results confirmed 51 differentially expressed genes (DEGs) between Q808 and healthy control groups. Gene cluster analysis showed that most upregulated DEGs linked to response to drug and nucleus, most downregulated DEGs linked to locomotory, neuronal cell body, and drug binding. Most of DEGs were enriched in the signaling transduction, substance dependence, nervous system, and neurodegenerative disease pathways. Furthermore, quantitative real-time PCR analysis confirmed that Q808 significantly increased the expression of neuroprotective genes, such as Mdk, and decreased the mRNA levels of Penk, Drd1, and Adora2a, which are highly expressed in epilepsy models. In addition, Q808 decreased the mRNA expression of Pde10A and Drd2, which are known to be closely associated with schizophrenia. Our study may provide a theoretical basis to explore the effect of Q808 on the susceptibility to epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University
| | - Qing Wang
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Dianwen Zhang
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Di Wu
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Ning Liu
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Tianli Chen
- School of Pharmacy, Changchun University of Chinese Medicine
| |
Collapse
|
19
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Pazarlar BA, Aripaka SS, Petukhov V, Pinborg L, Khodosevich K, Mikkelsen JD. Expression profile of synaptic vesicle glycoprotein 2A, B, and C paralogues in temporal neocortex tissue from patients with temporal lobe epilepsy (TLE). Mol Brain 2022; 15:45. [PMID: 35578248 PMCID: PMC9109314 DOI: 10.1186/s13041-022-00931-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSynaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known. We have here analyzed the expression of SV2 genes in neuronal subtypes in the temporal neocortex in selected specimens by using single nucleus-RNA sequencing, and performed quantitative PCR in populations of temporal lobe epilepsy (TLE) patients and healthy controls. [3H]-UCB-J autoradiography was performed to analyze the correlation between the mRNA transcript and binding capacity to SV2A. Our data showed that the SV2A transcript is expressed in all glutamatergic and GABAergic cortical subtypes, while SV2B expression is restricted to only the glutamatergic neurons and SV2C has very limited expression in a small subgroup of GABAergic interneurons. The level of [3H]-UCB-J binding and the concentration of SV2A mRNA is strongly correlated in each patient, and the expression is lower in the TLE patients. There is no relationship between SV2A expression and age, sex, seizure frequency, duration of epilepsy, or whether patients were recently treated with levetiracetam or not. Collectively, these findings point out a neuronal subtype-specific distribution of the expression of the three SV2 genes, and the lower levels of both radioligand binding and expression further emphasize the significance of these proteins in this disease.
Collapse
|
21
|
Kim HR, Jung Y, Shin J, Park M, Kweon DH, Ban C. Neuron-recognizable characteristics of peptides recombined using a neuronal binding domain of botulinum neurotoxin. Sci Rep 2022; 12:4980. [PMID: 35322139 PMCID: PMC8943039 DOI: 10.1038/s41598-022-09145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC297 BoNT/A1, referred to EGFP-A2' and EGFP-RBD', exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBD' to SV2C-LD was determined to be 5.45 μM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2', respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBD' to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2', respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBD'. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.
Collapse
Affiliation(s)
- Hye Rin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jonghyeok Shin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Myungseo Park
- Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Biologics Research Center, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Interdisciplinary Program in BioCosmetics, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
22
|
Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res 2021; 16:1730-1739. [PMID: 33510062 PMCID: PMC8328771 DOI: 10.4103/1673-5374.306066] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is one of the most debilitating brain diseases. Despite the availability of symptomatic treatments, response towards the health of PD patients remains scarce. To fulfil the medical needs of the PD patients, an efficacious and etiological treatment is required. In this review, we have compiled the information covering limitations of current therapeutic options in PD, novel drug targets for PD, and finally, the role of some critical beneficial natural products to control the progression of PD.
