1
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
2
|
Muttathukunnel P, Wälti M, Aboouf MA, Köster-Hegmann C, Haenggi T, Gassmann M, Pannzanelli P, Fritschy JM, Schneider Gasser EM. Erythropoietin regulates developmental myelination in the brain stimulating postnatal oligodendrocyte maturation. Sci Rep 2023; 13:19522. [PMID: 37945644 PMCID: PMC10636124 DOI: 10.1038/s41598-023-46783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Myelination is a process tightly regulated by a variety of neurotrophic factors. Here, we show-by analyzing two transgenic mouse lines, one overexpressing EPO selectively in the brain Tg21(PDGFB-rhEPO) and another with targeted removal of EPO receptors (EPORs) from oligodendrocyte progenitor cells (OPC)s (Sox10-cre;EpoRfx/fx mice)-a key function for EPO in regulating developmental brain myelination. Overexpression of EPO resulted in faster postnatal brain growth and myelination, an increased number of myelinating oligodendrocytes, faster axonal myelin ensheathment, and improved motor coordination. Conversely, targeted ablation of EPORs from OPCs reduced the number of mature oligodendrocytes and impaired motor coordination during the second postnatal week. Furthermore, we found that EPORs are transiently expressed in the subventricular zone (SVZ) during the second postnatal week and EPO increases the postnatal expression of essential oligodendrocyte pro-differentiation and pro-maturation (Nkx6.2 and Myrf) transcripts, and the Nfatc2/calcineurin pathway. In contrast, ablation of EPORs from OPCs inactivated the Erk1/2 pathway and reduced the postnatal expression of the transcripts. Our results reveal developmental time windows in which EPO therapies could be highly effective for stimulating oligodendrocyte maturation and myelination.
Collapse
Affiliation(s)
- Paola Muttathukunnel
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Michael Wälti
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Christina Köster-Hegmann
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
| | - Tatjana Haenggi
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Patrizia Pannzanelli
- Rita Levi Montalcini Center for Brain Repair, University of Turin, 10126, Turin, Italy
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
4
|
Ping J, Fu H, Xiong YJ, Soomro S, Huang ZH, Yu PP. Poly-L-ornithine blocks the inhibitory effects of fibronectin on oligodendrocyte differentiation and promotes myelin repair. Neural Regen Res 2023; 18:832-839. [DOI: 10.4103/1673-5374.353493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Tong LY, Deng YB, Du WH, Zhou WZ, Liao XY, Jiang X. Clemastine Promotes Differentiation of Oligodendrocyte Progenitor Cells Through the Activation of ERK1/2 via Muscarinic Receptors After Spinal Cord Injury. Front Pharmacol 2022; 13:914153. [PMID: 35865954 PMCID: PMC9294397 DOI: 10.3389/fphar.2022.914153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The recovery of spinal cord injury (SCI) is closely associated with the obstruction of oligodendrocyte progenitor cell (OPC) differentiation, which ultimately induces the inability to generate newly formed myelin. To address the concern, drug-based methods may be the most practical and feasible way, possibly applying to clinical therapies for patients with SCI. In our previous study, we found that clemastine treatment preserves myelin integrity, decreases the loss of axons, and improves functional recovery in the SCI model. Clemastine acts as an antagonist of the muscarinic acetylcholine receptor (muscarinic receptor, MR) identified from a string of anti-muscarinic drugs that can enhance oligodendrocyte differentiation and myelin wrapping. However, the effects of clemastine on OPC differentiation through MRs in SCI and the underlying mechanism remain unclear. To explore the possibility, a rat model of SCI was established. To investigate if clemastine could promote the differentiation of OPCs in SCI via MR, the expressions of OPC and mature OL were detected at 7 days post injury (dpi) or at 14 dpi. The significant effect of clemastine on encouraging OPC differentiation was revealed at 14 dpi rather than 7 dpi. Under pre-treatment with the MR agonist cevimeline, the positive role of clemastine on OPC differentiation was partially disrupted. Further studies indicated that clemastine increased the phosphorylation level of extracellular signal–regulated kinase 1/2 (p-ERK1/2) and the expressions of transcription factors, Myrf and Olig2. To determine the relationship among clemastine, ERK1/2 signaling, specified transcription factors, and OPC differentiation, the ERK1/2 signaling was disturbed by U0126. The inhibition of ERK1/2 in SCI rats treated with clemastine decreased the expressions of p-ERK 1/2, Myrf, Olig2, and mature OLs, suggesting that ERK1/2 is required for clemastine on promoting OPC differentiation and that specified transcription factors may be affected by the activity of ERK1/2. Moreover, the impact of clemastine on modulating the level of p-ERK 1/2 was restricted following cevimeline pre-injecting, which provides further evidence that the role of clemastine was mediated by MRs. Altogether, our data demonstrated that clemastine, mediated by MRs, promotes OPC differentiation under the enhancement of Myrf and Olig2 by activating ERK1/2 signaling and suggests a novel therapeutic prospect for SCI recovery.
Collapse
Affiliation(s)
- Lu-Yao Tong
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yong-Bing Deng
- Department of Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wei-Hong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wen-Zhu Zhou
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Xue Jiang, ,
| |
Collapse
|
6
|
Aberle T, Piefke S, Hillgärtner S, Tamm ER, Wegner M, Küspert M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1951-1968. [PMID: 35137157 PMCID: PMC8887482 DOI: 10.1093/nar/gkac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
In oligodendrocytes of the vertebrate central nervous system a complex network of transcriptional regulators is required to ensure correct and timely myelination of neuronal axons. Here we identify Zfp276, the only mammalian ZAD-domain containing zinc finger protein, as a transcriptional regulator of oligodendrocyte differentiation and central myelination downstream of Sox10. In the central nervous system, Zfp276 is exclusively expressed in mature oligodendrocytes. Oligodendroglial deletion of Zfp276 led to strongly reduced expression of myelin genes in the early postnatal mouse spinal cord. Retroviral overexpression of Zfp276 in cultured oligodendrocyte precursor cells induced precocious expression of maturation markers and myelin genes, further supporting its role in oligodendroglial differentiation. On the molecular level, Zfp276 directly binds to and represses Sox10-dependent gene regulatory regions of immaturity factors and functionally interacts with the transcriptional repressor Zeb2 to enable fast transition of oligodendrocytes to the myelinating stage.
