1
|
Górka J, Miękus K. Molecular landscape of clear cell renal cell carcinoma: targeting the Wnt/β-catenin signaling pathway. Discov Oncol 2025; 16:524. [PMID: 40227498 PMCID: PMC11996749 DOI: 10.1007/s12672-025-02228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and is characterized by a complex molecular landscape driven by genetic and epigenetic alternations. Among the crucial signaling pathways implicated in ccRCC, the Wnt/β-catenin pathway plays a significant role in tumor progression and prognosis. This review delves into the molecular basis of ccRCC, highlighting the genetic and epigenetic modifications that contribute to its pathogenesis. We explore the significance of the Wnt/β-catenin pathway, focusing on its role in disease development, particularly the nuclear transport of β-catenin and its activation and downstream effects. Furthermore, we examine the role of antagonist genes in regulating this pathway within the context of ccRCC, providing insights into potential therapeutic targets. Dysregulation of this pathway, which is characterized by abnormal activation and nuclear translocation of β-catenin, plays a significant role in promoting tumor growth and metastasis. We explore the intricate molecular aspects of ccRCC, with a particular emphasis on this topic, underscoring the role of the pathway and emphasizing the importance and relevance of antagonist genes. Understanding the intricate interplay between these molecular mechanisms is crucial for developing innovative strategies to improve ccRCC treatment and patient outcomes.
Collapse
Affiliation(s)
- Judyta Górka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Miękus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
2
|
Zhu H, Xiao C, Chen J, Guo B, Wang W, Tang Z, Cao Y, Zhan L, Zhang JH. New insights into the structure domain and function of NLR family CARD domain containing 5. Cell Commun Signal 2025; 23:42. [PMID: 39849460 PMCID: PMC11755879 DOI: 10.1186/s12964-024-02012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
NOD-like receptor family CARD domain-containing 5 (NLRC5) is a major transcriptional coactivator of MHC class I genes. NLRC5 is the largest member of the NLR family and contains three domains: an untypical caspase recruitment domain (uCARD), a central nucleotide-binding and oligomerization domain (NOD or NACHT), and a leucine-rich repeat (LRR) domain. The functional variability of NLRC5 has been attributed to its different domain interactions with specific ligands in different cell types. In this review, we address the molecular mechanisms and their implications in multiple microenvironments based on the different functional domains of NLRC5.
Collapse
Affiliation(s)
- Haiqing Zhu
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chengwei Xiao
- The Second Affiliated Hospital of Bengbu Medical University, No. 663 Longhua Road, Bengbu, Anhui, 233040, China
| | - Jiahua Chen
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Bao Guo
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wenyan Wang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhenhai Tang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230022, China
| | - Yunxia Cao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Lei Zhan
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Jun-Hui Zhang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
3
|
Ageed FEM, Tifow FA, Ibrahim LA, Ismael AB, Balcıoğlu Ö, Özcem B, Cobanogullari H, Yılmaz S, Ergören MÇ. Molecular insights into Wnt3a and Wnt5a gene expression in venous insufficiency. Mol Biol Rep 2024; 52:53. [PMID: 39680245 DOI: 10.1007/s11033-024-10153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Chronic venous insufficiency (CVI) manifests as morphological and functional abnormalities in the venous system, primarily affecting the lower extremities and presenting as leg heaviness, oedema, and varicose veins. CVI is a common vascular disorder characterised by impaired blood flow in the veins, often leading to various clinical manifestations. To better understand the additional underlying mechanisms of CVI, it is essential to explore the role of Wnt proteins, which play a crucial role in regulating signalling processes. This study aimed to investigate the expression levels of the Wnt3a and Wnt5a genes using real-time PCR in patients with venous insufficiency compared to acontrol group. METHODS AND RESULTS 68 participants were included, comprising 29 controls and 39 patients with venous insufficiency from Near East University Hospital. Real-time PCR was utilised for gene expression analysis on a segment of the great saphenous vein biopsy, encompassing all vascular layers, from each participant in both groups. With a significance threshold of p < 0.05, the analysis revealed a significant difference in Wnt3a gene expression (p ₌ 0.0007) and a nonsignificant difference in Wnt5a expression levels (p ₌ 0.5726) between patients with venous insufficiency and the healthy control group. CONCLUSION This study indicates fluctuations in the Wnt genes in varicose vein biopsies compared to healthy veins. Consequently, further research is essential to elucidate whether the dysregulation of the Wnt pathway induces venous insufficiency or vice versa. This may facilitate targeted interventions addressing its fundamental molecular aberrations.
Collapse
Affiliation(s)
- Fatima Eltayb M Ageed
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Fadumo Ali Tifow
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Leylo Abdullahi Ibrahim
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Aya B Ismael
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Özlem Balcıoğlu
- Faculty of Medicine, Department of Cardiovascular Surgery, Near East University, Nicosia, 99138, Cyprus
| | - Barçın Özcem
- Faculty of Medicine, Department of Cardiovascular Surgery, Near East University, Nicosia, 99138, Cyprus
| | - Havva Cobanogullari
- Laboratory of Medical Genetics, Near East University, Near East University Hospital, Nicosia, 99138, Cyprus
| | - Selma Yılmaz
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Mahmut Çerkez Ergören
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus.
- Faculty of Art and Sciences, Department of Biological Sciences, Eastern Mediterranean University, Famagusta, Cyprus.
| |
Collapse
|
4
|
Guo L, Wang M, Zhao W, Guo M, Qian T, Peng F, Cao G, Yu S, Liu D. CircATXN7 regulates the proliferation and invasion of esophageal cancer cells through miR-4319/NLRC5. Cell Signal 2024; 122:111341. [PMID: 39121974 DOI: 10.1016/j.cellsig.2024.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND This study aimed to explore the molecular mechanism through which circular RNA of ataxin 7 (circATXN7) regulates the proliferation and invasion of esophageal cancer (EC) cells via microRNA (miR)-4319/NLR family CARD domain containing 5 (NLRC5). METHODS The localization of circATXN7 in EC cells was determined by RNA fluorescent in situ hybridization (RNA-FISH). The mRNA levels of circATXN7, miR-4319, and NLRC5 were quantified by reverse transcription-polymerase chain reactions. The binding activity of circATXN7 to miR-4319 was assessed using RNA-binding protein immunoprecipitation. Whether circATXN7 regulates the proliferation of EC cells via miR-4319 was explored using dual-luciferase reporter gene colony formation assays. Protein levels were quantified by western blot. The effect of NLRC5 on the proliferation and invasion of EC cells was examined using colony formation and Transwell assays. A subcutaneous transplanted tumor nude mouse model was established to observe the effect of circATXN7 on the proliferation of EC cells in vivo. RESULTS circATXN7 localized mainly to the cytoplasm. Overexpression or inhibition of miR-4319 significantly regulated the proliferation of EC cells, while circATXN7 competitively inhibited miR-4319 expression. Overexpression of miR-4319 significantly inhibited NLRC5 expression, indicating NLRC5 is a downstream regulatory target of miR-4319. circATXN7 influenced NLRC5 expression via miR-4319. In vivo tumor formation experiments in nude mice revealed that knocking down circATXN7 regulated NLRC5 expression via miR-4319 and significantly inhibited the proliferation of EC cells. CONCLUSIONS In vitro cell and in vivo animal experiments showed that circATXN7 regulates the proliferation, invasion, and migration of EC cells through the miR-4319/NLRC5 signaling pathway.