Collapse
Affiliation(s)
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ritu Varshney
- Department of Bioengineering and Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - M. P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Lekholm E, Ceder MM, Forsberg EC, Schiöth HB, Fredriksson R. Differentiation of two human neuroblastoma cell lines alters SV2 expression patterns. Cell Mol Biol Lett 2021; 26:5. [PMID: 33588752 PMCID: PMC7885392 DOI: 10.1186/s11658-020-00243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The synaptic vesicle glycoprotein 2 (SV2) family is essential to the synaptic machinery involved in neurotransmission and vesicle recycling. The isoforms SV2A, SV2B and SV2C are implicated in neurological diseases such as epilepsy, Alzheimer's and Parkinson's disease. Suitable cell systems for studying regulation of these proteins are essential. Here we present gene expression data of SV2A, SV2B and SV2C in two human neuroblastoma cell lines after differentiation. METHODS Human neuroblastoma cell lines SiMa and IMR-32 were treated for seven days with growth supplements (B-27 and N-2), all-trans-retinoic acid (ATRA) or vasoactive intestinal peptide (VIP) and gene expression levels of SV2 and neuronal targets were analyzed. RESULTS The two cell lines reacted differently to the treatments, and only one of the three SV2 isoforms was affected at a time. SV2B and choline O-acetyltransferase (CHAT) expression was changed in concert after growth supplement treatment, decreasing in SiMa cells while increasing in IMR-32. ATRA treatment resulted in no detected changes in SV2 expression in either cell line while VIP increased both SV2C and dopamine transporter (DAT) in IMR-32 cells. CONCLUSION The synergistic expression patterns between SV2B and CHAT as well as between SV2C and DAT mirror the connectivity between these targets found in disease models and knock-out animals, although here no genetic alteration was made. These cell lines and differentiation treatments could possibly be used to study SV2 regulation and function.
Collapse
Affiliation(s)
- Emilia Lekholm
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erica C Forsberg
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Foo JN, Chew EGY, Chung SJ, Peng R, Blauwendraat C, Nalls MA, Mok KY, Satake W, Toda T, Chao Y, Tan LCS, Tandiono M, Lian MM, Ng EY, Prakash KM, Au WL, Meah WY, Mok SQ, Annuar AA, Chan AYY, Chen L, Chen Y, Jeon BS, Jiang L, Lim JL, Lin JJ, Liu C, Mao C, Mok V, Pei Z, Shang HF, Shi CH, Song K, Tan AH, Wu YR, Xu YM, Xu R, Yan Y, Yang J, Zhang B, Koh WP, Lim SY, Khor CC, Liu J, Tan EK. Identification of Risk Loci for Parkinson Disease in Asians and Comparison of Risk Between Asians and Europeans: A Genome-Wide Association Study. JAMA Neurol 2020; 77:746-754. [PMID: 32310270 PMCID: PMC7171584 DOI: 10.1001/jamaneurol.2020.0428] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023]
Abstract
Importance Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian). Objectives To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts. Design Setting, and Participants Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria. Main Outcomes and Measures Genotypes of common variants, association with disease status, and polygenic risk scores. Results Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12). Conclusions and Relevance This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.
Collapse
Affiliation(s)
- Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
- Data Tecnica International LLC, Glen Echo, Maryland
| | - Kin Y. Mok
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Wataru Satake
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Yinxia Chao
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Louis C. S. Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michelle M. Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Ebonne Y. Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Kumar-M. Prakash
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee-Yang Meah
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Shi Qi Mok
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anne Y. Y. Chan
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, PR China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Beom S. Jeon
- Department of Neurology, Seoul National University Hospital, Jongno-gu, Seoul, South Korea
| | - Lulu Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Zhushan District, Nantou, Taiwan
| | - Chunfeng Liu
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Chengjie Mao
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Vincent Mok
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, PR China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ai Huey Tan
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Yu-ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yaping Yan
- Second Affiliated Hospital, Department of Neurology, Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - BaoRong Zhang
- Second Affiliated Hospital, Department of Neurology, Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Woon-Puay Koh
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shen-Yang Lim
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
25
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
