1
|
Yao Y, Zaw AM, Anderson DE, Jeong Y, Kunihiro J, Hinds MT, Yim EK. Fucoidan and topography modification improved in situ endothelialization on acellular synthetic vascular grafts. Bioact Mater 2023; 22:535-550. [PMID: 36330164 PMCID: PMC9619221 DOI: 10.1016/j.bioactmat.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombogenesis remains the primary failure of synthetic vascular grafts. Endothelial coverage is crucial to provide an antithrombogenic surface. However, most synthetic materials do not support cell adhesion, and transanastomotic endothelial migration is limited. Here, a surface modification strategy using fucoidan and topography was developed to enable fast in situ endothelialization of polyvinyl alcohol, which is not endothelial cell-adhesive. Among three different immobilization approaches compared, conjugation of aminated-fucoidan promoted endothelial monolayer formation while minimizing thrombogenicity in both in vitro platelet rich plasma testing and ex vivo non-human primate shunt assay. Screening of six topographical patterns showed that 2 μm gratings increased endothelial cell migration without inducing inflammation responses of endothelial cells. Mechanistic studies demonstrated that fucoidan could attract fibronectin, enabling integrin binding and focal adhesion formation and activating focal adhesion kinase (FAK) signaling, and 2 μm gratings further enhanced FAK-mediated cell migration. In a clinically relevant rabbit carotid artery end-to-side anastomosis model, 60% in situ endothelialization was observed throughout the entire lumen of 1.7 mm inner diameter modified grafts, compared to 0% of unmodified graft, and the four-week graft patency also increased. This work presents a promising strategy to stimulate in situ endothelialization on synthetic materials for improving long-term performance.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - YeJin Jeong
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Joshua Kunihiro
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Banu JR, Varjani S, Sharma P, Pandey A, Kumar S, Kim SH. Algae biorefinery: a promising approach to promote microalgae industry and waste utilization. J Biotechnol 2021; 345:1-16. [PMID: 34954289 DOI: 10.1016/j.jbiotec.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Microalgae have a number of intriguing characteristics that make them a viable raw material aimed at usage in a variety of applications when refined using a bio-refining process. They offer unique capabilities that allow them to be used in biotechnology-related applications. As a result, this review explores how to increase the extent to which microalgae may be integrated with various additional biorefinery uses in order to improve their maintainability. In this study, the use of microalgae as potential animal feed, manure, medicinal, cosmeceutical, ecological, and other biotechnological uses is examined in its entirety. It also includes information on the boundaries, openings, and improvements of microalgae and the possibilities of increasing the range of microalgae through techno-economic analysis. According to the findings of this review, financing supported research and shifting the focus of microalgal investigations from biofuels production to biorefinery co-products can help guarantee that they remain a viable resource. Furthermore, innovation collaboration is unavoidable if one wishes to avoid the high cost of microalgae biomass handling. This review is expected to be useful in identifying the possible role of microalgae in biorefinery applications in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080 Chelyabinsk, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Ashok Pandey
- Centre for Innovation and TranslationalResearch, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym 2021; 270:118347. [PMID: 34364596 PMCID: PMC10429693 DOI: 10.1016/j.carbpol.2021.118347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Fucoidan is a sulfated polysaccharide with various bioactivities. The application of fucoidan in cancer treatment, wound healing, and food industry has been extensively studied. However, the therapeutic value of fucoidan in cardiovascular diseases has been less explored. Increasing number of investigations in the past years have demonstrated the effects of fucoidan on cardiovascular system. In this review, we will focus on the bioactivities related to cardiovascular applications, for example, the modulation functions of fucoidan on coagulation system, inflammation, and vascular cells. Factors mediating those activities will be discussed in detail. Current therapeutic strategies and future opportunities and challenges will be provided to inspire and guide further research.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
5
|
Current developments in the oral drug delivery of fucoidan. Int J Pharm 2021; 598:120371. [PMID: 33581274 DOI: 10.1016/j.ijpharm.2021.120371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Fucoidan is well known to have various biological functions and is often investigated for pharmaceutical applications. Several studies have been conducted on clinical applications of fucoidan in recent years, especially regarding its oral drug delivery. Although fucoidan has shown promising results in various dosage forms, its potential applications as a dietary supplement have been demonstrated, and recent studies show that oral administration of fucoidan is preferred. However, the focus on the oral delivery of fucoidan in recent studies has caused its potency in therapy to be understudied. This review aims to provide results on the promising fucoidan activity by oral administration with in vivo studies. In addition to using it as an active ingredient, the utilization of fucoidan as an excipient in oral drug delivery systems will be discussed. An overview of fucoidan administration by oral delivery in recent promising studies will provide a direction for further investigations in clinical applications, particularly for fucoidan, which has a broad spectrum of bioactive properties.