Collapse
Affiliation(s)
- Tim Aberle
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, D-93053, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Melanie Küspert
- To whom correspondence should be addressed. Tel: +49 9131 85 24638; Fax: +49 9131 85 22484;
| |
Collapse
|
7
|
Ittner E, Hartwig AC, Elsesser O, Wüst HM, Fröb F, Wedel M, Schimmel M, Tamm ER, Wegner M, Sock E. SoxD transcription factor deficiency in Schwann cells delays myelination in the developing peripheral nervous system. Sci Rep 2021; 11:14044. [PMID: 34234180 PMCID: PMC8263579 DOI: 10.1038/s41598-021-93437-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
The three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins—in stark contrast to their action in oligodendrocytes—promote differentiation and myelination in Schwann cells.
Collapse
Affiliation(s)
- Ella Ittner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Anna C Hartwig
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Hannah M Wüst
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Margit Schimmel
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany.
| |
Collapse
|
8
|
Moyon S, Frawley R, Marechal D, Huang D, Marshall-Phelps KLH, Kegel L, Bøstrand SMK, Sadowski B, Jiang YH, Lyons DA, Möbius W, Casaccia P. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun 2021; 12:3359. [PMID: 34099715 PMCID: PMC8185117 DOI: 10.1038/s41467-021-23735-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanisms regulating myelin repair in the adult central nervous system (CNS) are unclear. Here, we identify DNA hydroxymethylation, catalyzed by the Ten-Eleven-Translocation (TET) enzyme TET1, as necessary for myelin repair in young adults and defective in old mice. Constitutive and inducible oligodendrocyte lineage-specific ablation of Tet1 (but not of Tet2), recapitulate this age-related decline in repair of demyelinated lesions. DNA hydroxymethylation and transcriptomic analyses identify TET1-target in adult oligodendrocytes, as genes regulating neuro-glial communication, including the solute carrier (Slc) gene family. Among them, we show that the expression levels of the Na+/K+/Cl- transporter, SLC12A2, are higher in Tet1 overexpressing cells and lower in old or Tet1 knockout. Both aged mice and Tet1 mutants also present inefficient myelin repair and axo-myelinic swellings. Zebrafish mutants for slc12a2b also display swellings of CNS myelinated axons. Our findings suggest that TET1 is required for adult myelin repair and regulation of the axon-myelin interface.
Collapse
Affiliation(s)
- Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA.
| | - Rebecca Frawley
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA
| | - Damien Marechal
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA
| | | | - Linde Kegel
- Centre for Discovery Brain Sciences, Edinburgh, UK
| | | | - Boguslawa Sadowski
- Department of Neurogenetics, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Yong-Hui Jiang
- Department of Neurobiology and Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | | - Wiebke Möbius
- Department of Neurogenetics, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Patrizia Casaccia
- Neuroscience Initiative Advanced Science Research Center, New York, NY, USA.
- Program of Biology and Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA.
| |
Collapse
|
9
|
Garcés M, Guijarro IM, Ritchie DL, Badiola JJ, Monzón M. Novel Morphological Glial Alterations in the Spectrum of Prion Disease Types: A Focus on Common Findings. Pathogens 2021; 10:pathogens10050596. [PMID: 34068251 PMCID: PMC8153175 DOI: 10.3390/pathogens10050596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Human prion diseases are a group of rare fatal neurodegenerative diseases with sporadic, genetic, and acquired forms. They are neuropathologically characterized by pathological prion protein accumulation, neuronal death, and vacuolation. Classical immunological response has long been known not to play a major in prion diseases; however, gliosis is known to be a common feature although variable in extent and poorly described. In this investigation, astrogliosis and activated microglia in two brain regions were assessed and compared with non-neurologically affected patients in a representative sample across the spectrum of Creutzfeldt–Jakob disease (CJD) forms and subtypes in order to analyze the influence of prion strain on pathological processes. In this report, we choose to focus on features common to all CJD types rather than the diversity among them. Novel pathological changes in both glial cell types were found to be shared by all CJD types. Microglial activation correlated to astrogliosis. Spongiosis, but not pathological prion protein deposition, correlated to both astrogliosis and microgliosis. At the ultrastructural level, astrocytic glial filaments correlated with pathological changes associated with prion disease. These observations confirm that neuroglia play a prominent role in the neurodegenerative process of prion diseases, regardless of the causative prion type.
Collapse
Affiliation(s)
- Moisés Garcés
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, 50013 Zaragoza, Spain; (M.G.); (I.M.G.); (J.J.B.)
| | - Isabel M. Guijarro
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, 50013 Zaragoza, Spain; (M.G.); (I.M.G.); (J.J.B.)
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Juan J. Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, 50013 Zaragoza, Spain; (M.G.); (I.M.G.); (J.J.B.)
| | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, 50013 Zaragoza, Spain; (M.G.); (I.M.G.); (J.J.B.)
- Correspondence: ; Tel.: +34-976-762944
| |
Collapse
|
10
|
Nishiyama A, Shimizu T, Sherafat A, Richardson WD. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol 2021; 116:25-37. [PMID: 33741250 PMCID: PMC8292179 DOI: 10.1016/j.semcdb.2021.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) originate in localized germinal zones in the embryonic neural tube, then migrate and proliferate to populate the entire central nervous system, both white and gray matter. They divide and generate myelinating oligodendrocytes (OLs) throughout postnatal and adult life. OPCs express NG2 and platelet-derived growth factor receptor alpha subunit (PDGFRα), two functionally important cell surface proteins, which are also widely used as markers for OPCs. The proliferation of OPCs, their terminal differentiation into OLs, survival of new OLs, and myelin synthesis are orchestrated by signals in the local microenvironment. We discuss advances in our mechanistic understanding of paracrine effects, including those mediated through PDGFRα and neuronal activity-dependent signals such as those mediated through AMPA receptors in OL survival and myelination. Finally, we review recent studies supporting the role of new OL production and “adaptive myelination” in specific behaviours and cognitive processes contributing to learning and long-term memory formation. Our article is not intended to be comprehensive but reflects the authors’ past and present interests.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
12
|
Zhang Z, Zhou H, Zhou J. Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States. Curr Med Chem 2021; 27:6384-6406. [PMID: 31333083 DOI: 10.2174/0929867326666190717112944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
13
|
Wedel M, Fröb F, Elsesser O, Wittmann MT, Lie DC, Reis A, Wegner M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res 2020; 48:4839-4857. [PMID: 32266943 PMCID: PMC7229849 DOI: 10.1093/nar/gkaa218] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.