26
|
Wood M, Daniels V, Provins L, Wolff C, Kaminski RM, Gillard M. Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Interactions with Synaptic Vesicle 2 Proteins and the GABA A Receptor. J Pharmacol Exp Ther 2020; 372:1-10. [PMID: 31619465 DOI: 10.1124/jpet.119.261149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 03/08/2025] Open
Abstract
Padsevonil is an antiepileptic drug (AED) candidate synthesized in a medicinal chemistry program initiated to rationally design compounds with high affinity for synaptic vesicle 2 (SV2) proteins and low-to-moderate affinity for the benzodiazepine binding site on GABAA receptors. The pharmacological profile of padsevonil was characterized in binding and electrophysiological experiments. At recombinant SV2 proteins, padsevonil's affinity for SV2A was greater than that of levetiracetam and brivaracetam (pKi 8.5, 5.2, and 6.6, respectively). Unlike the latter AEDs, both selective SV2A ligands, padsevonil also displayed high affinity for the SV2B and SV2C isoforms (pKi 7.9 and 8.5, respectively). Padsevonil's interaction with SV2A differed from that of levetiracetam and brivaracetam; it exhibited slower binding kinetics: dissociation t 1/2 30 minutes from the human protein at 37°C compared with <0.5 minute for levetiracetam and brivaracetam. In addition, its binding was not potentiated by the allosteric modulator UCB1244283. At recombinant GABAA receptors, padsevonil displayed low to moderate affinity (pIC50≤6.1) for the benzodiazepine site, and in electrophysiological studies, its relative efficacy compared with zolpidem (full-agonist reference drug) was 40%, indicating partial agonist properties. In in vivo (mice) receptor occupancy studies, padsevonil exhibited SV2A occupancy at low ED50 (0.2 mg/kg) and benzodiazepine site occupancy at higher doses (ED50 36 mg/kg), supporting in vitro results. Padsevonil's selectivity for its intended targets was confirmed in profiling studies, where it lacked significant effects on a wide variety of ion channels, receptors, transporters, and enzymes. Padsevonil is a first-in-class AED candidate with a unique target profile allowing for presynaptic and postsynaptic activity. SIGNIFICANCE STATEMENT: Padsevonil is an antiepileptic drug candidate developed as a single molecular entity interacting with both presynaptic and postsynaptic targets. Results of in vitro and in vivo radioligand binding assays confirmed this target profile: padsevonil displayed nanomolar affinity for the three synaptic vesicle 2 protein isoforms (SV2A, B, and C) and micromolar affinity for the benzodiazepine binding site on GABAA receptors. Furthermore, padsevonil showed greater affinity for and slower binding kinetics at SV2A than the selective SV2A ligands, levetiracetam, and brivaracetam.
Collapse
Affiliation(s)
- Martyn Wood
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Veronique Daniels
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Laurent Provins
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Rafal M Kaminski
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Michel Gillard
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| |
Collapse
|
27
|
Stout K, Dunn A, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 PMCID: PMC11562936 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen Stout
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Amy Dunn
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States
| |
Collapse
|
28
|
Evaluating the In Vivo Specificity of [ 18F]UCB-H for the SV2A Protein, Compared with SV2B and SV2C in Rats Using microPET. Molecules 2019; 24:molecules24091705. [PMID: 31052478 PMCID: PMC6538996 DOI: 10.3390/molecules24091705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/25/2022] Open
Abstract
The synaptic vesicle protein 2 (SV2) is involved in synaptic vesicle trafficking. The SV2A isoform is the most studied and its implication in epilepsy therapy led to the development of the first SV2A PET radiotracer [18F]UCB-H. The objective of this study was to evaluate in vivo, using microPET in rats, the specificity of [18F]UCB-H for SV2 isoform A in comparison with the other two isoforms (B and C) through a blocking assay. Twenty Sprague Dawley rats were pre-treated either with the vehicle, or with specific competitors against SV2A (levetiracetam), SV2B (UCB5203) and SV2C (UCB0949). The distribution volume (Vt, Logan plot, t* 15 min) was obtained with a population-based input function. The Vt analysis for the entire brain showed statistically significant differences between the levetiracetam group and the other groups (p < 0.001), but also between the vehicle and the SV2B group (p < 0.05). An in-depth Vt analysis conducted for eight relevant brain structures confirmed the statistically significant differences between the levetiracetam group and the other groups (p < 0.001) and highlighted the superior and the inferior colliculi along with the cortex as regions also displaying statistically significant differences between the vehicle and SV2B groups (p < 0.05). These results emphasize the in vivo specificity of [18F]UCB-H for SV2A against SV2B and SV2C, confirming that [18F]UCB-H is a suitable radiotracer for in vivo imaging of the SV2A proteins with PET.
