1
|
Kang L, Zhu X, Yan Y, Zhu R, Wei W, Peng F, Sun L. Characterization and Antioxidant Activity of Polysaccharides From Agaricus bisporus by Gradient Ethanol Precipitation. Chem Biodivers 2025:e202500120. [PMID: 40165028 DOI: 10.1002/cbdv.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
In this present work, the polysaccharides from Agaricus bisporus were extracted and fractioned with gradient ethanol precipitation method for the first time. Five fractions (ABP40, ABP50, ABP60, ABP70, and ABP80) were obtained with ethanol concentrations of 40%, 50%, 60%, 70%, and 80%, respectively, and their characteristics and antioxidant activities in vitro were investigated. The five fractions presented significant differences in total sugar, protein, and uronic acid content, with a marked discrepancy in the molar ratio of the monosaccharide composition. The molecular weights of the polysaccharides decreased with increasing ethanol concentration. Compared to the other four fractions, ABP70, which has the highest uronic acid content, showed more conspicuous radical-scavenging activities against hydroxyl (89.9 ± 0.33%) and DPPH radicals (80.1 ± 0.01%). Moreover, it was found that the total sugar content and antioxidant activities of polysaccharides increased with the extension of precipitation time, with the highest antioxidant activities at 24 h. Therefore, ABP70, precipitated for 24 h, may have a potential application value for the development of antioxidants. This study provides valuable information for the further commercial applications of polysaccharides from Agaricus bisporus.
Collapse
Affiliation(s)
- Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Xinji Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Yangtian Yan
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Rui Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Fei Peng
- Department of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Lei Sun
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
2
|
Jaffali C, Synytsya A, Khadhri A, Aschi-Smiti S, Bleha R, Jozífek M, Kvasnička F, Klouček P. Structure and strain specificity for polysaccharides from king oyster mushroom (Pleurotus eryngii) fruiting bodies. Int J Biol Macromol 2025; 295:139286. [PMID: 39765292 DOI: 10.1016/j.ijbiomac.2024.139286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P. eryngii var. elaeoselini and P. eryngii var. ferulae, and, for comparison, one deposited P. eryngii originated from Korea. Polysaccharides were successively extracted with hot water using microwave heating and 1 mol L-1 aqueous sodium hydroxide. The crude hot water extracts were purified by treating them with proteolytic enzymes, and the alkaline extracts were purified by re-dissolving with dimethyl sulphoxide. In both cases, a decrease or removal of proteins was detected. Glucans predominated in all these products; the insoluble parts also contained chitin. The purified hot water extracts contained glycogen, β-d-glucans and mannogalactan. Branching (1 → 3)(1 → 6)-β-d-glucan was the major polysaccharide in the alkali-soluble fractions, while (1 → 3)-α-d-glucan was only a minor component. The Tunisian strains demonstrated a higher proportion of water-soluble polysaccharides, compared to the alkaline soluble ones, and more β-d-glucan in the insoluble chitin-glucan complexes. Fruiting body proteins of these strains are more available for solubilisation and enzymatic or alkaline degradation and, thus, may have higher nutritional value than those of the reference strain. As a source of proteins or polysaccharides, the Tunisian endemic P. eryngii strains of this study are promising for the domestication and cultivation of fruiting bodies for gastronomic purposes in the North African region.
Collapse
Affiliation(s)
- Chahrazed Jaffali
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia; Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic.
| | - Ayda Khadhri
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Samira Aschi-Smiti
- Laboratory of Plant, Soil and Environment Interactions, Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Czech Republic
| | - František Kvasnička
- Department of Food Preservation, University of Chemistry and Technology Prague, Czech Republic
| | - Pavel Klouček
- Department of Crop Production, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
3
|
Liu Y, Meng Y, Ji H, Guo J, Shi M, Lai F, Ji X. Structural characteristics and antioxidant activity of a low-molecular-weight jujube polysaccharide by ultrasound assisted metal-free Fenton reaction. Food Chem X 2024; 24:101908. [PMID: 39507930 PMCID: PMC11539519 DOI: 10.1016/j.fochx.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
This study used an ultrasonically accelerated metal-free Fenton (H2O2-Vc system) reaction to promote water-extracted degrading polysaccharides from Ziziphus Jujuba cv. Muzao (DZMP). A novel jujube polysaccharide (DPZMP3) was obtained by degradation using DEAE-Sepharose Fast Flow and Sephacryl S-100 column chromatography. Methylation analysis, HPGPC, ion chromatography, FT-IR, and NMR spectroscopies were used to clarify the chemical structures of DPZMP3. Monosaccharide compositional analysis of DPZMP3 revealed the presence of Rha, Ara, Gal, and GalA at a molar ratio of 1.00:1.49:1.60:7.68, and the HPGPC data demonstrated the average Mw of 34.3 kDa. Based on the structural and linkage research using NMR spectroscopy and GC-MS, it was determined that DPZMP3 was a homogalacturonan pectic polysaccharide with a (1 → 4)-Galp branch at C-6 and a small amount of Araf and Rhap residues. The ultrasonic-aided Fenton treatment did not significantly alter the structure of DPZMP3. It may also be useful for DZMP and enhancing their antioxidant activity in vitro. The current study's findings could pave the way for the food sector to use jujube polysaccharides obtained by degradation as a functional food component.
Collapse
Affiliation(s)
- Yingying Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haozhen Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Jianhang Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Feiliao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
4
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Yao J, Zeng J, Tang H, Shi Q, Li X, Tan J, Cheng Y, Li T, He J, Zhang Y. Preparation of Auricularia auricula polysaccharides and their protective effect on acute oxidative stress injury of Caenorhabditis elegans. Int J Biol Macromol 2023; 253:127427. [PMID: 37838122 DOI: 10.1016/j.ijbiomac.2023.127427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This research enhanced the extraction procedure for Auricularia auricula crude polysaccharides by utilizing a modified Fenton reagent as a solvent, and obtained A. auricula polysaccharides (AAPs-VH) via alcohol precipitation and deproteinization. The HPLC profile revealed that the purified AAPs-VH using Sepharose 6FF was mainly a heteropolysaccharide, consisting primarily of mannose, glucuronic acid, glucose, and xylose. The Mw and Mn of the purified AAPs-VH were 87.646 kDa and 48.854 kDa, respectively. The FT-IR and NMR spectra revealed that the purified AAPs-VH belonged to pyranose and were mainly formed by (1 → 3)-linked-β-D glucan formation. In vivo experiments conducted with Caenorhabditis elegans, AAPs-VH was found to notably influence the lifespan, improve the antioxidant system, and decrease the level of cell apoptosis. This might be achieved by up-regulating the expression of genes in the IIS and TOR pathways. The study concludes that the modified Fenton reagent can increase Auricularia auricula polysaccharide solubleness and active sites, which may be an essential prompt for future studies.
