1
|
Liu F, Gu Z, Yi F, Liu X, Zou W, Xu Q, Yuan Y, Chen N, Tang J. Potential of Glycyrrhiza in the prevention of colitis-associated colon cancer. Fitoterapia 2025; 181:106398. [PMID: 39842555 DOI: 10.1016/j.fitote.2025.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza, a legume native to the Mediterranean region, has a long history of ethnomedicinal use in China. Due to its antiviral, antibacterial, anti-inflammatory, antioxidant, antitumor, anti-ulcer, and hepatoprotective properties, Glycyrrhiza is widely utilized in the treatment of gastrointestinal disorders. THE AIM OF THE REVIEW The specific mechanisms of the main active constituents of glycyrrhiza in the treatment of inflammatory bowel disease, precancerous lesions and colorectal cancer at all stages of the colitis-associated colon cancer "Inflammation-Dysplasia-Cancer" sequence, as well as its pharmacokinetics, toxicology, formulation improvements, and application studies, are reviewed to provide new insights and perspectives on glycyrrhiza as a dietary supplement to treat and prevent colitis-associated colon cancer. MATERIALS AND METHODS Information on Glycyrrhiza was retrieved from electronic databases, including PubMed and Web of Science. RESULTS Glycyrrhiza is a well-established medicinal plant with significant potential for applications in both the food and pharmaceutical industries. Over 400 active constituents have been identified in Glycyrrhiza, including terpenoids, flavonoids, isoflavones, coumarins, and polyphenols. Numerous studies have demonstrated that Glycyrrhiza and its active compounds can inhibit the "Inflammation-Dysplasia-Cancer" progression of colitis-associated colon cancer by mitigating inflammatory bowel disease, reducing the number of intestinal precancerous lesions, and counteracting colorectal cancer. Furthermore, derivatives and nanocarriers are crucial for the effective treatment of colitis-associated colon cancer using Glycyrrhiza and its active constituents. CONCLUSION In conclusion, Glycyrrhiza is a plant with both medicinal and nutritional value, making it a potential food ingredient and dietary supplement for the treatment of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; North Sichuan Medical College, Nanchong, China.
| | - Zhili Gu
- North Sichuan Medical College, Nanchong, China
| | - Feiyang Yi
- North Sichuan Medical College, Nanchong, China
| | - Xue Liu
- North Sichuan Medical College, Nanchong, China
| | - Wenxuan Zou
- North Sichuan Medical College, Nanchong, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Elgohary R, Omara EA, Salama A. Cannabis sativa alleviates experimentally acetic acid- induced ulcerative colitis in rats: targeting CB1/SIRT/MAPK signaling pathways. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 39721800 DOI: 10.1080/08923973.2024.2445733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a frequent inflammatory bowel disease (IBD) that causes long-lasting inflammation in the innermost lining of the rectum and colon. OBJECTIVE The aim of this study was to evaluate the therapeutic effect of Cannabis sativa (C. sativa) on the amelioration of acetic acid-induced colitis in rats. MATERIALS AND METHODS Group 1: normal control group was intrarectally administered saline solution (0.9%); group 2: acetic acid (AA) group was given AA intra-rectally (2 mL of 4% (v/v) in 0.9% NaCl) once.; group 3&4: This group represented the ulcerative colitis-induced rats that were injected with acetic acid intra-rectally, then s.c. injection with C. sativa (20 and 40 mg/kg daily for 8 days). RESULTS Colonic architectural abnormality significantly improved after pretreatment with C. sativa. Additionally, it significantly reduced the MDA level and prevented the depletion of GSH content. Moreover, C. sativa administration showed suppressive activities on pro-inflammatory cytokines, including NF-κB, MAPK, ERK, PI3K, AKT, HIF-1α, and TLR4. Moreover, it significantly upregulated the level of SIRT and CB1 in the colon tissue. CONCLUSION This study provided a novel impact for CB1 receptor activation produced by C. sativa against AA-induced UC in rats through inhibiting the TLR-4 MAPK/ERK, PI3K, and NFκB signaling pathways.
Collapse
Affiliation(s)
- Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| |
Collapse
|
3
|
Verhaar N, de Buhr N, von Köckritz-Blickwede M, Dümmer K, Hewicker-Trautwein M, Pfarrer C, Dengler F, Kästner S. Hypoxia signaling in the equine small intestine: Expression and distribution of hypoxia inducible factors during experimental ischemia. Front Vet Sci 2023; 10:1110019. [PMID: 36908508 PMCID: PMC9998946 DOI: 10.3389/fvets.2023.1110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Hypoxia inducible factors (HIF) are widely researched in human medicine for their role in different disease processes. The aim of this study was to investigate the expression and distribution of HIF in experimental small intestinal ischemia in the horse. Methods In 14 horses under general anesthesia, segmental jejunal ischemia with 90% reduction in blood flow was induced. The horses were randomly divided into two groups of seven horses, one subjected to ischemic postconditioning (IPoC) by delayed reperfusion, and a control group (group C) undergoing undelayed reperfusion. Intestinal samples were taken pre-ischemia, after ischemia and after reperfusion. Following immunohistochemical staining for HIF1α and -2α, the immunoreactivity pattern in the small intestine was evaluated by light microscopy, and the mucosal enterocyte and muscularis staining were semi-quantitatively scored. Additionally, mucosal HIF1α protein levels were determined by an Enzyme Linked Immunosorbent Assay (ELISA), and mRNA levels of HIF1α and its target genes by a two-step real-time Reverse Transcriptase Polymerase Chain Reaction. Statistical comparison was performed between the groups and time points using parametric and non-parametric tests (p < 0.05). Results All cell types exhibited cytoplasmic and nuclear immunoreactivity for HIF1α. After reperfusion, the cytoplasmic staining of the crypt and villus enterocytes as well as the villus nuclear staining significantly increased, whereas the perinuclear granules in the crypts decreased. The protein levels showed a significant decrease in group C at reperfusion, with lower HIF1α levels in group C compared to group IPoC during ischemia and reperfusion. No other group differences could be detected. In the HIF2α stained slides, mild to moderate cytoplasmic staining yet no nuclear immunoreactivity of the enterocytes was observed, and no significant changes over time were noted. Discussion the changes in HIF1α immunoreactivity pattern and expression over time suggest that this transcription factor plays a role in the intestinal response to ischemia in horses. However, the current study could not identify an effect of IPoC on HIF distribution or expression.
Collapse
Affiliation(s)
- Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Dümmer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Zhang MM, Yin DK, Rui XL, Shao FP, Li JC, Xu L, Yang Y. Protective effect of Pai-Nong-San against AOM/DSS-induced CAC in mice through inhibiting the Wnt signaling pathway. Chin J Nat Med 2021; 19:912-920. [PMID: 34961589 DOI: 10.1016/s1875-5364(22)60143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Pai-Nong-San (PNS), a prescription of traditional Chinese medicine, has been used for years to treat abscessation-induced diseases including colitis and colorectal cancer. This study was aimed to investigate the preventive effects and possible protective mechanism of PNS on a colitis-associated colorectal cancer (CAC) mouse model induced by azoxymethane (AOM)/dextran sodium sulfate (DSS). The macroscopic and histopathologic examinations of colon injury and DAI score were observed. The inflammatory indicators of intestinal immunity were determined by immunohistochemistry and immunofluorescence. The high throughput 16S rRNA sequence of gut microbiota in the feces of mice was performed. Western blot was used to investigate the protein expression of the Wnt signaling pathway in colon tissues. PNS improved colon injury, as manifested by the alleviation of hematochezia, decreased DAI score, increased colon length, and reversal of pathological changes. PNS treatment protected against AOM/DSS-induced colon inflammation by regulating the expression of CD4+ and CD8+ T cells, inhibiting the production of HIF-α, IL-6, and TNF-α, and promoting the expression of IL-4 and IFN-γ in colon tissues. Meanwhile, PNS improved the components of gut microbiota, as measured by the adjusted levels of Firmicutes, Bacteroidetes, Proteobacteria, and Lactobacillus. PNS down-regulated the protein expression of p-GSK-3β, β-catenin, and c-Myc, while up-regulating the GSK-3β and p-β-catenin in colon tissues of CAC mice. In conclusion, our results suggested that PNS exhibits protective effect on AOM/DSS-induced colon injury and alleviates the development of CAC through suppressing inflammation, improving gut microbiota, and inhibiting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Deng-Ke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Anhui Provincial Key Laboratory for Chinese Medicinal Formula, Hefei 230031, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| | - Xue-Lin Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Fu-Ping Shao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jia-Cheng Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Li Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| |
Collapse
|
5
|
Feng S, Sui M, Wang D, Ritzoulis C, Farag MA, Shao P. Pectin-zein based stigmasterol nanodispersions ameliorate dextran sulfate sodium-induced colitis in mice. Food Funct 2021; 12:11656-11670. [PMID: 34726217 DOI: 10.1039/d1fo02493k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Due to the insolubility of phytosterols in both water and oil, their application in the medicine and health and food industries is limited. In this study, zein and pectin were selected as wall materials of phytosterol nanoparticles to enhance the solubility and bioactivity of phytosterols. The colitis-inhibitory effects of zein-based stigmasterol nanodispersions (ZNs) and zein/pectin-based stigmasterol nanodispersions (ZPNs) were investigated in the sodium dextran sulfate (DSS)-induced colitis mouse model. The results showed that ZPNs' therapeutic effect was better than that of ZNs. According to electron microscopy observation, pectin adsorbed on the surface of zein appeared to form an elastic network structure, which increased the stability of stigmasterol nanodispersions. ZPNs not only relieved the adverse physiological symptoms of colitis in mice, but additionally prevented colonic length shortening and reduced fecal hemoglobin content. Immunohistochemical analysis showed that ZPNs could alleviate colitis by inhibiting the NF-κB signaling pathway involved in the expression of inflammatory factors TNF-α, IL-6, IL-1β, CSF-1 and coenzyme COX-2. This study suggests that supplement of nano-embedded stigmasterol based on zein and pectin has a positive therapeutic effect on alleviating colitis in mice. Such activities of nano-embedded stigmasterol in humans remain to be investigated.