Collapse
Affiliation(s)
- Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D Chichung Lie
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
15
|
Aprato J, Sock E, Weider M, Elsesser O, Fröb F, Wegner M. Myrf guides target gene selection of transcription factor Sox10 during oligodendroglial development. Nucleic Acids Res 2020; 48:1254-1270. [PMID: 31828317 PMCID: PMC7026603 DOI: 10.1093/nar/gkz1158] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate myelin in the vertebrate central nervous system and thus ensure rapid propagation of neuronal activity. Their development is controlled by a network of transcription factors that function as determinants of cell identity or as temporally restricted stage-specific regulators. The continuously expressed Sox10 and Myrf, a factor induced during late development, are particularly important for terminal differentiation. How these factors function together mechanistically and influence each other, is not well understood. Here we show that Myrf not only cooperates with Sox10 during the induction of genes required for differentiation and myelin formation. Myrf also inhibits the activity of Sox10 on genes that are essential during earlier phases of oligodendroglial development. By characterization of the exact DNA-binding requirements of Myrf, we furthermore show that cooperative activation is a consequence of joint binding of Sox10 and Myrf to the same regulatory regions. In contrast, inhibition of Sox10-dependent gene activation occurs on genes that lack Myrf binding sites and likely involves physical interaction between Myrf and Sox10 followed by sequestration. These two opposite activities allow Myrf to redirect Sox10 from genes that it activates in oligodendrocyte precursor cells to genes that need to be induced during terminal differentiation.
Collapse
Affiliation(s)
- Jessica Aprato
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- To whom correspondence should be addressed. Tel: +49 9131 85 24620;
| |
Collapse
|
16
|
Jin X, Riew TR, Kim S, Kim HL, Lee MY. Spatiotemporal Profile and Morphological Changes of NG2 Glia in the CA1 Region of the Rat Hippocampus after Transient Forebrain Ischemia. Exp Neurobiol 2020; 29:50-69. [PMID: 32122108 PMCID: PMC7075659 DOI: 10.5607/en.2020.29.1.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuron-glial antigen-2 (NG2) glia undergo proliferation and morphological changes following brain insults. Here, we show that NG2 glia is activated in a characteristic time- and layer-specific manner in the ischemia-vulnerable CA1 region of the rat hippocampus. Resting NG2 glia of the pyramidal cell layer (somatic region) shared morphological features with those of the neighboring dendritic stratum radiatum. During the postischemic period, reactive NG2 glia of the pyramidal cell layer exhibited shortened, scarcely branched processes, while those of the stratum radiatum had multiple branching processes with their arborization being almost indiscernible 7~14 days after reperfusion. Immunoelectron microscopy demonstrated that NG2 immunoreactivity was specifically associated with the plasma membrane and the adjacent extracellular matrix of NG2 glia in the stratum radiatum at 14 days. NG2 glia also exhibited differences in their numbers and proliferation profiles in the two examined hippocampal strata after ischemia. In addition, induced NG2 expression in activated microglia/macrophages exhibited a characteristic strata-dependent pattern in the ischemic CA1 hippocampus. NG2 induction was prominent in macrophage-like phenotypes which were predominantly localized in the pyramidal cell layer, compared with activated stellate microglial cells in the stratum radiatum. Thus, our data demonstrate that activation of NG2 glia and the induction of NG2 expression in activated microglia/macrophages occur in a distinct time- and layer-specific manner in the ischemic CA1 hippocampus. These characteristic profiles of reactive NG2 glia could be secondary to the degeneration processes occurring in the cell bodies or dendritic domains of hippocampal CA1 pyramidal neurons after ischemic insults.
Collapse
Affiliation(s)
- Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea
| |
Collapse
|
17
|
Elsesser O, Fröb F, Küspert M, Tamm ER, Fujii T, Fukunaga R, Wegner M. Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system. Nucleic Acids Res 2020; 47:6208-6224. [PMID: 31081019 PMCID: PMC6614847 DOI: 10.1093/nar/gkz376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/27/2022] Open
Abstract
Differentiating oligodendrocytes generate myelin to ensure rapid saltatory conduction in the vertebrate central nervous system. Although oligodendroglial differentiation and myelination are accompanied by dramatic chromatin reorganizations, previously studied chromatin remodelers had only limited direct effects on the process. To study the functional significance of chromatin changes for myelination and identify relevant remodelers, we deleted Ep400, the central ATP-hydrolyzing subunit of the TIP60/EP400 complex, at defined times of mouse oligodendrocyte development. Whereas Ep400-deficient oligodendrocyte precursors develop normally, terminal differentiation and myelination are dramatically impaired. Mechanistically, Ep400 interacts with transcription factor Sox10, binds to regulatory regions of the Myrf gene and is required to induce this central transcriptional regulator of the myelination program. In addition to reduced and aberrant myelin formation, oligodendrocytes exhibit increased DNA damage and apoptosis so that numbers never reach wildtype levels during the short lifespan of Ep400-deficient mice. Ep400 deletion in already mature oligodendrocytes remains phenotypically inapparent arguing that Ep400 is dispensable for myelin maintenance. Given its essential function in myelin formation, modulation of Ep400 activity may be beneficial in conditions such as multiple sclerosis where this process is compromised.
Collapse
Affiliation(s)
- Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Toshihiro Fujii
- Department of Biochemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Rikiro Fukunaga
- Department of Biochemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Hide T, Komohara Y. Oligodendrocyte Progenitor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:107-122. [PMID: 32040858 DOI: 10.1007/978-3-030-37184-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) develops from adult brain white matter and is the most common and lethal primary brain tumor, characterized by rapid growth and invasion. GBM tumors frequently spread into the contralateral hemisphere, including in the beginning of tumor development. However, after complete resection of the tumor mass and chemo-radiotherapy, GBM commonly recurs around the tumor removal site, suggesting that the microenvironment at the tumor border provides therapeutic resistance to GBM cells. To improve patient prognosis, understanding the microenvironment at the tumor border is critical. Several microRNAs (miRNAs) show higher expression at the tumor border, with the top three involved in oligodendrocyte differentiation. Oligodendrocyte progenitor cells (OPCs) may induce stemness and chemo-radioresistance in GBM cells, providing a supportive function to promote GBM. This review describes important features of OPCs and insights into the "border niche," a unique microenvironment that allows GBM cells to survive and recur at the tumor border.
Collapse
Affiliation(s)
- Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Kanagawa, Japan.
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Crazy Little Thing Called Sox-New Insights in Oligodendroglial Sox Protein Function. Int J Mol Sci 2019; 20:ijms20112713. [PMID: 31159496 PMCID: PMC6600536 DOI: 10.3390/ijms20112713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
In the central nervous system, oligodendrocytes wrap axons with myelin sheaths, which is essential for rapid transfer of electric signals and their trophic support. In oligodendroglia, transcription factors of the Sox protein family are pivotal regulators of a variety of developmental processes. These include specification, proliferation, and migration of oligodendrocyte precursor cells as well as terminal differentiation to mature myelinating oligodendrocytes. Sox proteins are further affected in demyelinating diseases and are involved in remyelination following damage of the central nervous system. Here we summarize and discuss latest findings on transcriptional regulation of Sox proteins, their function, target genes, and interaction with other transcription factors and chromatin remodelers in oligodendroglia with physiological and pathophysiological relevance.