Collapse
Affiliation(s)
- Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiangying Zeng
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Qianwen Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xiangyu Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jingjing Tan
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yirui Cheng
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Tianyuan Li
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiyuan He
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
6
|
Wang Y, Zou Y, Fang Q, Feng R, Zhang J, Zhou W, Wei Q. Polysaccharides from Brasenia schreberi with Great Antioxidant Ability and the Potential Application in Yogurt. Molecules 2023; 29:150. [PMID: 38202733 PMCID: PMC10780003 DOI: 10.3390/molecules29010150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Brasenia schreberi is a widely consumed aquatic plant, yet the knowledge regarding its bioactive components, particularly polysaccharides, remains limited. Therefore, this study aimed to optimize the extraction process of polysaccharides from B. schreberi using the response surface method (RSM). Additionally, we characterized the polysaccharides using various methods and assessed their antioxidant capabilities both in vitro and in vivo, employing cell cultures and Caenorhabditis elegans. Furthermore, these polysaccharides were incorporated into a unique yogurt formulation. Our findings demonstrated that hot water extraction was the most suitable method for extracting polysaccharides from B. schreberi, yielding samples with high sugar content, significant antioxidant capacity, and a well-defined spatial structure. Moreover, pectinase was employed for polysaccharide digestion, achieving an enzymolysis rate of 10.02% under optimized conditions using RSM. Notably, the results indicated that these polysaccharides could protect cells from oxidative stress by reducing apoptosis. Surprisingly, at a concentration of 250 μg/mL, the polysaccharides significantly increased the survival rate of C. elegans from 31.05% to 82.3%. Further qPCR results revealed that the polysaccharides protected C. elegans by up-regulating the daf-16 gene and down-regulating mTOR and insulin pathways, demonstrating remarkable antioxidant abilities. Upon addition to the yogurt, the polysaccharides significantly enhanced the water retention, viscosity, and viability of lactic acid bacteria. These outcomes underscore the potential of polysaccharides from B. schreberi as a valuable addition to novel yogurt formulations, thereby providing additional theoretical support for the utilization of B. schreberi.
Collapse
Affiliation(s)
- Yujie Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Yue Zou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qiong Fang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Jihong Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| | - Wanhai Zhou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China; (Y.W.); (Y.Z.); (Q.F.); (R.F.); (J.Z.)
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin 644000, China
| |
Collapse
|
7
|
Tang Y, Liu J, Yang J, Xu Y, Sun Z, Tang H, Yang Y, Xuan J, Zhang Y. Free radical-mediated extraction of polysaccharides from Gelidium amansii and their modulation on abnormal glycometabolism in Caenorhabditis elegans. Int J Biol Macromol 2023; 252:126402. [PMID: 37597639 DOI: 10.1016/j.ijbiomac.2023.126402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
An improved Fenton-microwave synergistic method was employed to extract polysaccharides from Gelidium amansii (GAPs), which were subsequently purified through alcohol precipitation, deproteinization, and gel chromatography. The effects of GAPs on oxidative stress resistance and abnormal glycometabolism were investigated using Caenorhabditis elegans. The polysaccharide yield reached 54.17 % ± 0.27 % under the following conditions: solid-liquid ratio of 1:102 g/mL, temperature of 80 °C, H2O2 concentration of 1.0 %, microwave power of 700 W, and 33 min. The purified GAPs were heteropolysaccharides primarily composed of mannose, ribose, glucuronic acid, glucose, galactose, xylose, and arabinose, with a molar ratio of 0.287:0.524:0.634:2.646:89.649:5.416:0.463. The weight-average and numerical-average molecular weights of the GAPs were determined to be 142.800 kDa and 75.255 kDa, respectively. Treatment of C. elegans with GAPs at 2.0 mg/mL resulted in a significant extension of the mean lifespan by 53.85 % compared to the negative control (p < 0.05). Furthermore, GAPs exhibited notable enhancements in the antioxidant system, including SOD by 56.90 % and CAT by 96.83 % (p < 0.05). Additionally, GAPs led to reductions in glucose-related metabolites, including glucose levels by 34.54 % and pyruvic acid levels by 149.54 % (p < 0.05). These findings demonstrate the excellent performance of GAPs in enhancing the antioxidant system and regulating abnormal glycometabolism.
Collapse
Affiliation(s)
- Yuxuan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiaqi Liu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jun Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yuting Xu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zhuoyan Sun
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yiwei Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jinjie Xuan
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
8
|
Petraglia T, Latronico T, Fanigliulo A, Crescenzi A, Liuzzi GM, Rossano R. Antioxidant Activity of Polysaccharides from the Edible Mushroom Pleurotus eryngii. Molecules 2023; 28:molecules28052176. [PMID: 36903422 PMCID: PMC10005153 DOI: 10.3390/molecules28052176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
In this study the antioxidant and neuroprotective activity of an enriched polysaccharide fraction (EPF) obtained from the fruiting body of cultivated P. eryngii was evaluated. Proximate composition (moisture, proteins, fat, carbohydrates and ash) was determined using the AOAC procedures. The EPF was extracted by using, in sequence, hot water and alkaline extractions followed by deproteinization and precipitation with cold ethanol. Total α- and β-glucans were quantified using the Megazyme International Kit. The results showed that this procedure allows a high yield of polysaccharides with a higher content of (1-3; 1-6)-β-D-glucans. The antioxidant activity of EPF was detected from the total reducing power, DPPH, superoxide, hydroxyl and nitric oxide radical scavenging activities. The EPF was found to scavenge DPPH, superoxide, hydroxyl and nitric oxide radicals with a IC50 values of 0.52 ± 0.02, 1.15 ± 0.09, 0.89 ± 0.04 and 2.83 ± 0.16 mg/mL, respectively. As assessed by the MTT assay, the EPF was biocompatible for DI-TNC1 cells in the range of 0.006-1 mg/mL and, at concentrations ranging from 0.05 to 0.2 mg/mL, significantly counteracted H2O2-induced reactive oxygen species production. This study demonstrated that polysaccharides extracted from P. eryngii might be used as functional food to potentiate the antioxidant defenses and to reduce oxidative stress.
Collapse
Affiliation(s)
- Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Angela Fanigliulo
- Bioagritest Srl-Centro Interregionale di Diagnosi Vegetale, 85010 Pignola, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy
- Correspondence: (G.M.L.); (R.R.)
