1
|
Li YR, Zhu Y, Chen Y, Yang L. The clinical landscape of CAR-engineered unconventional T cells. Trends Cancer 2025:S2405-8033(25)00069-X. [PMID: 40155286 DOI: 10.1016/j.trecan.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Unconventional T cells, such as invariant natural killer T (iNKT), γδ T, and mucosal-associated invariant T (MAIT) cells, play a pivotal role in bridging innate and adaptive immunity. Their capacity for rapid tumor targeting and effective modulation of the tumor microenvironment (TME) makes them promising candidates for cancer immunotherapy. Advances in chimeric antigen receptor (CAR) engineering have further highlighted their therapeutic potential, particularly for treating challenging cancers. Notably, these cells exhibit favorable safety profiles, enhancing their viability as off-the-shelf therapeutic options. We provide a comprehensive analysis of the clinical applications of CAR-engineered unconventional T cells, focusing on genetic modifications, manufacturing processes, preconditioning regimens, and dosing strategies. We discuss successful examples from recent clinical trials and explore future directions for utilizing these cells in cancer therapy and beyond.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Zhu
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Zhan C, Peng C, Wei H, Wei K, Ou Y, Zhang Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. Int J Mol Sci 2025; 26:2778. [PMID: 40141420 PMCID: PMC11943347 DOI: 10.3390/ijms26062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, autoimmune liver diseases, and hepatocellular carcinoma (HCC). Despite their importance, the functional diversity and regulatory mechanisms of γδT cells remain incompletely understood. Recent advances in high-throughput single-cell sequencing and spatial transcriptomics have revealed significant heterogeneity among γδT cell subsets, particularly Vδ1+ and Vδ2+, which exhibit distinct immunological roles. Vδ1+ T cells are mainly tissue-resident and contribute to tumor immunity and chronic inflammation, while Vδ2+ T cells, predominantly found in peripheral blood, play roles in systemic immune surveillance but may undergo dysfunction in chronic liver diseases. Additionally, γδT17 cells exacerbate inflammation in NAFLD and ALD, whereas IFN-γ-secreting γδT cells contribute to antiviral and antifibrotic responses. These discoveries have laid the foundation for the creation of innovative solutions. γδT cell-based immunotherapeutic approaches, such as adoptive cell transfer, immune checkpoint inhibition, and strategies targeting metabolic pathways. Future research should focus on harnessing γδT cells' therapeutic potential through targeted interventions, offering promising prospects for precision immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Huaxiu Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Yangzhi Ou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ 08901-8554, USA
| |
Collapse
|
3
|
Thirumalaisamy R, Vasuki S, Sindhu SM, Mothilal TM, Srimathi V, Poornima B, Bhuvaneswari M, Hariharan M. FDA-Approved Chimeric Antigen Receptor (CAR)-T Cell Therapy for Different Cancers-A Recent Perspective. Mol Biotechnol 2025; 67:469-483. [PMID: 38459361 DOI: 10.1007/s12033-024-01090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 03/10/2024]
Abstract
Cancer is one of the most prevalent diseases in the world, and their rate of occurence has been increased in recent decades. Current review article, summarizes the novel treatment options Chimeric Antigen Receptor-T (CAR-T) cell therapy for various cancers constitute a major health and development challenge, impacting every aspect of sustainable development quoted by goal 3 good health and well-being of UN sustainable goals. WHO estimates that 70% of cancer deaths occur in low- and middle- income countries (LMICs) by 2030, LMICs are expected to bear the brunt of the expected 24.1 million new cancer cases per year. This current review article focuses and discussed about CAR-T cell therapy for various cancers against most prevalent non-communicable disease cancer disease stipulated by WHO and UN sustainable goals. Three literature databases Google scholar, Science Direct, PubMed was utilized to search and collect CAR-T cell treatment options for different cancers published articles sources in between January 2000 and December 2023. There were a total of 18,700 papers found, with 48 of them being found to be eligible focusing various cancer treatment by CAR-T cells utilized for the study. Based on the information gathered, CAR-T cell therapy treating different cancers and their merit and its advantages in heal and improve certain cancers was also discussed in this review article with their detailed molecular mechanisms. This article also gives an insight to utilize CAR-T cell treatment protocols for rejuvenating cancer patient from such ruthless cancer disease condition thereby improving life span of cancer patients and eradication of disease in some cases.
Collapse
Affiliation(s)
- R Thirumalaisamy
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India.
| | - S Vasuki
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - S M Sindhu
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
- Department of Biotechnology, PSGR Krishnammal College for Women (Autonomous), Coimbatore (Dt.), Tamil Nadu, 641004, India
| | - T M Mothilal
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - V Srimathi
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - B Poornima
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - M Bhuvaneswari
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - Mohan Hariharan
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, 602105, India
| |
Collapse
|
4
|
Das S, Pattnaik G, Pattanaik S, Jena BR, Satapathy BS, Pradhan A. Envisioning Clinical Management of Breast Cancer: a Comprehensive Review. Curr Drug Discov Technol 2025; 22:e290424229495. [PMID: 38685777 DOI: 10.2174/0115701638300812240417055802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Background: Coming to the edge of disease manufacturing in the twenty-- first-century, breast cancer occupies a terrifying scenario in the globe, especially in adult women. Its curiosity endeavours remarkable advances made during the past decennaries for cancer treatment and diagnosis. OBJECTIVE It accounts for the fifth leading cause of transience, killing approximately 570,000 people per annum. To reduce the prognosis of clinical oncological development with the application of a new chemical entity, some of the critical challenges, like active pharmaceutical ingredients with high chemical resistance, extreme side effects, and high treatment costs are some of the limitations in the curbing aspects of breast melanoma. METHODS In cancer research, hence, the development of drugs that are safe, efficient, and cost-effective remains a 'Holy Grail' that may be considered as a boon to target the malignant tissues with novel therapeutics devices. RESULTS Through the findings on overcoming the drawbacks of traditional methods, researchers have given special attention to cancer-preventive and theranostic approaches based on some novel drug delivery systems. CONCLUSION The present study forecasts the wide-ranging modern applications, and on developing some novel liposomal drug delivery therapy against breast cancer.
