1
|
Zoicas I, von Hörsten S, Plank AC, Kornhuber J. Dipeptidyl peptidase-4 inhibitors enhance memory retention via neuropeptide Y. Eur J Pharmacol 2025; 996:177556. [PMID: 40139422 DOI: 10.1016/j.ejphar.2025.177556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
We have previously shown that neuropeptide Y (NPY) prolongs the retention of memory in the object discrimination test in mice. In this study, we investigated the potential memory-enhancing effects of dipeptidyl peptidase-4 (DPP4) inhibitors, commonly referred to as gliptins, which are known to prevent the degradation of NPY, thereby increasing its concentration. We show that administration of sitagliptin (50 and 100 mg/kg/day) and linagliptin (5 and 10 mg/kg/day) via the drinking water facilitates the retention of object memory in male CD1 mice, extending memory retention to time points when control mice no longer retain memory. Similar to gliptin-treated mice, male and female homozygous and heterozygous DPP4 deficient mice displayed intact object memory at time points when wild-type littermates showed no memory. Sitagliptin treatment, however, did not facilitate the retention of memory in male and female homozygous NPY deficient mice, indicating that NPY is essential for the memory-enhancing effects of sitagliptin. These results indicate that sitagliptin exerts memory-enhancing effects through an NPY-dependent mechanism and highlight the potential of gliptins as cognitive enhancers in healthy individuals.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Palmsanlage 5, 91054, Erlangen, Germany.
| | - Anne-Christine Plank
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Palmsanlage 5, 91054, Erlangen, Germany.
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
2
|
Zhou C, Gong B, Liu X, Hu G, Sun L. Glucose-dependent insulinotropic peptide and beyond: co-agonist innovations in the treatment of metabolic diseases. Eur J Pharmacol 2025; 999:177681. [PMID: 40306536 DOI: 10.1016/j.ejphar.2025.177681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/12/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Glucose-dependent insulinotropic peptide (GIP), a key incretin hormone, has emerged as a pivotal therapeutic target in metabolic disorders. Historically, its therapeutic potential in type 2 diabetes mellitus (T2DM) has been underestimated owing to GIP resistance and its limited acute effects on glycemic control and body weight regulation. However, emerging evidence has demonstrated that GIP resistance is reversible through sustained glycemic improvement, thereby restoring its physiological effectiveness. With the development of gut hormone co-agonists, the potential of GIP in the treatment of metabolic diseases has been reevaluated. The study of GIP and its co-agonists such as glucagon-like peptide-1 (GLP-1), revealed that its mechanism of action in regulating blood glucose, fat metabolism, and bone metabolism is complex and diverse. A better understanding of GIP evolution can help in designing more effective GIP-based treatment strategies. In this review, we summarize the physiological functions of GIP, systematically explores its diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects of GIP analogs.
Collapse
Affiliation(s)
- Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Xiyu Liu
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Guoqiang Hu
- Taizhou Hospital, Zhejiang University, Taizhou, 317000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; Taizhou Hospital, Zhejiang University, Taizhou, 317000, China.
| |
Collapse
|
3
|
Urkon M, Ferencz E, Szász JA, Szabo MIM, Orbán-Kis K, Szatmári S, Nagy EE. Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer's Disease. Pharmaceuticals (Basel) 2025; 18:614. [PMID: 40430434 PMCID: PMC12114801 DOI: 10.3390/ph18050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
In addition to the classically accepted pathophysiological features of Alzheimer's disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The present review aims to offer a comprehensive overview of the neuroprotective properties of GLP-1R agonists (GLP-1RAs), with a particular focus on experimental animal models of AD. Ameliorated amyloid-β plaque and neurofibrillary tangle formation and deposition following exenatide, liraglutide, and lixisenatide treatment was confirmed in several models. The GLP-1RAs studied alleviated central insulin resistance, as evidenced by the decreased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and restored downstream phosphoinositide 3-kinase/RAC serine/threonine-protein kinase (PI3K/Akt) signaling. Furthermore, the GLP-1RAs influenced multiple mitogen-activated protein kinases (extracellular signal-regulated kinase: ERK; c-Jun N-terminal kinase: JNK, p38) positively and suppressed glycogen synthase kinase 3 (GSK-3β) hyperactivation. A lower proportion of reactive microglia and astrocytes was associated with better neuronal preservation following their administration. Finally, restoration of cognitive functions, particularly spatial memory, was also observed for semaglutide and dulaglutide. GLP-1RAs, therefore, hold promising disease-modifying potential in the management of AD.
Collapse
Affiliation(s)
- Melinda Urkon
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Elek Ferencz
- Service of Translational Medicine and Clinical Research, Emergency County Hospital Miercurea Ciuc, 530173 Miercurea Ciuc, Romania
| | - József Attila Szász
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Monica Iudita Maria Szabo
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Diabetology, Nutrition and Metabolic Disease, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Károly Orbán-Kis
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
- Department of Physiology, M2, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Szabolcs Szatmári
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, F1, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
4
|
Abd-Elhakim YM, Abu-Zeid EH, Ibrahim D, Alhallag KA, Wagih E, Abdelaty AI, Khamis T, Metwally MMM, Ismail TA, Eldoumani H. Moringa oleifera Leaves Powder Mitigates Imidacloprid-Induced Neurobehavioral Disorders and Neurotoxic Reactions in Broiler Chickens by Regulating the Caspase-3/Hsp70/PGC-1α Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8040-8053. [PMID: 40110847 DOI: 10.1021/acs.jafc.5c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study investigated the potential neuroprotective role of Moringa oleifera leaf powder (MOLP) dietary supplementation on imidacloprid (IMD)-induced neurobehavioral disturbances, oxidative stress, and apoptosis in broiler chicken brains. In a 6 week trial, 150 day-old commercial meat-type Ross 308 broiler chicks were randomly divided into five equal groups of 30 chicks each. The control and MOLP groups were fed a basal diet and a basal containing diet 25 g MOLP/kg, respectively, for 6 weeks. The IMD group was fed a basal diet for 2 weeks, followed by a basal diet containing 50 mg IMD/kg for 4 weeks. The IMD + MOLP combined group was fed a basal diet for 2 weeks, followed by a basal diet containing both IMD and MOLP for 4 weeks. The MOLP/IMD + MOLP prophylactic group was fed a MOLP-fortified diet for 2 weeks, followed by a basal diet containing both IMD and MOP for 4 weeks. MOLP supplementation effectively reversed IMD-induced reductions in feeding behavior and locomotor activity while decreasing crouching behavior and fearfulness. Dietary MOLP significantly restored the IMD-induced depletion of brain antioxidants while lessening lipid peroxidation, pathological alterations, and Caspase-3 immunoexpression. Yet, the brain AChE content did not change significantly among the experimental groups. However, dietary MOLP significantly reversed IMD-induced apoptotic-related genes (P21 and Caspase-3) upregulation and neuronal development-related genes (BDNF, GLP-1, PGC-1α, and PPARA) downregulation. Notably, the MOLP/IMD + MOLP prophylactic group showed more enhanced neuroprotection than the IMD + MOLP combined group. In conclusion, our study highlighted the IMD neurotoxic effects in broiler chickens and showed, for the first time, the neuroprotective potential of MOLP as a dietary supplement against IMD exposure.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Kholoud A Alhallag
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Eman Wagih
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa I Abdelaty