Collapse
Affiliation(s)
- Luni Guo
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Min Wang
- Department of the Pain Rehabilitation Clinic, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhui Zhao
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mengya Guo
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ting Qian
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Fanyu Peng
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guochun Cao
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shaorong Yu
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Delin Liu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
5
|
Ling L, Chen J, Zhan L, Fu J, He R, Wang W, Wei B, Ma X, Cao Y. NLRC5 promotes tumorigenesis by regulating the PI3K/AKT signaling pathway in cervical cancer. Sci Rep 2024; 14:15353. [PMID: 38961101 PMCID: PMC11222428 DOI: 10.1038/s41598-024-66153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer among women worldwide. NLR Family CARD Domain Containing 5 (NLRC5) plays an important role in tumorigenesis. However, its effect and mechanism in CC remains unclear. In this study, we aimed to investigate the function of NLRC5 in CC. NLRC5 was found to be down-regulated in CC tissues compared with normal cervical tissues. However, patients with higher NLRC5 expression had better prognosis, patients with higher age, HPV infection, lymph node metastasis, recurrence and histological grade had worse prognosis. Univariate and multivariate analyses showed NLRC5 to be a potential prognostic indicator for CC. Pearson correlation analysis showed that NLRC5 might exert its function in CC through autophagy related proteins, especially LC3. In vitro experiments demonstrated that NLRC5 inhibited LC3 levels and promoted the proliferation, migration, and invasion of CC cells by activating the PI3K/AKT signaling pathway. Treatment with LY294002 reversed the above phenotype. Taken together, our finding suggested that NLRC5 would participate in cervical tumorigenesis and progression by regulating PI3K/AKT signaling pathway. In addition, NLRC5 and LC3 combined as possible predictors in CC.
Collapse
Affiliation(s)
- Lin Ling
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Juanjuan Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Runhua He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
6
|
Tse RT, Wong CY, Ding X, Cheng CK, Chow C, Chan RC, Ng JH, Tang VW, Chiu PK, Teoh JY, Wong N, To K, Ng C. The establishment of kidney cancer organoid line in drug testing. Cancer Med 2024; 13:e7432. [PMID: 38923304 PMCID: PMC11200131 DOI: 10.1002/cam4.7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Kidney cancer is a common urological malignancy worldwide with an increasing incidence in recent years. Among all subtypes, renal cell carcinoma (RCC) represents the most predominant malignancy in kidney. Clinicians faced a major challenge to select the most effective and suitable treatment regime for patients from a wide range of modalities, despite improved understanding and diagnosis of RCC. OBJECTIVE Recently, organoid culture gained more interest as the 3D model is shown to be highly patient specific which is hypothetically beneficial to the investigation of precision medicine. Nonetheless, the development and application of organotypic culture in RCC is still immature, therefore, the primary objective of this study was to establish an organoid model for RCC. MATERIALS AND METHODS Patients diagnosed with renal tumor and underwent surgical intervention were recruited. RCC specimen was collected and derived into organoids. Derived organoids were validated by histological examminations, sequencing and xenograft. Drug response of organoids were compared with resistance cell line and patients' clinical outcomes. RESULTS Our results demonstrated that organoids could be successfully derived from renal tumor and they exhibited high concordance in terms of immunoexpressional patterns. Sequencing results also depicted concordant mutations of driver genes in both organoids and parental tumor tissues. Critical and novel growth factors were discovered during the establishment of organoid model. Besides, organoids derived from renal tumor exhibited tumorigenic properties in vivo. In addition, organoids recapitulated patient's in vivo drug resistance and served as a platform to predict responsiveness of other therapeutic agents. CONCLUSION Our RCC organoid model recaptiluated histological and genetic features observed in primary tumors. It also served as a potential platform in drug screening for RCC patients, though future studies are necessary before translating the outcomes into clinical practices.
Collapse
Affiliation(s)
- Ryan Tsz‐Hei Tse
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Christine Yim‐Ping Wong
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Xiaofan Ding
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Carol Ka‐Lo Cheng
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Chit Chow
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Ronald Cheong‐Kin Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Joshua Hoi‐Yan Ng
- Department of PathologyPamela Youde Nethersole Eastern HospitalChai WanHong Kong
| | - Victor Wai‐Lun Tang
- Department of PathologyPamela Youde Nethersole Eastern HospitalChai WanHong Kong
| | - Peter Ka‐Fung Chiu
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Jeremy Yuen‐Chun Teoh
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Nathalie Wong
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Chi‐Fai Ng
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
7
|
Liu X, Zhu H, Guo B, Chen J, Zhang J, Wang T, Zhang J, Shan W, Zou J, Cao Y, Wei B, Zhan L. NLRC5 promotes endometrial carcinoma progression by regulating NF-κB pathway-mediated mismatch repair gene deficiency. Sci Rep 2024; 14:12447. [PMID: 38822039 PMCID: PMC11143240 DOI: 10.1038/s41598-024-63457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Haiqing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Wang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Wenjun Shan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junchi Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
8
|
Qian Z, Zhao H, Zhang Y, Wang Z, Zeng F, Zhu Y, Yang Y, Li J, Ma T, Huang C. Coiled-coil domain containing 25 (CCDC25) regulates cell proliferation, migration, and invasion in clear cell renal cell carcinoma by targeting the ILK-NF-κB signaling pathway. FASEB J 2024; 38:e23414. [PMID: 38236371 DOI: 10.1096/fj.202301064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
Increasing evidence has demonstrated that the expression of coil domains containing 25 (CCDC25) in various malignancies is abnormally high. However, the potential regulatory role and mechanism of CCDC25 in the development of clear cell renal cell carcinoma (ccRCC) are still unclear. In this experiment, we combined in vitro experiments such as wound healing, CCK8, and transwell assay with in vivo experiments on tumor formation in nude mice to evaluate the effect of CCDC25 on the proliferation, migration, and invasion of renal cancer cells. In addition, we also used Western blotting and qPCR to evaluate the role of CCDC25 in activating the integrin-linked kinase (ILK)-NF-κB signaling pathway. Here, we demonstrate that compared to normal tissues and cell lines, CCDC25 is overexpressed in both human ccRCC tissues and cell lines. After CCDC25 knockdown, it has obvious inhibitory effect on the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In contrast, CCDC25 overexpression promotes these effects. Additionally, we also discovered that CCDC25 interacts with ILK and coordinates the activation of the NF-κB signaling pathway downstream. Generally, our study suggests that CCDC25 plays a vital role in the development of ccRCC, which also means that it may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zhenzhen Qian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhonghao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fanle Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, hefei, China
| | - Yaru Yang
- The Second Affiliated Hospital of Anhui Medical University, hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
9
|
Zhang J, Guo B, Chen JH, Liu XJ, Zhang JH, Zhu HQ, Wang WY, Tang ZH, Wei B, Cao YX, Zhan L. NLRC5 potentiates anti-tumor CD8 + T cells responses by activating interferon-β in endometrial cancer. Transl Oncol 2023; 36:101742. [PMID: 37531863 PMCID: PMC10407819 DOI: 10.1016/j.tranon.2023.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVES NLR family CARD domain containing 5 (NLRC5) could promote major histocompatibility complex class I (MHC-I)-dependent CD8+ T cell-mediated anticancer immunity. In this study, the immunosurveillance role and underlying mechanisms of NLRC5 in endometrial cancer (EC) were characterized. METHODS CD8+ T cells were separated from healthy women's peripheral blood by using magnetic beads. The effect of NLRC5 and interferon-β (IFN-β) on immunosurveillance of EC were examined through a mouse tumor model and a CD8+ T cell-EC cell coculture system after NLRC5 overexpression and IFN-β overexpression or depletion. The effect of NLRC5 on IFN-β expression was examined with gain- and loss-of-function experiments. RESULTS NLRC5 overexpression in the EC cell and CD8+ T cell coculture system inhibited EC cell proliferation and migration and promoted EC cell apoptosis and CD8+ T cell proliferation. In vivo, NLRC5 overexpression increased the proportion of CD8+ T cells and inhibited EC progression. Furthermore, IFN-β overexpression in the EC cell and CD8+ T cell coculture system activated CD8+ T cell proliferation; however, genetic depletion of IFN-β exerted the opposite effects. In addition, NLRC5 could negatively regulate IFN-β expression in EC cells. Mechanistically, NLRC5 potentiated the antitumor responses of CD8+ T cells to EC by activating IFN-β. CONCLUSIONS Taken together, our findings demonstrated that NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in EC, suggesting that genetically escalated NLRC5 and IFN-β may act as potential candidates for the clinical translation of adjuvant immunotherapies to patients with EC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Jia-Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Xiao-Jing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
| | - Hai-Qing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Wen-Yan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Zhen-Hai Tang
- Center for Scientific Research of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China.