Collapse
Affiliation(s)
- Shubhashree Das
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| | - Sovan Pattanaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Jatani, 752050, Odisha, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Jatani, 752050, Odisha, India
| | - Ayushi Pradhan
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| |
Collapse
|
5
|
Lim W, Iyer N. A GD (Gamma-Delta) type of cancel culture. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100740. [PMID: 39717204 PMCID: PMC11664092 DOI: 10.1016/j.iotech.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
γδ T cells represent an 'unconventional' class of CD3+ lymphocytes with unique phenotypical and functional attributes that distinguishes them from their αβ T-cell receptor-expressing counterparts. Studies investigating the roles of γδ T cells in cancer have shown that these cells are indispensable for effective tumor control and their presence within the tumor may be of prognostic significance. Currently, there is significant interest in harnessing γδ T cells for cancer treatment, and research efforts have focused on the development of γδ T-cell-based strategies that are efficacious against cancer. Several therapeutic approaches using γδ T cells have been described, premised on the expansion of γδ T cells or γδ chimeric antigen receptor T therapy. The potential for broad, unbiased and 'off-the-shelf' applicability in cancer treatment, drives ongoing and future research and methodologies by which γδ T cells can be exploited for therapeutic use. In this review, we will briefly outline the characteristics of γδ T cells and describe how these work within and promote proper functioning of the cancer-immunity cycle. Additionally, we will introduce strategies that are less commonly described and may potentially be more efficacious than other types of therapy. Our discussion will expand upon presently known applications and even highlight the versatility of this immune subset as cancer therapeutics. γδ T-cell-based treatment is an emerging strategy and should be considered for cancelling cancer.
Collapse
Affiliation(s)
- W.K. Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | - N.G. Iyer
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Lv R, Guo Y, Liu W, Dong G, Liu X, Li C, Ren Y, Zhang Z, Neo SY, Mao W, Wu J. Revolutionizing cancer treatment: the emerging potential and potential challenges of in vivo self-processed CAR cell therapy. Theranostics 2024; 14:7424-7447. [PMID: 39659573 PMCID: PMC11626932 DOI: 10.7150/thno.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) cell immunotherapies, including CAR-T, CAR-Macrophages, CAR-Natural Killer, CAR-γδ T, etc., have demonstrated significant advancements in the treatment of both hematologic malignancies and solid tumors. Despite the notable successes of traditional CAR cell manufacturing, its application remains constrained by the complicated production process and expensive costs. Consequently, efforts are focused on streamlining CAR cell production to enhance efficacy and accessibility. Among numerous proposed strategies, direct in vivo generation of CAR cells represents the most substantial technical challenge, yet holding great promise for achieving clinical efficacy. Herein, we outlined the current state-of-the-art in vivo CAR therapy, including CAR technology development, transfection vectors, and influence factors of construction of CAR in vivo. We also reviewed the types and characteristics of different delivery systems and summarized the advantages of in vivo CAR cell therapy, such as rapid preparation and cost-effectiveness. Finally, we discussed the limitations, including technical issues, challenges in target and signal design, and cell-related constraints. Meanwhile, strategies have correspondingly been proposed to advance the development of CAR cell therapy, in order to open the new horizons on cancer treatment.
Collapse
Affiliation(s)
- Ruijie Lv
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanting Guo
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Guangjian Dong
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiangyin Liu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Caihui Li
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yi Ren
- Department of Clinical Pharmacy, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261042, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117, China
| | - Shi-Yong Neo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
7
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
8
|
Patra S, Ghosal S, Shand H, Mondal R, Rath A, Kumar Jana S, Ghorai S. Function of gamma delta (γδ) T cell in cancer with special emphasis on cervical cancer. Hum Immunol 2023; 84:110724. [PMID: 37932183 DOI: 10.1016/j.humimm.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Cervical cancer is the second-most prevalent gynecologic cancer in India. It is typically detected in women between the ages of 35 and 44. Cervical cancer is mainly associated with the human papillomavirus (HPV). The report shows that 70 % of cervical cancer is caused by HPV 16 and 18. There are few therapeutic options and vaccines available for cervical cancer treatment and γδ T cell therapy is one of them. This therapy can kill various types of cancers, including cervical cancer. The major γδ T cell subset is the Vγ9Vδ2 T cell, mainly distributed in peripheral blood which recognize non-MHC peptide antigens and can eliminate MHC-downregulated cancer. Moreover, γδ T cells can express different types of receptors that bind to the molecules of stressed cells, often produced on cancerous cells but absent from healthy tissue. γδ T cells possess both direct and indirect cytotoxic capabilities against malignancies and show potential antitumoral responses. However, γδ T cells also encourage the progression of cancer. Cancer immunotherapy using γδ T cells will be a potential cancer treatment, as well as cervical cancer. This review focused on the γδ T cell and its function in cancer, with special emphasis on cervical cancer. It also focused on the ligand recognition site of γδ T cells, galectin-mediated therapy and pamidronate-treated therapy for cervical cancer. Instead of the great potential of γδ T cell for the eradication of cervical cancer, no comprehensive in-depth review is available to date, so there is a need to jot down the various roles and modes of action and different applications of γδ T cells for cancer research, which we believe will be a handy tool for the researchers and the readers.