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
- Correspondence: (G.M.L.); (R.R.)
| |
Collapse
|
9
|
Mohamed SS, Ibrahim GS, Ghoneim MAM, Hassan AI. Evaluating the role of polysaccharide extracted from Pleurotus columbinus on cisplatin-induced oxidative renal injury. Sci Rep 2023; 13:835. [PMID: 36646729 PMCID: PMC9842759 DOI: 10.1038/s41598-022-27081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
This research aimed to examine the antioxidant polysaccharide activity (PsPc-3) derived from Pleurotus columbinus (P. columbinus) on oxidative renal injury (ORI) induced by cisplatin (CP). The principal components of crude polysaccharide were assessed. We studied the preventive impact of polysaccharide on cisplatin-induced renal damage in this study. For 21 days, we employed the CP-induced ORI rat model and divided the rats into four groups: control, CP alone, polysaccharide post CP (100 mg/kg) orally, and CP + polysaccharide (pre and post). The chemical characterization of the polysaccharide fraction PsPc-3 stated that protein was not present. PsPc-3 contained 7.2% uronic acid as assessed as 0% sulfate. PsPc-3 hydrolysate structured of Galacturonic:Glucose:Xylose and their molar proportions were 1:4:5, respectively. The average molecular weight (Mw) and molecular mass (Mn) per molecule of PsPc-3 were 5.49 × 104 g/mol and Mn of 4.95 × 104 g/mol respectively. DPPH radical scavenging activity was demonstrated by the polysaccharide of 65.21-95.51% at 10 mg/ml with IC50 less than 10 mg/ml. CP increased serum urea to 92.0 mg/dl and creatinine up to 1.0 mg/dl, with a concurrent decrease in the levels of total protein to 4.0 mg/dl. Besides, Also, CP-induced ORI raised levels of malondialdehyde (MDA), alkaline phosphatase (ALP), and renal hormones (renin and aldosterone), with a decline in antioxidants compared to control rats. In addition, in the presence of CP, interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) levels increased. PsPc-3 decreased these changes dramatically. PsPc-3 improves pathological renal damage caused by CP and decreases tubular apoptosis measured by DNA ladder formation and cleaved caspase- 3. These findings showed that PsPc-3 isolated from P. columbinus protects and inhibits tubular apoptosis in cisplatin-induced ORI. Furthermore, PsPc-3 has no influence on the anticancer efficacy of CP in rats. Thus, PsPc-3 derived from P. columbinus might provide a novel therapy method for cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sahar S Mohamed
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada S Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A M Ghoneim
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
10
|
Preparation of Water-Soluble Acetylaminoglucan with Low Molecular Weight and Its Anti-Tumor Activity on H22 Tumor-Bearing Mice. Molecules 2022; 27:molecules27217273. [DOI: 10.3390/molecules27217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel low molecular weight of acetylaminoglucan (AGA) was obtained and its antitumor activity on H22 tumor-bearing mice was investigated. The results of UV, HPLC and FT-IR showed that AGA present high purity with low molecular weight of 2.76 × 103 Da. Animal experiments showed that AGA could inhibit the proliferation of tumor cells in H22 tumor-bearing mice by protecting the immune organs, enhancing the phagocytosis ability of macrophages, killing activity of NK cells and proliferation capacity of lymphocytes, improving the levels of cytokines in vivo and regulating the distribution of lymphocyte subsets, and the tumor inhibition rate reached to 52.74% (50 mg/kg). Cell cycle determination further indicated that AGA could induce apoptosis of tumor cells and arrests it in S phase. These results will provide a data basis for the potential application of AGA in pharmaceutical industry.
Collapse
|
11
|
Gong P, Long H, Guo Y, Wang S, Chen F, Chen X. Isolation, Structural Characterization, and Hypoglycemic Activities In Vitro of Polysaccharides from Pleurotus eryngii. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207140. [PMID: 36296732 PMCID: PMC9609144 DOI: 10.3390/molecules27207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Pleurotus eryngii (PE) is an edible mushroom with high nutritional value. Pleurotus eryngii polysaccharides (PEPs) are one of the main active ingredients and manifest a great variety of biological activities. This study mainly focused on the chemical characterization and biological activities of PEPs, which were separated into two fractions (named WPS and P-1). WPS is mainly dominated by β-glycosidic bonds and contains α-glycosidic bonds, and P-1 only contains α-glycosidic bonds. The molecular weights of WPS and P-1 were 4.5 × 105 Da and 2.2 × 104 Da. The result of GC indicated that two the fractions were composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose, with a ratio of 0.35:0.24:0.45:0.24:28.78:1.10 for WPS and 0.95:0.64:0.66:1.84:60.69:0.67 for P-1. The advanced structure studies indicated that the two fractions had no triple-helical structure, where WPS had a dense structure and P-1 had a loose structure. In addition, the antioxidant activity of WPS surpassed P-1, and the two fractions also exhibited a high hypoglycemic activity via inhibiting α-glycosidase activities and promoting the expression of PI3K-AKT signaling pathway based on in vitro assay and cell experiments.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Siyuan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: ; Tel.: +86-13772196479
| |
Collapse
|
12
|
Wang T, Tao Y, Lai C, Huang C, Ling Z, Yong Q. Influence of glycosyl composition on the immunological activity of pectin and pectin-derived oligosaccharide. Int J Biol Macromol 2022; 222:671-679. [PMID: 36174858 DOI: 10.1016/j.ijbiomac.2022.09.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Factors causing differences in immune activities between pectin and pectin-derived oligosaccharides have not been fully studied. In this article, four samples with different molecular weights and monosaccharide compositions, including polygalacturonic acid (poly-GA) and its oligosaccharide (oligo-GA), navel orange peel pectin (NP) and its oligosaccharide (oligo-NP), were used to compare their immunomodulatory properties on RAW264.7 cells. All samples had nontoxic effect on cells, oligo-GA and oligo-NP could increase the production of nitric oxide and cytokines to a much higher level than poly-GA and NP. The findings revealed that reducing the molecular weight and preserving the branched regions of pectin-derived samples could improve their immune-enhancing effects on macrophages. Interestingly, the addition of TAK-242 (TLR4 inhibitor) also demonstrated that the tested pectin oligosaccharides could stimulate the activation of macrophages through TLR4 signaling pathway. These results confirmed the potential value of pectin oligosaccharides, and provided theoretical support for their application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Potential Uses of Scallop Shell Powder as a Substrate for the Cultivation of King Oyster Mushroom (Pleurotus eryngii). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scallop shells are currently a major form of waste generated in the Chinese fishing industry. However, they have the potential to be used as important industrial products. This study was conducted to assess the utility of scallop shell powder (SSP) supplementation in improving the growth of king oyster mushrooms (Pleurotus eryngii) grown on sawdust and sugarcane bagasse substrates. The outcomes of interest included mycelial growth, yield, biological efficiency, fruiting body traits, nutrient supply, and the mineral composition of P. eryngii. Supplementation with SSP accelerated the mycelial growth of P. eryngii. The yield of fruiting bodies (399.5 g/bag) and the biological efficiency (84.6%) were 14% higher after supplementation of the substrate with 2% SSP compared with those of mushrooms grown on substrates not supplemented with SSP (349.8 g/bag and 74.0%, respectively). Moreover, the crude protein and fiber contents of the fruiting bodies significantly improved after growth with SSP. Furthermore, supplementation with 2% SSP increased the calcium (Ca) content of the fruiting bodies of P. eryngii by 64% (to 67.2 ± 15.7 mg kg−1) compared with that of mushrooms grown on a control substrate (41.0 mg kg−1). This study revealed that P. eryngii can efficiently use the Ca provided by raw SSP, generating higher Ca contents in their fruiting bodies. Our results demonstrate that the supplementation of substrates with SSP can be useful for enhancing both the yield and nutritional content of P. eryngii.
