1
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Yang W, Yu J, Wang H, He J, Pei R. Relationship between high-mobility group box-l and cognitive impairments induced by myocardial ischemia-reperfusion in elderly rats. Exp Gerontol 2024; 195:112540. [PMID: 39122228 DOI: 10.1016/j.exger.2024.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) can lead to structural and functional abnormalities in the hippocampal neurons of the brain. High-mobility group box-l (HMGB1) is implicated in the activation of immune cells and the stimulation of inflammatory responses. However, the specific role of HMGB1 in cognitive impairment induced by MI/R in elderly rats has yet to be elucidated. METHODS Elderly rats underwent surgical procedures to induce MI/R. To evaluate the learning and memory abilities of these rats, a water maze test and a new-object recognition test were administered. Nissl staining was utilised to examine hippocampal neuron damage. Enzyme-linked immunosorbent assay, western blotting, and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were conducted to measure the expression levels of HMGB1, inflammatory cytokines, and molecular pathways. RESULTS The study found that MI/R induced cognitive impairment in elderly rats. There was an observed increase in serum HMGB1 levels, along with elevated concentrations of pro-inflammatory cytokines in the plasma and hippocampus, accompanied by a decrease in anti-inflammatory cytokines. Moreover, substantial damage was evident in the hippocampal neurons of rats exposed to MI/R. In the brains of these rats, there was an increased expression of HMGB1, the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), phosphorylated p65, interleukin-1β (IL-1β), IL-6, IL-23, tumour necrosis factor-α (TNF-α), caspase-3, and Bax. In contrast, the expression of B-cell lymphoma 2 was decreased. The RT-qPCR analyses indicated elevated levels of HMGB1, RAGE, TLR4, IL-1β, IL-6, IL-23, TNF-α, caspase-3, and Bax mRNA. CONCLUSION The increased concentration of serum and hippocampal inflammatory factors in the brains of elderly rats subjected to MI/R suggests that cognitive impairment may be induced through the activation of the HMGB1/TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Jing Yu
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jiandong He
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Ruomeng Pei
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
3
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
4
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Sakrajda K, Bilska K, Czerski PM, Narożna B, Dmitrzak-Węglarz M, Heilmann-Heimbach S, Brockschmidt FF, Herms S, Nöthen MM, Cichon S, Więckowska B, Rybakowski JK, Pawlak J, Szczepankiewicz A. Abelson Helper Integration Site 1 haplotypes and peripheral blood expression associates with lithium response and immunomodulation in bipolar patients. Psychopharmacology (Berl) 2024; 241:727-738. [PMID: 38036661 DOI: 10.1007/s00213-023-06505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
RATIONALE In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr M Czerski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Barbara Więckowska
- Department of Computer Sciences and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
6
|
Wang L, Peng G, Chen L, Guo M, Wang B, Zhang Y, Zhou J, Zhong M, Ye J. Icariin reduces cognitive dysfunction induced by surgical trauma in aged rats by inhibiting hippocampal neuroinflammation. Front Behav Neurosci 2023; 17:1162009. [PMID: 37351155 PMCID: PMC10282654 DOI: 10.3389/fnbeh.2023.1162009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postsurgical complication in elderly individuals, significantly impacting the quality of life of patients; however, there is currently no effective clinical treatment for POCD. Recent studies have shown that Icariin (ICA) has antiaging effects and improves cognitive function, but its effect in POCD has not been studied. In this study, we investigated the influence of ICA on cognitive function and the TLR4/NF-κB signaling pathway in a POCD rat model. We found that ICA reduced surgery-induced memory impairment, decreased hippocampal inflammatory responses, ameliorated neuronal injury in the hippocampus and inhibited microglial activation. In addition, we also observed that ICA inhibited activation of the TLR4/NF-κB signaling pathway. In summary, our research suggest that ICA can ameliorate surgery-induced memory impairment and that the improvements resulting from administration of ICA may be associated with inhibition of hippocampal neuroinflammation. Our research findings also provide insight into potential therapeutic targets and methods for POCD.