Collapse
Affiliation(s)
- Simin Feng
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China
| | - Minghui Sui
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Dan Wang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Central Macedonia, 54453, The Hellenic Republic
| | - Mohamed A Farag
- Department of Chemistry, School of Science & Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China
| |
Collapse
|
6
|
Simmen S, Maane M, Rogler S, Baebler K, Lang S, Cosin-Roger J, Atrott K, Frey-Wagner I, Spielmann P, Wenger RH, Weder B, Zeitz J, Vavricka SR, Rogler G, de Vallière C, Hausmann M, Ruiz PA. Hypoxia Reduces the Transcription of Fibrotic Markers in the Intestinal Mucosa. Inflamm Intest Dis 2021; 6:87-100. [PMID: 34124180 DOI: 10.1159/000513061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Intestinal fibrosis, characterized by excessive deposition of extracellular matrix proteins, is a common and severe clinical complication of inflammatory bowel disease (IBD). However, the mechanisms underlying fibrosis remain elusive, and currently, there are limited effective pharmacologic treatments that target the development of fibrosis. Hypoxia is one of the key microenvironmental factors influencing intestinal inflammation and has been linked to fibrosis. Objective In the present study, we sought to elucidate the impact of hypoxia on fibrotic gene expression in the intestinal mucosa. Methods Human volunteers, IBD patients, and dextran sulphate sodium-treated mice were exposed to hypoxia, and colonic biopsies were collected. The human intestinal epithelial cell line Caco-2, human THP-1 macrophages, and primary human gut fibroblasts were subjected to hypoxia, and changes in fibrotic gene expression were assessed. Results Human volunteers subjected to hypoxia presented reduced transcriptional levels of fibrotic and epithelial-mesenchymal transition markers in the intestinal mucosa. IBD patients showed a trend towards a decrease in tissue inhibitor of metalloproteinase 1 protein expression. In mice, hypoxic conditions reduced the colonic expression of several collagens and matrix metalloproteinases. Hypoxic Caco-2 cells, THP-1 cells, and primary gut fibroblasts showed a significant downregulation in the expression of fibrotic and tissue remodelling factors. Conclusions Stabilization of hypoxia-inducible factors might represent a novel therapeutic approach for the treatment of IBD-associated fibrosis.
Collapse
Affiliation(s)
- Simona Simmen
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Max Maane
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Sarah Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Katherina Baebler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Partick Spielmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Jonas Zeitz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.,Center of Gastroenterology, Clinic Hirslanden, Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Luo X, Yu Z, Yue B, Ren J, Zhang J, Mani S, Wang Z, Dou W. Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer. PHARMACEUTICAL BIOLOGY 2020; 58:886-897. [PMID: 32878512 PMCID: PMC8202763 DOI: 10.1080/13880209.2020.1812673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Obacunone, a limonoid abundantly found in Citrus fruits, exhibits a variety of bioactivities. OBJECTIVE To investigate the effects of obacunone on a colorectal cancer (CRC) mouse model, and clarify its potential molecular mechanisms. MATERIALS AND METHODS The male Balb/c mice were induced with azoxymethane and dextran sulfate sodium for 12 weeks. Obacunone (50 mg/kg) was administered via oral gavage three times every week until the end of the experiment. Disease indexes including body weight, spleen weight, bloody diarrhea, colon length, histopathological score, and tumor size were measured. The anti-proliferation activities of obacunone were analyzed by MTT or flow cytometry. The expression of protein and mRNA related to cell proliferation or inflammatory cytokines was determined by Western blot, q-PCR and IHC. RESULTS Obacunone significantly alleviated bloody diarrhea, colon shortening (7.35 ± 0.2128 vs. 8.275 ± 0.2169 cm), splenomegaly, histological score (9 ± 0.5774 vs. 6 ± 0.5774) and reduced tumor size (4.25 ± 0.6196 vs. 2 ± 0.5669). Meanwhile, the expression of protein and mRNA related to cell proliferation or inflammatory cytokines was remarkably decreased in tumor tissue. Obacunone inhibited the proliferation activities of colorectal cancer cells. Moreover, obacunone induced colorectal cancer cells G1 and G2 phases arrest, and suppressed the expression of cell cycle genes. CONCLUSIONS Obacunone could alleviate CRC via inhibiting inflammatory response and tumor cells proliferation. The results may contribute to the effective utilization of obacunone or its derivatives in the treatment of human CRC.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Junyu Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
8
|
Huang Y, Qiu L, Mi X, Zhang Z, Xu D, Tao X, Xing K, Wu Q, Wei H. Hot-water extract of ripened Pu-erh tea attenuates DSS-induced colitis through modulation of the NF-κB and HIF-1α signaling pathways in mice. Food Funct 2020; 11:3459-3470. [PMID: 32239008 DOI: 10.1039/c9fo02803j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tea consumption has been found to be associated with low incidence of inflammatory bowel disease in Asian countries. However, there is very limited knowledge of such potential protection and its underlying mechanism. Ripened Pu-erh tea (RPT) belongs to the variety of microbial fermented tea, but its function regarding anti-inflammation remains unclear. In the present study, we investigated the effects of RPT on dextran sulfate sodium (DSS)-induced colitis in mice. The results demonstrated that RPT significantly relieved the loss of body weight, disease severity and shortening of colon length, and remarkably inhibited the secretion of pro-inflammatory cytokines by lessening the infiltration of inflammatory cells. Furthermore, we found that RPT suppressed the activation of the NF-κB pathway and down-regulated the expression of HIF-1α. Thus, it was concluded that RPT attenuated the progress of colitis via suppressing the HIF-1α/NF-κB signaling pathways thus reducing inflammation. This suggests that RPT may be a potential anti-inflammatory nutraceutical for the prevention and treatment of colonic colitis.
Collapse
Affiliation(s)
- Yina Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330047, China
| | - Xuan Mi
- Wanlongshan Tea Plantation, Pingxiang, Jiangxi 337000, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Di Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. and Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
9
|
Abstract
Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.
Collapse
|
10
|
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139:126-140. [DOI: 10.1016/j.phrs.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
11
|
Simmen S, Cosin-Roger J, Melhem H, Maliachovas N, Maane M, Baebler K, Weder B, Maeyashiki C, Spanaus K, Scharl M, de Vallière C, Zeitz J, Vavricka SR, Hausmann M, Rogler G, Ruiz PA. Iron Prevents Hypoxia-Associated Inflammation Through the Regulation of Nuclear Factor-κB in the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2018; 7:339-355. [PMID: 30704983 PMCID: PMC6357696 DOI: 10.1016/j.jcmgh.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hypoxia-associated pathways influence the development of inflammatory bowel disease. Adaptive responses to hypoxia are mediated through hypoxia-inducible factors, which are regulated by iron-dependent hydroxylases. Signals reflecting oxygen tension and iron levels in enterocytes regulate iron metabolism. Conversely, iron availability modulates responses to hypoxia. In the present study we sought to elucidate how iron influences the responses to hypoxia in the intestinal epithelium. METHODS Human subjects were exposed to hypoxia, and colonic biopsy specimens and serum samples were collected. HT-29, Caco-2, and T84 cells were subjected to normoxia or hypoxia in the presence of iron or the iron chelator deferoxamine. Changes in inflammatory gene expression and signaling were assessed by quantitative polymerase chain reaction and Western blot. Chromatin immunoprecipitation was performed using antibodies against nuclear factor (NF)-κB and primers for the promoter of tumor necrosis factor (TNF) and interleukin (IL)1β. RESULTS Human subjects presented reduced levels of ferritin in the intestinal epithelium after hypoxia. Hypoxia reduced iron deprivation-associated TNF and IL1β expression in HT-29 cells through the induction of autophagy. Contrarily, hypoxia triggered TNF and IL1β expression, and NF-κB activation in Caco-2 and T84 cells. Iron blocked autophagy in Caco-2 cells, while reducing hypoxia-associated TNF and IL1β expression through the inhibition of NF-κB binding to the promoter of TNF and IL1β. CONCLUSIONS Hypoxia promotes iron mobilization from the intestinal epithelium. Hypoxia-associated autophagy reduces inflammatory processes in HT-29 cells. In Caco-2 cells, iron uptake is essential to counteract hypoxia-induced inflammation. Iron mobilization into enterocytes may be a vital protective mechanism in the hypoxic inflamed mucosa.