Collapse
|
14
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Chemical structure and ACE inhibitory activity of polysaccharide from Artemisia vulgaris L. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
17
|
Xu H, Hu Y, Hu Q, Liu J, Su A, Xie M, Ma G, Pei F, Mariga AM, Yang W. Isolation, characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes. Int J Biol Macromol 2021; 189:11-17. [PMID: 34411611 DOI: 10.1016/j.ijbiomac.2021.08.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.
Collapse
Affiliation(s)
- Hui Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ye Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gaoxing Ma
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box 972-60400, Meru, Kenya
| | - Wenjian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
18
|
Yang S, Chen X, Sun J, Qu C, Chen X. Polysaccharides from traditional Asian food source and their antitumor activity. J Food Biochem 2021; 46:e13927. [PMID: 34595763 DOI: 10.1111/jfbc.13927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Polysaccharides extracted from Asian traditional food source have been demonstrated to possess different antitumor activities mostly without side effect. In this paper, we reviewed many kinds of polysaccharides from different Asian food source and their antitumor activities. Some are common food such as different mushroom with more research. Some are special e.g., Ginseng, Salvia, Astragalus, Lycium barbarum etc. with relatively fewer research. This review mainly focused on their structure, derivatives, antitumor activities and their mechanism of action in the last decades. It aimed to bridge traditional Asian ingredients with tumor and cancer curation in order to avoid side effect of traditional treatment. PRACTICAL APPLICATIONS: There are abundant resources of Asian food. And polysaccharides from these resources have been showed good antitumor activities and immunopotentiating activity. This review introduced the advance of the polysaccharides and their antitumor activities, which will promote the development antitumor medicine derived from Asian food source, or their applications as Adjuvant therapy of traditional chemotherapy and radiotherapy. Due to their multiple antitumor activities, enhancing immunity potential, and non-toxic side-effects, it might be utilized for the treatment of multiple tumors and improve the health and the life quality of patients whether as anti-tumor drugs or as adjuvant therapy method. Furthermore, traditional Asian food source is rich. In the near future, more and more efficient polysaccharides with antitumor activities of Asian food source will be discovered. There will be broad application market for the polysaccharides.
Collapse
Affiliation(s)
- Shengfeng Yang
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | | | - Jing Sun
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Chengming Qu
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaolin Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
19
|
Barone R, Caruso Bavisotto C, Rappa F, Gargano ML, Macaluso F, Paladino L, Vitale AM, Alfano S, Campanella C, Gorska M, Di Felice V, Cappello F, Venturella G, Marino Gammazza A. JNK pathway and heat shock response mediate the survival of C26 colon carcinoma bearing mice fed with the mushroom Pleurotus eryngii var. eryngii without affecting tumor growth or cachexia. Food Funct 2021; 12:3083-3095. [PMID: 33720221 DOI: 10.1039/d0fo03171b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Biomedicine, Neurosciences and advanced Diagnostics, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Song X, Cui W, Gao Z, Zhang J, Jia L. Structural characterization and amelioration of sulfated polysaccharides from Ganoderma applanatum residue against CCl 4-induced hepatotoxicity. Int Immunopharmacol 2021; 96:107554. [PMID: 33812257 DOI: 10.1016/j.intimp.2021.107554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Natural polysaccharides and their derivatives have attracted academic attention due to their extensive physiological activities. However, the hepatoprotective effects against carbon tetrachloride (CCl4) toxicity have not been well elucidated. The objectives of this study were to characterize the structural properties of sulfated Ganoderma applanatum residue polysaccharides (SGRP) and to evaluate their inhibitory effects on liver fibrosis caused by oxidative stress and inflammation. Our in vivo study showed that SGRP was hepatoprotective in CCl4-induced chronic liver injury mice. It reduced the histopathological damages, down-regulated CYP2E1 (cytochrome P450 2E1) expression, reduced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, improved the anti-oxidative and anti-inflammatory properties, inhibited TLR4/NF-κB signaling pathway, and reduced the release of inflammatory cytokines. The structural studies indicated that SGRP is a heteropolysaccharide with 7.8% sulfur content and α-linked residue. Our study projects SGRP as a potential candidate in anti-fibrosis treatment by using it as a food supplement or in medicines produced by pharmaceutical industries.
Collapse
Affiliation(s)
- Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zheng Gao
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
22
|
Ellefsen CF, Wold CW, Wilkins AL, Rise F, Samuelsen ABC. Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1. Carbohydr Polym 2021; 264:117991. [PMID: 33910729 DOI: 10.1016/j.carbpol.2021.117991] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
The mushroom cell wall contains polysaccharides that can activate cells of the innate immune system through receptors such as Toll-like receptors (TLR) and dectin-1. In the present study, Pleurotus eryngii polysaccharide fractions containing a 3-O methylated mannogalactan and (1→3)/(1→6)-β-d-glucans were isolated and extensively characterized by 2D NMR and methylation analysis. Traces of a (1→3)-α-d-glucan and a (1→2)-α-d-mannan were also observed. Affinity for TLR2, TLR2-TLR6 and dectin-1 using HEK-cells expressing the relevant receptor genes was tested. PeWN, containing the 3-O methylated mannogalactan, was inactive towards TLR2, whereas fraction PeWB, containing more β-glucan, activated the TLR2-TLR6 heterodimer. Activation of the human β-glucan receptor dectin-1 correlated with the amount of β-glucan in each fraction. Nitric oxide and cytokine supernatant levels of D2SC/1 dendritic cells stimulated with the P. eryngii fractions and interferon-γ were low to moderate. The results indicate that the immunomodulatory activity of water-soluble P. eryngii polysaccharide fractions is modest.