Collapse
|
7
|
Zhang Z, Guo L, Yang F, Peng S, Wang D, Lai X, Su B, Xie H. Adiponectin Attenuates Splenectomy-Induced Cognitive Deficits by Neuroinflammation and Oxidative Stress via TLR4/MyD88/NF-κb Signaling Pathway in Aged Rats. ACS Chem Neurosci 2023; 14:1799-1809. [PMID: 37141577 DOI: 10.1021/acschemneuro.2c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common adverse event after surgical trauma in elderly patients. The pathogenesis of PND is still unclear. Adiponectin (APN) is a plasma protein secreted by adipose tissue. We have reported that a decreased APN expression is associated with PND patients. APN may be a promising therapeutic agent for PND. However, the neuroprotective mechanism of APN in PND is still unclear. In this study, 18 month old male Sprague-Dawley rats were assigned to six groups: the sham, sham + APN (intragastric (i.g.) administration of 10 μg/kg/day for 20 days before splenectomy), PND (splenectomy), PND + APN, PND + TAK-242 (intraperitoneal (i.p.) administration of 3 mg/kg TAK-242), and PND + APN + lipopolysaccharide (LPS) (i.p. administration of 2 mg/kg LPS). We first found that APN gastric infusion significantly improved learning and cognitive function in the Morris water maze (MWM) test after surgical trauma. Further experiments indicated that APN could inhibit the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κb) p65 pathway to decrease the degree of oxidative damage (malondialdehyde (MDA) and superoxide dismutase (SOD)), microglia-mediated neuroinflammation (ionized calcium binding adapter molecule 1 (IBA1), caspase-1, tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6)), and apoptosis (p53, Bcl2, Bax, and caspase 3) in hippocampus. By using LPS-specific agonist and TAK-242-specific inhibitor, the involvement of TLR4 engagement was confirmed. APN intragastric administration exerts a neuroprotective effect against cognitive deficits induced by peripheral trauma, and the possible mechanisms include the inhibition of neuroinflammation, oxidative stress, and apoptosis, mediated by the suppression of the TLR4/MyD88/NF-κb signaling pathway. We propose that oral APN may be a promising candidate for PND treatment.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Lideng Guo
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Fei Yang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Shanpan Peng
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Di Wang
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, 524000 Zhanjiang, China
| | - Xiawei Lai
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, 510000 Guangzhou, China
| | - Baiqin Su
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| | - Haihui Xie
- Department of Anesthesiology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523000 Dongguan, China
| |
Collapse
|
8
|
Li X, Gao Y, Han X, Tang S, Li N, Liu X, Ni X. Maresin1 ameliorates postoperative cognitive dysfunction in aged rats by potentially regulating the NF-κB pathway to inhibit astrocyte activation. Exp Gerontol 2023; 176:112168. [PMID: 37055002 DOI: 10.1016/j.exger.2023.112168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is one of the most serious postoperative complications in the elderly population. Perioperative central neuroinflammation is considered to be an important pathological mechanism of POCD, with the activation of astrocytes playing a key role in central neuroinflammation. Maresin1 (MaR1) is a specific pro-resolving mediator synthesized by macrophages in the resolution stage of inflammation, and provides unique anti-inflammatory and pro-resolution effects by limiting excessive neuroinflammation and promoting postoperative recovery. However, the question remains whether MaR1 can have a positive effect on POCD. The objective of this study was to investigate the protective effect of MaR1 on POCD cognitive function in aged rats after splenectomy. Morris water maze test and IntelliCage test showed that splenectomy could cause transient cognitive dysfunction in aged rats; however, the cognitive impairment of rats was significantly mitigated when MaR1 pretreatment was administered. MaR1 significantly alleviated the fluorescence intensity and protein expression of glial fibrillary acidic protein and central nervous system specific protein in the cornu ammonis 1 region of the hippocampus. Simultaneously, the morphology of astrocytes was also severely altered. Further experiments showed that MaR1 inhibited the mRNA and protein expression of several key proinflammatory cytokines-interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus of aged rats following splenectomy. The molecular mechanism underlying this process was explored by evaluating expression of components of the nuclear factor κB (NF-κB) signaling pathway. MaR1 substantially inhibited the mRNA and protein expression of NF-κB p65 and κB inhibitor kinase β. Collectively, these results suggest that MaR1 ameliorated splenectomy-induced transient cognitive impairment in elderly rats, and this neuroprotective mechanism may occur through regulating the NF-κB pathway to inhibit astrocyte activation.
Collapse
Affiliation(s)
- Xiuhua Li
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yubo Gao
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xu Han
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Shaling Tang
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Na Li
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xing Liu
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xinli Ni
- Department of Anaesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
9
|
Zhang W, Wang R, Yuan J, Li B, Zhang L, Wang Y, Zhu R, Zhang J, Huyan T. The TLR4/NF-κB/MAGI-2 signaling pathway mediates postoperative delirium. Aging (Albany NY) 2022; 14:2590-2606. [PMID: 35294925 PMCID: PMC9004557 DOI: 10.18632/aging.203955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
Purpose: To evaluate the TLR4/NF-κB/MAGI-2 signaling pathway in postoperative delirium. Methods: Elderly patients aged 65-80 years who received unilateral hip arthroplasty under subarachnoid anesthesia were included. Pre-anesthesia cerebrospinal fluid and perioperative blood samples were collected. After follow-up, patients were divided into two groups according to the occurrence of postoperative delirium (POD) after surgery. The potential differentially expressed proteins in the two groups were determined by proteomics assay and subsequent western blot validation. A POD model of aged mice was established, and the TLR4/NF-κB/MAGI-2 signaling pathway was determined. Main findings: The IL-1β and TNF-α levels in pre-anesthesia cerebrospinal fluid and postoperative blood were higher in patients who developed POD than in those patients who did not. Compared with non-POD patients, MAGI-2 was highly expressed in POD patients, as validated by proteomics assays and western blotting. Higher p-NF-κB-p65, TLR4 and MAGI-2 in POD patients were detected by western blot. The POD model in aged mice was successfully established and verified by three behavioral tests. Postoperative inflammatory cytokines and the TLR4/NF-κB/MAGI-2 signaling pathway were increased in mice with POD. Inhibiting TLR4/NF-κB/MAGI-2 signaling pathway could reduce postoperative delirium. Conclusions: The TLR4/NF-κB/MAGI-2 signaling pathway mediates POD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Ruohan Wang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Jingli Yuan