Collapse
|
20
|
Volpe JJ. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr Neurol 2019; 95:42-66. [PMID: 30975474 DOI: 10.1016/j.pediatrneurol.2019.02.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Prematurity, especially preterm birth (less than 32 weeks' gestation), is common and associated with high rates of both survival and neurodevelopmental disability, especially apparent in cognitive spheres. The neuropathological substrate of this disability is now recognized to be related to a variety of dysmaturational disturbances of the brain. These disturbances follow initial brain injury, particularly cerebral white matter injury, and involve many of the extraordinary array of developmental events active in cerebral white and gray matter structures during the premature period. This review delineates these developmental events and the dysmaturational disturbances that occur in premature infants. The cellular mechanisms involved in the genesis of the dysmaturation are emphasized, with particular focus on the preoligodendrocyte. A central role for the diffusely distributed activated microglia and reactive astrocytes in the dysmaturation is now apparent. As these dysmaturational cellular mechanisms appear to occur over a relatively long time window, interventions to prevent or ameliorate the dysmaturation, that is, neurorestorative interventions, seem possible. Such interventions include pharmacologic agents, especially erythropoietin, and particular attention has also been paid to such nutritional factors as quality and source of milk, breastfeeding, polyunsaturated fatty acids, iron, and zinc. Recent studies also suggest a potent role for interventions directed at various experiential factors in the neonatal period and infancy, i.e., provision of optimal auditory and visual exposures, minimization of pain and stress, and a variety of other means of environmental behavioral enrichment, in enhancing brain development.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Sock E, Wegner M. Transcriptional control of myelination and remyelination. Glia 2019; 67:2153-2165. [PMID: 31038810 DOI: 10.1002/glia.23636] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Elbaz B, Popko B. Molecular Control of Oligodendrocyte Development. Trends Neurosci 2019; 42:263-277. [PMID: 30770136 DOI: 10.1016/j.tins.2019.01.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Myelin is a multilayer lipid membrane structure that wraps and insulates axons, allowing for the efficient propagation of action potentials. During developmental myelination of the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) proliferate and migrate to their final destination, where they terminally differentiate into mature oligodendrocytes and myelinate axons. Lineage progression and terminal differentiation of oligodendrocyte lineage cells are under tight transcriptional and post-transcriptional control. The characterization of several recently identified regulatory factors that govern these processes, which are the focus of this review, has greatly increased our understanding of oligodendrocyte development and function. These insights are critical to facilitate efforts to enhance OPC differentiation in neurological disorders that disrupt CNS myelin.
Collapse
Affiliation(s)
- Benayahu Elbaz
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Brian Popko
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Cantone M, Küspert M, Reiprich S, Lai X, Eberhardt M, Göttle P, Beyer F, Azim K, Küry P, Wegner M, Vera J. A gene regulatory architecture that controls region-independent dynamics of oligodendrocyte differentiation. Glia 2019; 67:825-843. [PMID: 30730593 DOI: 10.1002/glia.23569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Oligodendrocytes (OLs) facilitate information processing in the vertebrate central nervous system via axonal ensheathment. The structure and dynamics of the regulatory network that mediates oligodendrogenesis are poorly understood. We employed bioinformatics and meta-analysis of high-throughput datasets to reconstruct a regulatory network underpinning OL differentiation. From this network, we identified families of feedforward loops comprising the transcription factors (TFs) Olig2, Sox10, and Tcf7l2 and their targets. Among the targets, we found eight other TFs related to OL differentiation, suggesting a hierarchical architecture in which some TFs (Olig2, Sox10, and Tcf7l2) regulate via feedforward loops the expression of others (Sox2, Sox6, Sox11, Nkx2-2, Nkx6-2, Hes5, Myt1, and Myrf). Model simulations with a kinetic model reproduced the mechanisms of OL differentiation only when in the model, Sox10-mediated repression of Tcf7l2 by miR-338/miR-155 was introduced, a prediction confirmed in genetic functional experiments. Additional model simulations suggested that OLs from dorsal regions emerge through BMP/Sox9 signaling.
Collapse
Affiliation(s)
- Martina Cantone
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Faculty of Mechanical Engineering, Specialty Division for Systems Biotechnology, Technische Universität München, Munich, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Göttle
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Felix Beyer
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Kasum Azim
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patrick Küry
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Volpe JJ. Iron and zinc: Nutrients with potential for neurorestoration in premature infants with cerebral white matter injury. J Neonatal Perinatal Med 2019; 12:365-368. [PMID: 31744026 PMCID: PMC7029313 DOI: 10.3233/npm-190369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Joseph J. Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Gotoh H, Wood WM, Patel KD, Factor DC, Boshans LL, Nomura T, Tesar PJ, Ono K, Nishiyama A. NG2 expression in NG2 glia is regulated by binding of SoxE and bHLH transcription factors to a Cspg4 intronic enhancer. Glia 2018; 66:2684-2699. [PMID: 30306660 PMCID: PMC6309483 DOI: 10.1002/glia.23521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 11/08/2022]
Abstract
NG2 is a type 1 integral membrane glycoprotein encoded by the Cspg4 gene. It is expressed on glial progenitor cells known as NG2 glial cells or oligodendrocyte precursor cells that exist widely throughout the developing and mature central nervous system and vascular mural cells but not on mature oligodendrocytes, astrocytes, microglia, neurons, or neural stem cells. Hence NG2 is widely used as a marker for NG2 glia in the rodent and human. The regulatory elements of the mouse Cspg4 gene and its flanking sequences have been used successfully to target reporter and Cre recombinase to NG2 glia in transgenic mice when used in a large 200 kb bacterial artificial chromosome cassette containing the 38 kb Cspg4 gene in the center. Despite the tightly regulated cell type- and stage-specific expression of NG2 in the brain and spinal cord, the mechanisms that regulate its transcription have remained unknown. Here, we describe a 1.45 kb intronic enhancer of the mouse Cspg4 gene that directed transcription of EGFP reporter to NG2 glia but not to pericytes in vitro and in transgenic mice. The 1.45 kb enhancer contained binding sites for SoxE and basic helix-loop-helix transcription factors, and its enhancer activity was augmented cooperatively by these factors, whose respective binding elements were found in close proximity to each other. Mutations in these binding elements abrogated the enhancer activity when tested in the postnatal mouse brain.