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China.
| |
Collapse
|
10
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
11
|
Santharam MA, Shukla A, Levesque D, Kufer TA, Boisvert FM, Ramanathan S, Ilangumaran S. NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24087206. [PMID: 37108368 PMCID: PMC10138588 DOI: 10.3390/ijms24087206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
12
|
Integrated Analysis of the Role of Enolase 2 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:6539203. [DOI: 10.1155/2022/6539203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Enolase 2 (ENO2) has increasingly been documented in multiple cancers in recent years. However, the role of ENO2 in clear cell renal carcinoma (ccRCC) has not been fully explored. In the present study, open-access data were downloaded from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) databases. All statistical analyses were performed in R and GraphPad Prism 8 softwares. Results showed that ENO2 was overexpressed in ccRCC tissues and cell lines and correlated with worse clinical features and prognosis. In vitro experiments indicated that the inhibition of ENO2 could hamper the malignant behaviors of ccRCC cells. Gene Set Enrichment Analysis showed that epithelial-mesenchymal transition, KRAS signaling, inflammatory response, angiogenesis, hypoxia, and WNT/β-catenin pathways were upregulated in the ENO2 high-expression group; whereas adipogenesis, DNA repair, and androgen response pathways were downregulated. Immune infiltration analysis indicated that patients with high ENO2 levels might have higher M2 macrophages and lower γβ T cells in the tumor microenvironment, which may account to some extent for the worse prognosis of ENO2. Moreover, it was found that patients with low and high ENO2 expression might be more sensitive to PD-1 therapy and CTLA-4 therapy, respectively. In addition, patients with high ENO2 expression showed lower sensitivity to common chemotherapy drugs for ccRCC, including axitinib, cisplatin, gemcitabine, pazopanib, sunitinib, and temsirolimus. Overall, these results suggest that ENO2 is a potential prognosis biomarker of ccRCC and could affect the malignant biological behavior of cancer cells, highlighting its value as a potential therapeutic target.
Collapse
|
13
|
Fang T, Sun S, Zhao B, Dong J, Cao K, Wang W. NLRC5 modulates phenotypic transition and inflammation of human venous smooth muscle cells by activating Wnt/β-catenin pathway via TLR4 in varicose veins. Microvasc Res 2022; 143:104405. [PMID: 35835172 DOI: 10.1016/j.mvr.2022.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
In varicose veins, abnormal phenotypic transition and inflammatory response is commonly found in venous smooth muscle cells (VSMCs). We aimed to explore the potential role and mechanism of NLRC5 exerted on VSMCs phenotypic transition and inflammation. NLRC5 expression was detected in varicose veins and platelet-derived growth factor (PDGF)-induced VSMCs by RT-qPCR and Western bolt assays. A loss-of-function assay was performed to evaluate the effects of NLRC5 knockdown on VSMC proliferation, migration, and phenotypic transition. ELISA was used to detect the contents of pro-inflammatory cytokines in the supernatant. The modulation of NLRC5 on TLR4 expression and Wnt/β-catenin signaling was also evaluated. We found that the expressions of NLRC5 in varicose veins and PDGF-induced VSMCs were upregulated. NLRC5 knockdown inhibited VSMC proliferation and migration. Extracellular matrix transformation was blocked by downregulating NLRC5 with increasing SM-22α expression and MMP-1/TIMP-1 ratio, as well as decreasing OPN and collagen I expressions. Besides, NLRC5 silencing reduced the contents of inflammatory cytokines. Furthermore, we found that NLRC5 regulated TLR4 expression, as well as subsequently activation of Wnt/β-catenin pathway and nuclear translocation of β-catenin, which was involved in NLRC5-mediated phenotypic transition and inflammatory in VSMCs. In conclusion, silencing NLRC5 depressed VSMCs' phenotypic transition and inflammation by modulating Wnt/β-catenin pathway via TLR4. This may provide a theoretical basis for treatment of varicose veins.
Collapse
Affiliation(s)
- Tao Fang
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Shaojun Sun
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Bingjie Zhao
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Jianxin Dong
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Kai Cao
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Wenli Wang
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China.