Collapse
Affiliation(s)
- Simona Simmen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nikolaos Maliachovas
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Max Maane
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jonas Zeitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland,Center of Gastroenterology, Clinic Hirslanden, Zurich, Switzerland
| | - Stephan R. Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro A. Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland,Correspondence Address correspondence to: Pedro A. Ruiz-Castro, PhD, Department of Gastroenterology and Hepatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
12
|
Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, de Vallière C, Spalinger MR, Spielmann P, Wenger RH, Zeitz J, Vavricka SR, Rogler G, Ruiz PA. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun 2017; 8:98. [PMID: 28740109 PMCID: PMC5524634 DOI: 10.1038/s41467-017-00213-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia regulates autophagy and nucleotide-binding oligomerization domain receptor, pyrin domain containing (NLRP)3, two innate immune mechanisms linked by mutual regulation and associated to IBD. Here we show that hypoxia ameliorates inflammation during the development of colitis by modulating autophagy and mammalian target of rapamycin (mTOR)/NLRP3 pathway. Hypoxia significantly reduces tumor necrosis factor α, interleukin (IL)-6 and NLRP3 expression, and increases the turnover of the autophagy protein p62 in colon biopsies of Crohn’s disease patients, and in samples from dextran sulfate sodium-treated mice and Il-10−/− mice. In vitro, NF-κB signaling and NLRP3 expression are reduced through hypoxia-induced autophagy. We also identify NLRP3 as a novel binding partner of mTOR. Dimethyloxalylglycine-mediated hydroxylase inhibition ameliorates colitis in mice, downregulates NLRP3 and promotes autophagy. We suggest that hypoxia counteracts inflammation through the downregulation of the binding of mTOR and NLRP3 and activation of autophagy. Hypoxia and HIF-1α activation are protective in mouse models of colitis, and the latter regulates autophagy. Here Cosin-Roger et al. show that hypoxia ameliorates intestinal inflammation in Crohn’s patients and murine colitis models by inhibiting mTOR/NLRP3 pathway and promoting autophagy.
Collapse
Affiliation(s)
- Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Simona Simmen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Patrick Spielmann
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Jonas Zeitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
13
|
Hall CH, Campbell EL, Colgan SP. Neutrophils as Components of Mucosal Homeostasis. Cell Mol Gastroenterol Hepatol 2017; 4:329-337. [PMID: 28884136 PMCID: PMC5581871 DOI: 10.1016/j.jcmgh.2017.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Inflammatory responses in the intestinal mucosa inevitably result in the recruitment of neutrophils (polymorphonuclear leukocytes [PMNs]). Epithelial cells that line the mucosa play an integral role in the recruitment, maintenance, and clearance of PMNs at sites of inflammation. The consequences of such PMN-epithelial interactions often determine tissue responses and, ultimately, organ function. For this reason, there is significant interest in understanding how PMNs function in the mucosa during inflammation. Recent studies have shown that PMNs play a more significant role in molding of the immune response than previously thought. Here, we review the recent literature regarding the contribution of PMNs to the development and resolution of inflammation, with an emphasis on the role of the tissue microenvironment and pathways for promoting epithelial restitution. These studies highlight the complex nature of inflammatory pathways and provide important insight into the difficulties of treating mucosal inflammation.
Collapse
Key Words
- ATP, adenosine triphosphatase
- CGD, chronic granulomatous disease
- DMOG, dimethyloxalylglycine
- Epithelium
- GI, gastrointestinal
- HIF, hypoxia-inducible factor
- Hypoxia-Inducible Factor
- IBD, inflammatory bowel disease
- ICAM-1, intracellular adhesion molecule-1
- IL, interleukin
- Inflammation
- Metabolism
- Microbiota
- NADPH, reduced nicotinamide adenine dinucleotide phosphate
- PHD, prolyl-hydroxylase
- PMN, polymorphonuclear leukocyte
- SIRPα, signal-regulatory protein-α
Collapse
Affiliation(s)
- Caroline H.T. Hall
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Eric L. Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,Centre for Experimental Medicine, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Sean P. Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,Correspondence Address correspondence to: Sean P. Colgan, PhD, University of Colorado School of Medicine, 12700 East 19th Avenue, Room 10025, Aurora, Colorado 80045. fax: (303) 724-7243.University of Colorado School of Medicine12700 East 19th AvenueRoom 10025AuroraColorado 80045
| |
Collapse
|
14
|
Campbell EL, Kao DJ, Colgan SP. Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunol Rev 2017; 273:112-20. [PMID: 27558331 DOI: 10.1111/imr.12456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in the discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.
Collapse
Affiliation(s)
- Eric L Campbell
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel J Kao
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P Colgan
- Department of Medicine the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and Mucosal Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:77-100. [PMID: 27193451 DOI: 10.1146/annurev-pathol-012615-044231] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called "inflammatory hypoxia," which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Eric L Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045; .,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
16
|
Chun C, Zheng L, Colgan SP. Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radic Biol Med 2017; 105:86-92. [PMID: 27687211 PMCID: PMC5797701 DOI: 10.1016/j.freeradbiomed.2016.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023]
Abstract
In recent years, studies in the gastrointestinal (GI) mucosa have taught us a number of important lessons related to tissue oxygenation and metabolism in health and disease. The highly vascularized mucosa lies immediately adjacent to an anaerobic lumen containing trillions of metabolically active microbes (i.e. the microbiome) that results in one of the more austere tissue microenvironments in the body. These studies have also implicated a prominent role for oxygen metabolism and hypoxia in inflammation, so called "inflammatory hypoxia", that results from the activation of multiple oxygen consuming enzymes. Inflammation-associated shifts in the composition of the microbiome and microbial-derived metabolites have revealed a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of key target genes that promote inflammatory resolution. Analyses of these pathways have provided a multitude of opportunities for understanding basic mechanisms of both homeostasis and disease and have defined new targets for intervention. Here, we review recent advances in our understanding of metabolic influences on host-microbe interactions in the GI mucosa.
Collapse
Affiliation(s)
- Carlene Chun
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leon Zheng
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
17
|
Han J, Xi Q, Meng Q, Liu J, Zhang Y, Han Y, Zhuang Q, Jiang Y, Ding Q, Wu G. Interleukin-6 promotes tumor progression in colitis-associated colorectal cancer through HIF-1α regulation. Oncol Lett 2016; 12:4665-4670. [PMID: 28105173 DOI: 10.3892/ol.2016.5227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/01/2016] [Indexed: 01/15/2023] Open
Abstract
Interleukin-6 (IL-6) is a well-known etiological factor of colitis-associated colorectal cancer (CAC) and has a significant role in CAC progression. In addition, hypoxia-inducible factor 1α (HIF-1α) serves a primary role in the progression of CAC. However, the association between IL-6 and HIF-1α during the progression of CAC remains unclear. To investigate this association, the present study induced CAC in a mouse model using azoxymethane and dextran sulfate sodium. In addition, an anti-IL-6 receptor antibody was used to inhibit IL-6. In this model, anti-IL-6 receptor antibody treatment significantly inhibited the development of CAC and the expression of HIF-1α, in colorectal adenomas and adenocarcinomas. In patients with CAC, the HIF-1α gene was demonstrated to be overexpressed in tumor tissue compared with adjacent non-malignant tissue. Furthermore, HIF-1α mRNA expression was positively correlated with serum IL-6 concentration. The results of the present study suggest that IL-6 promotes CAC progression, in the early stage of the disease, through HIF-1α regulation.
Collapse
Affiliation(s)
- Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qiulei Xi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qingyang Meng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jingzheng Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yongxian Zhang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yusong Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qiulin Zhuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yi Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qiurong Ding
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
18
|
Abstract
In this review, I summarize some of the recent insight into pharmacological targeting of hypoxia in disease models. Studies from cultured cell systems, animal models, and translation to human patients have revealed that posttranslational modifications of individual proteins within NF-κB and hypoxia-inducible factor pathways serve as ideal targets for analysis in disease models. Studies defining differences and similarities between these responses have taught us a number of important lessons about the complexity of the inflammatory response. A clearer definition of these pathways has provided new insight into disease pathogenesis and, importantly, the potential for new therapeutic targets.