Collapse
Affiliation(s)
- Soumendu Patra
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Sayan Ghosal
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Harshita Shand
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Ankita Rath
- Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Yupia, Arunachal Pradesh 791112, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India.
| |
Collapse
|
9
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
10
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
11
|
Becker SA, Petrich BG, Yu B, Knight KA, Brown HC, Raikar SS, Doering CB, Spencer HT. Enhancing the effectiveness of γδ T cells by mRNA transfection of chimeric antigen receptors or bispecific T cell engagers. Mol Ther Oncolytics 2023; 29:145-157. [PMID: 37387794 PMCID: PMC10300408 DOI: 10.1016/j.omto.2023.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Adoptive cell therapy (ACT) utilizing γδ T cells is becoming a promising option for the treatment of cancer, because it offers an off-the-shelf allogeneic product that is safe, potent, and clinically effective. Approaches to engineer or enhance immune-competent cells for ACT, like expression of chimeric antigen receptors (CARs) or combination treatments with bispecific T cell engagers, have improved the specificity and cytotoxic potential of ACTs and have shown great promise in preclinical and clinical settings. Here, we test whether electroporation of γδ T cells with CAR or secreted bispecific T cell engager (sBite) mRNA is an effective approach to improve the cytotoxicity of γδ T cells. Using a CD19-specific CAR, approximately 60% of γδ T cells are modified after mRNA electroporation and these cells show potent anticancer activity in vitro and in vivo against two CD19-positive cancer cell lines. In addition, expression and secretion of a CD19 sBite enhances γδ T cell cytotoxicity, both in vitro and in vivo, and promotes killing of target cells by modified and unmodified γδ T cells. Taken together, we show that transient transfection of γδ T cells with CAR or sBite mRNA by electroporation can be an effective treatment platform as a cancer therapeutic.
Collapse
Affiliation(s)
- Scott A. Becker
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | | | - Bing Yu
- Expression Therapeutics, Inc, Tucker, GA, USA
| | - Kristopher A. Knight
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | | | - Sunil S. Raikar
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher B. Doering
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - H. Trent Spencer
- Molecular and System Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
12
|
CAR-T-Derived Extracellular Vesicles: A Promising Development of CAR-T Anti-Tumor Therapy. Cancers (Basel) 2023; 15:cancers15041052. [PMID: 36831396 PMCID: PMC9954490 DOI: 10.3390/cancers15041052] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors.
Collapse
|
13
|
Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin Chim Acta 2023; 538:70-86. [PMID: 36375526 DOI: 10.1016/j.cca.2022.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, a benign gynecologic and chronic inflammatory disease, is defined by the presence of endometrial tissue outside the uterus characterized mainly by pelvic pain and infertility. Because endometriosis affects approximately 10% of females, it represents a significant socioeconomic burden worldwide having tremendous impact on daily quality of life. Accurate and prompt diagnosis is crucial for the management of this debilitating disorder. Unfortunately, diagnosis is typically delayed to lack of specific symptoms and readily accessible biomarkers. Although histopathologic examination remains the current gold standard, this approach is highly invasive and not applicable for early screening. Recent work has focused on the identification of reliable biomarkers including immunologic, ie, immune cells, antibodies and cytokines, as well as genetic and biochemical markers, ie, microRNAs, lncRNAs, circulating and mitochondrial nucleic acids, along with some hormones, glycoproteins and signaling molecules. Confirmatory research studies are, however, needed to more fully establish these markers in the diagnosis, progression and staging of these endometrial lesions.
Collapse
|
14
|
Naeem P, Baumgartner A, Ghaderi N, Sefat F, Alhawamdeh M, Heidari S, Shahzad F, Swaminathan K, Akhbari P, Isreb M, Anderson D, Wright A, Najafzadeh M. Anticarcinogenic impact of extracellular vesicles (exosomes) from cord blood stem cells in malignant melanoma: A potential biological treatment. J Cell Mol Med 2022; 27:222-231. [PMID: 36545841 PMCID: PMC9843520 DOI: 10.1111/jcmm.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 μg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy.
Collapse
Affiliation(s)
- Parisa Naeem
- School of Life SciencesUniversity of BradfordBradfordUK
| | - Adi Baumgartner
- School of Science, Technology and Health, BiosciencesYork St John UniversityYorkUK
| | - Nader Ghaderi
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, Faculty of Engineering and InformaticsUniversity of BradfordBradfordUK
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesMutah UniversityAlkarakJordan
| | - Saeed Heidari
- Cell Therapy and Tissue engineering Department, Faculty of Medical SciencesShahid Beheshti UniversityTehranIran
| | | | | | - Pouria Akhbari
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Mohammad Isreb
- School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | | | - Andrew Wright
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | | |
Collapse
|
15
|
Wang L, Chen X, Zhang L, Niu B, Li L, Sun Y, Yuan X. CAR cell design strategies in solid tumors. Int Immunopharmacol 2022; 113:109345. [DOI: 10.1016/j.intimp.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
16
|
Wang J, Guo N, Hou W, Qin H. Coating bacteria for anti-tumor therapy. Front Bioeng Biotechnol 2022; 10:1020020. [PMID: 36185433 PMCID: PMC9520470 DOI: 10.3389/fbioe.2022.1020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Guo
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Weiliang Hou
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| |
Collapse
|
17
|
Ahmadi M, Hassanpour M, Rezaie J. Engineered extracellular vesicles: A novel platform for cancer combination therapy and cancer immunotherapy. Life Sci 2022; 308:120935. [PMID: 36075472 DOI: 10.1016/j.lfs.2022.120935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs), phospholipid membrane-bound vesicles, produced by most cells, contribute to cell-cell communication. They transfer several proteins, lipids, and nucleic acids between cells both locally and systemically. Owing to the biocompatibility and immune activity of EVs, therapeutic approaches using these vesicles as drug delivery systems are being developed. Different methods are used to design more effective engineered EVs, which can serve as smart tools in cancer therapy and immunotherapy. Recent progress in the field of targeted-cancer therapy has led to the gradual use of engineered EVs in combinational therapy to combat heterogeneous tumor cells and multifaceted tumor microenvironments. The high plasticity, loading ability, and genetic manipulation capability of engineered EVs have made them the ideal platforms to realize numerous combinations of cancer therapy approaches. From the combination therapy view, engineered EVs can co-deliver chemotherapy with various therapeutic agents to target tumor cells effectively, further taking part in immunotherapy-related cancer combination therapy. However, a greater number of studies were done in pre-clinical platforms and the clinical translation of these studies needs further scrutiny because some challenges are associated with the application of engineered EVs. Given the many therapeutic potentials of engineered EVs, this review discusses their function in various cancer combination therapy and immunotherapy-related cancer combination therapy. In addition, this review describes the opportunities and challenges associated with the clinical application of engineered EVs.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