Collapse
|
29
|
Antipova V, Wree A, Holzmann C, Mann T, Palomero-Gallagher N, Zilles K, Schmitt O, Hawlitschka A. Unilateral Botulinum Neurotoxin-A Injection into the Striatum of C57BL/6 Mice Leads to a Different Motor Behavior Compared with Rats. Toxins (Basel) 2018; 10:E295. [PMID: 30018211 PMCID: PMC6070800 DOI: 10.3390/toxins10070295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/26/2022] Open
Abstract
Different morphological changes in the caudate-putamen (CPu) of naïve rats and mice were observed after intrastriatal botulinum neurotoxin-A (BoNT-A) injection. For this purpose we here studied various motor behaviors in mice (n = 46) longitudinally up to 9 months after intrastriatal BoNT-A administration as previously reported for rats, and compared both outcomes. Apomorphine- and amphetamine-induced rotational behavior, spontaneous motor behavior, as well as lateralized neglect were studied in mice after the injection of single doses of BoNT-A into the right CPu, comparing them with sham-injected animals. Unilateral intrastriatal injection of BoNT-A in mice induced significantly increased contralateral apomorphine-induced rotations for 1 to 3 months, as well as significantly increased contralateral amphetamine-induced rotations 1 to 9 months after injection. In rats (n = 28), unilateral BoNT-A injection also induced significantly increased contralateral apomorphine-induced rotations 3 months after injection, but did not provoke amphetamine-induced rotations at all. Lateralized sensorimotor integration, forelimb preference, and forelimb stepping were significantly impaired on the left side. The differences in motor behaviors between rats and mice may be caused by different BoNT-A effects on cholinergic and catecholaminergic fibers in rat and mouse striata, interspecies differences in striatal receptor densities, and different connectomes of the basal ganglia.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21/1, A-8010 Graz, Austria.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Ernst-Heydemann-Strasse 8, D-18057 Rostock, Germany.
| | - Teresa Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, D-52062 Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, D-52062 Aachen, Germany.
- JARA-Translational Brain Medicine, D-52062 Aachen, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| |
Collapse
|
30
|
Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. Neurosci Bull 2018; 34:747-758. [PMID: 29713895 DOI: 10.1007/s12264-018-0230-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.
Collapse
|
31
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
32
|
Rai SN, Birla H, Zahra W, Sen Singh S, Singh SP. Commentary: Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Front Synaptic Neurosci 2018; 9:18. [PMID: 29354047 PMCID: PMC5758556 DOI: 10.3389/fnsyn.2017.00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sachchida Nand Rai
- Research Scholar, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Hareram Birla
- Research Scholar, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Walia Zahra
- Research Scholar, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saumitra Sen Singh
- Research Scholar, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surya Pratap Singh
- Research Scholar, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Dunn AR, Hoffman CA, Stout KA, Ozawa M, Dhamsania RK, Miller GW. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res 2017; 1702:85-95. [PMID: 29274878 DOI: 10.1016/j.brainres.2017.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
The synaptic vesicle glycoprotein 2C (SV2C) is an undercharacterized protein with enriched expression in phylogenetically old brain regions. Its precise role within the brain is unclear, though various lines of evidence suggest that SV2C is involved in the function of synaptic vesicles through the regulation of vesicular trafficking, calcium-induced exocytosis, or synaptotagmin function. SV2C has been linked to multiple neurological disorders, including Parkinson's disease and psychiatric conditions. SV2C is expressed in various cell types-primarily dopaminergic, GABAergic, and cholinergic cells. In mice, it is most highly expressed in nuclei within the basal ganglia, though it is unknown if this pattern of expression is consistent across species. Here, we use a custom SV2C-specific antiserum to describe localization within the brain of mouse, nonhuman primate, and human, including cell-type localization. We found that the immunoreactivity with this antiserum is consistent with previously-published antibodies, and confirmed localization of SV2C in the basal ganglia of rodent, rhesus macaque, and human. We observed strongest expression of SV2C in the substantia nigra, ventral tegmental area, dorsal striatum, pallidum, and nucleus accumbens of each species. Further, we demonstrate colocalization between SV2C and markers of dopaminergic, GABAergic, and cholinergic neurons within these brain regions. SV2C has been increasingly linked to dopamine and basal ganglia function. These antisera will be an important resource moving forward in our understanding of the role of SV2C in vesicle dynamics and neurological disease.