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Bing Li
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Luyao Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Ting Huyan
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi Province, China
| |
Collapse
|
10
|
Zuo W, Zhao J, Zhang J, Fang Z, Deng J, Fan Z, Guo Y, Han J, Hou W, Dong H, Xu F, Xiong L. MD2 contributes to the pathogenesis of perioperative neurocognitive disorder via the regulation of α5GABA A receptors in aged mice. J Neuroinflammation 2021; 18:204. [PMID: 34530841 PMCID: PMC8444589 DOI: 10.1186/s12974-021-02246-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a long-term postoperative complication in elderly surgical patients. The underlying mechanism of PND is unclear, and no effective therapies are currently available. It is believed that neuroinflammation plays an important role in triggering PND. The secreted glycoprotein myeloid differentiation factor 2 (MD2) functions as an activator of the Toll-like receptor 4 (TLR4) inflammatory pathway, and α5GABAA receptors (α5GABAARs) are known to play a key role in regulating inflammation-induced cognitive deficits. Thus, in this study, we aimed to investigate the role of MD2 in PND and determine whether α5GABAARs are involved in the function of MD2. METHODS Eighteen-month-old C57BL/6J mice were subjected to laparotomy under isoflurane anesthesia to induce PND. The Barnes maze was used to assess spatial reference learning and memory, and the expression of hippocampal MD2 was assayed by western blotting. MD2 expression was downregulated by bilateral injection of AAV-shMD2 into the hippocampus or tail vein injection of the synthetic MD2 degrading peptide Tat-CIRP-CMA (TCM) to evaluate the effect of MD2. Primary cultured neurons from brain tissue block containing cortices and hippocampus were treated with Tat-CIRP-CMA to investigate whether downregulating MD2 expression affected the expression of α5GABAARs. Electrophysiology was employed to measure tonic currents. For α5GABAARs intervention experiments, L-655,708 and L-838,417 were used to inhibit or activate α5GABAARs, respectively. RESULTS Surgery under inhaled isoflurane anesthesia induced cognitive impairments and elevated the expression of MD2 in the hippocampus. Downregulation of MD2 expression by AAV-shMD2 or Tat-CIRP-CMA improved the spatial reference learning and memory in animals subjected to anesthesia and surgery. Furthermore, Tat-CIRP-CMA treatment decreased the expression of membrane α5GABAARs and tonic currents in CA1 pyramidal neurons in the hippocampus. Inhibition of α5GABAARs by L-655,708 alleviated cognitive impairments after anesthesia and surgery. More importantly, activation of α5GABAARs by L-838,417 abrogated the protective effects of Tat-CIRP-CMA against anesthesia and surgery-induced spatial reference learning and memory deficits. CONCLUSIONS MD2 contributes to the occurrence of PND by regulating α5GABAARs in aged mice, and Tat-CIRP-CMA is a promising neuroprotectant against PND.
Collapse
Affiliation(s)
- Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jinming Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ze Fan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China. .,Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| |
Collapse
|
11
|
Zheng X, Wang J, Bi F, Li Y, Xiao J, Chai Z, Li Y, Miao Z, Wang Y. Protective effects of Lycium barbarum polysaccharide on ovariectomy‑induced cognition reduction in aging mice. Int J Mol Med 2021; 48:121. [PMID: 33955518 PMCID: PMC8121556 DOI: 10.3892/ijmm.2021.4954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Women experience cognitive decline as they age due to the decrease in estrogen levels following menopause. Currently, effective pharmaceutical treatments for age‑related cognitive decline are lacking; however, several Traditional Chinese medicines have shown promising effects. Lycium barbarum polysaccharides (LBPs) were found to exert a wide variety of biological activities, including anti‑inflammatory, antioxidant and anti‑aging effects. However, to the best of our knowledge, the neuroprotective actions of LBP on cognitive impairment induced by decreased levels of estrogen have not yet been determined. To evaluate the effects of LBP on learning and memory impairment in an animal model of menopause, 45 female ICR mice were randomly divided into the following three groups: i) Sham; ii) ovariectomy (OVX); and iii) OVX + LBP treatment. The results of open‑field and novel object recognition tests revealed that mice in the OVX group had learning and memory impairments, and lacked the ability to recognize and remember new objects. Notably, these deficits were attenuated following LBP treatment. Immunohistochemical staining confirmed the protective effects of LBP on hippocampal neurons following OVX. To further investigate the underlying mechanism of OVX in mice, mRNA sequencing of the hippocampal tissue was performed, which revealed that the Toll‑like receptor 4 (TLR4) inflammatory signaling pathway was significantly upregulated in the OVX group. Moreover, reverse transcription‑quantitative PCR and immunohistochemical staining demonstrated that OVX induced hippocampal injury, upregulated the expression levels of TLR4, myeloid differentiation factor 88 and NF‑κB, and increased the expression of TNF‑α, IL‑6 and IL‑1β inflammatory factors. Conversely, LBP treatment downregulated the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, decreased the inflammatory response and reduced neuronal injury in mice that underwent OVX. In conclusion, the findings of the present study indicated that oral LBP treatment may alleviate OVX‑induced cognitive impairments by downregulating the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, thereby reducing neuroinflammation and damage to the hippocampal neurons. Thus, LBP may represent a potential agent for the prevention of learning and memory impairments in patients with accelerated aging caused by estrogen deficiency.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Department of Pediatrics, General Hospital of Ningxia Medical University, 750004, P.R. China
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Junyan Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Fengchen Bi
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yilu Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jingjing Xiao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhi Chai