Collapse
|
19
|
Sena P, Mariani F, Mancini S, Benincasa M, Magnani G, Pedroni M, Palumbo C, Roncucci L. Autophagy is upregulated during colorectal carcinogenesis, and in DNA microsatellite stable carcinomas. Oncol Rep 2015; 34:3222-3230. [PMID: 26502823 DOI: 10.3892/or.2015.4326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 11/05/2022] Open
Abstract
Cancer cells are exposed to a wide range of stress sources, such as nutrient deprivation and hypoxia, as well as cytotoxic chemotherapy and radiotherapy. Certain forms of stress can also promote survival activating the metabolic autophagy pathway in cancer cells. Autophagy is dramatically increased in cancer cells. In these conditions, it is becoming evident that autophagy protects cells, by providing an alternative energy source and by eliminating dysfunctional organelles or proteins. Its role in tumorigenesis is more controversial and both the presence and the absence of autophagy have been implicated. Autophagy is known to be associated with the poor outcome of patients with various types of cancers, and its effectiveness as a prognostic marker in colorectal cancer was demonstrated by several studies. The inhibition of autophagy may be a potential therapeutic target in colorectal cancer. In vitro experiments have shown that the inhibition of autophagy increases 5-FU-induced apoptosis. There are two trials currently investigating the addition of chloroquine to 5-FU-based chemotherapy and bevacizumab. In the present study, we evaluated the expression of LC3B-II in samples of human colorectal microadenomas (i.e., dysplastic aberrant crypt foci) and carcinomas compared to normal mucosa. Furthermore, the expression pattern of LC3B-II was assessed in carcinomas classified as DNA microsatellite stable (MSS) and unstable (MSI). Thus, immunofluorescence techniques coupled with confocal microscopy and immunoblot experiments were performed. The results clearly showed a significant increase in expression of the autophagic key factor in microadenomas and carcinomas with respect to normal mucosa. In MSS carcinomas, the level of LC3B-II expression was higher than that in the MSI carcinomas.
Collapse
|
20
|
Colgan SP, Curtis VF, Lanis JM, Glover LE. Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers 2015; 3:e970936. [PMID: 25838978 DOI: 10.4161/21688362.2014.970936] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation. These studies have revealed a prominent role for hypoxia and hypoxia-inducible factor (HIF) at key steps in adenine nucleotide metabolism and within the creatine kinase pathway. Results from animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes and barrier function. Studies underway to elucidate the contribution of immune responses will provide additional insight into how metabolic changes contribute to the complexity of the gastrointestinal tract and how such information might be harnessed for therapeutic benefit.
Collapse
Key Words
- AMP, adenosine monophosphate
- CK, creatine kinase
- ChIP, chromatin immunoprecipitation
- Colitis
- HIF, hypoxia-inducible factor
- PHD, prolyl hydroxylase
- PMN, polymorphonuclear leukcoyte, neutrophil
- TJ, tight junction
- VASP, vasodilator-stimulated
- ZO-1, zonula occludens-1
- creatine
- epithelium
- inflammation
- metabolism
- mucosa
- murine model
- neutrophil
- nucleoside
- nucleotidase
- nucleotide
- phosphocreatine
Collapse
Affiliation(s)
- Sean P Colgan
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Valerie F Curtis
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Jordi M Lanis
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Louise E Glover
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| |
Collapse
|
21
|
Neutrophils and inflammatory resolution in the mucosa. Semin Immunol 2015; 27:177-83. [PMID: 25818531 DOI: 10.1016/j.smim.2015.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Inflammatory diseases in mucosal organs as diverse as the lung, liver and intestine inevitably require the intimate interactions between neutrophils and epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets to promote the resolution of mucosal inflammation. Physiologically-relevant in vitro and in vivo model systems have aided in discovery of novel pathways to define basic inflammatory mechanisms and approaches to defining the concepts of inflammatory resolution. Here, we will review the recent literature regarding the contribution of neutrophils to inflammatory resolution, with an emphasis on the role of the tissue microenvironment, endogenous pathways for promoting resolution and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of pro-resolving pathways and lend insight into the complexity of treating mucosal inflammation.
Collapse
|
22
|
Campbell EL, Colgan SP. Neutrophils and inflammatory metabolism in antimicrobial functions of the mucosa. J Leukoc Biol 2015; 98:517-22. [PMID: 25714801 DOI: 10.1189/jlb.3mr1114-556r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 01/29/2023] Open
Abstract
In this mini-review, we will discuss recent findings that implicate neutrophil infiltration and function in establishing a metabolic environment to facilitate efficient pathogen clearance. For decades, neutrophils have been regarded as short lived, nonspecific granulocytes, equipped with toxic antimicrobial factors and a respiratory burst generating ROS. Recent findings demonstrate the importance of HIF signaling in leukocytes and surrounding tissues during inflammation. Here, we will review the potential mechanisms and outcomes of HIF stabilization within the intestinal mucosa.
Collapse
Affiliation(s)
- Eric L Campbell
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology and Departments of Medicine and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology and Departments of Medicine and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
23
|
Zhao HM, Zhao ZL, Luo YM, Guo R, Shen H. Relationship between human cytomegalovirus infection and refractory ulcerative colitis: A meta-analysis. Shijie Huaren Xiaohua Zazhi 2014; 22:5721-5731. [DOI: 10.11569/wcjd.v22.i36.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between human cytomegalovirus (HCMV) infection and refractory ulcerative colitis (UC), and evaluate the necessity of antiviral therapy in refractory UC patients with HCMV infection.
METHODS: We searched Medline, PubMed, CNKI and Wanfang databases till 2013 to retrieve relevant studies. Meta-analyses were performed for the included case-control studies using RevMan4.2 software after strict screening to estimate odds ratio (OR) and 95% confidence interval (CI) for the association between HCMV infection and refractory UC. We also performed heterogeneity test, sensitivity analysis and publication bias assessment.
RESULTS: Eighteen eligible studies, including 15 carried out by foreigners and 3 by Chinese researchers, were included in the meta-analysis, involving 831 patients with UC. Seven included studies were analyzed at both blood and intestinal tissue levels. Six studies on HCMV infection and refractory UC were also collected for analysis at intestinal tissue level. The results of meta-analysis showed that there was a significant difference in the HCMV infection rate between patients with refractory UC and health controls (OR = 10.62, 95%CI: 4.79-23.54, P < 0.00001). At the blood level, three studies on HCMV infection and refractory UC were collected. It was showed that there was a significant difference in the HCMV infection rate between patients with refractory UC and health controls (OR = 3.22, 95%CI: 1.48-7.00, P = 0.003). Six studies on patients with active UC who were infected with HCMV and non-responsive to steroids were collected. The results of meta-analysis showed that the incidence of hormone resistance in patients with refractory UC was positively correlated with the HCMV infection rate (OR = 8.88, 95%CI: 4.43-17.17, P < 0.00001). Three studies on whether antiviral therapy could increase platelet count in patients with refractory UC were collected. It was showed that the group treated by antiviral therapy was superior to others in the response rate (OR = 7.53, 95%CI: 1.59-35.72, P = 0.01). Funnel plot analysis indicated the existence of publication bias.
CONCLUSION: Patients with refractory UC undergoing steroid treatment are susceptible to HCMV infection. In the presence of HCMV, UC becomes more complex. Patients with active UC who are infected with HCMV are usually non-responders to steroids. The prompt application of antiviral therapy can significantly improve the condition of patients with refractory UC. High quality, multi-center, prospective randomized controlled studies are needed to confirm our findings.
Collapse
|
24
|
Mariani F, Sena P, Roncucci L. Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol 2014; 20:9716-9731. [PMID: 25110410 PMCID: PMC4123361 DOI: 10.3748/wjg.v20.i29.9716] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/05/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a major cause of cancer-related death in many countries. Colorectal carcinogenesis is a stepwise process which, from normal mucosa leads to malignancy. Many factors have been shown to influence this process, however, at present, several points remain obscure. In recent years some hypotheses have been considered on the mechanisms involved in cancer development, expecially in its early stages. Tissue injury resulting from infectious, mechanical, or chemical agents may elicit a chronic immune response resulting in cellular proliferation and regeneration. Chronic inflammation of the large bowel (as in inflammatory bowel diseases), has been associated with the subsequent development of colorectal cancer. In this review we examine the inflammatory pathways involved in the early steps of carcinogenesis, with particular emphasis on colorectal. Firstly, we describe cells and proteins recently suggested as central in the mechanism leading to tumor development. Macrophages and neutrophils are among the cells mostly involved in these processes and proteins, as cyclooxygenases and resolvins, are crucial in these inflammatory pathways. Indeed, the activation of these pathways establishes an oxidative and anaerobic microenvironment with DNA damage to epithelial cells, and shifting from an aerobic to an anaerobic metabolism. Many cellular mechanisms, such as proliferation, apoptosis, and autophagy are altered causing failure to control normal mucosa repair and renewal.