- Department of Behavior and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Xiang L, Peng Y. Impact of Glucagon-like Peptide-1 Receptor Agonists on Mental Illness: Evidence from a Mendelian Randomization Study. Int J Mol Sci 2025; 26:2741. [PMID: 40141382 PMCID: PMC11942543 DOI: 10.3390/ijms26062741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Emerging evidence suggests that glucagon-like peptide-1 receptor (GLP1R) agonists may have potential benefits for mental illnesses. However, their exact effects remain unclear. This study investigated the causal relationship between glucagon-like peptide-1 receptor agonist (GLP1RA) and the risk of 10 common mental illnesses, including attention deficit and hyperactivity disorder, anorexia nervosa, anxiety disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, post-traumatic stress disorder, schizophrenia, cannabis use disorder, and alcohol use disorder. We selected GLP1RA as the exposure and conducted a Mendelian randomization (MR) analysis. The cis-eQTLs of the drug target gene GLP1R, provided by eQTLGen, were used to simulate the pharmacological effects of GLP1RA. Type 2 diabetes and BMI were included as positive controls. Using data from both the Psychiatric Genomic Consortium and FinnGen, we conducted separate MR analyses for the same disease across these two independent databases. Meta-analysis was used to pool the results. We found genetic evidence suggesting a causal relationship between GLP1RA and a reduced risk of schizophrenia [OR (95% CI) = 0.84 (0.71-0.98), I2 = 0.0%, common effects model]. Further mediation analysis indicated that this effect might be unrelated to improvements in glycemic control but rather mediated by BMI. However, the findings of this study provide insufficient evidence to support a causal relationship between GLP1RA and other mental illnesses. Sensitivity analyses did not reveal any potential bias due to horizontal pleiotropy or heterogeneity in the above results (p > 0.05). This study suggests that genetically proxied activation of glucagon-like peptide-1 receptor is associated with a lower risk of schizophrenia. GLP1R is implicated in schizophrenia pathogenesis, and its agonists may exert potential benefits through weight management. Our study provides useful information for understanding the neuropsychiatric effects of GLP1RA, which may contribute to refining future research designs and guiding clinical management. Moreover, our findings could have significant implications for overweight individuals at high risk of schizophrenia when selecting weight-loss medications. Future research should further investigate the potential mechanisms underlying the relationship between GLP1RA and schizophrenia.
Collapse
Affiliation(s)
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
6
|
Dou X, Zhao L, Li J, Jiang Y. Effect and mechanism of GLP-1 on cognitive function in diabetes mellitus. Front Neurosci 2025; 19:1537898. [PMID: 40171533 PMCID: PMC11959055 DOI: 10.3389/fnins.2025.1537898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetes mellitus (DM) is a metabolic disorder associated with cognitive impairment. Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) have shown neuroprotective effects. Scope of review This review explores the impact of DM on cognitive function. Diabetes-related cognitive impairment is divided into three stages: diabetes-associated cognitive decrements, mild cognitive impairment (MCI), and dementia. GLP-1R agonists (GLP-1RAs) have many functions, such as neuroprotection, inhibiting infection, and metabolic regulation, and show good application prospects in improving cognitive function. The mechanisms of GLP-1RAs neuroprotection may be interconnected, warranting further investigation. Understanding these mechanisms could lead to targeted treatments for diabetes-related cognitive dysfunction. Major conclusions Therefore, this paper reviewed the regulatory effects of GLP-1 on cognitive dysfunction and its possible mechanism. Further research is required to fully explore the potential of GLP-1 and its analogs in this context.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Laboratory Medicine, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jing Li
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Yaqiu Jiang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Ruskin DN, Martinez LA, Masino SA. Ketogenic diet, adenosine, and dopamine in addiction and psychiatry. Front Nutr 2025; 12:1492306. [PMID: 40129664 PMCID: PMC11932665 DOI: 10.3389/fnut.2025.1492306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Adhering to the ketogenic diet can reduce or stop seizures, even when other treatments fail, via mechanism(s) distinct from other available therapies. These results have led to interest in the diet for treating conditions such as Alzheimer's disease, depression and schizophrenia. Evidence points to the neuromodulator adenosine as a key mechanism underlying therapeutic benefits of a ketogenic diet. Adenosine represents a unique and direct link among cell energy, neuronal activity, and gene expression, and adenosine receptors form functional heteromers with dopamine receptors. The importance of the dopaminergic system is established in addiction, as are the challenges of modulating the dopamine system directly. A mediator that could antagonize dopamine's effects would be useful, and adenosine is such a mediator due to its function and location. Studies report that the ketogenic diet improves cognition, sociability, and perseverative behaviors, and might improve depression. Many of the translational opportunities based on the ketogenic diet/adenosine link have come to the fore, including addiction, autism spectrum disorder, painful conditions, and a range of hyperdopaminergic disorders.
Collapse
|
8
|
Thapa K, Khan H, Chahuan S, Dhankhar S, Kaur A, Garg N, Saini M, Singh TG. Insights into therapeutic approaches for the treatment of neurodegenerative diseases targeting metabolic syndrome. Mol Biol Rep 2025; 52:260. [PMID: 39982557 DOI: 10.1007/s11033-025-10346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Due to the significant energy requirements of nerve cells, glucose is rapidly oxidized to generate ATP and works in conjunction with mitochondria in metabolic pathways, resulting in a combinatorial impact. The purpose of this review is to show how glucose metabolism disorder invariably disrupts the normal functioning of neurons, a phenomenon commonly observed in neurodegenerative diseases. Interventions in these systems may alleviate the degenerative load on neurons. Research on the concepts of metabolic adaptability during disease progression has become a key focus. The majority of the existing treatments are effective in mitigating some clinical symptoms, but they are unsuccessful in preventing neurodegeneration. Hence, there is an urgent need for breakthrough and highly effective therapies for neurodegenerative diseases. Here, we summarise the interactions that various neurodegenerative diseases have with abnormalities in insulin signalling, lipid metabolism, glucose control, and mitochondrial bioenergetics. These factors have a crucial role in brain activity and cognition, and also significantly contribute to neuronal degeneration in pathological conditions. In this article, we have discussed the latest and most promising treatment methods, ranging from molecular advancements to clinical trials, that aim at improving the stability of neurons.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, 174103, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Samrat Chahuan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | | |
Collapse
|
9
|
Mengr A, Šmotková Z, Pačesová A, Železná B, Kuneš J, Maletínská L. Reduction of Neuroinflammation as a Common Mechanism of Action of Anorexigenic and Orexigenic Peptide Analogues in the Triple Transgenic Mouse Model of Alzheimer´s Disease. J Neuroimmune Pharmacol 2025; 20:18. [PMID: 39932627 PMCID: PMC11813825 DOI: 10.1007/s11481-025-10174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Characterized by progressive neurodegeneration, AD typically begins with mild cognitive decline escalating to severe impairment in communication and responsiveness. It primarily affects cerebral regions responsible for cognition, memory, and language processing, significantly impeding the functional independence of patients. With nearly 50 million dementia cases worldwide, a number expected to triple by 2050, the need for effective treatments is more urgent than ever. Recent insights into the association between obesity, type 2 diabetes mellitus, and neurodegenerative disorders have led to the development of promising treatments involving antidiabetic and anti-obesity agents. One such novel promising candidate for addressing AD pathology is a lipidized analogue of anorexigenic peptide called prolactin-releasing peptide (palm11-PrRP31). Interestingly, anorexigenic and orexigenic peptides have opposite effects on food intake regulation, however, both types exhibit neuroprotective properties. Recent studies have also identified ghrelin, an orexigenic peptide, as a potential neuroprotective agent. Hence, we employed both anorexigenic and orexigenic compounds to investigate the common mechanisms underpinning their neuroprotective effects in a triple transgenic mouse model of AD (3xTg-AD mouse model) combining amyloid-beta (Aβ) pathology and Tau pathology, two hallmarks of AD. We treated 3xTg-AD mice for 4 months with two stable lipidized anorexigenic peptide analogues - palm11-PrRP31, and liraglutide, a glucagon-like peptide 1 (GLP-1) analogue - as well as Dpr3-ghrelin, a stable analogue of the orexigenic peptide ghrelin, and using the method of immunohistochemistry and western blot demonstrate the effects of these compounds on the development of AD-like pathology in the brain. Palm11-PrRP31, Dpr3-ghrelin, and liraglutide reduced intraneuronal deposits of Aβ plaque load in the hippocampi and amygdalae of 3xTg-AD mice. Palm11-PrRP31 and Dpr3-ghrelin reduced microgliosis in the hippocampi, amygdalae, and cortices of 3xTg-AD mice. Palm11-PrRP31 and liraglutide reduced astrocytosis in the amygdalae of 3xTg-AD mice. We propose that these peptides are involved in reducing inflammation, a common mechanism underlying their therapeutic effects. This is the first study to demonstrate improvements in AD pathology following the administration of both orexigenic and anorexigenic compounds, highlighting the therapeutic potential of food intake-regulating peptides in neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 160 00, Prague, Czech Republic
| | - Zuzana Šmotková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 160 00, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 12108, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 160 00, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 160 00, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 160 00, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 160 00, Prague, Czech Republic.