Collapse
Affiliation(s)
- Hitoshi Gotoh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269-3156, USA
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - William M. Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269-3156, USA
| | - Kiran D. Patel
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269-3156, USA
| | - Daniel C. Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland OH, 44106, USA
| | - Linda L. Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269-3156, USA
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland OH, 44106, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269-3156, USA
- Institute of Systems Genomics, University of Connecticut
- Institute of Brain and Cognitive Science, University of Connecticut
| |
Collapse
|
26
|
Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ SCHIZOPHRENIA 2018; 4:23. [PMID: 30451850 PMCID: PMC6242875 DOI: 10.1038/s41537-018-0066-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Postmortem studies in patients with schizophrenia (SCZ) have revealed deficits in myelination, abnormalities in myelin gene expression and altered numbers of oligodendrocytes in the brain. However, gaining mechanistic insight into oligodendrocyte (OL) dysfunction and its contribution to SCZ has been challenging because of technical hurdles. The advent of individual patient-derived human-induced pluripotent stem cells (hiPSCs), combined with the generation of in principle any neuronal and glial cell type, including OLs and oligodendrocyte precursor cells (OPCs), holds great potential for understanding the molecular basis of the aetiopathogenesis of genetically complex psychiatric diseases such as SCZ and could pave the way towards personalized medicine. The development of neuronal and glial co-culture systems now appears to enable the in vitro study of SCZ-relevant neurobiological endophenotypes, including OL dysfunction and myelination, with unprecedented construct validity. Nonetheless, the meaningful stratification of patients before the subsequent functional analyses of patient-derived cell systems still represents an important bottleneck. Here, to improve the predictive power of ex vivo disease modelling we propose using hiPSC technology to focus on representatives of patient subgroups stratified for genomic and/or phenomic features and neurobiological cell systems. Therefore, this review will outline the evidence for the involvement of OPCs/OLs in SCZ in the context of their proposed functions, including myelination and axon support, the implications for hiPSC-based cellular disease modelling and potential strategies for patient selection.
Collapse
|
27
|
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Buzanska L, Sypecka J. Directed glial differentiation and transdifferentiation for neural tissue regeneration. Exp Neurol 2018; 319:112813. [PMID: 30171864 DOI: 10.1016/j.expneurol.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Glial cells which are indispensable for the central nervous system development and functioning, are proven to be vulnerable to a harmful influence of pathological cues and tissue misbalance. However, they are also highly sensitive to both in vitro and in vivo modulation of their commitment, differentiation, activity and even the fate-switch by different types of bioactive molecules. Since glial cells (comprising macroglia and microglia) are an abundant and heterogeneous population of neural cells, which are almost uniformly distributed in the brain and the spinal cord parenchyma, they all create a natural endogenous reservoir of cells for potential neurogenerative processes required to be initiated in response to pathophysiological cues present in the local tissue microenvironment. The past decade of intensive investigation on a spontaneous and enforced conversion of glial fate into either alternative glial (for instance from oligodendrocytes to astrocytes) or neuronal phenotypes, has considerably extended our appreciation of glial involvement in restoring the nervous tissue cytoarchitecture and its proper functions. The most effective modulators of reprogramming processes have been identified and tested in a series of pre-clinical experiments. A list of bioactive compounds which are potent in guiding in vivo cell fate conversion and driving cell differentiation includes a selection of transcription factors, microRNAs, small molecules, exosomes, morphogens and trophic factors, which are helpful in boosting the enforced neuro-or gliogenesis and promoting the subsequent cell maturation into desired phenotypes. Herein, an issue of their utility for a directed glial differentiation and transdifferentiation is discussed in the context of elaborating future therapeutic options aimed at restoring the diseased nervous tissue.
Collapse
Affiliation(s)
- Justyna Janowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Justyna Gargas
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Teresa Zalewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Leonora Buzanska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Stem Cell Bioengineering Unit, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Joanna Sypecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| |
Collapse
|
28
|
Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc Natl Acad Sci U S A 2018; 115:E8246-E8255. [PMID: 30108144 PMCID: PMC6126750 DOI: 10.1073/pnas.1802620115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective (re)myelination. Mutations in chromatin remodelers CHD7 and CHD8 are the cause of CHARGE syndrome and some autism spectrum disorders (ASD). Here we show that Chd7 protects OPCs from apoptosis by chromatin closing and gene repression of p53, while Chd7 induces chromatin opening and gene activation of OPC-differentiation regulators. Chd7 is, however, dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles, including ASD-risk–associated genes. Our results thus involve oligodendroglia in ASD and CHARGE and offer new avenues to understand and modulate CHD7/CHD8 functions in normal and pathological brain development. Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming, implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest autism spectrum disorder (ASD) high-risk–associated genes. Herein, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin binding profile, combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects nonproliferative OPCs from apoptosis by chromatin closing and transcriptional repression of p53. Furthermore, Chd7 controls OPC differentiation through chromatin opening and transcriptional activation of key regulators, including Sox10, Nkx2.2, and Gpr17. However, Chd7 is dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD risk-associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease.
Collapse
|
29
|
Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell 2018; 45:753-768.e8. [PMID: 29920279 DOI: 10.1016/j.devcel.2018.05.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/16/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.
Collapse
|
30
|
To Be or Not to Be: Environmental Factors that Drive Myelin Formation during Development and after CNS Trauma. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are specialized glial cells that myelinate central nervous system (CNS) axons. Historically, it was believed that the primary role of myelin was to compactly ensheath axons, providing the insulation necessary for rapid signal conduction. However, mounting evidence demonstrates the dynamic importance of myelin and oligodendrocytes, including providing metabolic support to neurons and regulating axon protein distribution. As such, the development and maintenance of oligodendrocytes and myelin are integral to preserving CNS homeostasis and supporting proper functioning of widespread neural networks. Environmental signals are critical for proper oligodendrocyte lineage cell progression and their capacity to form functional compact myelin; these signals are markedly disturbed by injury to the CNS, which may compromise endogenous myelin repair capabilities. This review outlines some key environmental factors that drive myelin formation during development and compares that to the primary factors that define a CNS injury milieu. We aim to identify developmental factors disrupted after CNS trauma as well as pathogenic factors that negatively impact oligodendrocyte lineage cells, as these are potential therapeutic targets to promote myelin repair after injury or disease.