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yunhong Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhenhua Miao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yin Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
12
|
Lin F, Shan W, Zheng Y, Pan L, Zuo Z. Toll-like receptor 2 activation and up-regulation by high mobility group box-1 contribute to post-operative neuroinflammation and cognitive dysfunction in mice. J Neurochem 2021; 158:328-341. [PMID: 33871050 DOI: 10.1111/jnc.15368] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Post-operative cognitive dysfunction (POCD) is common and is associated with poor clinical outcome. Toll-like receptor (TLR) 3 and 4 have been implied in the development of POCD. The role of TLR2, a major brain TLR, in POCD is not clear. High mobility group box-1 (HMGB1) is a delayed inflammatory mediator and may play a role in POCD. The interaction between HMGB1 and TLRs in the perioperative period is not known. We hypothesize that TLR2 contributes to the development of POCD and that HMGB1 regulates TLR2 for this effect. To test these hypotheses, 6- to 8-week old male mice were subjected to right carotid artery exposure under isoflurane anesthesia. CU-CPT22, a TLR1/TLR2 inhibitor, at 3 mg/kg was injected intraperitoneally 30 min before surgery and 1 day after surgery. Glycyrrhizin, a HMGB1 antagonist, at 200 mg/kg was injected intraperitoneally 30 min before surgery. Mice were subjected to Barnes maze and fear conditioning tests from 1 week after surgery. Hippocampus and cerebral cortex were harvested 6 hr or 12 hr after the surgery for Western blotting, ELISA, immunofluorescent staining, and chromatin immunoprecipitation. There were neuroinflammation and impairment of learning and memory in mice with surgery. Surgery increased the expression of TLR2 and TLR4 but not TLR9 in the brain of CD-1 male mice. CU-CPT22 attenuated surgery-induced neuroinflammation and cognitive impairment. Similarly, surgery induced neuroinflammation and cognitive dysfunction in C57BL/6J mice but not in TLR2-/- mice. TLR2 staining appeared in neurons and microglia. Surgery increased HMGB1 in the cell nuclei of the cerebral cortex and hippocampus. Glycyrrhizin ameliorated this increase and the increase of TLR2 in the hippocampus after surgery. Surgery also increased the amount of tlr2 DNA precipitated by an anti-HMGB1 antibody in the hippocampus. Our results suggest that TLR2 contributes to surgery-induced neuroinflammation and cognitive impairment. HMGB1 up-regulates TLR2 expression in the hippocampus after surgery to facilitate this contribution. Thus, TLR2 and HMGB1 are potential targets for reducing POCD.
Collapse
Affiliation(s)
- Fei Lin
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Yuxin Zheng
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Wang B, Lin X, Zhou J, Xie C, Li C, Dong R, Zhang G, Sun X, Wang M, Bi Y. Insulin-like growth factor-1 improves postoperative cognitive dysfunction following splenectomy in aged rats. Exp Ther Med 2021; 21:215. [PMID: 33574912 PMCID: PMC7818527 DOI: 10.3892/etm.2021.9647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/29/2020] [Indexed: 11/15/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a serious complication following anesthesia and operations in aged patients undergoing surgical intervention. It is characterized by temporary or permanent cognitive decline, memory impairment and deterioration in language comprehension and social adaption ability. Therefore, the development of POCD prevention and treatment tools has become an area of interest. The current study assessed the therapeutic effects of insulin-like growth factor-1 (IGF-1) on POCD in aged rats and explored the underlying mechanisms. Model rats underwent splenectomy under 1.5-2% isoflurane and mechanical ventilation. IGF-1 (50 µg/kg) was diluted in normal saline and administered by abdominal hypodermic injection daily from the operation to day 7 post-operation. Following splenectomy, the animals showed marked cognitive impairment as determined by the Morris water maze test. Hippocampal protein levels of amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 (BACE-1), amyloid-β (Aβ), capase3, Bax and Bcl-2 were assessed by immunoblotting. Neuronal apoptosis in the hippocampus was analyzed using a TUNEL assay. The results demonstrated that the levels of APP, BACE-1, Aβ, caspase3 and Bax were increased following splenectomy, while the levels of Bcl2 were reduced at days 1, 3 and 7 post-operation in aged rats. However, IGF-1 downregulated APP, BACE-1, Aβ, capase3 and Bax, and upregulated Bcl2 at these time points following splenectomy. TUNEL staining revealed that administration of IGF-1 significantly reduced neuronal apoptosis in the hippocampal CA1 region following splenectomy. These results indicated that IGF-1 decreased Aβ-protein production and inhibited neuronal apoptosis in the hippocampus following splenectomy, subsequently alleviating POCD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jiahui Zhou
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Chunhui Xie
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Chuan Li
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gaofeng Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaopeng Sun
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
14
|
Feng X, Chen L, Zhou R, Bao X, Mou H, Ye L, Yang P. Blocking the Mineralocorticoid Receptor Improves Cognitive Impairment after Anesthesia/Splenectomy in Rats. Int J Med Sci 2021; 18:387-397. [PMID: 33390808 PMCID: PMC7757129 DOI: 10.7150/ijms.48767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Recent mounting studies showed that neuroinflammation caused by surgery or anesthesia is closely related to postoperative cognitive dysfunction (POCD). This study investigated the effect of mineralocorticoid receptor (MR) on neuroinflammation and POCD. To detect the MR effect in an animal model, we randomly divided rats into control, anesthesia, and surgery groups. To determine whether the MR-specific blocker eplerenone (EPL) could improve cognitive dysfunction, we assigned other animals into the control, surgery and EPL treatment, and surgery groups. Cognitive function was detected using the Morris water maze. Serum cytokine levels were measured by ELISA, and the histopathological changes of hippocampal neurons were identified by hematoxylin/eosin and Nissl staining. Our research confirmed that anesthesia and surgical stimulation could lead to IL-1β, IL-6, and TNF-α activation and hippocampal neuronal degeneration and pathological damage. MR was upregulated in the hippocampus under cognitive impairment condition. Additionally, EPL could alleviate inflammatory activation and neuronal damage by exerting neuroprotective effects. The preclinical model of sevoflurane anesthesia/splenectomy implied that MR expression is upregulated by regulating the neuroinflammation in the brain under POCD condition. Manipulating the MR expression by EPL could improve the inflammation activation and neuronal damage.