| |
Collapse
|
14
|
Xu N, Xiao W, Meng X, Li W, Wang X, Zhang X, Yang H. Up-regulation of SLC27A2 suppresses the proliferation and invasion of renal cancer by down-regulating CDK3-mediated EMT. Cell Death Dis 2022; 8:351. [PMID: 35927229 PMCID: PMC9352701 DOI: 10.1038/s41420-022-01145-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors of the urinary system. Distant metastasis is the leading cause of poor prognosis in ccRCC. However, ccRCC is found poorly responsitive to radiotherapy and chemotherapy. Effective therapeutic strategies for its metastasis remain scarce. We analyzed clinical samples and public database, for differential expression of SLC27A2 and further explored its relationship with clinical prognosis. Biochemistry and functional experiments were carried out to study the potential mechanisms of SLC27A2, CDK3, and EMT. SLC27A2 was significantly downregulated in clinical specimens and renal cancer cell lines and predicted poor prognosis. We found that specific upregulation of SLC27A2 could significantly inhibited the proliferation, migration, and invasion of renal cancer cell lines. SLC27A2 could also influence the Epithelial-mesenchymal transition (EMT) signaling pathway, linked to the progression and metastasis of renal cancer. Using whole transcriptome sequencing of SLC27A2, CDK3 was identified as a regulatory SLC27A2 target. In terms of mechanism, SLC27A2 may further inhibit the epithelial-to-mesenchymal transition by negatively regulating CDK3. Our work suggests that functional inhibition of SLC27A2-CDK3-EMT axis may be an attractive therapeutic target for metastasis of ccRCC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuegang Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
15
|
Liang S, Xiang T, Liu S, Xiang W. Inhibition of NLRC5 attenuates the malignant growth and enhances the sensitivity of gastric cancer cells to 5‑FU chemotherapy by blocking the carcinogenic effect of YY1. Exp Ther Med 2022; 24:601. [PMID: 35949331 PMCID: PMC9353549 DOI: 10.3892/etm.2022.11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
Gastric cancer (GC) is one of the commonest malignant tumors of the digestive system, characterized by high morbidity and mortality rates. It has been reported that NOD like receptor (NLR) family, CARD domain containing 5 (NLRC5) serves an important role in the occurrence and development of GC. Therefore, the current study aimed to investigate the role of NLRC5 in GC. The mRNA and protein expression levels of NLRC5 in GC cell lines were determined by reverse transcription-quantitative PCR and western blot analysis, respectively. Additionally, following NLRC5 knockdown, cell proliferation, invasion and migration were evaluated using Cell Counting Kit 8, colony formation, wound healing and Transwell assays, and western blot analysis. The NLRC and Yin Yang 1 (YY1) expression in the AGS cells with 5-FU resistance were detected by western blotting. The sensitivity of GC cells to 5-fluorouracil (5-FU) was detected by flow cytometry and western blot analysis. Additionally, the binding capacity of YY1 on NLRC5 promoter was predicted using JASPAR database and it was further verified by chromatin immunoprecipitation and luciferase reporter assays. Finally, to elucidate the mechanism underlying the effect of NLRC5 on GC, YY1 was overexpressed and NLRC5 was silenced in GC cell lines. The results showed that NLRC5 was abnormally upregulated in GC cells. In addition, NLRC5 knockdown significantly attenuated the proliferation, invasion and migration abilities of GC cells, while it enhanced the sensitivity of GC cells to 5-FU. The above effects were regulated by the YY1 transcription factor. Overall, the results of the present study indicated that NLRC5 silencing could reduce the malignant growth and enhance the sensitivity of GC cells to 5-FU chemotherapy via inhibiting the carcinogenic effect of YY1.
Collapse
Affiliation(s)
- Shan Liang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Tingting Xiang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Shiyu Liu
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Wei Xiang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| |
Collapse
|
16
|
Dong Y, Xu T, Li D, Guo H, Du X, Li G, Chen J, Wang B, Wang P, Yu G, Zhao X, Xue R. NLR family CARD domain containing 5 promotes hypoxia-induced cancer progress and carboplatin resistance by activating PI3K/AKT via carcinoembryonic antigen related cell adhesion molecule 1 in non-small cell lung cancer. Bioengineered 2022; 13:14413-14425. [PMID: 36694434 PMCID: PMC9995128 DOI: 10.1080/21655979.2022.2086375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It is well known that non-small cell lung cancer (NSCLC) is a malignant tumor with high incidence in the world. We aimed to clarify a possible target and identify its precise molecular biological mechanism in NSCLC. NLR family CARD domain containing 5 (NLRC5) is widely expressed in tissues and exerts a vital role in anti-tumor immunity. We determined NLRC5 expression by RT-qPCR and western blot assay. The role of NLRC5 in the development of NSCLC was assessed by a loss-of-function assay. CCK-8, Annexin-V-FITC/PI Apoptosis Detection Kit, Transwell, and wound healing assays were used to determine the cell functions. Drug resistance-related proteins were analyzed by western blot assay. Furthermore, the modulation of NLRC5 on carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expression and subsequent PI3K/AKT signaling was assessed. In this study, a hyper-expression of NLRC5 was found in NSCLC tissues and cell lines. Knockdown of NLRC5 suppressed cell viability, invasion, and migration, and furthermore promoted cell apoptosis in NSCLC cells. Moreover, under normoxia or hypoxia treatment, the upregulation of NLRC5 was related to carboplatin resistance. NLRC5 silencing increased carboplatin-resistant cell chemosensitivity, as evidenced by the increase in the cell inhibition rate and decrease in drug resistance-related protein expression. Mechanistically, NLRC5 knockdown inhibited the expression of CEACAM1 and subsequently blocked the PI3K/AKT signaling pathway. In conclusion, NLRC5 promotes the malignant biological behaviors of NSCLC cells by activating the PI3K/AKT signaling pathway via the regulation of CEACAM1 expression under normoxia and hypoxia.
Collapse
Affiliation(s)
- Yu Dong
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Tao Xu
- Department of Thoracic Surgery, Xi'an Central Hospital, Xi'an, P.R. China
| | - Dongfan Li
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Hua Guo
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Xusheng Du
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Guangshun Li
- Department of Thoracic Surgery, Xi'an Central Hospital, Xi'an, P.R. China
| | - Jiakuan Chen
- Department of Thoracic Surgery, Air Force Military Medical University Tangdu Hospital, Xi'an, P.R. China
| | - Bo Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Peng Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Gang Yu
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Xuan Zhao
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| | - Ruiqi Xue
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, Xi'an, P.R. China
| |
Collapse
|
17
|
Jin J, Zhou TJ, Ren GL, Cai L, Meng XM. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin 2022; 43:2789-2806. [PMID: 35365780 PMCID: PMC8972670 DOI: 10.1038/s41401-022-00886-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.
Collapse
|
18
|
Zhu SD, Zhang J, Liu XJ, Zhang JH, Wei B, Wang WY, Fan YJ, Li D, Cao YX, Zhan L. NLRC5 Might Promote Endometrial Cancer Progression by Inducing PD-L1 Expression. Technol Cancer Res Treat 2022; 21:15330338221112742. [PMID: 35880269 PMCID: PMC9340384 DOI: 10.1177/15330338221112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aims: The NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5 (NLRC5) was dysregulated in endometrial cancer (EC). However, the potential regulatory mechanisms of NLRC5 in EC remained unclear. We aimed to explore whether NLRC5 could regulate the programmed cell death protein ligand 1 (PD-L1) in EC. We also investigated the related molecular which led to the inactivation of NLRC5 in EC. Methods: The expressions of NLRC5 and PD-L1 in endometrium tissue microarray were detected by immunohistochemistry. Pearson's correlation analysis was performed to detect the expression correlation between NLRC5 and PD-L1. Immunofluorescence staining, western blotting, and quantitative real-time PCR (qRT-PCR) were used to detect the role of NLRC5 in PD-L1 in EC cell lines. The somatic mutation in EC patients was detected by whole-exome sequencing (WGS). Results: NLRC5 was downregulated in the endometrium of EC patients when compared to those in the normal endometrium. The level of PD-L1 in the endometrium of EC patients was higher when compared to those in the normal endometrium. There was a negative expression correlation between NLRC5 and PD-L1. NLRC5 could promote the expression of PD-L1 in EC cell lines. The mutations of ANKRD20A2, C2orf42, ADGRB3, AVPR2, GOLGA6C, and IPPK may lead to the downregulation of NLRC5 in EC patients. Conclusion: NLRC5 could inhibit the activation of PD-L1 in EC. Mutations of ANKRD20A2, C2orf42, ADGRB3, AVPR2, GOLGA6C, and IPPK may lead to the downregulation of NLRC5 in EC patients. Future study should investigate the mechanism of NLRC5 in PD-L1, as well as the mechanism of ANKRD20A2, C2orf42, ADGRB3, AVPR2, GOLGA6C, and IPPK in NLRC5.