18
|
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Rev Med Virol 2022; 32:e2325. [PMID: 35037732 DOI: 10.1002/rmv.2325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has made improvements due to the advances in chimaeric antigen receptor (CAR) T cell development, offering a promising treatment option for patients who have failed to respond to traditional treatments. In light of the successful use of adoptive CAR T cell therapy for cancer, researchers have been inspired to develop CARs for the treatment of other diseases beyond cancers such as viral infectious diseases. Nonetheless, various obstacles limit the efficacy of CAR T cell therapies and prevent their widespread usage. Severe toxicities, poor in vivo persistence, antigen escape, and heterogeneity, as well as off-target effect, are key challenges that must all be addressed to broaden the application of CAR T cells to a wider spectrum of diseases. The key advances in CAR T cell treatment for cancer and viral infections are reviewed in this article. We will also discuss revolutionary CAR T cell products developed to improve and enhance the therapeutic advantages of these treatments.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, The Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
19
|
Saura-Esteller J, de Jong M, King LA, Ensing E, Winograd B, de Gruijl TD, Parren PWHI, van der Vliet HJ. Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future. Front Immunol 2022; 13:915837. [PMID: 35784326 PMCID: PMC9245381 DOI: 10.3389/fimmu.2022.915837] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors (i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3+ T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
Collapse
Affiliation(s)
- José Saura-Esteller
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Milon de Jong
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lisa A. King
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul W. H. I. Parren
- LAVA Therapeutics, Utrecht, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans J. van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- LAVA Therapeutics, Utrecht, Netherlands
- *Correspondence: Hans J. van der Vliet, ;
| |
Collapse
|
20
|
McGraw JM, Witherden DA. γδ T cell costimulatory ligands in antitumor immunity. EXPLORATION OF IMMUNOLOGY 2022; 2:79-97. [PMID: 35480230 PMCID: PMC9041367 DOI: 10.37349/ei.2022.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph M. McGraw
- 1Department of Biology, Calibr at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deborah A. Witherden
- 2Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go? Eur J Pharmacol 2022; 919:174803. [DOI: 10.1016/j.ejphar.2022.174803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
|
22
|
Saleh OM, Albakri KA, Alabdallat YJ, Dajani MH, El Gazzar WB. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers 2021; 27:22-34. [PMID: 34882051 DOI: 10.1080/1354750x.2021.2016973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE A new breakthrough development in cancer treatment is chimeric antigen receptor (CAR)-T cell therapy. In this review, we focussed on its efficacy & safety in prostate cancer, obstacles impeding its clinical use, and some strategies trying to overcome them. METHODS Searching for relevant articles was done using the PubMed and Cochrane Library databases. Studies had to be published in full-text in English in order to be considered. RESULTS Many factors can limit optimal CAR-T cell outcomes, including the hostile Prostate microenvironment, age, comorbidities, and tumour grade. The adverse effects of the therapy, particularly the cytokine release syndrome, are a major source of worry after treatment administration. Attempts to alter gamma/delta T-cells and NK cells with CAR, on the other hand, have demonstrated higher effectiveness and safety than conventional CAR-T cells. CONCLUSION To improve the use of immunotherapies, a greater understanding of the prostate cancer microenvironment is required. Concerning toxicity, more research is needed to find the most specific and highly expressed prostate antigens. Furthermore, discovering predictive biomarkers for toxicities, as well as choosing the correct patient for therapy, might decrease immune-related side effects and achieve a greater response.
Collapse
Affiliation(s)
| | | | | | - Majd Hamdi Dajani
- Medical Student, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Basic medical sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan.,Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Benha University, Benha city, Egypt
| |
Collapse
|
23
|
High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett’s Esophagus. Microorganisms 2021; 9:microorganisms9122432. [PMID: 34946037 PMCID: PMC8708753 DOI: 10.3390/microorganisms9122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett’s esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.
Collapse
|
24
|
Curio S, Jonsson G, Marinović S. A summary of current NKG2D-based CAR clinical trials. IMMUNOTHERAPY ADVANCES 2021; 1:ltab018. [PMID: 34604863 PMCID: PMC8480431 DOI: 10.1093/immadv/ltab018] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapies have significantly improved patient survival and treatment options in recent years. Nonetheless, the success of immunotherapy is limited to certain cancer types and specific subgroups of patients, making the development of new therapeutic approaches a topic of ongoing research. Chimeric antigen receptor (CAR) cells are engineered immune cells that are programmed to specifically eliminate cancer cells. Ideally, a CAR recognizes antigens that are restricted to tumor cells to avoid off-target effects. NKG2D is an activating immunoreceptor and an important player in anti-tumor immunity due to its ability to recognize tumor cells and initiate an anti-tumor immune response. Ligands for NKG2D are expressed on malignant or stressed cells and typically absent from healthy tissue, making it a promising CAR candidate. Here, we provide a summary of past and ongoing NKG2D-based CAR clinical trials and comment on potential pitfalls.
Collapse
Affiliation(s)
- Sophie Curio
- Department of Life Sciences, Imperial College London, London, UK.,The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Sonja Marinović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
25
|
Maleki Dana P, Jahanshahi M, Badehnoosh B, Shafabakhsh R, Asemi Z, Hallajzadeh J. Inhibitory effects of berberine on ovarian cancer: Beyond apoptosis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
28
|
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Curr Mol Med 2021; 21:211-220. [PMID: 33109060 DOI: 10.2174/1566524020999200817113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Rezvan Moniri
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
29
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Amiri A, Mahjoubin-Tehran M, Asemi Z, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei HR, Mirzaei H. Role of Resveratrol in Modulating microRNAs in Human Diseases: From Cancer to Inflammatory Disorder. Curr Med Chem 2021; 28:360-376. [PMID: 31830882 DOI: 10.2174/0929867326666191212102407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/09/2022]
Abstract
Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.