Collapse
|
31
|
Morphological characterization of NG2 glia and their association with neuroglial cells in the 3-nitropropionic acid-lesioned striatum of rat. Sci Rep 2018; 8:5942. [PMID: 29654253 PMCID: PMC5899159 DOI: 10.1038/s41598-018-24385-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/03/2018] [Indexed: 01/18/2023] Open
Abstract
Our aim was to examine the spatiotemporal profiles and phenotypic characteristics of neuron-glia antigen 2 (NG2) glia and their associations with neuroglial cells in striatal lesions due to the mitochondrial toxin 3-nitropropionic acid (3-NP). In control striatum, weak NG2 immunoreactivity was restricted to resting NG2 glia with thin processes, but prominent NG2 expression was noted on activated microglia/macrophages, and reactive NG2 glia in the lesion core after 3-NP injection. Activation of NG2 glia, including enhanced proliferation and morphological changes, had a close spatiotemporal relationship with infiltration of activated microglia into the lesion core. Thick and highly branched processes of reactive NG2 glia formed a cellular network in the astrocyte-free lesion core and primarily surrounded developing cavities 2–4 weeks post-lesion. NG2 glia became associated with astrocytes in the lesion core and the border of cavities over the chronic interval of 4–8 weeks. Immunoelectron microscopy indicated that reactive NG2 glia had large euchromatic nuclei with prominent nucleoli and thick and branched processes that ramified distally. Thus, our data provide detailed information regarding the morphologies of NG2 glia in the lesion core, and support the link between transformation of NG2 glia to the reactive form and microglial activation/recruitment in response to brain insults.
Collapse
|
32
|
Göttle P, Manousi A, Kremer D, Reiche L, Hartung HP, Küry P. Teriflunomide promotes oligodendroglial differentiation and myelination. J Neuroinflammation 2018; 15:76. [PMID: 29534752 PMCID: PMC5851312 DOI: 10.1186/s12974-018-1110-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks. Spontaneous endogenous remyelination takes place even in the adult CNS and is primarily mediated by activation, recruitment, and differentiation of resident oligodendroglial precursor cells (OPCs). However, the overall efficiency of remyelination is limited and further declines with disease duration and progression. From a therapeutic standpoint, it is therefore key to understand how oligodendroglial maturation can be modulated pharmacologically. Teriflunomide has been approved as a first-line treatment for RRMS in the USA and the European Union. As the active metabolite of leflunomide, an established disease-modifying anti-rheumatic drug, it mainly acts via an inhibition of de novo pyrimidine synthesis exerting a cytostatic effect on proliferating B and T cells. METHODS We investigated teriflunomide-dependent effects on primary rat oligodendroglial homeostasis, proliferation, and differentiation related to cellular processes important for myelin repair hence CNS regeneration in vitro. To this end, several cellular parameters, including specific oligodendroglial maturation markers, in vitro myelination, and p53 family member signaling, were examined by means of gene/protein expression analyses. The rate of myelination was determined using neuron-oligodendrocyte co-cultures. RESULTS Low teriflunomide concentrations resulted in cell cycle exit while higher doses led to decreased cell survival. Short-term teriflunomide pulses can efficiently promote oligodendroglial cell differentiation suggesting that young, immature cells could benefit from such stimulation. In vitro myelination can be boosted by means of an early stimulation window with teriflunomide. p73 signaling is functionally involved in promoting OPC differentiation and myelination. CONCLUSION Our findings indicate a critical window of opportunity during which regenerative oligodendroglial activities including myelination of CNS axons can be stimulated by teriflunomide.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
33
|
Weider M, Starost LJ, Groll K, Küspert M, Sock E, Wedel M, Fröb F, Schmitt C, Baroti T, Hartwig AC, Hillgärtner S, Piefke S, Fadler T, Ehrlich M, Ehlert C, Stehling M, Albrecht S, Jabali A, Schöler HR, Winkler J, Kuhlmann T, Wegner M. Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nat Commun 2018; 9:899. [PMID: 29500351 PMCID: PMC5834605 DOI: 10.1038/s41467-018-03336-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes produce myelin for rapid transmission and saltatory conduction of action potentials in the vertebrate central nervous system. Activation of the myelination program requires several transcription factors including Sox10, Olig2, and Nkx2.2. Functional interactions among them are poorly understood and important components of the regulatory network are still unknown. Here, we identify Nfat proteins as Sox10 targets and regulators of oligodendroglial differentiation in rodents and humans. Overall levels and nuclear fraction increase during differentiation. Inhibition of Nfat activity impedes oligodendrocyte differentiation in vitro and in vivo. On a molecular level, Nfat proteins cooperate with Sox10 to relieve reciprocal repression of Olig2 and Nkx2.2 as precondition for oligodendroglial differentiation and myelination. As Nfat activity depends on calcium-dependent activation of calcineurin signaling, regulatory network and oligodendroglial differentiation become sensitive to calcium signals. NFAT proteins are also detected in human oligodendrocytes, downregulated in active multiple sclerosis lesions and thus likely relevant in demyelinating disease.
Collapse
Affiliation(s)
- Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Laura Julia Starost
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Katharina Groll
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Anna C Hartwig
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tanja Fadler
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Marc Ehrlich
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Corinna Ehlert
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Martin Stehling
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Ammar Jabali
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany.
| |
Collapse
|
34
|
Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion. J Neurosci 2018; 38:2359-2371. [PMID: 29382710 DOI: 10.1523/jneurosci.0712-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/31/2017] [Accepted: 01/23/2018] [Indexed: 01/25/2023] Open
Abstract
NG2 cells are a resident glial progenitor cell population that is uniformly distributed throughout the developing and mature mammalian CNS. Those in the postnatal CNS generate exclusively myelinating and non-myelinating oligodendrocytes and are thus equated with oligodendrocyte precursor cells. Prenatally, NG2 cells in the ventral gray matter of the forebrain generate protoplasmic astrocytes as well as oligodendrocytes. The fate conversion from NG2 cells into protoplasmic astrocytes is dependent on downregulation of the key oligodendrocyte transcription factor Olig2. We showed previously that constitutive deletion of Olig2 in NG2 cells converts NG2 cells in the neocortex into protoplasmic astrocytes at the expense of oligodendrocytes. In this study, we show that postnatal deletion of Olig2 caused NG2 cells in the neocortex but not in other gray matter regions to become protoplasmic astrocytes. However, NG2 cells in the neocortex became more resistant to astrocyte fate switch over the first 3 postnatal weeks. Fewer NG2 cells differentiated into astrocytes and did so with longer latency after Olig2 deletion at postnatal day 18 (P18) compared with deletion at P2. The high-mobility group transcription factor Sox10 was not downregulated for at least 1 month after Olig2 deletion at P18 despite an early transient upregulation of the astrocyte transcription factor NFIA. Furthermore, inhibiting cell proliferation in slice culture reduced astrocyte differentiation from Olig2-deleted perinatal NG2 cells, suggesting that cell division might facilitate nuclear reorganization needed for astrocyte transformation.SIGNIFICANCE STATEMENT NG2 cells are glial progenitor cells that retain a certain degree of lineage plasticity. In the normal postnatal neocortex, they generate mostly oligodendrocyte lineage cells. When the oligodendrocyte transcription factor Olig2 is deleted in NG2 cells in the neocortex, they switch their fate to protoplasmic astrocytes. However, the efficiency of the fate switch decreases with age over the first 3 postnatal weeks and is reduced when cell proliferation is inhibited. As the neocortex matures, sustained expression of the oligodendrocyte lineage-specific key transcription factor Sox10 becomes less dependent on Olig2. Together, our findings suggest a gradual stabilization of the oligodendrocyte lineage genes and loss of lineage plasticity during the first 3 weeks after birth, possibly due to nuclear reorganization.