Collapse
Affiliation(s)
- Su-Ding Zhu
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jing Zhang
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiao-Jing Liu
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jun-Hui Zhang
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Bing Wei
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wen-Yan Wang
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yi-Jun Fan
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dan Li
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yun-Xia Cao
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lei Zhan
- 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
19
|
Chen C, Guo Q, Tang Y, Qu W, Zuo J, Ke X, Song Y. Screening and evaluation of the role of immune genes of brain metastasis in lung adenocarcinoma progression based on the TCGA and GEO databases. J Thorac Dis 2021; 13:5016-5034. [PMID: 34527340 PMCID: PMC8411151 DOI: 10.21037/jtd-21-935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
Background Brain metastasis was one of the factors leading to the poor long-term prognosis of patients with lung adenocarcinoma (LUAD). Methods The expression levels of immune genes in LUAD and LUAD brain metastases tissues were analyzed in GSE161116 dataset using the GEO2R, and the levels of differential immune genes in normal lung and LUAD tissues were verified. The biological functions and signaling mechanisms of the differential immune genes were explored via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Cox regression analysis was used to screen the prognostic factors of LUAD patients, and a risk model was constructed. The role of the model was checked in the development of LUAD via receiver operating characteristic analysis, gene set enrichment analysis, and Cox regression analysis. Results Differentially expressed genes (DEGs) in brain metastasis were involved in the adaptive immune response, B cell differentiation, leukocyte migration, NF-kB signaling pathway, among others. The expression levels of TNFRSF11A, MS4A2, IL11, CAMP, MS4A1, and F2RL1 were independent factors affecting the poor prognosis of LUAD patients via Cox regression analysis and Akaike information criterion. In the constructed risk model, the overall survival of LUAD patients in the high-risk group was poor. The risk model was significantly related to the gender, clinical stage, T stage, lymph node metastasis, and survival status of LUAD patients. In addition, the risk model score was an independent risk factor that affected the poor prognosis of LUAD patients. TNFRSF11A, CAMP, F2RL1, IL11, MS4A1, and MS4A2 of the risk factors had diagnostic significance in LUAD brain metastasis and LUAD. The risk model participated in cytokinetic process, cell cycle, citrate cycle TCA cycle, etc. The risk model score was correlated with the levels of B cells memory, mast cells resting, macrophages M0, mast cells activated, neutrophils, eosinophils, T cells gamma delta, and immune cell markers. Conclusions The risk model based on the LUAD brain metastasis immune factors TNFRSF11A, MS4A2, IL11, CAMP, MS4A1, and F2RL1 was related to the diagnosis, poor prognosis, and immune infiltrating cells of LUAD patients, and is expected to provide a reference for the development of treatment strategies for LUAD patients.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wendong Qu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiebin Zuo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Lv L, Wei Q, Wang Z, Zhao Y, Chen N, Yi Q. Clinical and Molecular Correlates of NLRC5 Expression in Patients With Melanoma. Front Bioeng Biotechnol 2021; 9:690186. [PMID: 34307322 PMCID: PMC8299757 DOI: 10.3389/fbioe.2021.690186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
NLRC5 is an important regulator in antigen presentation and inflammation, and its dysregulation promotes tumor progression. In melanoma, the impact of NLRC5 expression on molecular phenotype, clinical characteristics, and tumor features is largely unknown. In the present study, public datasets from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and cBioPortal were used to address these issues. We identify that NLRC5 is expressed in both immune cells and melanoma cells in melanoma samples and its expression is regulated by SPI1 and DNA methylation. NLRC5 expression is closely associated with Breslow thickness, Clark level, recurrence, pathologic T stage, and ulceration status in melanoma. Truncating/splice mutations rather than missense mutations in NLRC5 could compromise the expression of downstream genes. Low expression of NLRC5 is associated with poor prognosis, low activity of immune-related signatures, low infiltrating level of immune cells, and low cytotoxic score in melanoma. Additionally, NLRC5 expression correlates with immunotherapy efficacy in melanoma. In summary, these findings suggest that NLRC5 acts as a tumor suppressor in melanoma via modulating the tumor immune microenvironment. Targeting the NLRC5 related pathway might improve efficacy of immunotherapy for melanoma patients.
Collapse
Affiliation(s)
- Lei Lv
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhiwen Wang
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Zhang L, Jiao C, Liu L, Wang A, Tang L, Ren Y, Huang P, Xu J, Mao D, Liu L. NLRC5: A Potential Target for Central Nervous System Disorders. Front Immunol 2021; 12:704989. [PMID: 34220868 PMCID: PMC8250149 DOI: 10.3389/fimmu.2021.704989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotide oligomerization domain-like receptors (NLRs), a class of pattern recognition receptors, participate in the host’s first line of defense against invading pathogenic microorganisms. NLR family caspase recruitment domain containing 5 (NLRC5) is the largest member of the NLR family and has been shown to play an important role in inflammatory processes, angiogenesis, immunity, and apoptosis by regulating the nuclear factor-κB, type I interferon, and inflammasome signaling pathways, as well as the expression of major histocompatibility complex I genes. Recent studies have found that NLRC5 is also associated with neuronal development and central nervous system (CNS) diseases, such as CNS infection, cerebral ischemia/reperfusion injury, glioma, multiple sclerosis, and epilepsy. This review summarizes the research progress in the structure, expression, and biological characteristics of NLRC5 and its relationship with the CNS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cui Jiao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiping Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Hu X, Wang M, Cao L, Cong L, Gao Y, Lu J, Feng J, Shen B, Liu D. miR-4319 Suppresses the Growth of Esophageal Squamous Cell Carcinoma Via Targeting NLRC5. Curr Mol Pharmacol 2021; 13:144-149. [PMID: 31746301 DOI: 10.2174/1874467212666191119094636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functions of microRNAs (miRNAs) in cancer progression have been recognized in recent years. However, the role of miR-4319 in esophageal squamous cell carcinoma (ESCC) remains unclear. OBJECTIVE We aimed to investigate the biological roles of miR-4319 in ESCC progression and the associated mechanisms. METHODS Real-time PCR was performed to examine the levels of miR-4319 in ESCC cell lines. The effects of miR-4319 and NOD-like receptor (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5 (NLRC5) on cell proliferation and cell cycle progression were evaluated using MTT assay, colony formation and flow cytometry assays. Bioinformatics techniques and luciferase reporter assay were applied to validate NLRC5 as a miR-4319 target. RESULTS The miR-4319 expression was lower in ESCC cells than in the normal cell line. The expression of miR-4319 repressed cell growth and induced cell cycle arrest. NLRC5 was validated as a direct downstream target of miR-4319. Overexpression of NLRC5 potentiated the effects of miR-4319 on cell growth and cell cycle distribution. CONCLUSION Our results demonstrated that miR-4319 might function as a tumor suppressor by targeting NLRC5 in ESCC.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Min Wang
- The Pain Clinic, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lei Cao
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Li Cong
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Yujie Gao
- Department of Oncology, Suqian First Hospital, Suqian, 223800, China
| | - Jianwei Lu
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jifeng Feng
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Delin Liu
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
23
|
Pilsworth JA, Cochrane DR, Neilson SJ, Moussavi BH, Lai D, Munzur AD, Senz J, Wang YK, Zareian S, Bashashati A, Wong A, Keul J, Staebler A, van Meurs HS, Horlings HM, Kommoss S, Kommoss F, Oliva E, Färkkilä AEM, Gilks B, Huntsman DG. Adult-type granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res 2021; 7:243-252. [PMID: 33428330 PMCID: PMC8072996 DOI: 10.1002/cjp2.198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Adult-type granulosa cell tumors (aGCTs) account for 90% of malignant ovarian sex cord-stromal tumors and 2-5% of all ovarian cancers. These tumors are usually diagnosed at an early stage and are treated with surgery. However, one-third of patients relapse between 4 and 8 years after initial diagnosis, and there are currently no effective treatments other than surgery for these relapsed patients. As the majority of aGCTs (>95%) harbor a somatic mutation in FOXL2 (c.C402G; p.C134W), the aim of this study was to identify genetic mutations besides FOXL2 C402G in aGCTs that could explain the clinical diversity of this disease. Whole-genome sequencing of 10 aGCTs and their matched normal blood was performed to identify somatic mutations. From this analysis, a custom amplicon-based panel was designed to sequence 39 genes of interest in a validation cohort of 83 aGCTs collected internationally. KMT2D inactivating mutations were present in 10 of 93 aGCTs (10.8%), and the frequency of these mutations was similar between primary and recurrent aGCTs. Inactivating mutations, including a splice site mutation in candidate tumor suppressor WNK2 and nonsense mutations in PIK3R1 and NLRC5, were identified at a low frequency in our cohort. Missense mutations were identified in cell cycle-related genes TP53, CDKN2D, and CDK1. From these data, we conclude that aGCTs are comparatively a homogeneous group of tumors that arise from a limited set of genetic events and are characterized by the FOXL2 C402G mutation. Secondary mutations occur in a subset of patients but do not explain the diverse clinical behavior of this disease. As the FOXL2 C402G mutation remains the main driver of this disease, progress in the development of therapeutics for aGCT would likely come from understanding the functional consequences of the FOXL2 C402G mutation.