Collapse
Affiliation(s)
- Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Carlie A Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Minagi Ozawa
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Rohan K Dhamsania
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
34
|
Hawlitschka A, Holzmann C, Witt S, Spiewok J, Neumann AM, Schmitt O, Wree A, Antipova V. Intrastriatally injected botulinum neurotoxin-A differently effects cholinergic and dopaminergic fibers in C57BL/6 mice. Brain Res 2017; 1676:46-56. [DOI: 10.1016/j.brainres.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/10/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022]
|
35
|
Schmitt M, Dehay B, Bezard E, Garcia-Ladona FJ. U18666A, an activator of sterol regulatory element binding protein pathway, modulates presynaptic dopaminergic phenotype of SH-SY5Y neuroblastoma cells. Synapse 2017; 71. [DOI: 10.1002/syn.21980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mathieu Schmitt
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - F. Javier Garcia-Ladona
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
| |
Collapse
|
36
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
37
|
Yao G, Lam KH, Perry K, Weisemann J, Rummel A, Jin R. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H. Toxins (Basel) 2017; 9:toxins9030093. [PMID: 28282873 PMCID: PMC5371848 DOI: 10.3390/toxins9030093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 01/02/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (HC) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.
Collapse
Affiliation(s)
- Guorui Yao
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA.
| | - Kwok-Ho Lam
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA.
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA.
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Rongsheng Jin
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A 2017; 114:E2253-E2262. [PMID: 28246328 PMCID: PMC5358362 DOI: 10.1073/pnas.1616892114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Here we describe a role for the synaptic vesicle glycoprotein 2C (SV2C) in dopamine neurotransmission and Parkinson disease (PD). SV2C is expressed on the vesicles of dopamine-producing neurons, and genetic deletion of SV2C causes a reduction in synaptic release of dopamine. The reduced dopamine release is associated with a decrease in motor activity. SV2C is suspected of mediating the neuroprotective effects of nicotine, and we show an ablated neurochemical response to nicotine in SV2C-knockout mice. Last, we demonstrate that SV2C expression is specifically disrupted in mice that express mutated α-synuclein and in humans with PD. Together, these data establish SV2C as an important mediator of dopamine homeostasis and a potential contributor to PD pathogenesis. Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.
Collapse
|
39
|
Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016; 30:1055-1077. [PMID: 27752944 PMCID: PMC5078162 DOI: 10.1007/s40263-016-0384-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synaptic vesicle glycoprotein SV2A belongs to the major facilitator superfamily (MFS) of transporters and is an integral constituent of synaptic vesicle membranes. SV2A has been demonstrated to be involved in vesicle trafficking and exocytosis, processes crucial for neurotransmission. The anti-seizure drug levetiracetam was the first ligand to target SV2A and displays a broad spectrum of anti-seizure activity in various preclinical models. Several lines of preclinical and clinical evidence, including genetics and protein expression changes, support an important role of SV2A in epilepsy pathophysiology. While the functional consequences of SV2A ligand binding are not fully elucidated, studies suggest that subsequent SV2A conformational changes may contribute to seizure protection. Conversely, the recently discovered negative SV2A modulators, such as UCB0255, counteract the anti-seizure effect of levetiracetam and display procognitive properties in preclinical models. More broadly, dysfunction of SV2A may also be involved in Alzheimer's disease and other types of cognitive impairment, suggesting potential novel therapies for levetiracetam and its congeners. Furthermore, emerging data indicate that there may be important roles for two other SV2 isoforms (SV2B and SV2C) in the pathogenesis of epilepsy, as well as other neurodegenerative diseases. Utilization of recently developed SV2A positron emission tomography ligands will strengthen and reinforce the pharmacological evidence that SV2A is a druggable target, and will provide a better understanding of its role in epilepsy and other neurological diseases, aiding in further defining the full therapeutic potential of SV2A modulation.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| | | | | | | | | |
Collapse
|
40
|
Altmann V, Schumacher-Schuh AF, Rieck M, Callegari-Jacques SM, Rieder CRM, Hutz MH. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson's disease. Pharmacogenomics 2016; 17:481-8. [PMID: 27019953 DOI: 10.2217/pgs.15.183] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM Levodopa is first-line treatment of Parkinson's disease motor symptoms but, dose response is highly variable. Therefore, the aim of this study was to determine how much levodopa dose could be explained by biological, pharmacological and genetic factors. PATIENTS & METHODS A total of 224 Parkinson's disease patients were genotyped for SV2C and SLC6A3 polymorphisms by allelic discrimination assays. Comedication, demographic and clinical data were also assessed. RESULTS All variables with p < 0.20 were included in a multiple regression analysis for dose prediction. The final model explained 23% of dose variation (F = 11.54; p < 0.000001). CONCLUSION Although a good prediction model was obtained, it still needs to be tested in an independent sample to be validated.