Collapse
Affiliation(s)
- Xixia Feng
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Lu Chen
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Ruihao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xiuqun Bao
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, P. R. China
| | - Hongxia Mou
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, P. R. China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, Sichuan, 610500, P. R. China
| |
Collapse
|
15
|
Shi J, Zou X, Jiang K, Wang F. SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway. World J Biol Psychiatry 2020; 21:757-765. [PMID: 31418620 DOI: 10.1080/15622975.2019.1656820] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Clinically, there is no effective therapy for postoperative cognitive dysfunction (POCD). Inflammation after surgery is closely associated with POCD. METHODS In this study, we explored the role of sirtuin 1 (SIRT1) in POCD. POCD in mice was induced by cardiac surgery. The mRNA and protein levels of related genes were determined by real-time polymerase chain reaction and western blot, respectively. Plasma concentrations of inflammatory factors were measured using an ELISA kit. Novel object and novel location recognition tests were carried out to measure recognition ability. The Morris water maze (MWM) test was performed to measure learning and memory ability. RESULTS There was a clear decrease in SIRT1 expression after POCD. The SIRT1 activator SRT1720 promoted recognition, learning, and memory ability of mice with POCD. Moreover, SRT1720 treatment greatly inhibited plasma inflammatory cytokine levels and TLR4 and P65 protein expression in the hippocampus of POCD mice. The effect of SRT1720 on POCD was in a TLR4-dependent manner. CONCLUSIONS SIRT1 mediates the improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ke Jiang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Feng Wang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Nishimura M, Nomura Y, Egi M, Obata N, Tsunoda M, Mizobuchi S. Suppression of behavioral activity and hippocampal noradrenaline caused by surgical stress in type 2 diabetes model mice. BMC Neurosci 2020; 21:8. [PMID: 32066381 PMCID: PMC7027121 DOI: 10.1186/s12868-020-0556-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background There has been much discussion recently about the occurrence of neuropsychological complications during the perioperative period. Diabetes is known to be one of the metabolic risk factors. Although the number of patients with diabetes mellitus (DM) has been increasing, the pathophysiology of postoperative neuropsychological dysfunction in DM patients is still unclear. Recently, a deficiency of neurotransmitters, such as monoamines, was reported to be associated with mental disorders. Therefore, we investigated the effects of surgical stress on behavioral activity and hippocampal noradrenaline (NA) level in type 2 diabetes mellitus model (T2DM) mice. Methods Eighty-four 6-week-old male C57BL/6J mice were divided into four groups (non-diabetes, non-diabetes with surgery, T2DM, and T2DM with surgery groups). T2DM mice were established by feeding a high-fat diet (HFD) for 8 weeks. At 14 weeks of age, fifteen mice in each group underwent a series of behavioral tests including an open field (OF) test, a novel object recognition (NOR) test and a light–dark (LD) test. In the surgery groups, open abdominal surgery with manipulation of the intestine was performed 24 h before the behavioral tests as a surgical stress. Hippocampal noradrenaline (NA) concentration was examined in six mice in each group by high-performance liquid chromatography. The data were analyzed by the Mann–Whitney U test, and p values less than 0.05 were considered significant. Results The T2DM group showed significantly increased explorative activity in the NOR test (P = 0.0016) and significantly increased frequency of transition in the LD test (P = 0.043) compared with those in the non-diabetic group before surgery. In T2DM mice, surgical stress resulted in decreased total distance in the OF test, decreased explorative activity in the NOR test, and decreased frequency of transition in the LD test (OF: P = 0.015, NOR: P = 0.009, LD: P = 0.007) and decreased hippocampal NA (P = 0.015), but such differences were not observed in the non-diabetic mice. Conclusions Mice with T2DM induced by feeding an HFD showed increased behavioral activities, and surgical stress in T2DM mice caused postoperative hypoactivity and reduction of the hippocampal NA level.