Collapse
|
25
|
Shih YH, Lin DJ, Chang KW, Hsia SM, Ko SY, Lee SY, Hsue SS, Wang TH, Chen YL, Shieh TM. Evaluation physical characteristics and comparison antimicrobial and anti-inflammation potentials of dental root canal sealers containing hinokitiol in vitro. PLoS One 2014; 9:e94941. [PMID: 24915566 PMCID: PMC4051635 DOI: 10.1371/journal.pone.0094941] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/21/2014] [Indexed: 02/03/2023] Open
Abstract
Hinokitiol displays potent antimicrobial activity. It has been used in toothpaste and oral-care gel to improve the oral lichen planus and reduce halitosis. The aim of this study was to evaluate the antimicrobial activity of 3 different dental root canal sealers with hinokitiol (sealers+H) and their physical and biological effects. AH Plus (epoxy amine resin-based, AH), Apexit Plus (calcium-hydroxide-based, AP), and Canals (zinc-oxide-eugenol-based, CA), were used in this study. The original AH and CA exhibited strong anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity, but AP did not. The setting time, working time, flowability, film thickness, and solubility of each sealer+0.2%H complied with ISO 6876:2001. CA+0.2%H exhibited high cytotoxicity, but the others sealers+0.2%H did not. Because hinokitiol combined with Zn2+ in CA creates a synergistic effect. The physical tests of AP+0.5%–1%H complied with ISO 6876:2001, improved antimicrobial activity, inhibited inflammation genes cyclooxygenase-2 (COX-2) and hypoxia-inducible factor-1α (HIF-1α) mRNA in MG-63 cells and human gingival fibroblasts (HGF), and down-regulated lysyl oxidase (LOX) mRNA of HGF. In summary, AH and CA demonstrated strong antimicrobial activity, but AP did not. Application of hinokitiol increases AH anti-MRSA activity should less than 0.2% for keep well flowability. AP+0.5%–1% hinokitiol exhibited strong physical, antibacterial, and anti-inflammation potentials, and inhibited S. aureus abscess formation. Applying an appreciable proportion of hinokitiol to epoxy-amine-resin-based and calcium-hydroxide-based root canal sealers is warranted, but the enhanced cytotoxicity and synergistic effect must be considered.
Collapse
Affiliation(s)
- Yin-Hua Shih
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Dan-Jae Lin
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Oral and Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shun-Yao Ko
- Graduate Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Shyh-Yuan Lee
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shui-Sang Hsue
- Department of Oral Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yi-Ling Chen
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| |
Collapse
|
26
|
Risk prediction for malignant conversion of oral epithelial dysplasia by hypoxia related protein expression. Pathology 2014; 45:478-83. [PMID: 23811806 DOI: 10.1097/pat.0b013e3283632624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS Increased aerobic glycolysis is a unique finding in cancers and hypoxia-related proteins are associated with aerobic glycolysis. Therefore, we aimed to investigate whether hypoxia-related proteins can be predictive markers for malignant conversion of oral premalignant lesions with epithelial dysplasia (OED). METHODS Expression of HIF-1α, Glut-1 and CA9 were detected in clinical samples of eight normal oral mucosa, 85 transitional areas of oral squamous cell carcinoma (OSCC) and 28 OED with or without malignant conversion using immunohistochemistry and were also comparatively detected in immortalised human oral keratinocyte (IHOK) and OSCC cell lines under hypoxia using immunoblotting. RESULTS Sequential expression of HIF-1α, Glut-1 and CA9 was found both in transitional areas of OSCC and cell lines of IHOK and OSCC under hypoxia, supporting hypoxia-aerobic glycolysis-acidosis axis. Expression of all proteins showed significant association with malignant conversion of OED and CA9 was an independent risk factor of malignant transformation of OED. But the predictability of malignant transformation was improved when all three proteins were applied together. CONCLUSION High expression of CA9 was an independent predictive marker of malignant conversion. Moreover, the combined application of these three proteins may be useful to assess the risk of malignant conversion of OED.
Collapse
|
27
|
Wang PC, Weng CC, Hou YS, Jian SF, Fang KT, Hou MF, Cheng KH. Activation of VCAM-1 and its associated molecule CD44 leads to increased malignant potential of breast cancer cells. Int J Mol Sci 2014; 15:3560-79. [PMID: 24583847 PMCID: PMC3975354 DOI: 10.3390/ijms15033560] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/30/2014] [Accepted: 02/14/2014] [Indexed: 12/14/2022] Open
Abstract
VCAM-1 (CD106), a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4β1). In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT) program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFβ1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Pei-Chen Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ching-Chieh Weng
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - You-Syuan Hou
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shu-Fang Jian
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Kuan-Te Fang
- Department of Research and Development, Eternal Chemical Co., Ltd., Kaohsiung 80778, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80708, Taiwan.
| | - Kuang-Hung Cheng
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
28
|
Mariani F, Sena P, Magnani G, Mancini S, Palumbo C, Ponz de Leon M, Roncucci L. PLZF expression during colorectal cancer development and in normal colorectal mucosa according to body size, as marker of colorectal cancer risk. ScientificWorldJournal 2013; 2013:630869. [PMID: 24348178 PMCID: PMC3848341 DOI: 10.1155/2013/630869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/22/2013] [Indexed: 11/26/2022] Open
Abstract
Promyelocytic leukemia zinc finger protein (PLZF) is a protein involved in various signaling, growth regulatory, and differentiation pathways, including development/function of some T cells. Here, we aimed at the detection of PLZF during colorectal carcinogenesis, using immunofluorescence, and at the evaluation of the colocalization of PLZF with CD2 and CD56 positive cells (T, γ δ , NK, and NKT cells), using confocal-microscopy, along colorectal carcinogenesis, since its earliest stages, that is, dysplastic aberrant crypt foci (ACF). Furthermore, we analyzed PLZF in the normal colonic mucosa (NM) according to anthropometric parameters of the subject. NM exhibited strong CD56 fluorescent staining. This infiltration was lost in both ACF and colorectal carcinoma (CRC), while PLZF presence increased from NM to ACF and CRC. Strong association was found between CD56+ colonic mucosa cell infiltration and body mass index. Interestingly, an increased stromal PLZF-reactivity was present in NM of obese subjects. This study shows that overexpression of PLZF and exclusion of NK cells in dysplastic microenvironment are very early events in the stepwise sequence leading to CRC and that lower levels of CD56+ cells in NM, together with increased levels of PLZF+ cells, can be a reflection of colon cancer risk due to obesity.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paola Sena
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giulia Magnani
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Stefano Mancini
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Luca Roncucci
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
29
|
Grandjean M, Sermeus A, Branders S, Defresne F, Dieu M, Dupont P, Raes M, De Ridder M, Feron O. Hypoxia integration in the serological proteome analysis unmasks tumor antigens and fosters the identification of anti-phospho-eEF2 antibodies as potential cancer biomarkers. PLoS One 2013; 8:e76508. [PMID: 24130777 PMCID: PMC3794947 DOI: 10.1371/journal.pone.0076508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022] Open
Abstract
The expression by tumor cells of proteins with aberrant structure, expression or distribution accounts for the development of a humoral immune response. Autoantibodies (aAb) directed against tumor-associated antigens (TAA) may thus be particularly relevant for early detection of cancer. Serological proteome analysis (SERPA) aims to identify such circulating aAb through the immunoblotting of 2D-separated tumor cell proteins with cancer patient serum and the consecutive MS identification of proteins in reactive spots. This method has the advantage to use post-translationally modified proteins as a source of potential TAA. Here, we applied this strategy by using colorectal tumor cells pre-exposed to hypoxia in order to promote the expression of a pattern of TAA more likely to represent in vivo conditions. We used two human HCT116 and HT29 colorectal cancer cell lines exposed for 48 hours to 1% O2. Spots positive after immunoblotting of 2D-separated lysates of hypoxic cells with the sera of tumor-bearing mice, were collected and analysed by MS for protein identification. Among the hypoxia-specific immunogenic proteins, we identified a phosphorylated form of eukaryotic translation elongation factor 2 (phospho-Thr56 eEF2). We confirmed the increased phosphorylation of this protein in hypoxic colorectal tumor cells as well as in mouse tumors. Using a specific immunoassay, we could detect the presence of corresponding anti-phospho-Thr56 eEF2 aAb in the serum of tumor-bearing mice (vs healthy mice). We further documented that the detection of these aAb preceded the detection of a palpable tumor mass in mice and validated the presence of anti-phospho-Thr56 eEF2 aAb in the serum of patients with adenomatous polyps and colorectal carcinoma. In conclusion, this study validates a phosphorylated form of eEF2 as a new TAA and more generally, provides evidence that integrating hypoxia upstream of SERPA offers a more relevant repertoire of TAA able to unmask the presence of circulating aAb.