Collapse
Affiliation(s)
- Vivian Altmann
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Mariana Rieck
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Carlos R M Rieder
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Schmitt M, Dehay B, Bezard E, Garcia-Ladona FJ. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse 2016; 70:71-86. [DOI: 10.1002/syn.21881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/12/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Mathieu Schmitt
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine L'alleud Belgium
- University De Bordeaux, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
- CNRS, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
| | - Benjamin Dehay
- University De Bordeaux, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
- CNRS, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
| | - Erwan Bezard
- University De Bordeaux, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
- CNRS, Institut Des Maladies Neurodégénératives; UMR 5293 Bordeaux 33000 France
| | - F. Javier Garcia-Ladona
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine L'alleud Belgium
| |
Collapse
|
42
|
Crèvecœur J, Kaminski RM, Rogister B, Foerch P, Vandenplas C, Neveux M, Mazzuferi M, Kroonen J, Poulet C, Martin D, Sadzot B, Rikir E, Klitgaard H, Moonen G, Deprez M. Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocampal sclerosis. Neuropathol Appl Neurobiol 2014; 40:191-204. [DOI: 10.1111/nan.12054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- J. Crèvecœur
- Laboratory of Neuropathology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
| | | | - B. Rogister
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Development; Stem Cells and Regenerative Medicine; University of Liege; Liege Belgium
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - P. Foerch
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | | | - M. Neveux
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - M. Mazzuferi
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - J. Kroonen
- Unit of Human Genetics; GIGA Research Center; University of Liege; Liege Belgium
| | - C. Poulet
- Unit of Human Genetics; GIGA Research Center; University of Liege; Liege Belgium
| | - D. Martin
- Department of Neurosurgery; CHU; University of Liege; Liege Belgium
| | - B. Sadzot
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - E. Rikir
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - H. Klitgaard
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - G. Moonen
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - M. Deprez
- Laboratory of Neuropathology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
| |
Collapse
|
43
|
Hill-Burns EM, Singh N, Ganguly P, Hamza TH, Montimurro J, Kay DM, Yearout D, Sheehan P, Frodey K, Mclear JA, Feany MB, Hanes SD, Wolfgang WJ, Zabetian CP, Factor SA, Payami H. A genetic basis for the variable effect of smoking/nicotine on Parkinson's disease. THE PHARMACOGENOMICS JOURNAL 2013; 13:530-7. [PMID: 23032990 PMCID: PMC3538110 DOI: 10.1038/tpj.2012.38] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
Abstract
Prior studies have established an inverse association between cigarette smoking and the risk of developing Parkinson's disease (PD), and currently, the disease-modifying potential of the nicotine patch is being tested in clinical trials. To identify genes that interact with the effect of smoking/nicotine, we conducted genome-wide interaction studies in humans and in Drosophila. We identified SV2C, which encodes a synaptic-vesicle protein in PD-vulnerable substantia nigra (P=1 × 10(-7) for gene-smoking interaction on PD risk), and CG14691, which is predicted to encode a synaptic-vesicle protein in Drosophila (P=2 × 10(-11) for nicotine-paraquat interaction on gene expression). SV2C is biologically plausible because nicotine enhances the release of dopamine through synaptic vesicles, and PD is caused by the depletion of dopamine. Effect of smoking on PD varied by SV2C genotype from protective to neutral to harmful (P=5 × 10(-10)). Taken together, cross-validating evidence from humans and Drosophila suggests SV2C is involved in PD pathogenesis and it might be a useful marker for pharmacogenomics studies involving nicotine.