Collapse
|
35
|
Turnescu T, Arter J, Reiprich S, Tamm ER, Waisman A, Wegner M. Sox8 and Sox10 jointly maintain myelin gene expression in oligodendrocytes. Glia 2017; 66:279-294. [PMID: 29023979 DOI: 10.1002/glia.23242] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 11/08/2022]
Abstract
In Schwann cells of the vertebrate peripheral nervous system, induction of myelination and myelin maintenance both depend on the HMG-domain-containing transcription factor Sox10. In oligodendrocytes of the central nervous system, Sox10 is also essential for the induction of myelination. Its role in late phases of myelination and myelin maintenance has not been studied so far. Here, we show that these processes are largely unaffected in mice that lack Sox10 in mature oligodendrocytes. As Sox10 is co-expressed with the related Sox8, we also analyzed oligodendrocytes and myelination in Sox8-deficient mice. Again, we could not detect any major abnormalities. Expression of many myelin genes was only modestly reduced in both mouse mutants. Dramatic reductions in expression levels and phenotypic disturbances became only apparent once Sox8 and Sox10 were both absent. This argues that Sox8 and Sox10 are jointly required for myelin maintenance and impact myelin gene expression. One direct target gene of both Sox proteins is the late myelin gene Mog. Our results point to at least partial functional redundancy between both related Sox proteins in mature oligodendrocytes and are the first report of a substantial function of Sox8 in the oligodendroglial lineage.
Collapse
Affiliation(s)
- Tanja Turnescu
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Arter
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Chd7 Collaborates with Sox2 to Regulate Activation of Oligodendrocyte Precursor Cells after Spinal Cord Injury. J Neurosci 2017; 37:10290-10309. [PMID: 28931573 DOI: 10.1523/jneurosci.1109-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) act as a reservoir of new oligodendrocytes (OLs) in homeostatic and pathological conditions. OPCs are activated in response to injury to generate myelinating OLs, but the underlying mechanisms remain poorly understood. Here, we show that chromodomain helicase DNA binding protein 7 (Chd7) regulates OPC activation after spinal cord injury (SCI). Chd7 is expressed in OPCs in the adult spinal cord and its expression is upregulated with a concomitant increase in Sox2 expression after SCI. OPC-specific ablation of Chd7 in injured mice leads to reduced OPC proliferation, the loss of OPC identity, and impaired OPC differentiation. Ablation of Chd7 or Sox2 in cultured OPCs shows similar phenotypes to those observed in Chd7 knock-out mice. Chd7 and Sox2 form a complex in OPCs and bind to the promoters or enhancers of the regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) genes, thereby inducing their expression. The expression of Rgcc and PKCθ is reduced in the OPCs of the injured Chd7 knock-out mice. In cultured OPCs, overexpression and knock-down of Rgcc or PKCθ promote and suppress OPC proliferation, respectively. Furthermore, overexpression of both Rgcc and PKCθ rescues the Chd7 deletion phenotypes. Chd7 is thus a key regulator of OPC activation, in which it cooperates with Sox2 and acts via direct induction of Rgcc and PKCθ expression.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to oligodendrocyte (OL) loss and demyelination, along with neuronal death, resulting in impairment of motor or sensory functions. Oligodendrocyte precursor cells (OPCs) activated in response to injury are potential sources of OL replacement and are thought to contribute to remyelination and functional recovery after SCI. However, the molecular mechanisms underlying OPC activation, especially its epigenetic regulation, remain largely unclear. We demonstrate here that the chromatin remodeler chromodomain helicase DNA binding protein 7 (Chd7) regulates the proliferation and identity of OPCs after SCI. We have further identified regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) as novel targets of Chd7 for OPC activation.
Collapse
|
37
|
Reiprich S, Cantone M, Weider M, Baroti T, Wittstatt J, Schmitt C, Küspert M, Vera J, Wegner M. Transcription factor Sox10 regulates oligodendroglial Sox9 levels via microRNAs. Glia 2017; 65:1089-1102. [PMID: 28370559 DOI: 10.1002/glia.23146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
During development of myelin-forming oligodendrocytes in the central nervous system the two closely related transcription factors Sox9 and Sox10 play essential roles that are partly shared and partly unique. Whereas Sox9 primarily functions during oligodendroglial specification, Sox10 is uniquely required to induce terminal differentiation and myelination. During this process, Sox10 protein levels rise substantially. As this coincides with a reciprocal decrease in Sox9, we postulated that Sox10 influences Sox9 amounts in differentiating oligodendrocytes. Here we show that Sox9 levels are indeed inversely coupled to Sox10 levels such that Sox10 deletion in oligodendroglial cells evokes a reciprocal increase in Sox9. We furthermore provide evidence that this coupling involves upregulation of microRNAs miR335 and miR338 as direct transcriptional targets of Sox10. The two microRNAs in turn recognize the 3'-UTR of Sox9 mRNA and may thereby reduce Sox9 protein levels posttranscriptionally in oligodendroglial cells. Such a mechanism may enable oligodendroglial cells to adapt the ratio of both related Sox proteins in a manner required for successful lineage progression and differentiation. Mathematical modeling furthermore shows that the identified regulatory circuit has the potential to convert a transient stimulus into an irreversible switch of cellular properties and may thus contribute to terminal differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Cantone
- Department of Dermatology, Laboratory of Systems Tumor Immunology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Wittstatt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Laboratory of Systems Tumor Immunology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
38
|
Ampofo E, Schmitt BM, Menger MD, Laschke MW. The regulatory mechanisms of NG2/CSPG4 expression. Cell Mol Biol Lett 2017; 22:4. [PMID: 28536635 PMCID: PMC5415841 DOI: 10.1186/s11658-017-0035-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
39
|
Moyon S, Casaccia P. DNA methylation in oligodendroglial cells during developmental myelination and in disease. NEUROGENESIS 2017; 4:e1270381. [PMID: 28203606 DOI: 10.1080/23262133.2016.1270381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Oligodendrocyte progenitor cells (OPC) are the myelinating cells of the central nervous system (CNS). During development, they differentiate into mature oligodendrocytes (OL) and ensheath axons, providing trophic and functional support to the neurons. This process is regulated by the dynamic expression of specific transcription factors, which, in turn, is controlled by epigenetic marks such as DNA methylation. Here we discuss recent findings showing that DNA methylation levels are differentially regulated in the oligodendrocyte lineage during developmental myelination, affecting both genes expression and alternative splicing events. Based on the phenotypic characterization of mice with genetic ablation of DNA methyltransferase 1 (Dnmt1) we conclude that DNA methylation is critical for efficient OPC expansion and for developmental myelination. Previous work suggests that in the context of diseases such as multiple sclerosis (MS) or gliomas, DNA methylation is differentially regulated in the CNS of affected individuals compared with healthy controls. In this commentary, based on the results of previous work, we propose the potential role of DNA methylation in adult oligodendroglial lineage cells in physiologic and pathological conditions, and delineate potential research approaches to be undertaken to test this hypothesis. A better understanding of this epigenetic modification in adult oligodendrocyte progenitor cells is essential, as it can potentially result in the design of new therapeutic strategies to enhance remyelination in MS patients or reduce proliferation in glioma patients.