Collapse
Affiliation(s)
- Marie Grandjean
- UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Brussels, Belgium
| | | | - Samuel Branders
- UCLouvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Machine Learning Group, Louvain-la-Neuve, Belgium
| | - Florence Defresne
- UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Brussels, Belgium
| | - Marc Dieu
- UNamur, Namur Research Institute for Life Sciences (NARILIS), Research Unit of Cell Biology (URBC), Namur, Belgium
| | - Pierre Dupont
- UCLouvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Machine Learning Group, Louvain-la-Neuve, Belgium
| | - Martine Raes
- UNamur, Namur Research Institute for Life Sciences (NARILIS), Research Unit of Cell Biology (URBC), Namur, Belgium
| | - Mark De Ridder
- UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Feron
- UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Brussels, Belgium
- * E-mail:
| |
Collapse
|
30
|
Ixeris dentata NAKAI Reduces Clinical Score and HIF-1 Expression in Experimental Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:671281. [PMID: 24194783 PMCID: PMC3782128 DOI: 10.1155/2013/671281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 01/17/2023]
Abstract
Ixeris dentata (ID) is an herbal medicine used in Asian countries to treat indigestion, pneumonia, hepatitis, contusions, and tumors; however, its effect on intestinal inflammation is unknown. Thus, we investigated the effect of ID in the dextran sulfate sodium (DSS) model of colitis in female BALB/c mice; animals were evaluated after seven days of DSS treatment. DSS-treated mice showed considerable clinical signs, including weight loss, reduced colon length, colonic epithelial injury, infiltration of inflammatory cells in the colon tissue, and upregulation of inflammatory mediators. However, administration of ID attenuated body weight loss, colon shortening, and the increase in disease activity index score. ID also significantly decreased the colonic mucosal injury and the number of infiltrating mast cells. Moreover, ID inhibited the expressions of cyclooxygenase-2 and hypoxia-inducible factor-1α in colon tissue. Taken together, the results provide experimental evidence that ID might be a useful therapy for patients with ulcerative colitis.
Collapse
|
31
|
Abstract
A current view of the inflammatory bowel diseases (IBDs) includes the luminal triggering of innate immune disease in a genetically susceptible host. Given the unique anatomy and complex environment of the intestine, local microenvironmental cues likely contribute significantly to both disease progression and resolution in IBD. Compartmentalized tissue and microbe populations within the intestine result in significant metabolic shifts within these tissue microenvironments. During active inflammatory disease, metabolic demands often exceed supply, resulting in localized areas of metabolic stress and diminished oxygen delivery (hypoxia). There is much recent interest in harnessing these microenvironmental changes to the benefit of the tissue, including targeting these pathways for therapy of IBD. Here, we review the current understanding of metabolic microenvironments within the intestine in IBD, with discussion of the advantages and disadvantages of targeting these pathways to treat patients with IBD.
Collapse
|
32
|
Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 2013; 345:164-73. [PMID: 23988267 DOI: 10.1016/j.canlet.2013.08.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Although it is now accepted that chronic inflammation plays an essential role in tumorigenesis, the underlying molecular mechanisms linking inflammation and cancer remain to be fully explored. Inflammatory mediators present in the tumor microenvironment, including cytokines and growth factors, as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been implicated in the etiology of inflammation-associated cancers. Epithelial NADPH oxidase (Nox) family proteins, which generate ROS regulated by cytokines, are upregulated during chronic inflammation and cancer. ROS serve as effector molecules participating in host defense or as chemo-attractants recruiting leukocytes to wounds, thereby influencing the inflammatory reaction in damaged tissues. ROS can alter chromosomal DNA, leading to genomic instability, and may serve as signaling molecules that affect tumor cell proliferation, survival, metabolism, angiogenesis, and metastasis. Targeting Noxs and their downstream signaling components may be a promising approach to pre-empting inflammation-related malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Hong MY, Nulton E, Shelechi M, Hernández LM, Nemoseck T. Effects of Dark Chocolate on Azoxymethane-Induced Colonic Aberrant Crypt Foci. Nutr Cancer 2013; 65:677-85. [DOI: 10.1080/01635581.2013.789542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Lin PC, Lin YJ, Lee CT, Liu HS, Lee JC. Cyclooxygenase-2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol Lett 2013; 6:733-739. [PMID: 24137401 PMCID: PMC3789101 DOI: 10.3892/ol.2013.1426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
The development of colorectal cancer (CRC) is commonly accompanied by the overexpression of the cyclooxygenase-2 (COX-2) gene, with high levels being most common in early colorectal lesions. In the present study, we hypothesized that the expression of COX-2 in normal mucosa affects the expression of COX-2 in adjacent tumors. COX-2 protein expression levels were determined in tumor tissues and the adjacent normal mucosa of 49 paired clinical CRC specimens using western blotting and immunohistochemistry (IHC) staining. The majority of specimens exhibited an extremely low level of COX-2 expression in the tumor tissue and a markedly higher expression level in the adjacent normal tissue, however, high COX-2 expression in the tumor was shown to correlate with a high recurrence rate and poor overall survival. Of the nine CRC cell lines, HT29 showed consistently higher levels of COX-2 expression. Therefore, COX-2 expression in the normal tissue adjacent to the tumor may be involved in the tumorigenesis of CRC. These observations are likely to be useful in determining the significance of COX-2 expression in the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Peng-Chan Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
35
|
Colgan SP, Ehrentraut SF, Glover LE, Kominsky DJ, Campbell EL. Contributions of neutrophils to resolution of mucosal inflammation. Immunol Res 2013; 55:75-82. [PMID: 22968707 DOI: 10.1007/s12026-012-8350-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil (PMN) recruitment from the blood stream into surrounding tissues involves a regulated series of events central to acute responses in host defense. Accumulation of PMN within mucosal tissues has historically been considered pathognomonic features of both acute and chronic inflammatory conditions. Historically, PMNs have been deemed necessary but detrimental when recruited, given the potential for tissue damage that results from a variety of mechanisms. Recent work, however, has altered our preconceived notions of PMN contributions to inflammatory processes. In particular, significant evidence implicates a central role for the PMN in triggering inflammatory resolution. Such mechanisms involve both metabolic and biochemical crosstalk pathways during the intimate interactions of PMN with other cell types at inflammatory sites. Here, we highlight several recent examples of how PMN coordinate the resolution of ongoing inflammation, with a particular focus on the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
36
|
Peng Z, Heath J, Drachenberg C, Raufman JP, Xie G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer 2013; 13:204. [PMID: 23617763 PMCID: PMC3640951 DOI: 10.1186/1471-2407-13-204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/18/2013] [Indexed: 11/26/2022] Open
Abstract
Background Previously, we showed that M3 muscarinic receptor (M3R; gene name Chrm3) deficiency attenuates murine intestinal neoplasia, supporting the hypothesis that muscarinic receptors play an important role in intestinal tumorigenesis. Methods To test this hypothesis, in the present study we treated mice with bethanechol, a non-selective muscarinic receptor agonist without nicotinic receptor activity, and examined its effects on azoxymethane (AOM)-induced colon neoplasia. Mice were provided with drinking water containing 400 μg/mL bethanechol chloride or water without additions (control) for a total of 20 weeks, a period that included the initial 6 weeks when mice received intraperitoneal injections of AOM. Results When euthanized at week 20, control mice had 8.0 ± 1.3 tumors per animal, whereas bethanechol-treated mice had 10.4 ± 1.5 tumors per mouse (mean ± SE; P = 0.023), a 30% increase. Strikingly, tumor volume per animal was increased 52% in bethanechol-treated compared with control mice (179.7 ± 21.0 vs. 111. 8 ± 22.4 mm3; P = 0.047). On histological examination, bethenechol-treated mice also had more adenocarcinomas per animal (8.0 ± 1.0 vs. 4.1 ± 0.6 for control mice, P = 0.0042). Cell proliferation in both normal mucosa and adenocarcinomas was increased in bethanechol-treated compared to control mice. Also, in tumors, bethanechol treatment increased expression of Chrm3, Egfr and post-Egfr signaling molecules Myc and cyclin D1. Bethanechol treatment increased the thickness of normal colonic mucosa and the expression of selected matrix metalloproteinase (Mmp) genes, including Mmp7, Mmp10 and Mmp13. Conclusions These findings support a prominent role for muscarinic receptors in colon neoplasia, and identify post-receptor signaling molecules as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhongsheng Peng
- Division of Gastroenterology and Hepatology, Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
37
|
Mariani F, Sena P, Pedroni M, Benatti P, Manni P, Di Gregorio C, Manenti A, Palumbo C, de Leon MP, Roncucci L. Th inducing POZ-Kruppel Factor (ThPOK) is a key regulator of the immune response since the early steps of colorectal carcinogenesis. PLoS One 2013; 8:e54488. [PMID: 23349906 PMCID: PMC3547940 DOI: 10.1371/journal.pone.0054488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/12/2012] [Indexed: 01/04/2023] Open
Abstract
We purposed to evaluate the role of Th inducing POZ-Kruppel Factor (ThPOK), a transcriptional regulator of T cell fate, in tumour-induced immune system plasticity in colorectal carcinogenesis. The amounts of CD4+, CD8+ and CD56+ and ThPOK+ cells infiltrate in normal colorectal mucosa (NM), in dysplastic aberrant crypt foci (microadenomas, MA), the earliest detectable lesions in colorectal carcinogenesis, and in colorectal carcinomas (CRC), were measured, and the colocalization of ThPOK with the above-mentioned markers of immune cells was evaluated using confocal microscopy. Interestingly, ThPOK showed a prominent increase since MA. A strong colocalization of ThPOK with CD4 both in NM and in MA was observed, weaker in carcinomas. Surprisingly, there was a peak in the colocalization levels of ThPOK with CD8 in MA, which was evident, although to a lesser extent, in carcinomas, too. In conclusion, according to the data of the present study, ThPOK may be considered a central regulator of the earliest events in the immune system during colorectal cancer development, decreasing the immune response against cancer cells.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Pedroni
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Piero Benatti
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Manni
- Department of Servizi Diagnostici di Laboratorio e Medicina Legale, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmela Di Gregorio
- Department of Servizi Diagnostici di Laboratorio e Medicina Legale, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Manenti
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Carla Palumbo
- Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncucci
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
38
|
Endomicroscopic Imaging of COX-2 Activity in Murine Sporadic and Colitis-Associated Colorectal Cancer. DIAGNOSTIC AND THERAPEUTIC ENDOSCOPY 2013; 2013:250641. [PMID: 23401648 PMCID: PMC3562574 DOI: 10.1155/2013/250641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
Abstract
Although several studies propose a chemopreventive effect of aspirin for colorectal cancer (CRC) development, the general use of aspirin cannot be recommended due to its adverse side effects. As the protective effect of aspirin has been associated with an increased expression of COX-2, molecular imaging of COX-2, for instance, during confocal endomicroscopy could enable the identification of patients who would possibly benefit from aspirin treatment. In this pilot trial, we used a COX-2-specific fluorescent probe for detection of colitis-associated and sporadic CRC in mice using confocal microscopy. Following the injection of the COX-2 probe into tumor-bearing APCmin mice or mice exposed to the AOM + DSS model of colitis-associated cancer, the tumor-specific upregulation of COX-2 could be validated with in vivo fluorescence imaging. Subsequent confocal imaging of tumor tissue showed an increased number of COX-2 expressing cells when compared to the normal mucosa of healthy controls. COX-2-expression was detectable with subcellular resolution in tumor cells and infiltrating stroma cells. These findings pose a proof of concept and suggest the use of CLE for the detection of COX-2 expression during colorectal cancer surveillance endoscopy. This could improve early detection and stratification of chemoprevention in patients with CRC.