Collapse
Affiliation(s)
- Erin M. Hill-Burns
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Navjot Singh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Prabarna Ganguly
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Taye H. Hamza
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jennifer Montimurro
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Dora Yearout
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - Patricia Sheehan
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kevin Frodey
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Julie A. Mclear
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven D. Hanes
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Division of Infectious Disease Wadsworth Center, New York State Department of Health, Albany, NY, United States, USA
- Department of Biomedical Science, School of Public Health, State University of New York, Albany, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY, USA
| | - William J. Wolfgang
- Division of Infectious Disease Wadsworth Center, New York State Department of Health, Albany, NY, United States, USA
- Department of Biomedical Science, School of Public Health, State University of New York, Albany, NY, USA
| | - Cyrus P. Zabetian
- VA Puget Sound Health Care System and Department of Neurology, University of Washington, Seattle, WA, USA
| | - Stewart A. Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydeh Payami
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Science, School of Public Health, State University of New York, Albany, NY, USA
| |
Collapse
|
44
|
Ramsey TL, Liu Q, Massey BW, Brennan MD. Genotypic variation in the SV2C gene impacts response to atypical antipsychotics the CATIE study. Schizophr Res 2013; 149:21-5. [PMID: 23886675 PMCID: PMC3845218 DOI: 10.1016/j.schres.2013.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/27/2022]
Abstract
Pharmacogenetic (PGx) predictors of response would improve outcomes in antipsychotic treatment. Based on both biological rationale and prior evidence of an impact on Parkinson's disease, we conducted an association study for 106 SNPs in the synaptic vesicle protein 2C (SV2C) gene using genetic and treatment response data from the Clinical Trial of Antipsychotic Intervention Effectiveness (CATIE). We examined response to the atypical antipsychotics for Caucasian subjects in the blinded phases, Phases 1A, 1B, and 2, of CATIE with sample sizes as follows: olanzapine (N=134), quetiapine (N=124), risperidone (N=134), and ziprasidone (N=74). Response was defined as change in the Positive and Negative Syndrome Scale (PANSS) score using a mixed model repeat measures approach. Subjects homozygous for the T allele of rs11960832 displayed significantly worse response to olanzapine treatment, the only finding with study-wide significance (p=2.94×10(-5); false discovery rate=2.18×10(-2)). These subjects also displayed worse response to quetiapine with nominal significance (p=4.56×10(-2)). While no other SNP achieved study-wide significance, one SNP (rs10214163) influencing Parkinson's disease displayed nominally significant association with olanzapine and quetiapine response, while the second such SNP (rs30196) showed a statistical trend toward correlating with olanzapine and quetiapine response. Furthermore, both coding SNPs examined (rs31244 and rs2270927) displayed nominally significant correlations with treatment response: one for olanzapine (rs227092), and one for quetiapine (rs31244). The fact that multiple SNPs in SV2C may impact response to atypical antipsychotics suggests that further evaluation of SNPs in this gene as PGx predictors of antipsychotic response is warranted.
Collapse
Affiliation(s)
- Timothy L. Ramsey
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States
| | - Qian Liu
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States
| | - Bill W. Massey
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States
| | - Mark D. Brennan
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States,Communicating author, Mark D. Brennan, SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States, , Phone: 502-287-0899, Fax: 859-663-2984
| |
Collapse
|
45
|
Crèvecœur J, Foerch P, Doupagne M, Thielen C, Vandenplas C, Moonen G, Deprez M, Rogister B. Expression of SV2 isoforms during rodent brain development. BMC Neurosci 2013; 14:87. [PMID: 23937191 PMCID: PMC3765414 DOI: 10.1186/1471-2202-14-87] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Background SV2A, SV2B and SV2C are synaptic vesicle proteins that are structurally related to members of the major facilitator superfamily (MFS). The function and transported substrate of the SV2 proteins is not clearly defined although they are linked to neurotransmitters release in a presynaptic calcium concentration-dependent manner. SV2A and SV2B exhibit broad expression in the central nervous system while SV2C appears to be more restricted in defined areas such as striatum. SV2A knockout mice start to display generalized seizures at a late developmental stage, around post-natal day 7 (P7), and die around P15. More recently, SV2A was demonstrated to be the molecular target of levetiracetam, an approved anti-epileptic drug (AED). The purpose of this work was to precisely analyze and quantify the SV2A, SV2B and SV2C expression during brain development to understand the contribution of these proteins in brain development and their impact on epileptic seizures. Results First, we systematically analyzed by immunohistofluorescence, the SV2A, SV2B and SV2C expression during mouse brain development, from embryonic day 12 (E12) to P30. This semi-quantitative approach suggests a modulation of SV2A and SV2B expression in hippocampus around P7. This is the reason why we used various quantitative approaches (laser microdissection of whole hippocampus followed by qRT-PCR and western blot analysis) indicating that SV2A and SV2B expression increased between P5 and P7 and remained stable between P7 and P10. Moreover, the increase of SV2A expression in the hippocampus at P7 was mainly observed in the CA1 region while SV2B expression in this region remains stable. Conclusions The observed alterations of SV2A expression in hippocampus are consistent with the appearance of seizures in SV2A−/− animals at early postnatal age and the hypothesis that SV2A absence favors epileptic seizures around P7.