Collapse
Affiliation(s)
- Jessica A Pilsworth
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Dawn R Cochrane
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Samantha J Neilson
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Bahar H Moussavi
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Daniel Lai
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Aslı D Munzur
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Janine Senz
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Yi Kan Wang
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Sina Zareian
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Ali Bashashati
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- School of Biomedical EngineeringUniversity of British ColumbiaVancouverBCCanada
| | - Adele Wong
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Jacqueline Keul
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Annette Staebler
- Institute of Pathology and NeuropathologyTübingen University HospitalTübingenGermany
| | - Hannah S van Meurs
- Department of GynecologyCenter for Gynecologic Oncology Amsterdam, Academic Medical CenterAmsterdamThe Netherlands
| | - Hugo M Horlings
- Department of PathologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Stefan Kommoss
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus BodenseeFriedrichshafenGermany
| | - Esther Oliva
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Anniina EM Färkkilä
- Research Program for Systems OncologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Blake Gilks
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - David G Huntsman
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
24
|
Zhang Z, He T, Huang L, Li J, Wang P. Immune gene prognostic signature for disease free survival of gastric cancer: Translational research of an artificial intelligence survival predictive system. Comput Struct Biotechnol J 2021; 19:2329-2346. [PMID: 34025929 PMCID: PMC8111455 DOI: 10.1016/j.csbj.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The progress of artificial intelligence algorithms and massive data provide new ideas and choices for individual mortality risk prediction for cancer patients. The current research focused on depict immune gene related regulatory network and develop an artificial intelligence survival predictive system for disease free survival of gastric cancer. Multi-task logistic regression algorithm, Cox survival regression algorithm, and Random survival forest algorithm were used to develop the artificial intelligence survival predictive system. Nineteen transcription factors and seventy immune genes were identified to construct a transcription factor regulatory network of immune genes. Multivariate Cox regression identified fourteen immune genes as prognostic markers. These immune genes were used to construct a prognostic signature for gastric cancer. Concordance indexes were 0.800, 0.809, and 0.856 for 1-, 3- and 5- year survival. An interesting artificial intelligence survival predictive system was developed based on three artificial intelligence algorithms for gastric cancer. Gastric cancer patients with high risk score have poor survival than patients with low risk score. The current study constructed a transcription factor regulatory network and developed two artificial intelligence survival prediction tools for disease free survival of gastric cancer patients. These artificial intelligence survival prediction tools are helpful for individualized treatment decision.
Collapse
Key Words
- AJCC, the American Joint Committee on Cancer
- CI, confidence interval
- DCA, decision curve analysis
- DFS, disease free survival
- Disease free survival
- GC, gastric cancer
- GEO, the Gene Expression Omnibus
- Gastric cancer
- HR, hazard ratio
- Immune gene
- Prognostic signature
- ROC, receiver operating characteristic
- SD, standard deviation
- TCGA, The Cancer Genome Atlas
- Transcription factor
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Tingshan He
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Liwen Huang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Jing Li
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Peng Wang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| |
Collapse
|
25
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
26
|
Fan Y, Dong Z, Shi Y, Sun S, Wei B, Zhan L. NLRC5 promotes cell migration and invasion by activating the PI3K/AKT signaling pathway in endometrial cancer. J Int Med Res 2021; 48:300060520925352. [PMID: 32431202 PMCID: PMC7241267 DOI: 10.1177/0300060520925352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective NOD-like receptor family caspase recruitment domain family domain-containing 5 (NLRC5) is involved in the development of cancer. Our objective was to explore the role of NLRC5 in the progression of endometrial cancer (EC). Methods The roles of NLRC5 in migration and invasion of AN3CA EC cells were examined by cell wound-healing assay, Transwell migration, and invasion analysis. Overexpression of NLRC5 was achieved with NLRC5 plasmid, and knockdown of NLRC5 was achieved using small interfering (si)RNA-NLRC5 in AN3CA cells. The expression of NLRC5 was detected by immunohistochemical, western blot, and quantitative real-time PCR. LY294002 was used to inhibit the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Results NLRC5 was downregulated in EC tissue compared with normal endometrium. Overexpression of NLRC5 led to upregulation of cell migration and invasion in AN3CA cells and expression of matrix metallopeptidase (MMP)-9. Inhibition of NLRC5 restricted migration and invasion of AN3CA cells and expression of MMP9. Overexpression of NLRC5 promoted the activation of PI3K/AKT signaling pathway. Inhibiting PI3K/AKT signaling pathway by using LY294002 blocked the positive role of NLRC5 in migration and invasion of AN3CA cells and expression of MMP9. Conclusions These results demonstrate that NLRC5 promotes EC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhen Dong
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuchuan Shi
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Shiying Sun
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Zhan
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
27
|
Blackburn NB, Leandro AC, Nahvi N, Devlin MA, Leandro M, Martinez Escobedo I, Peralta JM, George J, Stacy BA, deMaar TW, Blangero J, Keniry M, Curran JE. Transcriptomic Profiling of Fibropapillomatosis in Green Sea Turtles ( Chelonia mydas) From South Texas. Front Immunol 2021; 12:630988. [PMID: 33717164 PMCID: PMC7943941 DOI: 10.3389/fimmu.2021.630988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.