Collapse
|
39
|
Mimouna S, Gonçalvès D, Barnich N, Darfeuille-Michaud A, Hofman P, Vouret-Craviari V. Crohn disease-associated Escherichia coli promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses. Gut Microbes 2013; 2:335-46. [PMID: 22157238 DOI: 10.4161/gmic.18771] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Crohn disease (CD) ileal lesions are colonized by adherent-invasive E. coli (AIEC) that locally induce inflammation. Hypoxia inducible factor (HIF)-1alpha protein is expressed in acute and chronically inflamed site; however the molecular basis of this expression is not fully understood. The aim of the study was to access whether AIEC induce HIF-1α expression and to study the consequence of HIF-1α expression on the onset of Crohn disease pathogenesis. We show that HIF-1α is maximally expressed in inflamed ileal epithelium of CD-patients. CEACAM6, a protein that acts as a receptor of AIEC, is expressed in this particular condition. Using CEABAC 10 transgenic mice that express CEACAM6, we show that AIEC bacteria, but not non-pathogenic E. coli K12, induce the production of HIF-1alpha protein and the activation of VEGF/VEGFR signaling. Downstream analyses on human intestinal epithelial cells silenced for hif- 1α, highlight the crucial role of this protein in production of pro-angiogenic factors. This study highlights the crucial role of AIEC bacteria as promoter of inflammatory disorders of the gastrointestinal tract and provides clear evidence that HIF-1α protein plays a major role in mediating this effect.
Collapse
Affiliation(s)
- Sanda Mimouna
- The Institute of Research on Cancer and Aging, Nice, France
| | | | | | | | | | | |
Collapse
|
40
|
Ehrentraut SF, Kominsky DJ, Glover LE, Campbell EL, Kelly CJ, Bowers BE, Bayless AJ, Colgan SP. Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. THE JOURNAL OF IMMUNOLOGY 2012; 190:392-400. [PMID: 23209320 DOI: 10.4049/jimmunol.1202041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A deeper understanding of the mechanisms that control responses to inflammation is critical to the development of effective therapies. We sought to define the most proximal regulators of the Cullin (Cul)-RING ligases, which play a central role in the stabilization of NF-κB and hypoxia-inducible factor (HIF). In these studies, we identify the human deneddylase-1 (SENP8) as a key regulator of Cul neddylation response in vitro and in vivo. Using human microvascular endothelial cells (HMECs), we examined inflammatory responses to LPS or TNF-α by assessing Cul neddylation status, NF-κB and HIF-1α stabilization, and inflammatory cytokine secretion. HMECs with an intact neddylation pathway showed a time-dependent induction of Cul-1 neddylation, nuclear translocation of NF-κB, stabilization of HIF-1α, and increased NF-κB/HIF-α promoter activity in response to LPS. HMECs lacking SENP8 were unable to neddylate Cul-1 and subsequently were unable to activate NF-κB or HIF-1α. Pharmacological targeting of neddylation (MLN4924) significantly abrogated NF-κB responses, induced HIF-1α promoter activity, and reduced secretion of TNF-α-elicited proinflammatory cytokines. MLN4924 stabilized HIF and abrogated proinflammatory responses while maintaining anti-inflammatory IL-10 responses in vivo following LPS administration. These studies identify SENP8 as a proximal regulator of Cul neddylation and provide an important role for SENP8 in fine-tuning the inflammatory response. Moreover, our findings provide feasibility for therapeutic targeting of the Culs during inflammation.
Collapse
Affiliation(s)
- Stefan F Ehrentraut
- Mucosal Inflammation Program, Department of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ji Y, Li RP, Wang ML. Progress in understanding the relationship between inflammatory bowel disease and human cytomegalovirus infection. Shijie Huaren Xiaohua Zazhi 2012; 20:2070-2074. [DOI: 10.11569/wcjd.v20.i22.2070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous DNA virus that can cause severe disease in immunosuppressive or immunocompromised patients. Recent studies have found that CMV might play a role in the pathogenesis and progression of inflammatory bowel disease (IBD). This paper gives a review of the epidemiology, clinical diagnosis, and pathogenesis of HCMV infection in patients with IBD.
Collapse
|
42
|
Ehrentraut SF, Colgan SP. Implications of protein post-translational modifications in IBD. Inflamm Bowel Dis 2012; 18:1378-88. [PMID: 22223542 PMCID: PMC3378042 DOI: 10.1002/ibd.22859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/22/2011] [Indexed: 12/19/2022]
Abstract
In recent years our understanding of the pathogenesis of inflammatory bowel disease (IBD) has greatly increased. Hallmarks of IBD include loss of intestinal barrier function, increased cytokine production, and failed resolution of tissue damage. Lasting treatments are still lacking and, therefore, a better understanding of the underlying molecular mechanisms is necessary to design novel therapeutic approaches. Apart from transcriptional and posttranscriptional regulation of relevant genes, mammals have evolved a complex and efficient series of mechanisms to rapidly modify newly made proteins for the purposes of signaling and adaptation. These posttranslational protein modifications include, among others, phosphorylation, hydroxylation, neddylation, and cytokine cleavage by the inflammasome. This review focuses on our current understanding of posttranslational protein modifications with a particular focus on their relevance to IBD pathogenesis.
Collapse
Affiliation(s)
- Stefan F Ehrentraut
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
43
|
Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52:2013-37. [PMID: 22391222 DOI: 10.1016/j.freeradbiomed.2012.02.035] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
The role of inflammation in carcinogenesis has been extensively investigated and well documented. Many biochemical processes that are altered during chronic inflammation have been implicated in tumorigenesis. These include shifting cellular redox balance toward oxidative stress; induction of genomic instability; increased DNA damage; stimulation of cell proliferation, metastasis, and angiogenesis; deregulation of cellular epigenetic control of gene expression; and inappropriate epithelial-to-mesenchymal transition. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide, and matricellular proteins are closely involved in premalignant and malignant conversion of cells in a background of chronic inflammation. Inappropriate transcription of genes encoding inflammatory mediators, survival factors, and angiogenic and metastatic proteins is the key molecular event in linking inflammation and cancer. Aberrant cell signaling pathways comprising various kinases and their downstream transcription factors have been identified as the major contributors in abnormal gene expression associated with inflammation-driven carcinogenesis. The posttranscriptional regulation of gene expression by microRNAs also provides the molecular basis for linking inflammation to cancer. This review highlights the multifaceted role of inflammation in carcinogenesis in the context of altered cellular redox signaling.