Collapse
Affiliation(s)
- Julie Crèvecœur
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, Sart Tilman Liege B-4000, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dardou D, Monlezun S, Foerch P, Courade JP, Cuvelier L, De Ryck M, Schiffmann SN. A role for Sv2c in basal ganglia functions. Brain Res 2013; 1507:61-73. [PMID: 23458503 DOI: 10.1016/j.brainres.2013.02.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/21/2022]
Abstract
SV2C is an isoform of the synaptic vesicle 2 protein family that exhibits a particular pattern of brain expression with enriched expression in several basal ganglia nuclei. In the present study, we have investigated SV2C implication in both normal and pathological basal ganglia functioning with a peculiar attention to dopamine neuron containing regions. In SV2C-/- mice, the expression of tyrosine hydroxylase mRNA in midbrain dopaminergic neurons was largely and significantly increased and enkephalin mRNA expression was significantly decreased in the caudate-putamen and accumbens nucleus. The expression of SV2C was studied in two models of dopaminergic denervation (6-OHDA- and MPTP-induced lesions). In dopamine-depleted animals, SV2C mRNA expression was significant increased in the striatum. In order to further understand the role of SV2C, we performed behavioral experiments on SV2C-/- mice and on knock-down mice receiving an injection of adeno-associated virus expressing SV2C miRNA specifically in the ventral midbrain. These modifications of SV2C expression had little or no impact on behavior in open field and elevated plus maze. However, even if complete loss of SV2C had no impact on conditioned place preference induced by cocaine, the specific knock-down of SV2C expression in the dopaminergic neurons completely abolished the development of a CPP while the reaction to an acute drug injection remains similar in these mice compared to control mice. These results showed that SV2C, a poorly functionally characterized protein is strongly involved in normal operation of the basal ganglia network and could be also involved in system adaptation in basal ganglia pathological conditions.
Collapse
Affiliation(s)
- D Dardou
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Mattheisen M, Mühleisen TW, Strohmaier J, Treutlein J, Nenadic I, Alblas M, Meier S, Degenhardt F, Herms S, Hoffmann P, Witt SH, Giegling I, Sauer H, Schulze TG, Rujescu D, Nöthen MM, Rietschel M, Cichon S. Genetic variation at the synaptic vesicle gene SV2A is associated with schizophrenia. Schizophr Res 2012; 141:262-5. [PMID: 23017826 DOI: 10.1016/j.schres.2012.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/31/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022]
Abstract
Convergent evidence from pharmacological and animal studies suggests a possible role for the synaptic vesicle glycoprotein 2A gene (SV2A) in schizophrenia susceptibility. To test systematically all common variants in the SV2A gene region for an association with schizophrenia, we used a HapMap-based haplotype tagging approach and tested five SNPs in 794 patients and 843 controls. The SNP rs15931 showed evidence for an association with schizophrenia and was followed-up in an independent sample of 2581 individuals (overall p-value=0.0042, OR=0.779). Our study in the German population provides evidence, at a genetic level, for the involvement of the SV2A gene region in schizophrenia.
Collapse
Affiliation(s)
- Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Synaptic Vesicle Proteins: Targets and Routes for Botulinum Neurotoxins. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|