Collapse
Affiliation(s)
| | - Christian Winther Wold
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Alistair L Wilkins
- School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, NO-0315, Oslo, Norway
| | - Anne Berit C Samuelsen
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, NO-0316, Oslo, Norway
| |
Collapse
|
23
|
Luo L, Wang Y, Zhang S, Guo L, Jia G, Lin W, Gao Z, Gao Y, Sun T. Preparation and characterization of selenium-rich polysaccharide from Phellinus igniarius and its effects on wound healing. Carbohydr Polym 2021; 264:117982. [PMID: 33910711 DOI: 10.1016/j.carbpol.2021.117982] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/07/2023]
Abstract
The modified of polysaccharides show various bio-activities. In our work, Phellinus igniarius Selenium-enriched mycelias polysaccharides (PSeP) were prepared from Phellinus igniarius, and its antioxidant and anti-inflammatory effects on injured mice were evaluated. The selenium content and physical properties of polysaccharides were characterized by GC, HPGPC, and FT-IR analysis. The results showed that PSeP could reduce reactive oxygen species (ROS) levels, myeloperoxidase (MPO) activity as well as malondialdehyde (MDA) content. Meanwhile, it increased the enzyme activities of glutathione peroxidase (GSH-Px) and catalase (CAT). Finally, it showed obvious wound healing effects in vivo. Moreover, PSeP could clear the ROS without obvious cytotoxicity. PSeP could further improve its ability to clear ROS level to promote skin wound healing in mice three days in advance.
Collapse
Affiliation(s)
- Lujun Luo
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yuxia Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Sai Zhang
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Li Guo
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Guangtao Jia
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Weiping Lin
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Zhiqin Gao
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yuanyuan Gao
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, China.
| | - Tongyi Sun
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
24
|
Characterization and Hepatoprotections of Ganoderma lucidum Polysaccharides against Multiple Organ Dysfunction Syndrome in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9703682. [PMID: 33613827 PMCID: PMC7876828 DOI: 10.1155/2021/9703682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Background The liver is one of the most commonly affected organs in multiple organ dysfunction syndrome (MODS). In recent years, there have been many studies on Ganoderma lucidum polysaccharides (GLP), but the role of GLP in MODS is still unclear. The purpose of this work was to explore the antioxidant, anti-inflammatory, and protective effects of GLP on the liver in MODS model mice. Methods The characteristic properties of GLP were processed by physicochemical analysis. The MODS models were successfully established with intraperitoneal injection of zymosan in Kunming strain mice. The antioxidant, anti-inflammatory, and hepatoprotective effects of GLP were processed both in vitro and in vivo by evaluating the oxidative parameters, inflammatory factors, and liver pathological observations. Results The characterization analysis revealed that GLP was a pyranose mainly composed of glucose with the molecular weights (Mw) of 8309 Da. The experimental results proved that GLP had potential hepatoprotection possibly by improving the antioxidant status (scavenging excessive oxygen radicals, increasing the antioxidant enzyme activities, and reducing the lipid peroxide), alleviating the inflammatory response (reducing the inflammatory factor levels), and guaranteeing the liver functions. Conclusions This research suggested that GLP had the potential to be developed as a natural medicine for the treatment of multiple organ failure.
Collapse
|
25
|
Yang H, Bai J, Ma C, Wang L, Li X, Zhang Y, Xu Y, Yang Y. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L. Int J Biol Macromol 2020; 165:738-746. [PMID: 32971173 DOI: 10.1016/j.ijbiomac.2020.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
The polysaccharides from blackcurrant (Ribes nigrum L.) fruits were degraded by ultrasonic irradiation. Results showed that viscosity-average molecular weight decreased with increasing ultrasonic time or power. The degradation was fitted to the second-order kinetics model and midpoint chain scission model. Gas chromatographic analysis demonstrated that the native polysaccharide and three degraded polysaccharides were composed of the same monosaccharides but in different ratios. Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the presence of α-, β-pyranose rings and the same six sugar residues in the four blackcurrant polysaccharides. Compared to the native polysaccharide, three degraded polysaccharides displayed better rheological properties and stronger protective effects against erythrocyte hemolysis. Collectively, the results support the potential utility of blackcurrant polysaccharides as natural antioxidants.
Collapse
Affiliation(s)
- Haihong Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Conglei Ma
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Wang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqing Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Evaluation of the Cultivated Mushroom Pleurotus ostreatus Basidiocarps Using Vibration Spectroscopy and Chemometrics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruiting bodies (basidiocarps) of the cultivated mushroom Pleurotus ostreatus (16 strains) were characterized by vibration spectroscopy and chemometrics. According to organic elemental analysis and Megazyme assay, the basidiocarps contained ~6.2–17.5% protein and ~18.8–58.2% total glucans. The neutral sugar analysis confirmed that glucose predominated in all the samples (~71.3–94.4 mol%). Fourier-transformed (FT) mid- and near-infrared (FT MIR, FT NIR) and FT Raman spectra of the basidiocarps were recorded, and the characteristic bands of proteins, glucans and chitin were assigned. The samples were discriminated based on principal component analysis (PCA) of the spectroscopic data in terms of biopolymeric composition. The partial least squares regression (PLSR) models based on first derivatives of the vibration spectra were obtained for the prediction of the macromolecular components, and the regression coefficients R2 and root mean square errors (RMSE) were calculated for the calibration (cal) of proteins (R2cal 0.981–0.994, RMSEcal ~0.3–0.5) and total glucans (R2cal 0.908–0.996, RMSEcal ~0.6–3.0). According to cross-validation (CV) diagnosis, the protein models were more precise and accurate (R2cv 0.901–0.970, RMSEcv ~0.6–1.1) than the corresponding total glucan models (R2cv 0.370–0.804, RMSEcv ~4.7–8.5) because of the wide structural diversity of these polysaccharides. Otherwise, the Raman band of phenylalanine ring breathing vibration at 1004 cm−1 was used for direct quantification of proteins in P. ostreatus basidiocarps (R ~0.953). This study showed that the combination of vibration spectroscopy with chemometrics is a powerful tool for the evaluation of culinary and medicinal mushrooms, and this approach can be proposed as an alternative to common analytical methods.