Collapse
Affiliation(s)
- Nicholas B. Blackburn
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, United States
| | | | - Marcelo Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | | | - Juan M. Peralta
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jeff George
- Sea Turtle Inc., South Padre Island, TX, United States
| | - Brian A. Stacy
- National Marine Fisheries Service, Office of Protected Resources, University of Florida, Gainesville, FL, United States
| | | | - John Blangero
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Megan Keniry
- Department of Biology, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Joanne E. Curran
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
28
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
29
|
Dang AT, Strietz J, Zenobi A, Khameneh HJ, Brandl SM, Lozza L, Conradt G, Kaufmann SHE, Reith W, Kwee I, Minguet S, Chelbi ST, Guarda G. NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9Vδ2 T cell-mediated killing. iScience 2020; 24:101900. [PMID: 33364588 PMCID: PMC7753138 DOI: 10.1016/j.isci.2020.101900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
BTN3A molecules—BTN3A1 in particular—emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity. BTN3A promoters contain a unique regulatory motif occupied by overexpressed NLRC5 NLRC5 and BTN3A mRNA levels correlate in healthy and diseased cells NLRC5 overexpression increases susceptibility to Vγ9Vδ2 T-cell-mediated elimination
Collapse
Affiliation(s)
- Anh Thu Dang
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Juliane Strietz
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Alessandro Zenobi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Hanif J Khameneh
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Simon M Brandl
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Gregor Conradt
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sonia T Chelbi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| |
Collapse
|
30
|
Wan P, Chen Z, Zhong W, Jiang H, Huang Z, Peng D, He Q, Chen N. BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma. Oncol Rep 2020; 44:2475-2486. [PMID: 33125143 PMCID: PMC7610328 DOI: 10.3892/or.2020.7796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Among all types of kidney diseases, renal cell carcinoma (RCC) has the highest mortality, recurrence and metastasis rates, which results in high numbers of tumor-associated mortalities in China. Identifying a novel therapeutic target has attracted increasing attention. Bromodomain and extraterminal domain (BET) proteins have the ability to read the epigenome, leading to regulation of gene transcription. As an important member of the BET family, bromodomain testis-specific protein (BRDT) has been well studied; however, the mechanism underlying BRDT in the regulation of RCC has not been fully investigated. Eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1) is a binding partner of eIF4E that is involved in affecting the progression of various cancer types via regulating gene transcription. To identify novel regulators of eIF4EBP1, an immunoprecipitation assay and mass spectrometry analysis was performed in RCC cells. It was revealed that eIF4EBP1 interacted with BRDT, a novel interacting protein. In addition, the present study further demonstrated that BRDT inhibitors PLX51107 and INCB054329 blocked the progression of RCC cells, along with suppressing eIF4EBP1 and c-myc expression. Small interfering (si) RNAs were used to knock down BRDT expression, which suppressed RCC cell proliferation and eIF4EBP1 protein expression. In addition, overexpression of eIF4EBP1 partially abolished the inhibited growth function of PLX51107 but knocking down eIF4EBP1 improved the inhibitory effects of PLX51107. Furthermore, treatment with PLX51107 or knockdown of BRDT expression decreased c-myc expression at both the mRNA and protein levels, and attenuated its promoter activity, as determined by luciferase reporter assays. PLX51107 also significantly altered the interaction between the c-myc promoter with eIF4EBP1 and significantly attenuated the increase of RCC tumors, accompanied by decreased c-myc mRNA and protein levels in vivo. Taken together, these data suggested that blocking of BRDT by PLX51107, INCB054329 or BRDT knockdown suppressed the growth of RCC via decreasing eIF4EBP1, thereby leading to decreased c-myc transcription levels. Considering the regulatory function of BET proteins in gene transcription, the present study suggested that there is a novel mechanism underlying eIF4EBP1 regulation by BRDT, and subsequently decreased c-myc in RCC, and further identified a new approach by regulating eIF4EBP1 or c-myc for enhancing BRDT-targeting RCC therapy.
Collapse
Affiliation(s)
- Pei Wan
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhilin Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Weifeng Zhong
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Huiming Jiang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhicheng Huang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Dong Peng
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Qiang He
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Nanhui Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
31
|
He R, Liu X, Zhang J, Wang Z, Wang W, Fu L, Fan Y, Sun S, Cao Y, Zhan L, Shui L. NLRC5 Inhibits Inflammation of Secretory Phase Ectopic Endometrial Stromal Cells by Up-Regulating Autophagy in Ovarian Endometriosis. Front Pharmacol 2020; 11:1281. [PMID: 33013364 PMCID: PMC7461939 DOI: 10.3389/fphar.2020.01281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
Nod-like receptor (NLR) family caspase activation and recruitment domain containing 5 (NLRC5) is a newly identified sub-class of the NLR family. It regulates inflammation and has a key function in innate and adaptive immunologic reactions. Autophagy has been reported to be crucially linked to the pathogenesis of endometriosis. Our recent study identify there is a negative correlation between NLRC5 and autophagy in endometriosis, indicating that NLRC5 and autophagy together act as promising predictors in endometriosis patients. However, the mechanism associating NLRC5 and autophagy in endometriosis is still not completely understood. We hypothesize that autophagy could be involved in NLRC5-mediated inflammation in endometriosis. In order to validate the assumption, we evaluate the effects of NLRC5 and autophagy in the inflammation of ectopic endometrial stromal cells (EESCs) of ovarian endometriosis patients, to specifically determine whether autophagy is involved in NLRC5-mediated inflammation in EESCs. Our results show that over-expression of NLRC5 results in the up-regulation of autophagy in EESCs and inhibition of NLRC5 restricts the level of autophagy in EESCs. Furthermore, over-expression of NLRC5 and promotion of autophagy inhibit interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expressions, whereas inhibition of NLRC5 and autophagy up-regulate IL-6 and TNF-α expressions in EESCs. Additionally, promotion of autophagy contributes to the NLRC5-mediated inhibition of IL-6 and TNF-α expressions in EESCs; inhibition of autophagy restricts NLRC5-mediated inhibition of IL-6 and TNF-α expressions in EESCs. Our results suggest that over-expression of NLRC5 promotes autophagy, thereby inhibiting inflammation in ovarian endometriosis.
Collapse
Affiliation(s)
- Runhua He
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojing Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongzheng Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyan Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liutao Fu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yijun Fan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shiying Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijun Shui
- Clinical Center of Reproductive Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Cho SX, Vijayan S, Yoo JS, Watanabe T, Ouda R, An N, Kobayashi KS. MHC class I transactivator NLRC5 in host immunity, cancer and beyond. Immunology 2020; 162:252-261. [PMID: 32633419 DOI: 10.1111/imm.13235] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The presentation of antigenic peptides by major histocompatibility complex (MHC) class I and class II molecules is crucial for activation of the adaptive immune system. The nucleotide-binding domain and leucine-rich repeat receptor family members CIITA and NLRC5 function as the major transcriptional activators of MHC class II and class I gene expression, respectively. Since the identification of NLRC5 as the master regulator of MHC class I and class-I-related genes, there have been major advances in understanding the function of NLRC5 in infectious diseases and cancer. Here, we discuss the biological significance and mechanism of NLRC5-dependent MHC class I expression.