Collapse
Affiliation(s)
- Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Engineering advanced logic and distributed computing in human CAR immune cells. Nat Commun 2021; 12:792. [PMID: 33542232 PMCID: PMC7862674 DOI: 10.1038/s41467-021-21078-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
The immune system is a sophisticated network of different cell types performing complex biocomputation at single-cell and consortium levels. The ability to reprogram such an interconnected multicellular system holds enormous promise in treating various diseases, as exemplified by the use of chimeric antigen receptor (CAR) T cells as cancer therapy. However, most CAR designs lack computation features and cannot reprogram multiple immune cell types in a coordinated manner. Here, leveraging our split, universal, and programmable (SUPRA) CAR system, we develop an inhibitory feature, achieving a three-input logic, and demonstrate that this programmable system is functional in diverse adaptive and innate immune cells. We also create an inducible multi-cellular NIMPLY circuit, kill switch, and a synthetic intercellular communication channel. Our work highlights that a simple split CAR design can generate diverse and complex phenotypes and provide a foundation for engineering an immune cell consortium with user-defined functionalities. Most CAR designs lack control and computation features, limiting the sophistication of the engineered immune response. Here the authors leverage a split CAR design for engineering coordinated immune responses.
Collapse
|
32
|
Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, Shomali N, Chartrand MS, Pathak Y, Jarahian M, Izadi S, Hassanzadeh A, Shirafkan N, Tahmasebi S, Khiavi FM. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther 2021; 12:81. [PMID: 33494834 PMCID: PMC7831265 DOI: 10.1186/s13287-020-02128-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND CARs are simulated receptors containing an extracellular single-chain variable fragment (scFv), a transmembrane domain, as well as an intracellular region of immunoreceptor tyrosine-based activation motifs (ITAMs) in association with a co-stimulatory signal. MAIN BODY Chimeric antigen receptor (CAR) T cells are genetically engineered T cells to express a receptor for the recognition of the particular surface marker that has given rise to advances in the treatment of blood disorders. The CAR T cells obtain supra-physiological properties and conduct as "living drugs" presenting both immediate and steady effects after expression in T cells surface. But, their efficacy in solid tumor treatment has not yet been supported. The pivotal challenges in the field of solid tumor CAR T cell therapy can be summarized in three major parts: recognition, trafficking, and surviving in the tumor. On the other hand, the immunosuppressive tumor microenvironment (TME) interferes with T cell activity in terms of differentiation and exhaustion, and as a result of the combined use of CARs and checkpoint blockade, as well as the suppression of other inhibitor factors in the microenvironment, very promising results were obtained from the reduction of T cell exhaustion. CONCLUSION Nowadays, identifying and defeating the mechanisms associated with CAR T cell dysfunction is crucial to establish CAR T cells that can proliferate and lyse tumor cells severely. In this review, we discuss the CAR signaling and efficacy T in solid tumors and evaluate the most significant barriers in this process and describe the most novel therapeutic methods aiming to the acquirement of the promising therapeutic outcome in non-hematologic malignancies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vladimir A. Safonov
- The Laboratory of Biogeochemistry and Environment, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Kosygina 19 Street, Moscow, Russian Federation 119991
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Markov Alexander
- Tyumen State Medical University, Tyumen Industrial University, Tyumen, Russian Federation
| | - Navid Shomali
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Mostafa Jarahian
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Ali Hassanzadeh
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Naghmeh Shirafkan
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Safa Tahmasebi
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
33
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
34
|
Morandi F, Sabatini F, Podestà M, Airoldi I. Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel) 2021; 9:43. [PMID: 33450862 PMCID: PMC7828327 DOI: 10.3390/vaccines9010043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor with a heterogeneous clinical course, ranging from spontaneous regression to metastatic disease and death, irrespective of intensive chemotherapeutic regimen. On the basis of several parameters, children affected by neuroblastoma are stratified into low, intermediate and high risk. At present, more than 50% of high-risk patients with metastatic spread display an overall poor long-term outcome also complicated by devastating long-term morbidities. Thus, novel and more effective therapies are desperately needed to improve lifespan of high-risk patients. In this regard, adoptive cell therapy holds great promise and several clinical trials are ongoing, demonstrating safety and tolerability, with no toxicities. Starting from the immunological and clinical features of neuroblastoma, we here discuss the immunotherapeutic approaches currently adopted for high-risk patients and different innovative therapeutic strategies currently under investigation. The latter are based on the infusion of natural killer (NK) cells, as support of consolidation therapy in addition to standard treatments, or chimeric antigen receptor (CAR) T cells directed against neuroblastoma associated antigens (e.g., disialoganglioside GD2). Finally, future perspectives of adoptive cell therapies represented by γδ T lymphocyes and CAR NK cells are envisaged.
Collapse
Affiliation(s)
| | | | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Istituto Giannina Gaslini (Istituto di Ricerca e Cura a Carattere Scientifico—IRCCS), Via G. Gaslini 5, 16147 Genova, Italy; (F.M.); (F.S.); (M.P.)
| |
Collapse
|
35
|
Zhao Q, Guo J, Zhao Y, Shen J, Kaboli PJ, Xiang S, Du F, Wu X, Li M, Wan L, Li X, Wen Q, Li J, Zou C, Xiao Z. Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics 2020; 12:2155-2171. [PMID: 33337915 DOI: 10.2217/epi-2020-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.