| |
Collapse
|
10
|
Qu L, Tang Y, Wu J, Yun X, Lo HH, Song L, Wang X, Wang H, Zhang R, Liu M, Wang C, Ng JPL, Fu X, Wong IN, Wong VKW, Law BYK. FBXL16: a new regulator of neuroinflammation and cognition in Alzheimer's disease through the ubiquitination-dependent degradation of amyloid precursor protein. Biomark Res 2024; 12:144. [PMID: 39568047 PMCID: PMC11580471 DOI: 10.1186/s40364-024-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Activating the ubiquitin-proteasome system to dismantle disease- related proteins such as tau, β-amyloid, APP, and α-synuclein is an important focus in the research of neurodegenerative proteinopathy. By analyzing the serum RNA extracted from wild-type and Alzheimer's disease (AD) transgenic mice at different ages (4, 8, and 12 months), this study revealed a new protective role of FBXL16 in AD, primarily through facilitating the degradation of disease-related proteins via the ubiquitin proteasome system. METHODS Proteomic analysis were conducted using protein lysates from HEK293 cells overexpressing FBXL16 to identify potential interacting proteins that interact with FBXL16. Subsequent experiments demonstrated that FBXL16 promotes the proteasomal degradation of the APP protein, as evidenced by co-immunoprecipitation with MG132 and cycloheximide (CHX), immunohistochemistry (IHC) and immunocytochemistry (ICC). Memory and cognitive improvements were observed in 3×Tg AD mice through the use of a lentivirus-mediated approach to generate a brain-specific AD mouse model overexpressing FBXL16 via stereotaxic injection. Furthermore, a brain-specific conditional knockout (cko) FBXL16 mouse model was generated and employed to further confirm the functional role of FBXL 16 in AD via various behavioral tests including Morris water maze and Y-maze. RESULTS The level of FBXL16 in the brains of transgenic APP/PSEN mice with AD decreased with age. Accelerated degradation of APP was observed when FBXL16 was overexpressed in the hippocampi of these AD mice via a lentivirus. This process led to notable improvements in cognitive impairments and reductions in neuroinflammation. Further studies using proteomics and bioinformatics techniques identified transcription factors and binding proteins associated with FBXL16, providing deeper insights into the potential role of FBXL16 in the regulation of AD. Finally, the in vivo effects of FBXL16 deficiency were further substantiated in cko mice, which overexpress Aβ but specifically lack FBXL16 in the brain region. CONCLUSIONS These findings suggest that FBXL16 could be a new regulator of AD. These findings provide a foundation for further research into drug development and potential therapeutic strategies to combat other related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Jianhui Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Linlin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Xingxia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Huimiao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Ruilong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Menghan Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Cairen Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Io Nam Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China.
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China.
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau S.A.R, Avenida Wai Long, Macau, 999078, China.
| |
Collapse
|
11
|
Tran J, Parekh S, Rockcole J, Wilson D, Parmar MS. Repurposing antidiabetic drugs for Alzheimer's disease: A review of preclinical and clinical evidence and overcoming challenges. Life Sci 2024; 355:123001. [PMID: 39173996 DOI: 10.1016/j.lfs.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Repurposing antidiabetic drugs for the treatment of Alzheimer's disease (AD) has emerged as a promising therapeutic strategy. This review examines the potential of repurposing antidiabetic drugs for AD treatment, focusing on preclinical evidence, clinical trials, and observational studies. In addition, the review aims to explore challenges and opportunities in repurposing antidiabetic drugs for AD, emphasizing the importance of well-designed clinical trials that consider patient selection criteria, refined outcome measures, adverse effects, and combination therapies to enhance therapeutic efficacy. Preclinical evidence suggests that glucagon-like peptide-1 (GLP-1) analogs, dipeptidyl peptidase-4 (DPP4) inhibitors, metformin, thiazolidinediones, and sodium-glucose co-transporter-2 (SGLT2) inhibitors exhibit neuroprotective effects in AD preclinical models. In preclinical studies, antidiabetic drugs have demonstrated neuroprotective effects by reducing amyloid beta (Aβ) plaques, tau hyperphosphorylation, neuroinflammation, and cognitive impairment. Antidiabetic drug classes, notably GLP-1 analogs and SGLT2 inhibitors, and a reduced risk of dementia in patients with diabetes mellitus. While the evidence for DPP4 inhibitors is mixed, some studies suggest a potential protective effect. On the other hand, alpha-glucosidase inhibitors (AGIs) and sulfonylureas may potentially increase the risk, especially in those experiencing recurrent hypoglycemic events. Repurposing antidiabetic drugs for AD is a promising therapeutic strategy, but challenges such as disease heterogeneity, limited biomarkers, and benefits versus risk evaluation need to be addressed. Ongoing clinical trials in mild cognitive impairment (MCI) and early AD patients without diabetes will be crucial in determining the clinical efficacy and safety of the antidiabetic drugs, paving the way for potential treatments for AD.