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative Advanced Science Research Center, CUNY, New York, NY, USA
| |
Collapse
|
40
|
Aaker JD, Elbaz B, Wu Y, Looney TJ, Zhang L, Lahn BT, Popko B. Transcriptional Fingerprint of Hypomyelination in Zfp191null and Shiverer (Mbpshi) Mice. ASN Neuro 2016; 8:8/5/1759091416670749. [PMID: 27683878 PMCID: PMC5046175 DOI: 10.1177/1759091416670749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
The transcriptional program that controls oligodendrocyte maturation and central nervous system (CNS) myelination has not been fully characterized. In this study, we use high-throughput RNA sequencing to analyze how the loss of a key transcription factor, zinc finger protein 191 (ZFP191), results in oligodendrocyte development abnormalities and CNS hypomyelination. Using a previously described mutant mouse that is deficient in ZFP191 protein expression (Zfp191null), we demonstrate that key transcripts are reduced in the whole brain as well as within oligodendrocyte lineage cells cultured in vitro. To determine whether the loss of myelin seen in Zfp191null mice contributes indirectly to these perturbations, we also examined the transcriptome of a well-characterized mouse model of hypomyelination, in which the myelin structural protein myelin basic protein (MBP) is deficient. Interestingly, Mbpshi (shiverer) mice had far fewer transcripts perturbed with the loss of myelin alone. This study demonstrates that the loss of ZFP191 disrupts expression of genes involved in oligodendrocyte maturation and myelination, largely independent from the loss of myelin. Nevertheless, hypomyelination in both mouse mutants results in the perturbation of lipid synthesis pathways, suggesting that oligodendrocytes have a feedback system that allows them to regulate myelin lipid synthesis depending on their myelinating state. The data presented are of potential clinical relevance as the human orthologs of the Zfp191 and MBP genes reside on a region of Chromosome 18 that is deleted in childhood leukodystrophies.
Collapse
Affiliation(s)
- Joshua D Aaker
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL, USA
| | - Benayahu Elbaz
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL, USA
| | - Yuwen Wu
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL, USA
| | - Timothy J Looney
- Department of Human Genetics, The University of Chicago, IL, USA
| | - Li Zhang
- Department of Human Genetics, The University of Chicago, IL, USA
| | - Bruce T Lahn
- Department of Human Genetics, The University of Chicago, IL, USA
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL, USA
| |
Collapse
|
41
|
Muth KN, Piefke S, Weider M, Sock E, Hermans-Borgmeyer I, Wegner M, Küspert M. The Dual-specificity phosphatase Dusp15 is regulated by Sox10 and Myrf in Myelinating Oligodendrocytes. Glia 2016; 64:2120-2132. [PMID: 27532821 DOI: 10.1002/glia.23044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/10/2022]
Abstract
Differentiation of oligodendrocytes and myelin production in the vertebrate central nervous system require highly concerted changes in gene expression. The transcription factors Sox10 and Myrf are both central to this process and jointly regulate expression of myelin genes. Here we show that Sox10 and Myrf also cooperate in the activation of the gene coding for the dual specificity protein phosphatase Dusp15 (also known as VHY) during this process. Activation is mediated by the Dusp15 promoter, which is also sufficient to drive oligodendroglial gene expression in vivo. It contains both a functional Sox10 and a functional Myrf binding site. Whereas Sox10 binds as a monomer, Myrf binds as a trimer. Available data furthermore indicate that cooperative activation is not a function of facilitated binding, but occurs at a later step of the activation process. shRNA-mediated knockdown of Dusp15 reduced expression of early and late differentiation markers in CG4 and primary oligodendroglial cells, whereas Dusp15 overexpression increased it transiently. This argues that Dusp15 is not only a joint target of Sox10 and Myrf in oligodendrocytes but may also mediate some of their effects during oligodendrocyte differentiation and myelin formation. GLIA 2016;64:2120-2132.
Collapse
Affiliation(s)
- Katharina N Muth
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Piefke
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Michael Wegner
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut Für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
42
|
Yadavilli S, Hwang EI, Packer RJ, Nazarian J. The Role of NG2 Proteoglycan in Glioma. Transl Oncol 2016; 9:57-63. [PMID: 26947882 PMCID: PMC4800061 DOI: 10.1016/j.tranon.2015.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Neuron glia antigen-2 ((NG2), also known as chondroitin sulphate proteoglycan 4, or melanoma-associated chondroitin sulfate proteoglycan) is a type-1 membrane protein expressed by many central nervous system (CNS) cells during development and differentiation and plays a critical role in proliferation and angiogenesis. ‘NG2’ often references either the protein itself or the highly proliferative and undifferentiated glial cells expressing high levels of NG2 protein. NG2 glia represent the fourth major type of neuroglia in the mammalian nervous system and are classified as oligodendrocyte progenitor cells by virtue of their committed oligodendrocyte generation in developing and adult brain. Here, we discuss NG2 glial cells as well as NG2 protein and its expression and role with regards to CNS neoplasms as well as its potential as a therapeutic target for treating childhood CNS cancers.
Collapse
Affiliation(s)
- Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC 20010, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, 111 Michigan Ave. NW, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA.
| |
Collapse
|