Collapse
|
27
|
Zhang Y, Li X, Yang Q, Zhang C, Song X, Wang W, Jia L, Zhang J. Antioxidation, anti-hyperlipidaemia and hepatoprotection of polysaccharides from Auricularia auricular residue. Chem Biol Interact 2020; 333:109323. [PMID: 33212049 DOI: 10.1016/j.cbi.2020.109323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
As hyperlipidemia was a pathological progress by lipid dysfunctions, the present object was to investigate the hypolipidemic and hepatoprotective effects of Auricularia auricular residue polysaccharides (RPS) against HFE (high-fat emulsion) toxicities in mice. The structure analysis showed that the RPS was pyranose-polysaccharides mainly composed of glucose with the weight-average molecular weight of 2.00 × 105 Da. The in vivo experiments demonstrated that the RPS had potential hepatoprotections by enhancing the antioxidant and anti-hyperlipidaemia status, and could inhibit the increasing body weights. Besides, the RPS could improve the glucose utilization with the oral glucose tolerance test (120 min) of 5.04 ± 0.12 mmol/L at the dose of 400 mg/kg bw. The results in present study demonstrated that RPS could be used as a functional foods and natural medicines against the HFE-induced hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - XuePing Li
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Qihang Yang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an, 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenshuai Wang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
28
|
Ma G, Kimatu BM, Yang W, Pei F, Zhao L, Du H, Su A, Hu Q, Xiao H. Preparation of newly identified polysaccharide from Pleurotus eryngii and its anti-inflammation activities potential. J Food Sci 2020; 85:2822-2831. [PMID: 32794226 DOI: 10.1111/1750-3841.15375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/01/2022]
Abstract
The anti-inflammatory effects of two newly identified Pleurotus eryngii polysaccharides (WPEP, NPEP) were determined in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in this study. Characterization analysis revealed that molecular weights of WPEP and NPEP were 167 and 274 kDa, and were mainly composed of glucose with β-type glycosidic linkages. WPEP and NPEP could significantly inhibit LPS-induced inflammatory responses by regulating the production of NO, Protaglandin E2 (PGE2 ), Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-6 (IL-6). This was through the blocking of the activation of Mitogen-activated protein kinase (MAPK) pathway by inhibiting phosphorylation of p38, extracellular regulation of protein kinases 1/2, and stress-activated protein kinase/jun aminoterminal kinase. Moreover, WPEP and NPEP inhibited NF-κB signaling by reducing nuclear translocation and phosphorylation of p65. Overall, our results, for the first time identified two P. eryngii polysaccharides and demonstrated the related anti-inflammatory effects, which indicated the favorable potential of P. eryngii polysaccharide as specific functional foods. PRACTICAL APPLICATION: This study prepared and characterized newly identified Pleurotus eryngii water-soluble polysaccharide fractions and elucidated the nutritional benefits, mainly the immune response related to anti-inflammatory activities by utilizing lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Collectively, results of this study suggested that the P. eryngii polysaccharide fractions could be considered as potential candidates for exploration in the development of new immunomodulatory agent or functional supplementary foods.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, 01002, USA
| | - Anxiang Su
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01002, USA
| |
Collapse
|
29
|
Zheng X, Sun H, Wu L, Kong X, Song Q, Zhu Z. Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii. Int J Biol Macromol 2020; 156:1512-1519. [DOI: 10.1016/j.ijbiomac.2019.11.199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
30
|
Liu Y, Hu CF, Feng X, Cheng L, Ibrahim SA, Wang CT, Huang W. Isolation, characterization and antioxidant of polysaccharides from Stropharia rugosoannulata. Int J Biol Macromol 2020; 155:883-889. [DOI: 10.1016/j.ijbiomac.2019.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/20/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023]
|
31
|
Chemical structure and inhibition on α-glucosidase of a novel polysaccharide from Hypsizygus marmoreus. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Antunes F, Marçal S, Taofiq O, M. M. B. Morais A, Freitas AC, C. F. R. Ferreira I, Pintado M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020; 25:molecules25112672. [PMID: 32526879 PMCID: PMC7321189 DOI: 10.3390/molecules25112672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the food sector is highly concerned with environmental issues and foreseen to develop strategies to reduce waste and losses resulting from activities developed in the food system. An approach is to increment added value to the agro-industrial wastes, which might provide economic growth and environmental protection, contributing to a circular economy. Mushroom by-products represent a disposal problem, but they are also promising sources of important compounds, which may be used due to their functional and nutritional properties. Research has been developed in different fields to obtain value added solutions for the by-products generated during mushroom production and processing. Bioactive compounds have been obtained and applied in the development of nutraceutical and pharmaceutical formulations. Additionally, other applications have been explored and include animal feed, fertilizer, bioremediation, energy production, bio-based materials, cosmetics and cosmeceuticals. The main purpose of this review is to highlight the relevant composition of mushroom by-products and discuss their potential as a source of functional compounds and other applications. Future research needs to explore pilot and industrial scale extraction methods to understand the technological feasibility and the economic sustainability of the bioactive compounds extraction and valorization towards different applications.
Collapse
Affiliation(s)
- Filipa Antunes
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Sara Marçal
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Alcina M. M. B. Morais
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Ana Cristina Freitas
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Manuela Pintado
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
- Correspondence:
| |
Collapse
|
33
|
ZHENG HG, CHEN JC, WENG MJ, AHMAD I, ZHOU CQ. Structural characterization and bioactivities of a polysaccharide from the stalk residue of Pleurotus eryngii. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.08619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | - Ijaz AHMAD
- Food & Biotechnology Research Center, Pakistan
| | - Chun-Quan ZHOU
- Fujian University of Traditional Chinese Medicine, China
| |
Collapse
|
34
|
Zhang B, Li Y, Zhang F, Linhardt RJ, Zeng G, Zhang A. Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: A review. Int J Biol Macromol 2020; 150:1342-1347. [DOI: 10.1016/j.ijbiomac.2019.10.144] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
|
35
|
Wang J, Zhou Z, Dan D, Hu G. Physicochemical properties and bioactivities of Lentinula edodes polysaccharides at different development stages. Int J Biol Macromol 2020; 150:573-577. [PMID: 32057877 DOI: 10.1016/j.ijbiomac.2020.02.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/26/2022]
Abstract
Lentinula edodes polysaccharides from at four different development stages (referred to L1, L2, L3 and L4, respectively) were extracted by hot water method, and graded ethanol precipitation to final concentration of 20%, 50% and 70%, then12 crude polysaccharide fractions (referred to L1P20, L2P20, L3P20; L4P20, L1P50, L2P50, L3P50, L4P50 and L1P70, L2P70, L3P70, L4P70, respectively) were obtained. Physicochemical properties and exoteric bioactivities of the crude polysaccharide fractions were measured. The results of physicochemical properties revealed that extraction yields of P20 fractions were significantly higher than those of P50 and P70 fractions, and the contents of polysaccharide and β-glucan in L3P50 fractions were higher, and the viscosity-average molecular weight reached a maximum at L2, and high molecular weight polysaccharides could be obtained at a low alcohol concentration in P20 fractions, and the glycosidic bonds were found to exist in all crude polysaccharide fractions. These crude polysaccharide fractions showed different bioactivities, wherein the polysaccharides of higher molecular weight in P20 fractions had greater bioactivity. These results showed that immature stage of Lentinula edodes was the optimal harvest time for obtaining higher bioactivity of crude polysaccharides.