Collapse
Affiliation(s)
- Qijie Zhao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jinan Guo
- The department of urology, The Second Clinical Medical college of Jinan University (Shenzhen people's Hospital), The First Affiliated Hospital of South University of Science & Technology of China, Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Lin Wan
- Department of Hematology & Oncology, The Children's Hospital of Soochow, Jiangsu, PR China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jing Li
- Department of Oncology & Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| |
Collapse
|
36
|
Andreu-Ballester JC, Galindo-Regal L, Hidalgo-Coloma J, Cuéllar C, García-Ballesteros C, Hurtado C, Uribe N, del Carmen Martín M, Jiménez AI, López-Chuliá F, Llombart-Cussac A. Differences in circulating γδ T cells in patients with primary colon cancer and relation with prognostic factors. PLoS One 2020; 15:e0243545. [PMID: 33326443 PMCID: PMC7743935 DOI: 10.1371/journal.pone.0243545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Downregulation of the T cell system has been proposed as a mechanism to block immunity in colonic cancer (CC). However, little has been studied about circulating αβ and γδ T cells and their immunological status in newly diagnosed patients. The aim of this study was to characterize the αβ and γδ T cell subsets in peripheral blood of patients with CC matched with healthy volunteers. In this prospective case-control study, blood samples were obtained from 96 patients with newly diagnosed treatment-naïve infiltrating colonic adenocarcinoma and 48 healthy volunteers. Pathological report at surgery was obtained from all CC patients. A significant decrease in CD3+ γδ T cells and CD3+CD8+ γδ T cells (p<0.001) were observed in CC patients. Apoptosis was significantly increased in all conventional and both αβ and γδ T cell subsets in patients with CC vs healthy subjects. γδ T cells were decreased in peripheral blood of patients with microscopic infiltration in tissues, history of cancer and synchronous colon cancer (p < 0.05). IFN-γ was significantly reduced in CC patients compared to controls. Cytotoxic effector γδ T cells TEMRA (CD8 and CD56) are the proportionally most abundant T cells in peripheral blood of CC patients. Patients with CC present a deep downregulation in the systemic T-cell immunity. These variations are evident through all tumor stages and suggest that a deficiency in γδ T cell populations could be preventing control of tumor progression. This fact prove the role of immunomodulation on CC carcinogenesis.
Collapse
Affiliation(s)
| | | | - Julia Hidalgo-Coloma
- Department of Medical Oncology, Arnau de Vilanova University Hospital, València, Spain
| | - Carmen Cuéllar
- Faculty of Pharmacy, Department of Microbiology and Parasitology, Complutense University, Madrid, Spain
| | | | - Carolina Hurtado
- Faculty of Pharmacy, Laboratory of Parasitology, University San Pablo CEU, Madrid, Spain
| | - Natalia Uribe
- Department of General and Digestive Surgery, Arnau de Vilanova University Hospital, València, Spain
| | - María del Carmen Martín
- Department of General and Digestive Surgery, Arnau de Vilanova University Hospital, València, Spain
| | - Ana Isabel Jiménez
- Pathology Department, Arnau de Vilanova University Hospital, València, Spain
| | | | | |
Collapse
|
37
|
Sawaisorn P, Atjanasuppat K, Anurathapan U, Chutipongtanate S, Hongeng S. Strategies to Improve Chimeric Antigen Receptor Therapies for Neuroblastoma. Vaccines (Basel) 2020; 8:vaccines8040753. [PMID: 33322408 PMCID: PMC7768386 DOI: 10.3390/vaccines8040753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptors (CARs) are among the curative immunotherapeutic approaches that exploit the antigen specificity and cytotoxicity function of potent immune cells against cancers. Neuroblastomas, the most common extracranial pediatric solid tumors with diverse characteristics, could be a promising candidate for using CAR therapies. Several methods harness CAR-modified cells in neuroblastoma to increase therapeutic efficiency, although the assessment has been less successful. Regarding the improvement of CARs, various trials have been launched to overcome insufficient capacity. However, the reasons behind the inadequate response against neuroblastoma of CAR-modified cells are still not well understood. It is essential to update the present state of comprehension of CARs to improve the efficiency of CAR therapies. This review summarizes the crucial features of CARs and their design for neuroblastoma, discusses challenges that impact the outcomes of the immunotherapeutic competence, and focuses on devising strategies currently being investigated to improve the efficacy of CARs for neuroblastoma immunotherapy.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Korakot Atjanasuppat
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Correspondence: (S.C.); (S.H.)
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
- Correspondence: (S.C.); (S.H.)
| |
Collapse
|
38
|
Tu H, Li J, Lin L, Wang L. COL11A1 Was Involved in Cell Proliferation, Apoptosis and Migration in Non-Small Cell Lung Cancer Cells. J INVEST SURG 2020; 34:664-669. [PMID: 33148075 DOI: 10.1080/08941939.2019.1672839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Type XI collagen (COL11A1) was reported to associate with malignancy in several cancer types, whereas its role in lung cancer is not fully understood. Therefore, the present study aimed to explore the expression level and biological role of COL11A1 in lung cancer cells. METHODS Gene Expression Omnibus (GEO) database containing 6 lung cancer tissues and normal lung tissues was used to identify potential aberrantly expressed genes. The expression of COL11A1, apoptosis related genes, cell cycle related genes and migration associated genes at the protein level were evaluated by western blot and at the mRNA level was determined by real-time PCR in lung cancer cell lines. Furthermore, the expression of COL11A1 was silenced by siRNA, and cell viability was detected by Cell counting kit-8 (CCK-8) assay. Moreover, cell apoptosis and cell cycle were determined by flow cytometry. In addition, transwell and wound-healing assay were applied to determine cell migration ability. RESULTS GEO analysis suggests that COL11A1 was highly expressed in patients with lung cancer, which was consistent with the results in lung cancer cell lines. COL11A1 knockdown in lung cancer cells significantly lowered the colony formation ability, augmented cell apoptosis rate and elevated the expression of cleaved caspase-3, cleaved caspase-9, Bax, P21 and the expression of Bcl-2, CyclinD1, CDK2 and CDK-4 was significantly downregulated (all p < 0.05). Moreover, post-COL11A1 knockdown, the cell wound-healing and migration ability was significantly impaired, which also supported by the upregulation of E-Cadherin and downregulation of N-Cadherin, Vimentin and Snail (all p < 0.05). Furthermore, we also found that COL11A1 knockdown decreased the expression of p-AKT, p-PI3K and p-ERK. CONCLUSION The present study revealed that COL11A1 may contribute to the malignancy and involve in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Hongbin Tu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2020; 37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Cancer has been one of the most significant causes of mortality, worldwide. Cancer immunotherapy has recently emerged as a competent, cancer-fighting clinical strategy. Nevertheless, due to the difficulty of such treatments, costs, and off-target adverse effects, the implementation of cancer immunotherapy described by the antigen-presenting cell (APC) vaccine and chimeric antigen receptor T cell therapy ex vivo in large clinical trials have been limited. Nowadays, the nanoparticles theranostic system as a promising target-based modality provides new opportunities to improve cancer immunotherapy difficulties and reduce their adverse effects. Meanwhile, the appropriate engineering of nanoparticles taking into consideration nanoparticle characteristics, such as, size, shape, and surface features, as well as the use of these physicochemical properties for suitable biological interactions, provides new possibilities for the application of nanoparticles in cancer immunotherapy. In this review article, we focus on the latest state-of-the-art nanoparticle-based antigen/adjuvant delivery vehicle strategies to professional APCs and engineering specific T lymphocyte required for improving the efficiency of tumor-specific immunotherapy.