Collapse
Affiliation(s)
- Steven X Cho
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiyuki Watanabe
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryota Ouda
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ning An
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| |
Collapse
|
33
|
Sun J, Tang Q, Gao Y, Zhang W, Zhao Z, Yang F, Hu X, Zhang D, Wang Y, Zhang H, Song B, Zhang B, Wang H. VHL mutation-mediated SALL4 overexpression promotes tumorigenesis and vascularization of clear cell renal cell carcinoma via Akt/GSK-3β signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:104. [PMID: 32513235 PMCID: PMC7278163 DOI: 10.1186/s13046-020-01609-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Background Although ongoing development of therapeutic strategies contributes to the improvements in clinical management, clear cell renal cell carcinoma (ccRCC) deaths originate mainly from radiochemoresistant and metastatic disease. Transcription factor SALL4 has been implicated in tumorigenesis and metastasis of multiple cancers. However, it is not known whether SALL4 is involved in the pathogenesis of ccRCC. Methods Analyses of clinical specimen and publicly available datasets were performed to determine the expression level and clinical significance of SALL4 in ccRCC. The influence of SALL4 expression on ccRCC tumor growth, metastasis and vascularity was evaluated through a series of in vitro and in vivo experiments. Western blotting, immunofluorescence staining and integrative database analysis were carried out to investigate the underlying mechanism for SALL4-mediated oncogenic activities in ccRCC. Results SALL4 expression was increased in ccRCC and positively correlated with tumor progression and poor prognosis. SALL4 could promote ccRCC cell proliferation, colony formation, cell cycle progression, migration, invasion and tumorigenicity and inhibit cell senescence. Further investigation revealed a widespread association of SALL4 with individual gene transcription and the involvement of SALL4 in endothelium development and vasculogenesis. In the context of ccRCC, SALL4 promoted tumor vascularization by recruiting endothelial cells. In addition, we found that SALL4 could exert its tumor-promoting effect via modulating Akt/GSK-3β axis and VEGFA expression. VHL mutation and DNA hypomethylation may be involved in the upregulation of SALL4 in ccRCC. Conclusions Overall, our results provide evidence that upregulated SALL4 can function as a crucial regulator of tumor pathogenesis and progression in ccRCC, thus offering potential therapeutic strategies for future treatment.
Collapse
Affiliation(s)
- Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhining Zhao
- Clinical Laboratory, The 986th Military Hospital, Fourth Military Medical University, Xi'an, 710054, Shaanxi, China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiangnan Hu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dan Zhang
- Department of Pathology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Huizhong Zhang
- Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - Bo Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
34
|
Ji YR, Chen Y, Chen YN, Qiu GL, Wen JG, Zheng Y, Li XF, Cheng H, Li YH, Li J. Dexmedetomidine inhibits the invasion, migration, and inflammation of rheumatoid arthritis fibroblast-like synoviocytes by reducing the expression of NLRC5. Int Immunopharmacol 2020; 82:106374. [PMID: 32163856 DOI: 10.1016/j.intimp.2020.106374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune disease characterized by inflammatory synovitis, but its pathogenesis remains unclear. NLRC5 is a newly discovered member of the NLR family that is effective in regulating autoimmunity, inflammatory responses, and cell death processes. Dexmedetomidine (DEX) has been reported to have a variety of pharmacological effects, including anti-inflammatory and analgesic effects. However, the role of DEX in RA has not been explored. In adjuvant-induced arthritis (AA) rat models, DEX (10 μg/kg and 20 μg/kg) reduced the pathological score, the arthritis score, paw swelling volume, and the serum levels of IL-1β, IL-6, IL-17A, and TNF-α. Moreover, by using Western blot and real-time quantitative PCR (RT-qPCR), it was demonstrated that DEX can inhibit the expression of IL-1β, IL-6, MMP-3, MMP-9 and P-P65 in the synovial tissue of AA rats. In human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), DEX (250 nM and 500 nM) was found to inhibit the expression of IL-1β, IL-6, MMP-3, MMP-9, and P-P65 following stimulation with TNF-α. Moreover, DEX can inhibit the invasion and migration of RA-FLSs stimulated by TNF-α. Finally, the expression of NLRC5 in RA-FLSs and AA rat models was also reduced by DEX. After silencing NLRC5 in RA-FLSs, the expression of IL-1β, IL-6, MMP-3, MMP-9, and P-P65, as well as the invasion and migration of cells, were significantly reduced. These results indicate that DEX inhibits the invasion, migration, and inflammation of RA-FLSs by reducing the expression of NLRC5 and inhibiting the NF-κB activation.
Collapse
Affiliation(s)
- Ya-Ru Ji
- First Affiliated Hospital, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yan-Ni Chen
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Gao-Lin Qiu
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- School of Pharmacy, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yan Zheng
- First Affiliated Hospital, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Huang Cheng
- School of Pharmacy, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Yuan-Hai Li
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei 230032, China, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China.
| |
Collapse
|
35
|
Chen Z, Yang L, Chen L, Li J, Zhang F, Xing Y, Zhao J. miR-190b promotes tumor growth and metastasis via suppressing NLRC3 in bladder carcinoma. FASEB J 2020; 34:4072-4084. [PMID: 31953872 DOI: 10.1096/fj.201901764r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/06/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Bladder cancer is one of the most common urogenital malignancies. However, its pathogenesis, especially molecular mechanisms remain elusive. Thus, understanding the molecular mechanisms underlying bladder cancer is important for the discovery of novel therapeutic paradigms for these diseases. In current study, we found that micro-RNA (miR)-190b is highly expressed in bladder cancer tissues and cells. Overexpression of miR-190b enhanced the proliferation, growth, migration and invasion capabilities, and angiogenesis of bladder cancer cells, whereas downregulation of miR-190b reversed these effects. Target prediction and dual luciferase reporter assays identified NLR family CARD domain containing 3 (NLRC3) as a potential target of miR-190b. Pathway analysis indicated that miR-190b promotes bladder cancer progression via the Wnt/β-catenin and mTOR signaling pathways. Taken together, our findings imply that miR-190b acts as a critical regulator for bladder cancer development by repressing NLRC3 and partly through the Wnt/β-catenin and mTOR pathways. Our study suggests that miR-190b may be served as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Likun Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Futian Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Abstract
Recent decades, there is significant progress in understanding the mechanisms of tumor progression and immune evasion. The newly discovered protein NLRC5 is demonstrated to participate in regulating cancer immune escape through enhancing MHC class I genes expression in certain tumors. Nevertheless, increasing evidence has revealed that NLRC5 is up-regulated in some other tumors and promote tumor development and progression. The purpose of this review is to describe the role of NLRC5 in tumors and discuss whether NLRC5 can be a potential target in cancer treatment.
Collapse
Affiliation(s)
- Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
37
|
Wu Y, Shi T, Li J. NLRC5: A paradigm for NLRs in immunological and inflammatory reaction. Cancer Lett 2019; 451:92-99. [PMID: 30867141 DOI: 10.1016/j.canlet.2019.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat containing (NLR) family of proteins is mainly involved in microbial pathogen recognition, inflammatory responses, and cell death. NLRC5, the largest member of the NLR family, is currently receiving an increasing level of attention. NLRC5 has been demonstrated to be a potent negative regulator of NF-κB signaling pathway-mediated inflammatory response. Moreover, accumulating evidence has indicated that NLRC5 is closely related to pathological processes of various cancers. In this review, we present an overview on NLRC5, addressing its underlying molecular mechanisms and implications in host defense, inflammatory response, and associated cancers.
Collapse
Affiliation(s)
- Yuting Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, PR China.
| | - Tianlu Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| | - Jun Li
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, PR China.
| |
Collapse
|