Collapse
Affiliation(s)
- Jacky Tran
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Sneh Parekh
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Julia Rockcole
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Danielle Wilson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
12
|
Yu SJ, Wang Y, Shen H, Bae EK, Li Y, Sambamurti K, Tones MA, Zaleska MM, Hoffer BJ, Greig NH. DPP-4 inhibitors sitagliptin and PF-00734,200 mitigate dopaminergic neurodegeneration, neuroinflammation and behavioral impairment in the rat 6-OHDA model of Parkinson's disease. GeroScience 2024; 46:4349-4371. [PMID: 38563864 PMCID: PMC11336009 DOI: 10.1007/s11357-024-01116-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Epidemiological studies report an elevated risk of Parkinson's disease (PD) in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed dipeptidyl peptidase 4 (DPP-4) inhibitors. With an objective to characterize clinically translatable doses of DPP-4 inhibitors (gliptins) in a well-characterized PD rodent model, sitagliptin, PF-00734,200 or vehicle were orally administered to rats initiated either 7-days before or 7-days after unilateral medial forebrain bundle 6-hydroxydopamine (6-OHDA) lesioning. Measures of dopaminergic cell viability, dopamine content, neuroinflammation and neurogenesis were evaluated thereafter in ipsi- and contralateral brain. Plasma and brain incretin and DPP-4 activity levels were quantified. Furthermore, brain incretin receptor levels were age-dependently evaluated in rodents, in 6-OHDA challenged animals and human subjects with/without PD. Cellular studies evaluated neurotrophic/neuroprotective actions of combined incretin administration. Pre-treatment with oral sitagliptin or PF-00734,200 reduced methamphetamine (meth)-induced rotation post-lesioning and dopaminergic degeneration in lesioned substantia nigra pars compacta (SNc) and striatum. Direct intracerebroventricular gliptin administration lacked neuroprotective actions, indicating that systemic incretin-mediated mechanisms underpin gliptin-induced favorable brain effects. Post-treatment with a threefold higher oral gliptin dose, likewise, mitigated meth-induced rotation, dopaminergic neurodegeneration and neuroinflammation, and augmented neurogenesis. These gliptin-induced actions associated with 70-80% plasma and 20-30% brain DPP-4 inhibition, and elevated plasma and brain incretin levels. Brain incretin receptor protein levels were age-dependently maintained in rodents, preserved in rats challenged with 6-OHDA, and in humans with PD. Combined GLP-1 and GIP receptor activation in neuronal cultures resulted in neurotrophic/neuroprotective actions superior to single agonists alone. In conclusion, these studies support further evaluation of the repurposing of clinically approved gliptins as a treatment strategy for PD.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan.
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Hui Shen
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yazhou Li
- National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kumar Sambamurti
- Department of Neurosciences, the Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nigel H Greig
- National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
Diz-Chaves Y, Maastor Z, Spuch C, Lamas JA, González-Matías LC, Mallo F. Glucagon-like peptide 1 receptor activation: anti-inflammatory effects in the brain. Neural Regen Res 2024; 19:1671-1677. [PMID: 38103230 PMCID: PMC10960307 DOI: 10.4103/1673-5374.389626] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity. Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues, including different brain regions. Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection, like the support of cell growth/survival, enhancement promotion of synapse formation, autophagy, and inhibition of the secretion of proinflammatory cytokines, microglial activation, and apoptosis during neural morphogenesis. The glial cells, including astrocytes and microglia, maintain metabolic homeostasis and defense against pathogens in the central nervous system. After brain insult, microglia are the first cells to respond, followed by reactive astrocytosis. These activated cells produce proinflammatory mediators like cytokines or chemokines to react to the insult. Furthermore, under these circumstances, microglia can become chronically inflammatory by losing their homeostatic molecular signature and, consequently, their functions during many diseases. Several processes promote the development of neurological disorders and influence their pathological evolution: like the formation of protein aggregates, the accumulation of abnormally modified cellular constituents, the formation and release by injured neurons or synapses of molecules that can dampen neural function, and, of critical importance, the dysregulation of inflammatory control mechanisms. The glucagon-like peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies, restoring brain cell homeostasis under inflammatory conditions, modulating microglia activity, and decreasing the inflammatory response. This review summarizes recent advances linked to the anti-inflammatory properties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis, Alzheimer's disease, Parkinson's disease, vascular dementia, or chronic migraine.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Zainab Maastor
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Sala Investigación, Estrada Clara Campoamor, Vigo, Spain
| | - José Antonio Lamas
- Biomedical Research Centre (CINBIO), Laboratory of Neuroscience, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Lucas C. González-Matías
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Federico Mallo
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| |
Collapse
|
14
|
Kopp KO, Li Y, Glotfelty EJ, Tweedie D, Greig NH. Incretin-Based Multi-Agonist Peptides Are Neuroprotective and Anti-Inflammatory in Cellular Models of Neurodegeneration. Biomolecules 2024; 14:872. [PMID: 39062586 PMCID: PMC11275108 DOI: 10.3390/biom14070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Katherine O. Kopp
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Elliot J. Glotfelty
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA;
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.O.K.); (Y.L.); (D.T.)
| |
Collapse
|
15
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Hadi NR, Assiri AA, Alrouji M, Welson NN, Alexiou A, Papadakis M, Batiha GES. Hypoglycemia and Alzheimer Disease Risk: The Possible Role of Dasiglucagon. Cell Mol Neurobiol 2024; 44:55. [PMID: 38977507 PMCID: PMC11230952 DOI: 10.1007/s10571-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory impairment and cognitive dysfunctions. It has been shown that hypoglycemia can adversely affect AD neuropathology. It is well-known that chronic hyperglycemia in type 2 diabetes (T2D) is regarded as a potential risk factor for the development and progression of AD. However, the effect of recurrent hypoglycemia on the pathogenesis of AD was not deeply discussed, and how recurrent hypoglycemia affects AD at cellular and molecular levels was not intensely interpreted by the previous studies. The underlying mechanisms for hypoglycaemia-induced AD are diverse such as endothelial dysfunction, thrombosis, and neuronal injury that causing tau protein hyperphosphorylation and the accumulation of amyloid beta (Aβ) in the brain neurons. Of note, the glucagon hormone, which controls blood glucose, can also regulate the cognitive functions. Glucagon increases blood glucose by antagonizing the metabolic effect of insulin. Therefore, glucagon, through attenuation of hypoglycemia, may prevent AD neuropathology. Glucagon/GLP-1 has been shown to promote synaptogenesis, hippocampal synaptic plasticity, and learning and memory, while attenuating amyloid and tau pathologies. Therefore, activation of glucagon receptors in the brain may reduce AD neuropathology. A recent glucagon receptor agonist dasiglucagon which used in the management of hypoglycemia may be effective in preventing hypoglycemia and AD neuropathology. This review aims to discuss the potential role of dasiglucagon in treating hypoglycemia in AD, and how this drug reduce AD neuropathology.