Collapse
Affiliation(s)
- Jiaming Wang
- School of Environmental Ecology and Bioengineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhou Zhou
- School of Environmental Ecology and Bioengineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Dongmei Dan
- Hubei Yuguo Gu Ye Co., Ltd., Suizhou 441300, China.
| | - Guoyuan Hu
- School of Environmental Ecology and Bioengineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
36
|
Effects of freeze drying and hot-air drying on the physicochemical properties and bioactivities of polysaccharides from Lentinula edodes. Int J Biol Macromol 2020; 145:476-483. [DOI: 10.1016/j.ijbiomac.2019.12.222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
|
37
|
Duarte Trujillo AS, Jiménez Forero JA, Pineda Insuasti JA, González Trujillo CA, García Juarez M. Extracción de sustancias bioactivas de <i>Pleurotus ostreatus</i> (Pleurotaceae) por maceración dinámica. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.72409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La extracción de compuestos bioactivos de Pleurotus ostreatus por maceración dinámica, es un proceso sencillo y económico, que normalmente presenta baja eficiencia. El objetivo de este trabajo fue evaluar el proceso de extracción para determinar qué tratamiento permite la mayor eficiencia, analizando la influencia de los factores de estudio: concentración de etanol (50 %, 80 %, 95 %) y relación sólido/solvente (1:10, 1:20, 1:30). Se maceraron 5 g de polvo fúngico en etanol acuoso durante 90 minutos, a 150 rpm, 25 °C y tamaño de partícula de 0,5 a 1,0 mm. Se trataron los datos mediante estadística paramétrica con un nivel de confianza del 95 %. Los resultados revelaron que la mayor eficiencia de extracción total (40,9 %) en base seca se obtuvo con etanol al 50 % y una relación sólido/solvente de 1:30. Por componentes se encontró que, el etanol al 50 % con una relación de 1:20 permitió la máxima eficiencia para carbohidratos totales (17,9 %) y polisacáridos (17,2 %), mientras que con una relación de 1:30 se obtuvo la máxima eficiencia para azúcares reductores (0,91 %) y polifenoles (0,23 %). Por otro lado, el etanol al 95 % y la relación 1:30 permitió la máxima eficiencia para proteínas (29,4 %). La extracción de beta-glucanos no fue significativa. La eficiencia de la extracción está muy influenciada por los parámetros de operación, principalmente por la concentración de etanol; en particular, la de 50 % resultó más favorable para la obtención de la mayoría de sustancias bioactivas con potencial nutracéutico.
Collapse
|
38
|
Oliveira RS, Biscaia SM, Bellan DL, Viana SR, Di-Medeiros Leal MC, Vasconcelos AFD, Lião LM, Trindade ES, Carbonero ER. Structure elucidation of a bioactive fucomannogalactan from the edible mushroom Hypsizygus marmoreus. Carbohydr Polym 2019; 225:115203. [DOI: 10.1016/j.carbpol.2019.115203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
|
39
|
Dong Y, Pei F, Su A, Sanidad KZ, Ma G, Zhao L, Hu Q. Multiple fingerprint and fingerprint-activity relationship for quality assessment of polysaccharides from Flammulina velutipes. Food Chem Toxicol 2019; 135:110944. [PMID: 31707031 DOI: 10.1016/j.fct.2019.110944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022]
Abstract
Polysaccharides are known as one of the most important bioactive compounds in Flammulina velutipes. However, there is no accurate and comprehensive assessment method to evaluate and authenticate F. velutipes polysaccharides (FVPs) from different sources. In this study, a multiple fingerprint analysis method including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and high-performance liquid chromatography (HPLC) was established. The inhibitory activities of FVPs against HepG2 were measured and introduced into multiple linear regression (MLR) analysis to investigate fingerprint-activity relationship. The principal component analysis (PCA) scores showed that the polysaccharides extracted from 20 batches of different F. velutipes were highly similar, and substandard samples could be distinguished from the authentic polysaccharides clearly. The glucuronic acid could be considered as a marker for discrimination of white and yellow F. velutipes polysaccharides in HPLC fingerprints. Moreover, the HPLC fingerprint-growth inhibitory activity relationship illuminated that monosaccharides composition played an important role on the HepG2 growth inhibitory activity, and activity-associated markers (mannose, rhamnose, xylose, and galactose) were chosen to assess FVPs from different sources. The suggested HPLC fingerprint-activity relationship method provides an integrated strategy for the quality control of F. velutipes and its related products.