Collapse
Affiliation(s)
- Momoka Nishimura
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Yuki Nomura
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Moritoki Egi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Norihiko Obata
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongou, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
17
|
Zhong Q, Zou Y, Liu H, Chen T, Zheng F, Huang Y, Chen C, Zhang Z. Toll-like receptor 4 deficiency ameliorates β2-microglobulin induced age-related cognition decline due to neuroinflammation in mice. Mol Brain 2020; 13:20. [PMID: 32059688 PMCID: PMC7023753 DOI: 10.1186/s13041-020-0559-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a crucial receptor in neuroinflammation and apoptotic neuronal death, and increasing evidences indicated that β2-microglobulin (B2M) is thought to be a major contributor to age-related cognitive decline. In present study, we designed to investigate the effects of TLR4 on B2M-induced age-related cognitive decline. Wild-type (WT) C57BL/6, TLR4 knockout (TLR4 -KO) mice and hippocampal neurons from the two type mice were respectively divided into two groups: (1) Veh group; (2) B2M-treated group. The behavioral responses of mice were measured using Morris Water Maze. Hippocampal neurogenesis and neuronal damage, inflammatory response, apoptosis, synaptic proteins and neurotrophic factors, and TLR4/MyD88/NF-κB signaling pathway proteins were examined using molecular biological or histopathological methods. The results showed that WT mice received B2M in the DG exhibited age-related cognitive declines, increased TLR4 mRNA expression and high levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and apoptotic neuronal death in the hippocampus, which were partially attenuated in TLR4-KO mice. Moreover, in absence of TLR4, B2M treatment improved hippocampus neurogenesis and increased synaptic related proteins. Our cell experiments further demonstrated that deletion of TLR4 could significantly increase synaptic related protein, decrease neuroinflammatory fators, inhibited apoptotic neuronal death, and regulated MyD88/NF-κB signal pathway after B2M treatment. In summary, our results support the TLR4 contributes to B2M-induced age-related cognitive decline due to neuroinflammation and apoptosis through TLR4/MyD88/NF-κB signaling pathway via a modulation of hippocampal neurogenesis and synaptic function. This may provide an important neuroprotective mechanism for improving age-related cognitive decline.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Yufeng Zou
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Hongchao Liu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
- Department of Anesthesiology, Maternal and Child Hospital of Hubei Province, Wuluo Road, Wuhan, 430071, Hubei, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Feng Zheng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Yifei Huang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
18
|
Potter OV, Giedraitis ME, Johnson CD, Cox MN, Kohman RA. Young and aged TLR4 deficient mice show sex-dependent enhancements in spatial memory and alterations in interleukin-1 related genes. Brain Behav Immun 2019; 76:37-47. [PMID: 30394314 PMCID: PMC6814391 DOI: 10.1016/j.bbi.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor-4 (TLR4) is a transmembrane receptor that initiates an immune response following a bacterial infection or host derived molecules associated with cellular distress. Beyond triggering inflammation, TLR4 has been implicated in modulating behavioral and cognitive processes in a physiologically normal state, as young adult TLR4 deficient mice show learning enhancements in select tasks. Currently unknown is whether these benefits are present in both sexes and persist with aging. The present study evaluated spatial memory, anxiety-like behavior, and central levels of pro- and anti-inflammatory molecules in young (4-5 months) and aged (18-19 months) TLR4 deficient (TLR4-/-) and wild-type (WT) male and female mice. Results confirmed that TLR4-/- mice show enhanced spatial memory compared to WT mice. These effects were age- and sex-specific, as memory retention was superior in the TLR4-/- young males and aged females. While TLR4-/- mice showed age-related changes in behavior, these changes were attenuated relative to aged WT mice. Further, aged TLR4-/- mice showed differential expression of molecules involved in interleukin (IL)-1 signaling in the hippocampus. For instance, aged TLR4-/- females showed heightened expression of IL-1 receptor antagonist (IL-1ra) and the IL-1 accessory proteins AcP and AcPb. Collectively, these data provide the initial evidence that TLR4 deficiency enhances cognitive function and modulates the inflammatory profile of the hippocampus in a sex- and age-dependent manner.
Collapse
Affiliation(s)
- Opal V Potter
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Megan E Giedraitis
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Charles D Johnson
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Mackenzie N Cox
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
19
|
Mardini F, Tang JX, Li JC, Arroliga MJ, Eckenhoff RG, Eckenhoff MF. Effects of propofol and surgery on neuropathology and cognition in the 3xTgAD Alzheimer transgenic mouse model. Br J Anaesth 2019; 119:472-480. [PMID: 28969319 DOI: 10.1093/bja/aew397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
Background Previous work suggests that anaesthesia and surgery amplify the pathology and cognitive impairment of animals made vulnerable via age or specific transgenes. We hypothesized that surgery under propofol anaesthesia, a widely used i.v. general anaesthetic, has minimal delayed cognitive and neuroinflammatory sequelae in a vulnerable mouse transgenic model. Methods We conducted caecal ligation and excision surgery in cognitively presymptomatic (11-month-old) 3xTgAD mice under i.p. propofol anaesthesia. Age-matched 3xTgAD control mice received vehicle or propofol without surgery. Morris water maze testing was conducted 3 and 15 weeks later. Brains were examined with quantitative immunohistochemistry for amyloid β plaques, tau pathology, and microglial activation. Acute changes in neuroinflammatory cytokines were assessed in separate cohorts at 6 h. Results We detected no significant differences between groups in escape latencies at either 3 or 15 weeks, but detected a significant effect of surgery in the probe test at both 3 and 15 weeks. Spatial working memory was unaffected at 16 weeks in any group. No effects of either propofol alone or propofol with surgery were detected on plaque formation, tau aggregates, or neuroinflammation. Acute biochemical assays detected no effects in brain interleukin-10 or interleukin-6 concentrations. Conclusions Surgery in a vulnerable transgenic mouse under propofol anaesthesia was associated with minimal to no changes in short- and long-term behaviour and no changes in neuropathology. This suggests that propofol anaesthesia is associated with better cognitive outcomes in the aged, vulnerable brain compared with inhalation anaesthesia.