Collapse
Affiliation(s)
- Naif H Ali
- Assistant Professor of Neurology, Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Head of Jabir Ibn, Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO.Box13, Kufa, Iraq
| | - Najah R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Abdullah A Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
- University Centre for Research & Development, Chandigarh University, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
16
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
17
|
Crook H, Edison P. Incretin Mimetics as Potential Disease Modifying Treatment for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S357-S370. [PMID: 39422964 DOI: 10.3233/jad-240730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative condition that exerts a significant global burden. Despite recent efforts, disease modifying therapies remain extremely limited, with a tremendous proportion of patients having to rely on symptomatic treatment only. Epidemiological and pathological overlaps exist between Alzheimer's disease and diabetes mellitus type 2, with people with diabetes mellitus type 2 at a significantly increased risk of developing Alzheimer's disease in the future. Incretin mimetics, also known as GLP-1/GIP receptor agonists, are useful tools licensed for the treatment of diabetes mellitus type 2 which have recently been the subject of news coverage for their off-label use as weight loss medications. Emerging evidence highlights the possible neuroprotective function of incretin mimetics in models of Alzheimer's disease as well as in clinical studies. This review details the pre-clinical and clinical studies that have explored the effectiveness of incretin mimetics to alleviate Alzheimer's disease associated pathology and cognitive impairment, while also highlighting the progress made to examine the effectiveness of these molecules in Parkinson's disease. Should clinical trials prove effective, incretin mimetics may be able to be repurposed and become useful novel tools as disease-modifying treatments for Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
19
|
Ding J, Shi Q, Tao Q, Su H, Du Y, Pan T, Zhong X. Correlation between long-term glycemic variability and cognitive function in middle-aged and elderly patients with type 2 diabetes mellitus: a retrospective study. PeerJ 2023; 11:e16698. [PMID: 38144199 PMCID: PMC10748480 DOI: 10.7717/peerj.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Objective To investigate the correlation between long-term glycemic variability and cognitive function in middle-aged and elderly patients with type 2 diabetes mellitus (T2DM). Methods This retrospective analysis includes 222 patients hospitalized at Second Affiliated Hospital of Anhui Medical University from June 2021 to June 2023. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE). All patients were categorized into the MCI group and the non-MCI group based on their MoCA score. Long-term blood glucose fluctuations were measured using glycated hemoglobin A1c standard deviation (HbA1c-SD) and fasting plasma glucose standard deviation (FPG-SD). The study compared general clinical data, blood biochemical indicators, and glycemic variability indicators between the two groups. The differences between the groups were compared using t-test, Chi-Square Test, or Mann-Whitney U test. Kendall's correlation analysis, multivariate logistic regression analysis and ROC curve correlation analysis were further used to analyze the correlation and diagnostic power. Results The differences in age, MoCA scores, MMSE scores, HOMA-β, HbA1c-M, HbA1c-SD, FPG-M, FPG-SD, eGFR, Smoking, GLP-1RA and SGLT-2i usage were statistically significant between the two groups (P < 0.05). Kendall's correlation analysis showed that age, HbA1c-M, HbA1c-SD, FPG-M, and FPG-SD was negatively correlated with MoCA scores; meanwhile, the HOMA-β, and eGFR was positively correlated with MoCA scores. Multiple logistic regression analysis revealed that HbA1c-SD, FPG-SD and Smoking were risk factors for cognitive dysfunction, while eGFR, GLP-1RA and SGLT-2i usage was a protective effect. The area under the curve (AUC) values for predicting MCI prevalence were 0.830 (95% CI [0.774-0.877], P < 0.001) for HbA1c-SD, 0.791 (95% CI [0.655-0.808], P < 0.001) for FPG-SD, and 0.698 (95% CI [0.633-0.757], P < 0.001) for eGFR. The optimal diagnostic values were 0.91, 1.32, and 74.81 ml/min/1.73 m2 for HbA1c-SD, FPG-SD, and eGFR, respectively. Conclusions Cognitive function in middle-aged and elderly T2DM patients is influenced by long-term blood glucose variability, with poorer cognitive function observed in individuals with higher blood glucose variability. The impact of HbA1c-SD on MCI exhibited a greater magnitude compared to that of PFG-SD and smoking. Additionally, renal function, GLP-1RA and SGLT-2i usage exert positive effects on cognitive function.
Collapse
Affiliation(s)
- JingCheng Ding
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Shi
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Tao
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui Province, China
| | - Yijun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
20
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
21
|
Pelle MC, Zaffina I, Giofrè F, Pujia R, Arturi F. Potential Role of Glucagon-like Peptide-1 Receptor Agonists in the Treatment of Cognitive Decline and Dementia in Diabetes Mellitus. Int J Mol Sci 2023; 24:11301. [PMID: 37511061 PMCID: PMC10379573 DOI: 10.3390/ijms241411301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Dementia is a permanent illness characterized by mental instability, memory loss, and cognitive decline. Many studies have demonstrated an association between diabetes and cognitive dysfunction that proceeds in three steps, namely, diabetes-associated cognitive decrements, mild cognitive impairment (MCI; both non-amnesic MCI and amnesic MCI), and dementia [both vascular dementia and Alzheimer's disease (AD)]. Based on this association, this disease has been designated as type 3 diabetes mellitus. The underlying mechanisms comprise insulin resistance, inflammation, lipid abnormalities, oxidative stress, mitochondrial dysfunction, glycated end-products and autophagy. Moreover, insulin and insulin-like growth factor-1 (IGF-1) have been demonstrated to be involved. Insulin in the brain has a neuroprotective role that alters cognitive skills and alteration of insulin signaling determines beta-amyloid (Aβ) accumulation, in turn promoting brain insulin resistance. In this complex mechanism, other triggers include hyperglycemia-induced overproduction of reactive oxygen species (ROS) and inflammatory cytokines, which result in neuroinflammation, suggesting that antidiabetic drugs may be potential treatments to protect against AD. Among these, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are the most attractive antidiabetic drugs due to their actions on synaptic plasticity, cognition and cell survival. The present review summarizes the significant data concerning the underlying pathophysiological and pharmacological mechanisms between diabetes and dementia.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Pujia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Hawash ZAS, Yassien EM, Alotaibi BS, El-Moslemany AM, Shukry M. Assessment of Anti-Alzheimer Pursuit of Jambolan Fruit Extract and/or Choline against AlCl 3 Toxicity in Rats. TOXICS 2023; 11:509. [PMID: 37368609 DOI: 10.3390/toxics11060509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Jambolan fruit extract and choline were investigated for Aluminum tri chloride (AlCl3)-induced Alzheimer's disease in rats. Thirty-six male "Sprague Dawley" rats weighing (150 ± 10 g) were allocated into six groups; the first group was fed a baseline diet and served as a negative control. Alzheimer's disease (AD) was induced in Group 2 rats by oral administration of AlCl3 (17 mg/kg body weight) dissolved in distilled water (served as a positive control). Rats in Group 3 were orally supplemented concomitantly with both 500 mg/kg BW of an ethanolic extract of jambolan fruit once daily for 28 days and AlCl3 (17 mg/kg body weight). Group 4: Rivastigmine (RIVA) aqueous infusion (0.3 mg/kg BW/day) was given orally to rats as a reference drug concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight) for 28 days. Group 5 rats were orally treated with choline (1.1 g/kg) concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight). Group 6 was given 500 mg/kg of jambolan fruit ethanolic extract and 1.1 g/kg of choline orally to test for additive effects concurrently with oral supplementation of AlCl3 (17 mg/kg bw) for 28 days. Body weight gain, feed intake, feed efficiency ratio, and relative brain, liver, kidney, and spleen weight were calculated after the trial. Brain tissue assessment was analyzed for antioxidant/oxidant markers, biochemical analysis in blood serum, a phenolic compound in Jambolan fruits extracted by high-performance liquid chromatography (HPLC), and histopathology of the brain. The results showed that Jambolan fruit extract and choline chloride improved brain functions, histopathology, and antioxidant enzyme activity compared with the positive group. In conclusion, administering jambolan fruit extract and choline can lower the toxic impacts of aluminum chloride on the brain.