Collapse
Affiliation(s)
- Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Helal Iran Pharmaceutical and Clinical Complex, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
41
|
Ye T, Ye Z. LncRNA NORAD as a Novel Predictor of Lymph Node Metastasis and Prognosis in Solid Tumors: A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2020; 19:1533033820963586. [PMID: 33016254 PMCID: PMC7543145 DOI: 10.1177/1533033820963586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Non-coding RNA-activated by DNA damage (NORAD), a novel identified lncRNA, was found to be aberrantly expressed in various types of cancer. This meta-analysis was performed to evaluate the value of lncRNA NORAD as a prognostic biomarker in human cancers. Methods: We searched PubMed, Web of Science, PMC, and Embase databases thoroughly for eligible literatures. Studies which explored the relationship of lncRNA NORAD expression with clinical outcomes in human cancers were included in our meta-analysis. Review Manager version 5.3 and Stata SE 12.0 were used to perform the data analyses. Results: Our meta-analysis results indicated that cancer patients with high lncRNA NORAD expression tended to have unfavorable overall survival (OS) (HR = 1.67; 95% CI, 1.44-1.95; P < 0.00001). Moreover, elevated lncRNA NORAD expression showed a significant relationship with poor tumor grade (OR = 1.61; 95% CI, 1.01-2.56; P = 0.05) and more lymph node metastasis (LNM) (OR = 2.66; 95% CI, 1.60-4.43; P = 0.0002). Conclusions: LncRNA NORAD could serve as a valuable biomarker to predict poor prognosis and LNM in various human tumors.
Collapse
Affiliation(s)
- Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
42
|
Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers (Basel) 2020; 12:cancers12092360. [PMID: 32825533 PMCID: PMC7564591 DOI: 10.3390/cancers12092360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990’s, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.
Collapse
|
43
|
Morandi F, Yazdanifar M, Cocco C, Bertaina A, Airoldi I. Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδ T and NK Cells. Cells 2020; 9:E1757. [PMID: 32707982 PMCID: PMC7464083 DOI: 10.3390/cells9081757] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Most studies on genetic engineering technologies for cancer immunotherapy based on allogeneic donors have focused on adaptive immunity. However, the main limitation of such approaches is that they can lead to severe graft-versus-host disease (GvHD). An alternative approach would bolster innate immunity by relying on the natural tropism of some subsets of the innate immune system, such as γδ T and natural killer (NK) cells, for the tumor microenvironment and their ability to kill in a major histocompatibility complex (MHC)-independent manner. γδ T and NK cells have the unique ability to bridge innate and adaptive immunity while responding to a broad range of tumors. Considering these properties, γδ T and NK cells represent ideal sources for developing allogeneic cell therapies. Recently, significant efforts have been made to exploit the intrinsic anti-tumor capacity of these cells for treating hematologic and solid malignancies using genetic engineering approaches such as chimeric antigen receptor (CAR) and T cell receptor (TCR). Here, we review over 30 studies on these two approaches that use γδ T and NK cells in adoptive cell therapy (ACT) for treating cancer. Based on those studies, we propose several promising strategies to optimize the clinical translation of these approaches.
Collapse
Affiliation(s)
- Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; (F.M.); (C.C.)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Claudia Cocco
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; (F.M.); (C.C.)
| | - Alice Bertaina
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; (F.M.); (C.C.)
| |
Collapse
|
44
|
Duz MB, Karatas OF. Expression profile of stem cell markers and ABC transporters in 5-fluorouracil resistant Hep-2 cells. Mol Biol Rep 2020; 47:5431-5438. [PMID: 32627138 DOI: 10.1007/s11033-020-05633-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Resistance of laryngeal squamous cell carcinoma cells to traditional therapeutic regimens still remains to be a major reason for therapeutic failure in patients. In this study, we aimed at investigating the expression profiles of ATP-binding cassette (ABC) transporters and stem cell markers in 5-fluorouracil (5-FU) resistant laryngeal Hep-2 cells. We treated parental Hep-2 cells, with stepwise increased doses of 5-FU for almost 1 year to develop 5-FU resistant sub-lines with resistance against varying levels of 5-FU concentrations (4 sub-lines resistant to 1, 2, 4, and eightfold of 5-FU). Then, we measured the expression levels of 10 genes from ABC transporters family and 4 stem cell associated markers using quantitative reverse transcription polymerase chain reaction (qRT-PCR) to find out a potential relationship between these markers and chemoresistance. We found that stemness-associated markers had elevated expressions from the beginning of 5-FU resistance acquisition. Their expressions elevated stepwise while parental Hep-2 cells got resistance to higher doses of 5-FU. Expressions of tested ABC transporters (ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10 and ABCF2, and ABCG2) were also deregulated in 5-FU resistant Hep-2 cells. Although their expressions remained unaltered at the beginning of acquisition of resistance, expressions of ABC transporters except from ABCB6 increased significantly when cells became resistant to higher doses of 5-FU. Our results suggest that enrichment of cells with stemness characteristics and upregulation of ABC transporters might be amongst the crucial contributors of chemoresistance in laryngeal cancer cells.