Collapse
Affiliation(s)
- F Mardini
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J X Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J C Li
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M J Arroliga
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - R G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M F Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
ZHAO FY, ZHANG ZY, ZHAO YX, YAN HX, HONG YF, XIA XJ, XU H. The effect of electroacupuncture preconditioning on cognitive impairments following knee replacement among elderly: A randomized controlled trial. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2018. [DOI: 10.1016/j.wjam.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Kerr F, Bjedov I, Sofola-Adesakin O. Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models. Front Mol Neurosci 2018; 11:297. [PMID: 30210290 PMCID: PMC6121012 DOI: 10.3389/fnmol.2018.00297] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium’s neuro-protective effect, but it’s interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium’s neuro-protective power while avoiding deleterious toxicity.
Collapse
Affiliation(s)
- Fiona Kerr
- Department of Life Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Oyinkan Sofola-Adesakin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
22
|
Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur J Pharmacol 2018; 837:145-155. [PMID: 30125565 DOI: 10.1016/j.ejphar.2018.08.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epilepsy is a devastating condition affecting around 70 million people worldwide. Moreover, the quality of life of people with epilepsy (PWE) is worsened by a series of comorbidities. The neurobehavioral comorbidities discussed herein share a reciprocal and complex relationship with epilepsy, which ultimately complicates the treatment process in PWE. Understanding the mechanistic pathway by which these comorbidities are associated with epilepsy might be instrumental in developing therapeutic interventions. Inflammatory cytokine signaling in the brain regulates important brain functions including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, dopaminergic transmission, the kynurenine pathway, and affects neurogenesis as well as the neural circuitry of moods. In this review, we hypothesize that the complex relationship between epilepsy and its related comorbidities (cognitive impairment, depression, anxiety, autism, and schizophrenia) can be unraveled through the inflammatory mechanism that plays a prominent role in all these individual conditions. An ample amount of evidence is available reporting the role of inflammation in epilepsy and all individual comorbid condition but their complex relationship with epilepsy has not yet been explored through the prospective of inflammatory pathway. Our review suggests that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers. This review also sheds light on the mechanistic association between epilepsy and its neurobehavioral comorbidities. Moreover, we analyzed several anti-inflammatory therapies available for epilepsy and its neurobehavioral comorbidities. We suggest, these anti-inflammatory therapies might be a possible intervention and could be a promising strategy for preventing epileptogenesis and its related neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Zhang X, Jiang X, Huang L, Tian W, Chen X, Gu X, Yu W, Tian J, Su D. Central cholinergic system mediates working memory deficit induced by anesthesia/surgery in adult mice. Brain Behav 2018; 8:e00957. [PMID: 29761010 PMCID: PMC5943735 DOI: 10.1002/brb3.957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/18/2018] [Accepted: 02/23/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is consistently associated with increased morbidity and mortality, which has become a major concern of patients and caregivers. Although POCD occurs mainly in aged patients, it happens at any age. Previous studies demonstrated that anesthesia/surgery had no effects on reference memory of adult mice. However, whether it impairs working memory remains unclear. Working memory deficit would result in many deficits of executive function. We hypothesized that anesthesia/surgery impaired the working memory of adult mice and the central cholinergic system was involved. METHOD Tibial fracture internal fixation under the anesthesia of isoflurane was performed in two-month-old C57BL/6 mice. Two days later, the spatial reference memory and working memory were measured by a Morris Water Maze (MWM). Donepezil, an inhibitor of acetylcholinesterase (AChE), was administered in another cohort mice for 4 weeks. Then, the working memory was measured by MWM 2 days after anesthesia/surgery. Western blot was used to detect the protein levels of acetylcholine transferase (ChAT), AChE, vesicular acetylcholine transporter (VAChT), and choline transporter (ChT) in the prefrontal cortex (PFC). RESULTS We found that anesthesia/surgery had no effects on the reference memory, but it impaired the working memory in adult mice. Meanwhile, we also found that the protein level of ChAT in PFC decreased significantly compared with that in control group. Donepezil pretreatment prevented working memory impairment and the decrease of the protein levels of ChAT induced by anesthesia/surgery. CONCLUSION These results suggest that anesthesia/surgery leads to working memory deficits in adult mice and central cholinergic system impairment is involved.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xuliang Jiang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Lili Huang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Weitian Tian
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xuemei Chen
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xiyao Gu
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Weifeng Yu
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Jie Tian
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Diansan Su
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| |
Collapse
|
24
|
Pan C, Chen L, Wu R, Shan H, Zhou Z, Lin Y, Yu X, Yan L, Wu C. Lithium-containing biomaterials inhibit osteoclastogenesis of macrophagesin vitroand osteolysisin vivo. J Mater Chem B 2018; 6:8115-8126. [PMID: 32254931 DOI: 10.1039/c8tb02678e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-containing bioceramics were promising biomaterials for inhibiting osteoclastogenesis of macrophages and osteolysisin vivo, potentially using for treating osteoporosis.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