Collapse
Affiliation(s)
- Zeinab Abdel Salam Hawash
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Ensaf M Yassien
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira M El-Moslemany
- Nutrition and Food Science Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
23
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Sarkar P, Banu S, Bhattacharya S, Bala A, Sur D. Pathophysiology Associated with Diabetes-induced Tauopathy and Development of Alzheimer's Disease. Curr Diabetes Rev 2023; 19:e130522204763. [PMID: 35570545 DOI: 10.2174/1573399818666220513142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects the elderly around the world. Chronic type 2 diabetes (T2DM) has been proven to be closely related to neurodegeneration, especially AD. T2DM is characterized by the cell's failure to take up insulin as well as chronic hyperglycemia. In the central nervous system, insulin plays vital regulatory roles, while in chronic hyperglycemia, it leads to the formation and accumulation of advanced glycation end products (AGEs). Inflammation plays a crucial role in development of insulin resistance in AD and T2DM. The microtubule-related protein tau is involved in the pathogenesis of several neurological diseases known as tauopathies, and is found to be abnormally hyperphosphorylated in AD and accumulated in neurons. Chronic neuroinflammation causes the breakdown of the blood-brain barrier (BBB) observed in tauopathies. The development of pro-inflammatory signaling molecules, such as cytokines, chemokines from glial cells, neurons and endothelial cells, decides the structural integrity of BBB and immune cell migration into the brain. This review highlights the use of antidiabetic compounds as promising therapeutics for AD, and also describes several new pathological molecular mechanisms associated with diabetes that increase AD pathogenesis.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata, 700114, India
| | - Sarmin Banu
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata, 700114, India
| | - Sanchari Bhattacharya
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata, 700114, India
| | - Asis Bala
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata, 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata, 700114, India
| |
Collapse
|
25
|
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease. Mol Psychiatry 2023; 28:217-229. [PMID: 36258018 PMCID: PMC9812772 DOI: 10.1038/s41380-022-01792-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023]
Abstract
Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK. .,School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
26
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
27
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
28
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
29
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
30
|
Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci Biobehav Rev 2022; 142:104896. [PMID: 36191807 DOI: 10.1016/j.neubiorev.2022.104896] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), a pleiotropic polypeptide, plays an essential role in CNS development and maturation. Glucagon-like peptide-1 (GLP-1) is an endogenous incretin hormone that regulates blood glucose levels and fatty acid oxidation in the brain. GLP-1 also exhibits similar functions and growth factor-like properties to IGF-1, which is likely how it exerts its neuroprotective effects. Recent preclinical and clinical evidence indicate that IGF-1 and GLP-1, apart from regulating growth and development, prevent neuronal death mediated by amyloidogenesis, cerebral glucose deprivation, neuroinflammation and apoptosis through modulation of PI3/Akt kinase, mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK/ERK). IGF-1 resistance and GLP-1 deficiency impair protective cellular signaling mechanisms, contributing to the progression of neurodegenerative diseases. Over the past decades, IGF-1 and GLP-1 have emerged as an essential component of the neuronal system and as potential therapeutic targets for several neurodegenerative and neuropsychiatric dysfunctions. There is substantial evidence that IGF-1 and GLP-1 analogues penetrate the blood-brain barrier (BBB) and exhibit neuroprotective functions, including synaptic formation, neuronal plasticity, protein synthesis, and autophagy. Conclusively, this review represents the therapeutic potential of IGF-1 and GLP-1 signaling target activators in ameliorating neurological disorders.
Collapse
|
31
|
Servín‐Casas GA, Romo‐Araiza A, Gutierrez‐Salmean G, Martinez‐Solis E, Ibarra‐García AP, Cruz‐Martinez Y, Rodriguez‐Barrera R, García E, Incontri‐Abraham D, Ibarra A. Memory improvement in senile rats after prebiotic and probiotic supplementation is not induced by GLP-1. CNS Neurosci Ther 2022; 28:1986-1992. [PMID: 36052558 PMCID: PMC9627373 DOI: 10.1111/cns.13951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The mechanism underlying the memory improvement induced by prebiotic and probiotic supplementation remains unclear. Glucagon-like peptide type 1 (GLP-1) could play an important role since it is induced by prebiotics and enhances memory and learning. AIMS We correlated the levels of GLP-1 with spatial memory in senile animals to determine its role in memory improvement after prebiotic and probiotic supplementation. METHODS Senile rats were randomly assigned to four groups: (1) water (control); (2) Enterococcus faecium (probiotic); (3) agave inulin (prebiotic); and (4) E. faecium + agave inulin (symbiotic). Each supplement was administered by an orogastric cannula for 5 weeks. In the fifth week, spatial memory was assessed using the Morris Water Maze test (MWM). We extracted the hippocampus, intestine, and serum. GLP-1 levels were quantified by enzyme-linked immunosorbent assay. RESULTS A significant decrease in escape latency time in the MWM was observed in all groups treated with supplements. The symbiotic group achieved the highest reduction (15.13 s ± 6.40) (p < 0.01). We did not find a significant increase in GLP-1 levels nor a direct correlation of its levels with spatial memory improvement (p > 0.05). CONCLUSION Prebiotic and probiotic supplementation improved spatial memory in senile animals. However, this beneficial effect did not correlate with GLP-1 levels.
Collapse
Affiliation(s)
- Gabriela Andrea Servín‐Casas
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Alejandra Romo‐Araiza
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Gabriela Gutierrez‐Salmean
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Enrique Martinez‐Solis
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Andrea Paola Ibarra‐García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Yolanda Cruz‐Martinez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Roxana Rodriguez‐Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Elisa García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Diego Incontri‐Abraham
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucan, Edo. de MéxicoMexico
| |
Collapse
|
32
|
Bailey J, Coucha M, Bolduc DR, Burnett FN, Barrett AC, Ghaly M, Abdelsaid M. GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes. Diabetologia 2022; 65:1541-1554. [PMID: 35687178 PMCID: PMC11973880 DOI: 10.1007/s00125-022-05730-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction. METHODS Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions. RESULTS Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05). CONCLUSIONS/INTERPRETATION This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.
Collapse
Affiliation(s)
- Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Deanna R Bolduc
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Faith N Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mark Ghaly
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
33
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
34
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|
35
|
Bellia C, Lombardo M, Meloni M, Della-Morte D, Bellia A, Lauro D. Diabetes and cognitive decline. Adv Clin Chem 2022; 108:37-71. [PMID: 35659061 DOI: 10.1016/bs.acc.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidemiologic studies have documented an association between diabetes and increased risk of cognitive decline in the elderly. Based on animal model studies, several mechanisms have been proposed to explain such an association, including central insulin signaling, neurodegeneration, brain amyloidosis, and neuroinflammation. Nevertheless, the exact mechanisms in humans remain poorly defined. It is reasonable, however, that many pathways may be involved in these patients leading to cognitive impairment. A major aim of clinicians is identifying early onset of neurologic signs and symptoms in elderly diabetics to improve quality of life of those with cognitive impairment and reduce costs associated with long-term complications. Several biomarkers have been proposed to identify diabetics at higher risk of developing dementia and diagnose early stage dementia. Although biomarkers of brain amyloidosis, neurodegeneration and synaptic plasticity are commonly used to diagnose dementia, especially Alzheimer disease, their role in diabetes remains unclear. The aim of this review is to explore the molecular mechanisms linking diabetes with cognitive decline and present the most important findings on the clinical use of biomarkers for diagnosing and predicting early cognitive decline in diabetics.