Collapse
|
44
|
Slattery ML, Lundgreen A, Welbourn B, Wolff RK, Corcoran C. Oxidative balance and colon and rectal cancer: interaction of lifestyle factors and genes. Mutat Res 2012; 734:30-40. [PMID: 22531693 DOI: 10.1016/j.mrfmmm.2012.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 12/19/2022]
Abstract
Pro-oxidant and anti-oxidant genetic and lifestyle factors can contribute to an individual's level of oxidative stress. We hypothesize that diet, lifestyle and genetic factors work together to influence colon and rectal cancer through an oxidative balance mechanism. We evaluated nine markers for eosinophil peroxidase (EPX), two for myeloperoxidase (MPO), four for hypoxia-inducible factor-1A (HIFIA), and 16 for inducible nitric oxide synthase (NOS2A) in conjunction with dietary antioxidants, aspirin/NSAID use, and cigarette smoking. We used data from population-based case-control studies (colon cancer n=1555 cases, 1956 controls; rectal cancer n=754 cases, 959 controls). Only NOS2A rs2297518 was associated with colon cancer (OR 0.86 95% CI 0.74, 0.99) and EPX rs2302313 and MPO rs2243828 were associated with rectal cancer (OR 0.75 95% CI 0.59, 0.96; OR 0.81 95% CI 0.67, 0.99 respectively) for main effects. However, after adjustment for multiple comparisons we observed the following significant interactions for colon cancer: NOS2A and lutein, EPX and aspirin/NSAID use, and NOS2A (4 SNPs) and cigarette smoking. For rectal cancer we observed the following interactions after adjustment for multiple comparisons: HIF1A and vitamin E, NOS2A (3SNPs) with calcium; MPO with lutein; HIF1A with lycopene; NOS2A with selenium; EPX and NOS2A with aspirin/NSAID use; HIF1A, MPO, and NOS2A (3 SNPs) with cigarette smoking. We observed significant interaction between a composite oxidative balance score and a polygenic model for both colon (p interaction 0.0008) and rectal cancer (p=0.0018). These results suggest the need to comprehensively evaluate interactions to assess the contribution of risk from both environmental and genetic factors.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
45
|
Kelly CJ, Colgan SP. Targeting Hypoxia to Augment Mucosal Barrier Function. JOURNAL OF EPITHELIAL BIOLOGY & PHARMACOLOGY 2012; 5:67-76. [PMID: 28824735 PMCID: PMC5560425 DOI: 10.2174/1875044301205010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sites of inflammation are associated with profound changes in tissue metabolism. Studies in vitro and in vivo have shown that the activation of the hypoxia-inducible factor (HIF) serves as an adaptive pathway for the resolution of inflammation associated with various murine disease models. The resolution of disease occurs, at least in part, through transcriptional regulation of non-classical epithelial barrier genes. There is significant recent interest in harnessing hypoxia-inducible pathways, including targeting the HIF and the proyl-hydroxylase (PHD) enzymes that stabilize HIF, to promote mucosal healing. Here, we review the signaling pathways involved and define how hypoxia-associated signaling provides mechanistic insight into augmenting barrier function in mucosal inflammatory disease.
Collapse
Affiliation(s)
- Caleb J Kelly
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO USA
| |
Collapse
|
46
|
PTGS2 (COX2) -765G>C gene polymorphism and risk of sporadic colorectal cancer in Iranian population. Mol Biol Rep 2011; 39:5219-24. [PMID: 22173719 DOI: 10.1007/s11033-011-1319-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 12/03/2011] [Indexed: 01/26/2023]
Abstract
Colorectal cancer (CRC) is one of the leading cancers worldwide. Through genome wide association studies, several single nucleotide polymorphisms scattered in the genome emerged to be influential in the development of sporadic CRC in some populations. However, replicative studies failed to prove a particular SNP-CRC association in populations and ethnic groups. Cyclooxygenase-2 (PTGS2) is a crucial enzyme involved in the metabolism of prostaglandins. The aim of this replicative study is to investigate the possible association between PTGS2 -765G>C polymorphism and sporadic CRC risk in a subset of Iranian population. A total of 110 patients with sporadic CRC, and 120 controls were genotyped for PTGS2 -765G>C polymorphism by using polymerase chain reaction-based restriction fragment length polymorphism. There were no significant differences in the genotype and allele frequencies of PTGS2 -765G>C between two groups except in irregular aspirin or non-steroidal anti-inflammatory drugs (NSAID) consumers. Frequencies of genotypes and alleles were as follows: GG = 44.2, GC = 48.3, CC = 7.5%, in controls and GG = 34.55, GC = 60.9, CC = 4.55% in cases. Regarding the allele frequency, the following values were found: G = 65, C = 35% in cases and 68.3, 31.7% in the controls, respectively. In irregular aspirin or NSAID consumers combined GC+CC genotype was found to be a risk genotype (OR = 1.933, 95% CI: 1.067-3.501, P = 0.036). Overall, no significant relation was found between this polymorphism and sporadic CRC in Iranians. However, in irregular aspirin or NSAID consumers the combined GC+CC genotype proved to be a risk genotype.
Collapse
|
47
|
Colgan SP, Eltzschig HK. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 2011; 74:153-75. [PMID: 21942704 DOI: 10.1146/annurev-physiol-020911-153230] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets.
Collapse
Affiliation(s)
- Sean P Colgan
- Departments of Medicine and Anesthesiology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
48
|
Colorectal Oncogenesis and Inflammation in a Rat Model Based on Chronic Inflammation due to Cycling DSS Treatments. Gastroenterol Res Pract 2011; 2011:924045. [PMID: 22007198 PMCID: PMC3189610 DOI: 10.1155/2011/924045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022] Open
Abstract
Inflammation is known to be linked with development of colorectal cancer, and the aim was to assess the malignant potential and degree of inflammation in a dextran-sulphate-sodium-(DSS-) induced cyclic colonic tumour model (CTM) in rats and to compare it with the azoxymethane-(AOM-) induced CTM model. Tumours developed in both groups, although, in the DSS group, the colonic mucosa appeared edematous and the number of haemorrhagic erosions and quantity of dysplastic lesions were higher as well as the mucosal concentration of myeloperoxidase and faecal viable count of Enterobacteriaceae. The livers were affected as evaluated by steatosis, parenchymal loss, haemorrhage, and inflammatory infiltrations, and higher proportions of acetate and lower proportions of butyrate in colonic content were found. The DSS model seems to mimic the clinical situation and may be valuable for investigation of inflammation-related dysplasia and colon cancer, as well as for altered liver function by endogenous inflammatory mediators.
Collapse
|
49
|
Glover LE, Colgan SP. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 2011; 140:1748-55. [PMID: 21530741 PMCID: PMC3093411 DOI: 10.1053/j.gastro.2011.01.056] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 12/17/2022]
Abstract
The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between the anaerobic lumen and lamina propria, which has a high rate of metabolism. Supported by a complex vasculature, this important barrier is affected by reduced blood flow and resultant tissue hypoxia, particularly during the severe metabolic shifts associated with active inflammation in individuals with inflammatory bowel disease. Activation of hypoxia-inducible factor (HIF) under these conditions promotes resolution of inflammation in mouse models of disease. Protective influences of HIF are attributed, in part, to the complex regulation of barrier protection with the intestinal mucosa. Reagents that activate HIF, via inhibition of the prolyl hydroxylase enzymes, might be developed to induce hypoxia-mediated resolution in patients with intestinal mucosal inflammatory disease.
Collapse
|
50
|
Hofman PM. Pathobiology of the neutrophil-intestinal epithelial cell interaction: Role in carcinogenesis. World J Gastroenterol 2010; 16:5790-800. [PMID: 21154999 PMCID: PMC3001969 DOI: 10.3748/wjg.v16.i46.5790] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of chronic inflammation, acting as an independent factor, on the onset of gastrointestinal carcinogenesis is now well accepted. However, even if there is an increase in the number of elements directly involving polymorphonuclear leukocytes (PMNL), as a major actor in digestive carcinogenesis, the different cellular and molecular events occurring in this process are still not completely understood. The transepithelial migration of PMNL, which is the ultimate step of the afflux of PMNL into the digestive mucosa, is a complex phenomenon involving sequential interaction of molecules expressed both on PMNL and on digestive epithelial cells. Chronic inflammatory areas rich in PMNL [so-called (chronic active inflammation)] and iterative transepithelial migration of PMNL certainly evoke intracellular signals, which lead toward progressive transformation of epithelia. Among these different signals, the mutagenic effect of reactive oxygen species and nitrates, the activation of the nuclear factor-κB pathway, and the modulation of expression of certain microRNA are key actors. Following the initiation of carcinogenesis, PMNL are involved in the progression and invasion of digestive carcinomas, with which they interact. It is noteworthy that different subpopulations of PMNL, which can have some opposite effects on tumor growth, in association with different levels of transforming growth factor-β and with the number of CD8 positive T lymphocytes, could be present during the development of digestive carcinoma. Other factors that involve PMNL, such as massive elastase release, and the production of angiogenic factors, can participate in the progression of neoplastic cells through tissues. PMNL may play a major role in the onset of metastases, since they allow the tumor cells to cross the endothelial barrier and to migrate into the blood stream. Finally, PMNL play a role, alone or in association with other cell parameters, in the initiation, promotion, progression and dissemination of digestive carcinomas. This review focuses on the main currently accepted cellular and molecular mechanisms that involve PMNL as key actors in digestive carcinogenesis.
Collapse
|