- Institute of Microsurgery on Extremities
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Ruoyu Wu
- Institute of Microsurgery on Extremities
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Haojie Shan
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Zubin Zhou
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
- Institute of Microsurgery on Extremities
| | - Yiwei Lin
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Xiaowei Yu
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
- Institute of Microsurgery on Extremities
| | - Liang Yan
- Department of Ophthalmology
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
25
|
Wilhelm I, Nyúl-Tóth Á, Kozma M, Farkas AE, Krizbai IA. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am J Physiol Heart Circ Physiol 2017; 313:H1000-H1012. [PMID: 28801521 DOI: 10.1152/ajpheart.00106.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023]
Abstract
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - Attila E Farkas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
26
|
Schreuder L, Eggen BJ, Biber K, Schoemaker RG, Laman JD, de Rooij SE. Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: A systematic review. Brain Behav Immun 2017; 62:362-381. [PMID: 28088641 DOI: 10.1016/j.bbi.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Delirium is a frequent outcome for aged and demented patients that suffer a systemic inflammatory insult. Animal models that reconstruct these etiological processes have potential to provide a better understanding of the pathophysiology of delirium. Therefore, we systematically reviewed animal studies in which systemic inflammation was superimposed on aged or diseased animal models. In total, 77 studies were identified. Aged animals were challenged with a bacterial endotoxin in 29 studies, 25 studies superimposed surgery on aged animals, and in 6 studies a bacterial infection, Escherichia coli (E. coli), was used. Diseased animals were challenged with a bacterial endotoxin in 15 studies, two studies examined effects of the cytokine IL-1β, and one study used polyinosinic:polycytidilic acid (poly I:C). This systematic review analyzed the impact of systemic inflammation on the production of inflammatory and neurotoxic mediators in peripheral blood, cerebrospinal fluid (CSF), and on the central nervous system (CNS). Moreover, concomitant behavioral and cognitive symptoms were also evaluated. Finally, outcomes of behavioral and cognitive tests from animal studies were compared to features and symptoms present in delirious patients.
Collapse
Affiliation(s)
- Leroy Schreuder
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| | - B J Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Knut Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychiatry and Psychotherapy, Section of Molecular Psychiatry, University of Freiburg, Freiburg, Germany.
| | - Regien G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands.
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sophia E de Rooij
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| |
Collapse
|
27
|
Gao ZX, Rao J, Li YH. Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation. Neural Regen Res 2017; 12:329-336. [PMID: 28400818 PMCID: PMC5361520 DOI: 10.4103/1673-5374.200816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.
Collapse
Affiliation(s)
- Zhi-Xin Gao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
28
|
Chen T, Chen C, Zhang Z, Zou Y, Peng M, Wang Y. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice. Brain Behav Immun 2016; 56:42-55. [PMID: 27067748 DOI: 10.1016/j.bbi.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism may be a new and novel approach for the treatment and management of neuroinflammation in long-term mechanically ventilated patients.
Collapse
Affiliation(s)
- Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China.
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China.
| | - Yufeng Zou
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China
| |
Collapse
|
29
|
García Bueno B, Caso JR, Madrigal JLM, Leza JC. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases. Neurosci Biobehav Rev 2016; 64:134-47. [PMID: 26905767 DOI: 10.1016/j.neubiorev.2016.02.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed.
Collapse
Affiliation(s)
- B García Bueno
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J R Caso
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J L M Madrigal
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J C Leza
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| |
Collapse
|
30
|
Isoflurane Is More Deleterious to Developing Brain Than Desflurane: The Role of the Akt/GSK3β Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7919640. [PMID: 27057548 PMCID: PMC4753322 DOI: 10.1155/2016/7919640] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Demand is increasing for safer inhalational anesthetics for use in pediatric anesthesia. In this regard, researchers have debated whether isoflurane is more toxic to the developing brain than desflurane. In the present study, we compared the effects of postnatal exposure to isoflurane with those of desflurane on long-term cognitive performance and investigated the role of the Akt/GSK3β signaling pathway. Postnatal day 6 (P6) mice were exposed to either isoflurane or desflurane, after which the phosphorylation levels of Akt/GSK3β and learning and memory were assessed at P8 or P31. The phosphorylation levels of Akt/GSK3β and learning and memory were examined after intervention with lithium. We found that isoflurane, but not desflurane, impaired spatial learning and memory at P31. Accompanied by behavioral change, only isoflurane decreased p-Akt (ser473) and p-GSK3β (ser9) expressions, which led to GSK3β overactivation. Lithium prevented GSK3β overactivation and alleviated isoflurane-induced cognitive deficits. These results suggest that isoflurane is more likely to induce developmental neurotoxicity than desflurane in context of multiple exposures and that the Akt/GSK3β signaling pathway partly participates in this process. GSK3β inhibition might be an effective way to protect against developmental neurotoxicity.
Collapse
|