Collapse
Affiliation(s)
- Chiara Bellia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Mauro Lombardo
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
36
|
Zhang Q, Li Q, Liu S, Zheng H, Ji L, Yi N, Bao W, Zhu X, Sun W, Liu X, Zhang S, Zuo C, Li Y, Xiong Q, Lu B. Glucagon-like peptide-1 receptor agonist attenuates diabetic neuropathic pain via inhibition of NOD-like receptor protein 3 inflammasome in brain microglia. Diabetes Res Clin Pract 2022; 186:109806. [PMID: 35240228 DOI: 10.1016/j.diabres.2022.109806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to explore the evidence of brain microglia activation in diabetic neuropathic pain (DNP) and the effect and mechanism of glucagon-like peptide-1 receptor agonist (GLP-RA) on DNP via brain microglia. METHODS Brain microglia activation was observed in DNP rats by positron emission tomography/computed tomography. The behavior of neuropathic pain was assessed in DNP rats after intracerebroventricular administration of GLP-1RA or microglial inhibitor minocycline. RNA sequencing was performed to explore the target of GLP-1RA on brain microglia. NOD-like receptor protein 3 (NLRP3) expression in brain microglia was evaluated in mentioned-above DNP rats, and the activation of NLRP3 inflammasome was analyzed in microglia treated with GLP-1RA. RESULTS Microglia were activated in the cortex and thalamus of DNP rats. The thermal and mechanical allodynia were alleviated in DNP rats via intracerebroventricular administration of GLP-1RA or minocycline. And the activation of brain microglia was attenuated in DNP rats by intracerebroventricular administration of GLP-1RA. The expression of NLRP3 in brain microglia, which was found by RNA sequencing, was reduced in DNP rats by administration of GLP-1RA. Furthermore, GLP-1RA attenuated NLRP3 inflammasome activation in microglia triggered by LPS. CONCLUSION GLP-1RA could alleviate DNP, possibly mediated by the suppression of brain microglia NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingchun Li
- Jing'an District Central Hospital, Fudan University, Jing'an Branch, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Siying Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hangping Zheng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijin Ji
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Na Yi
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwan Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoxia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Xiong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
37
|
A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer’s disease: mechanism and brain delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Mallo F. Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. VITAMINS AND HORMONES 2022; 118:457-478. [PMID: 35180937 DOI: 10.1016/bs.vh.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone very well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain, and it displays critical roles in neuroprotection by activating the GLP-1 receptor signaling pathways. GLP-1 enhances learning and memory in the hippocampus, promotes neurogenesis, decreases inflammation and apoptosis, modulates reward behavior, and reduces food intake. Its pharmacokinetics have been improved to enhance the peptide's half-life, enhancing exposure and time of action. The GLP-1 agonists are successfully in clinical use for the treatment of type-2 diabetes, obesity, and clinical evaluation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
39
|
Katsenos AP, Davri AS, Simos YV, Nikas IP, Bekiari C, Paschou SA, Peschos D, Konitsiotis S, Vezyraki P, Tsamis KI. New treatment approaches for Alzheimer's disease: preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin Investig Drugs 2022; 31:105-123. [PMID: 34941464 DOI: 10.1080/13543784.2022.2022122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) represent two major chronic diseases that affect a large percentage of the population and share common pathogenetic mechanisms, including oxidative stress and inflammation. Considering their common mechanistic aspects, and given the current lack of effective therapies for AD, accumulating research has focused on the therapeutic potential of antidiabetic drugs in the treatment or prevention of AD. AREAS COVERED This review examines the latest preclinical and clinical evidence on the potential of antidiabetic drugs as candidates for AD treatment. Numerous approved drugs for T2DM, including insulin, metformin, glucagon-like peptide-1 receptor agonists (GLP-1 RA), and sodium glucose cotransporter 2 inhibitors (SGLT2i), are in the spotlight and may constitute novel approaches for AD treatment. EXPERT OPINION Among other pharmacologic agents, GLP-1 RA and SGLT2i have so far exhibited promising results as novel treatment approaches for AD, while current research has centered on deciphering their action on the central nervous system (CNS). Further investigation is crucial to reveal the most effective pharmacological agents and their optimal combinations, maximize their beneficial effects on neurons, and find ways to increase their distribution to the CNS.
Collapse
Affiliation(s)
- Andreas P Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | - Athena S Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, school of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece.,Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
40
|
Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-Oliver F, Ruiz-Albusac J, Ávila J, Pozo MÁ. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol (Lausanne) 2022; 13:873301. [PMID: 35615716 PMCID: PMC9125423 DOI: 10.3389/fendo.2022.873301] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Several neurological diseases share pathological alterations, even though they differ in their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress, mitochondrial dysfunction and amyloidosis are biological events found in those neurological disorders. Altered insulin-mediated signaling and brain glucose hypometabolism are characteristic signs observed in the brains of patients with certain neurological diseases, but also others such as type 2 diabetes mellitus and vascular diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in these neurological diseases as contributing to the decline in cognitive function. Supporting this relationship is the fact that nasal and hippocampal insulin administration has been found to improve cognitive function. Additionally, brain glucose hypometabolism precedes the unmistakable clinical manifestations of some of these diseases by years, which may become a useful early biomarker. Deficiencies in the major pathways of oxidative energy metabolism have been reported in patients with several of these neurological diseases, which supports the hypothesis of their metabolic background. This review remarks on the significance of insulin and brain glucose metabolism alterations as keystone common pathogenic substrates for certain neurological diseases, highlighting new potential targets.
Collapse
Affiliation(s)
- Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
- *Correspondence: Enrique Blázquez,
| | | | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
41
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
42
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
43
|
Lynn J, Park M, Ogunwale C, Acquaah-Mensah GK. A Tale of Two Diseases: Exploring Mechanisms Linking Diabetes Mellitus with Alzheimer's Disease. J Alzheimers Dis 2021; 85:485-501. [PMID: 34842187 DOI: 10.3233/jad-210612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementias, including the type associated with Alzheimer's disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as "type 3 diabetes". In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.