Collapse
Affiliation(s)
- Yutong Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, People's Republic of China
| | - Anxiang Su
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, 01003, MA, USA
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
40
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
41
|
Yin Z, Zhang W, Zhang J, Liu H, Guo Q, Chen L, Wang J, Kang W. Two Novel Polysaccharides in Psoralea corylifolia L and anti-A549 Lung Cancer Cells Activity In Vitro. Molecules 2019; 24:E3733. [PMID: 31623207 PMCID: PMC6833038 DOI: 10.3390/molecules24203733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022] Open
Abstract
Two novel water soluble heteroglycan (PCp-I and PCp-II) with anti-A549 lung cancer cells activity were isolated from Psoralea corylifolia L. Their average molecular weights were 2.721 × 104 and 2.850 × 104. PCp-I and PCp-II had the same monosaccharide composition, but their molar ratios were different. Based on methylation and NMR spectroscopy, the part structure of PCp-I was identified. The results of scanning electron microscope (SEM) showed that PCp-I had an irregular porous structure and PCp-II was flaky and irregularly curved. The results of thermogravimetry-differential scanning calorimetry (TG-DSC) showed that PCp-I and PCp-II had good thermal stability. Furthermore, PCp-I and PCp-II exhibited significant anti-A549 lung cancer cells activity (IC50 = 64.84 and 126.30 μM) in vitro.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Wei Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Juanjuan Zhang
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Huili Liu
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
| | - Qingfeng Guo
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Lin Chen
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| |
Collapse
|
42
|
Li J, Li S, Zheng Y, Zhang H, Chen J, Yan L, Ding T, Linhardt RJ, Orfila C, Liu D, Ye X, Chen S. Fast preparation of rhamnogalacturonan I enriched low molecular weight pectic polysaccharide by ultrasonically accelerated metal-free Fenton reaction. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.05.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Zhao R, Cheng N, Nakata PA, Zhao L, Hu Q. Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Res Int 2019; 123:383-392. [DOI: 10.1016/j.foodres.2019.04.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
44
|
Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019; 24:molecules24173122. [PMID: 31466265 PMCID: PMC6749352 DOI: 10.3390/molecules24173122] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Polysaccharides are ubiquitous biomolecules found in nature that contain various biological and pharmacological activities that are employed in functional foods and therapeutic agents. Natural polysaccharides are obtained mainly by extraction and purification, which may serve as reliable procedures to enhance the quality and the yield of polysaccharide products. Moreover, structural analysis of polysaccharides proves to be promising and crucial for elucidating structure–activity relationships. Therefore, this report summarizes the recent developments and applications in extraction, separation, purification, and structural analysis of polysaccharides of plants and fungi.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| | - Yueping Bai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
|
46
|
Gao Z, Yuan F, Li H, Feng Y, Zhang Y, Zhang C, Zhang J, Song Z, Jia L. The ameliorations of Ganoderma applanatum residue polysaccharides against CCl 4 induced liver injury. Int J Biol Macromol 2019; 137:1130-1140. [PMID: 31295484 DOI: 10.1016/j.ijbiomac.2019.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 01/22/2023]
Abstract
This work investigated the protective effects of Ganoderma applanatum residue polysaccharides (GRP) on the CCl4-induced hepatotoxicity. The results indicated that GRP showed significantly effects on preventing the increase of AST, ALT and ALP levels in serum, elevating the activities of SOD, GSH-Px and CAT, decreasing the contents of MDA and LPO, and reducing the CYP2E1 and TGF-β concentrations in CCl4-induced mice, respectively. Meanwhile, the levels of TNF-α and IL-6 were significantly decreased, while the value of IL-10 was increased by GRP treatment. Besides, the western blot assay showed the IκBα expressions were significantly increased and the p-p65 was decreased by the treatment with GRP. The characterizations indicated that the GRP was heteropolysaccharide with lower molecular weights and α-furanoside residues. These results demonstrated that GRP might be a potential material for drug and functional food development against chemical hepatic injury.
Collapse
Affiliation(s)
- Zheng Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Fangfang Yuan
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Huaping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yanbo Feng
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
47
|
Han J, Guo D, Sun XY, Wang JM, Ouyang JM, Gui BS. Repair Effects of Astragalus Polysaccharides with Different Molecular Weights on Oxidatively Damaged HK-2 Cells. Sci Rep 2019; 9:9871. [PMID: 31285477 PMCID: PMC6614371 DOI: 10.1038/s41598-019-46264-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
This study investigated the repair effects of three Astragalus polysaccharides (APSs) with different molecular weights (Mws) on injured human renal proximal tubular epithelial (HK-2) cells to reveal the effect of Mw of polysaccharide on cell repair. A damage model was established by injuring HK-2 cells with 2.6 mM oxalate, and APS0, APS1, and APS2 with Mw of 11.03, 4.72, and 2.61 KDa were used to repair the damaged cells. After repair by APSs, the morphology of damaged HK-2 cells gradually returned to normal, the destruction of intercellular junctions recovered, intracellular reactive oxygen species production amount decreased, and their mitochondrial membrane potential increased. In addition, the cell cycle progression gradually normalized, lysosome integrity increased, and cell apoptotic rates obviously declined in the repaired cells. All three APSs could promote the expression of Keap1, Nrf2, SOD1, and CAT. In addition, the expression levels of inflammation markers containing MCP-1 and IL-6 decreased after APS repair. We deduced that APSs exert their repair function by activating the Nrf2-Keap1 signaling pathway and inhibiting inflammation. Among the APSs, APS1 with a moderate Mw provided the strongest repair effect. APSs may have a preventive effect on kidney stones.
Collapse
Affiliation(s)
- Jin Han
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| | - Bao-Song Gui
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
48
|
Hu Q, Yuan B, Wu X, Du H, Gu M, Han Y, Yang W, Song M, Xiao H. Dietary Intake of
Pleurotus eryngii
Ameliorated Dextran‐Sodium‐Sulfate‐Induced Colitis in Mice. Mol Nutr Food Res 2019; 63:e1801265. [DOI: 10.1002/mnfr.201801265] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Biao Yuan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Xian Wu
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Hengjun Du
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Min Gu
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Yanhui Han
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Wenjian Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Mingyue Song
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA 01002 USA
| |
Collapse
|
49
|
Zhang J, Chen M, Wen C, Zhou J, Gu J, Duan Y, Zhang H, Ren X, Ma H. Structural characterization and immunostimulatory activity of a novel polysaccharide isolated with subcritical water from Sagittaria sagittifolia L. Int J Biol Macromol 2019; 133:11-20. [PMID: 30986467 DOI: 10.1016/j.ijbiomac.2019.04.077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
In the present study, we obtained polysaccharides from Sagittaria sagittifolia L. (SSP) with subcritical water extraction (SWE). Two water-soluble polysaccharides (SSP-W1 and SSP-S1) from the acquired SSP were isolated with DEAE-52 and Sephadex G-100. Besides, the structural characteristics and immunostimulatory activity were also investigated. The results showed that both SSP-W1 and SSP-S1 were homogeneous polysaccharides and the molecular weight was 62.03 KDa and 15.2 KDa, respectively. In addition, both SSP-W1 and SSP-S1 are heteropolysaccharides. Moreover, FT-IR analysis showed that SSP-W1 was α-pyranose polysaccharide, while SSP-S1 was a typical β-pyranose polysaccharide. Congo red staining showed that there was no triple helix structure in both SSP-W1 and SSP-S1. Furthermore, both SSP-W1 and SSP-S1 could promote the proliferation, production of NO, and secretion of TNF-α and IL-10 of macrophages RAW 264.7, significantly. Therefore, the polysaccharides extracted from Sagittaria sagittifolia L. with SWE have the potential to be used as immunoreactive agent in medicine and functional foods.
Collapse
Affiliation(s)
- Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
50
|
Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr Polym 2019; 210:412-428. [PMID: 30732778 DOI: 10.1016/j.carbpol.2019.01.064] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
|