Collapse
Affiliation(s)
- Mehmet Bugrahan Duz
- Department of Medical Genetics, Haseki Training and Research Hospital, Health Science University, Istanbul, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey. .,High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
45
|
Wang WH, Shen CY, Chien YC, Chang WS, Tsai CW, Lin YH, Hwang JJ. Validation of Enhancing Effects of Curcumin on Radiotherapy with F98/ FGT Glioblastoma-Bearing Rat Model. Int J Mol Sci 2020; 21:ijms21124385. [PMID: 32575632 PMCID: PMC7352749 DOI: 10.3390/ijms21124385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma, the most common and aggressive brain tumor with low survival rate, is difficult to be cured by neurosurgery or radiotherapy. Mounting evidence has reported the anti-inflammatory and anticancer effects of curcumin on several types of cancer in preclinical studies and clinical trials. To our knowledge, there is no platform or system that could be used to effectively and real-timely evaluate the therapeutic efficacy of curcumin for glioblastoma multiforme (GBM). In this study, we constructed a lentivirus vector with triple-reporter genes (Fluc/GFP/tk) and transduced into rat F98 glioblastoma cells to establish an orthotopic F98/FGT glioma-bearing rat model. In the model, the therapeutic efficacies for curcumin alone, radiation alone, and their combination were evaluated via noninvasive bioluminescent imaging and overall survival measurements. At the cell level, curcumin is capable of causing a G2/M cell cycle arrest and sensitizing the F98 cells to radiation. In animal model, curcumin synergistically enhances the effects of radiotherapy on suppressing the growth of both transplanted glioma cells and in situ brain tumors, and extending the overall survival periods longer than those of curcumin alone and radiation alone treatments. In conclusion, we have demonstrated that curcumin may serve as a novel radiosensitizer to combine with radiotherapy using the triple-reporter F98/FGT animal model for effective and simultaneous evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chao-Yu Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; or
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Chun Chien
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Yi-Hsien Lin
- Division of Radiotherapy, Cheng Hsin General Hospital, No. 45, Cheng Hsin St, Beitou, Taipei 112, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo North Road, Taichung 402, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| |
Collapse
|
46
|
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17:600-612. [PMID: 32451454 DOI: 10.1038/s41423-020-0470-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
T cells react to foreign or self-antigens through T cell receptor (TCR) signaling. Several decades of research have delineated the mechanism of TCR signal transduction and its impact on T cell performance. This knowledge provides the foundation for chimeric antigen receptor T cell (CAR-T cell) technology, by which T cells are redirected in a major histocompatibility complex-unrestricted manner. TCR and CAR signaling plays a critical role in determining the T cell state, including exhaustion and memory. Given its artificial nature, CARs might affect or rewire signaling differently than TCRs. A better understanding of CAR signal transduction would greatly facilitate improvements to CAR-T cell technology and advance its usefulness in clinical practice. Herein, we systematically review the knowns and unknowns of TCR and CAR signaling, from the contact of receptors and antigens, proximal signaling, immunological synapse formation, and late signaling outcomes. Signaling through different T cell subtypes and how signaling is translated into practice are also discussed.
Collapse
Affiliation(s)
- Ling Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
47
|
Alagoz M, Kherad N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 2020; 46:521-534. [PMID: 32467995 PMCID: PMC7307811 DOI: 10.3892/ijmm.2020.4609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing techniques are considered to be one of the most challenging yet efficient tools for assisting therapeutic approaches. Several studies have focused on the development of novel methods to improve the efficiency of gene editing, as well as minimise their off-target effects. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas9) is a tool that has revolutionised genome editing technologies. New applications of CRISPR/Cas9 in a broad range of diseases have demonstrated its efficiency and have been used in ex vivo models of somatic and pluripotent stem cells, as well as in in vivo animal models, and may eventually be used to correct defective genes. The focus of the present review was the recent applications of CRISPR/Cas9 and its contribution to the treatment of challenging human diseases, such as various types of cancer, neurodegenerative diseases and a broad spectrum of other disorders. CRISPR technology is a novel method for disease treatment, enhancing the effectiveness of drugs and improving the development of personalised medicine.
Collapse
Affiliation(s)
- Meryem Alagoz
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| | - Nasim Kherad
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| |
Collapse
|
48
|
Sievers NM, Dörrie J, Schaft N. CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020; 21:E3525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.
Collapse
Affiliation(s)
- Nico M. Sievers
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
49
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
50
|
Cancer stem cells and oral cancer: insights into molecular mechanisms and therapeutic approaches. Cancer Cell Int 2020; 20:113. [PMID: 32280305 PMCID: PMC7137421 DOI: 10.1186/s12935-020-01192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a little population of cancer cells, which have features as the same as the cells normal stem cells. There is enough knowledge of the CSCs responsibility for metastasis, medicine resistance, and cancer outbreak. Therefore, CSCs control possibly provides an efficient treatment intervention inhibiting tumor growth and invasion. In spite of the significance of targeting CSCs in treating cancer, few study comprehensively explored the nature of oral CSCs. It has been showed that oral CSCs are able to contribute to oral cancer progression though activation/inhibition a sequences of cellular and molecular pathways (microRNA network, histone modifications and calcium regulation). Hence, more understanding about the properties of oral cancers and their behaviors will help us to develop new therapeutic platforms. Head and neck CSCs remain a viable and intriguing option for targeted therapy. Multiple investigations suggested the major contribution of the CSCs to the metastasis, tumorigenesis, and resistance to the new therapeutic regimes. Therefore, experts in the field are examining the encouraging targeted therapeutic choices. In spite of the advancements, there are not enough information in this area and thus a magic bullet for targeting and eliminating the CSCs deviated us. Hence, additional investigations on the combined therapies against the head and neck CSCs could offer considerable achievements. The present research is a review of the recent information on oral CSCs, and focused on current advancements in new signaling pathways contributed to their stemness regulation. Moreover, we highlighted various therapeutic approaches against oral CSCs.
Collapse
|