Collapse
Affiliation(s)
- Jessica Lynn
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | - Mingi Park
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | | | - George K Acquaah-Mensah
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| |
Collapse
|
44
|
Zhang M, Yan W, Yu Y, Cheng J, Yi X, Guo T, Liu N, Shang J, Wang Z, Hu H, Chen L. Liraglutide ameliorates diabetes-associated cognitive dysfunction via rescuing autophagic flux. J Pharmacol Sci 2021; 147:234-244. [PMID: 34507632 DOI: 10.1016/j.jphs.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The incidence of diabetes-associated cognitive dysfunction is increasing. However, few clinical interventions are available to prevent the disorder. Several researches have shown that liraglutide, as a glucagon-like peptide-1 analog, has protective effects on various neurodegenerative diseases, but its roles in diabetic cognitive dysfunction are rarely reported. This study aims to investigate the protective effects of liraglutide on diabetic cognitive dysfunction and its underlying mechanisms. In vivo, the effects of liraglutide treatment were investigated in a mouse model of type 2 diabetes mellitus (T2DM). In vitro, we investigated the effects of liraglutide on the high-glucose-induced rat primary neurons. The results showed that liraglutide reduced the escape latency and increased the time in effective area in the Morris water maze test, improved the damage of hippocampal and synaptic ultrastructure, and decreased the accumulation of amyloid β protein in hippocampus of T2DM mice. Furthermore, liraglutide increased the ratio of microtubule-associated protein light 1 chain Ⅱ/Ⅰ, the expression of Beclin1 protein and Lysosome-associated membrane protein 2 in vivo and vitro. Additionally, Bafilomycin A1 which can inhibit the fusion of autophagosome and lysosome partially abolished the effects of liraglutide. These findings indicate liraglutide ameliorates diabetes-associated cognitive dysfunction by rescuing autophagic flux.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Ye Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xinyao Yi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jia Shang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhuanzhuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
45
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
46
|
Liu T, Li Y, Yang B, Wang H, Lu C, Chang AK, Huang X, Zhang X, Lu Z, Lu X, Gao B. Suppression of neuronal cholesterol biosynthesis impairs brain functions through insulin-like growth factor I-Akt signaling. Int J Biol Sci 2021; 17:3702-3716. [PMID: 34671194 PMCID: PMC8495388 DOI: 10.7150/ijbs.63512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Some relationship between abnormal cholesterol content and impairment of insulin/insulin-like growth factor I (IGF-1) signaling has been reported in the pathogenesis of Alzheimer's disease (AD). However, the underlying mechanism of this correlation remains unclear. It is known that 3-β hydroxycholesterol Δ 24 reductase (DHCR24) catalyzes the last step of cholesterol biosynthesis. To explore the function of cholesterol in the pathogenesis of AD, we depleted cellular cholesterol by targeting DHCR24 with siRNA (siDHCR24) or U18666A, an inhibitor of DHCR24, and studied the effect of the loss of cholesterol on the IGF-1-Akt signaling pathway in vitro and in vivo. Treatment with U18666A reduced the cellular cholesterol level and blocked the anti-apoptotic function of IGF-1 by impairing the formation of caveolae and the localization of IGF-1 receptor in caveolae of the PC12 cells. Downregulation of the DHCR24 expression induced by siRNA against DHCR24 also yielded similar results. Furthermore, the phosphorylation levels of IGF-1 receptor, insulin receptor substrate (IRS), Akt, and Bad in response to IGF-1 were all found to decrease in the U18666A-treated cells. Rats treated with U18666A via intracerebral injection also exhibited a significant decrease in the cholesterol level and impaired activities of IGF-1-related signaling proteins in the hippocampus region. A significant accumulation of amyloid β and a decrease in the expression of neuron-specific enolase (NSE) was also observed in rats with U18666A. Finally, the Morris water maze experiment revealed that U18666A-treated rats showed a significant cognitive impairment. Our findings provide new evidence strongly supporting that a reduction in cholesterol level can result in neural apoptosis via the impairment of the IGF-1-Akt survival signaling in the brain.
Collapse
Affiliation(s)
- Ting Liu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China.,China Medical University-The Queen's University Belfast Joint College, China Medical University, Shenyang, 110122, China
| | - Yang Li
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Baoyu Yang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Haozhen Wang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Chen Lu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Alan K Chang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Xiuting Huang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Xiujin Zhang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Ziyin Lu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Xiuli Lu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Bing Gao
- School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
47
|
Li Y, Glotfelty EJ, Karlsson T, Fortuno LV, Harvey BK, Greig NH. The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration. J Neurochem 2021; 159:867-886. [PMID: 34569615 DOI: 10.1111/jnc.15521] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is best known for its insulinotropic action following food intake. Its metabolite, GLP-1 (9-36), was assumed biologically inactive because of low GLP-1 receptor (GLP-1R) affinity and non-insulinotropic properties; however, recent studies contradict this assumption. Increased use of FDA approved GLP-1 analogues for treating metabolic disorders and neurodegenerative diseases raises interest in GLP-1 (9-36)'s biological role. We use human SH-SY5Y neuroblastoma cells and a GLP-1R over-expressing variety (#9), in both undifferentiated and differentiated states, to evaluate the neurotrophic/neuroprotective effects of GLP-1 (9-36) against toxic glutamate exposure and other oxidative stress models (via the MTS, LDH or ROS assays). In addition, we examine GLP-1 (9-36)'s signaling pathways, including cyclic-adenosine monophosphate (cAMP), protein kinase-A (PKA), and 5' adenosine monophosphate-activated protein kinase (AMPK) via the use of ELISA, pharmacological inhibitors, or GLP-1R antagonist. Human HMC3 and mouse IMG microglial cell lines were used to study the anti-inflammatory effects of GLP-1 (9-36) against lipopolysaccharide (LPS) (via ELISA). Finally, we applied GLP-1 (9-36) to primary dissociation cultures challenged with α-synuclein or amyloid-β and assessed survival and morphology via immunochemistry. We demonstrate evidence of GLP-1R, cAMP, PKA, and AMPK-mediated neurotrophic and neuroprotective effects of GLP-1 (9-36). The metabolite significantly reduced IL-6 and TNF-α levels in HMC3 and IMG microglial cells, respectively. Lastly, we show mild but significant effects of GLP-1 (9-36) in primary neuron cultures challenged with α-synuclein or amyloid-β. These studies enhance understanding of GLP-1 (9-36)'s effects on the nervous system and its potential as a primary or complementary treatment in pathological contexts.
Collapse
Affiliation(s)
- Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lowella V Fortuno
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Mengr A, Hrubá L, Exnerová A, Holubová M, Popelová A, Železná B, Kuneš J, Maletínská L. Palmitoylated prolactin-releasing peptide reduced Aβ plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res 2021; 18:607-622. [PMID: 34551697 DOI: 10.2174/1567205018666210922110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated type 2 diabetes mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s disease (AD)-like amyloid-β (Aβ) pathology, reducing the Aβ plaque load, microgliosis and astrocytosis in the hippocampus and cortex. OBJECTIVE In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aβ plaques contribute to cognitive deficits in AD. METHODS APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice. RESULTS In the cerebella of 8 months old APP/PS1 mice, we found widespread Aβ plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker glial fibrillary acidic protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aβ plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice. CONCLUSION These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Aneta Exnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6. Czech Republic
| |
Collapse
|
49
|
Yuan L, Zhang J, Guo JH, Holscher C, Yang JT, Wu MN, Wang ZJ, Cai HY, Han LN, Shi H, Han YF, Qi JS. DAla2-GIP-GLU-PAL Protects Against Cognitive Deficits and Pathology in APP/PS1 Mice by Inhibiting Neuroinflammation and Upregulating cAMP/PKA/CREB Signaling Pathways. J Alzheimers Dis 2021; 80:695-713. [PMID: 33579843 DOI: 10.3233/jad-201262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aβ plaques and neuroinflammation in the brain. IL-1β, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aβ deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1β and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.
Collapse
Affiliation(s)
- Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, PR China.,Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun-Hong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Christian Holscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Jun-Ting Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Yan Cai
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ling-Na Han
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Hui Shi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yu-Fei Han
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
50
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Failure of the Brain Glucagon-Like Peptide-1-Mediated Control of Intestinal Redox Homeostasis in a Rat Model of Sporadic Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1118. [PMID: 34356351 PMCID: PMC8301063 DOI: 10.3390/antiox10071118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer's disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|