Collapse
|
6
|
Zayed A, El-Aasr M, Ibrahim ARS, Ulber R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar Drugs 2020; 18:E571. [PMID: 33228066 PMCID: PMC7699409 DOI: 10.3390/md18110571] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans are marine sulfated biopolysaccharides that have heterogenous and complicated chemical structures. Various sugar monomers, glycosidic linkages, molecular masses, branching sites, and sulfate ester pattern and content are involved within their backbones. Additionally, sources, downstream processes, and geographical and seasonal factors show potential effects on fucoidan structural characteristics. These characteristics are documented to be highly related to fucoidan potential activities. Therefore, numerous chemical qualitative and quantitative determinations and structural elucidation methods are conducted to characterize fucoidans regarding their physicochemical and chemical features. Characterization of fucoidan polymers is considered a bottleneck for further biological and industrial applications. Consequently, the obtained results may be related to different activities, which could be improved afterward by further functional modifications. The current article highlights the different spectrometric and nonspectrometric methods applied for the characterization of native fucoidans, including degree of purity, sugar monomeric composition, sulfation pattern and content, molecular mass, and glycosidic linkages.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Mona El-Aasr
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Abdel-Rahim S. Ibrahim
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El-Guish Street, Tanta 31527, Egypt; (M.E.-A.); (A.-R.S.I.)
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
7
|
Pozharitskaya ON, Obluchinskaya ED, Shikov AN. Mechanisms of Bioactivities of Fucoidan from the Brown Seaweed Fucus vesiculosus L. of the Barents Sea. Mar Drugs 2020; 18:E275. [PMID: 32456047 PMCID: PMC7281726 DOI: 10.3390/md18050275] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to elucidate some mechanisms of radical scavenging and the anti-inflammatory, anti-hyperglycemic, and anti-coagulant bioactivities of high molecular weight fucoidan from Fucus vesiculosus in several in vitro models. Fucoidan has displayed potent 1, 1-diphenyl-2-picryl hydrazil radical scavenging and reduction power activities. It significantly inhibits the cyclooxygenase-2 (COX-2) enzyme (IC50 4.3 μg mL-1) with a greater selectivity index (lg(IC80 COX-2/IC80COX-1), -1.55) than the synthetic non-steroidal anti-inflammatory drug indomethacin (lg(IC80 COX-2/IC80COX-1), -0.09). A concentration-dependent inhibition of hyaluronidase enzyme with an IC50 of 2.9 μg mL-1 was observed. Fucoidan attenuated the lipopolysaccharide-induced expression of mitogen-activated protein kinase p38. Our findings suggest that the inhibition of dipeptidyl peptidase-IV (DPP-IV) (IC50 1.11 μg mL-1) is one of the possible mechanisms involved in the anti-hyperglycemic activity of fucoidan. At a concentration of 3.2 μg mL-1, fucoidan prolongs the activated partial thromboplastin time and thrombin time by 1.5-fold and 2.5-fold compared with a control, respectively. A significant increase of prothrombin time was observed after the concentration of fucoidan was increased above 80 μg mL-1. This evidenced that fucoidan may have an effect on intrinsic/common pathways and little effect on the extrinsic mechanism. This study sheds light on the multiple pathways of the bioactivities of fucoidan. As far as we know, the inhibition of hyaluronidase and DPP-IV by high molecular fucoidan was studied for the first time in this work. Our results and literature data suggest that molecular weight, sulfate content, fucose content, and polyphenols may contribute to these activities. It seems that high molecular weight fucoidan has promising therapeutic applications in different pharmacological settings. Anti-oxidant, anti-inflammatory and anti-coagulant drugs have been used for the management of complications of COVID19. Taken as a whole, fucoidan could be considered as a prospective candidate for the treatment of patients with COVID19; however, additional research in this field is required.
Collapse
Affiliation(s)
- Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (O.N.P.); (E.D.O.)
| | - Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (O.N.P.); (E.D.O.)
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (O.N.P.); (E.D.O.)
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia
| |
Collapse
|
8
|
Microalgae – A green multi-product biorefinery for future industrial prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101580] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
10
|
Wei X, Cai L, Liu H, Tu H, Xu X, Zhou F, Zhang L. Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydr Polym 2019; 208:86-96. [PMID: 30658835 DOI: 10.1016/j.carbpol.2018.12.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022]
Abstract
A fucoidan derived from marine brown algae has great potential in biomedical filed. Herein, the fucoidan was successfully isolated and purified by using chitosan microspheres, resulting in the sulfate fucoidan (CF) with degree of sulfation (DS) of 0.94. CF was identified to be highly branched, consisting of fucose (77.4%) and galactose (13.9%), etc., supported by the results of GCMS and light scattering with the structure-sensitive parameter of 0.98 in 0.15 M aqueous NaNO3. The individual CF and its desulfated derivative chains adopted sphere-like conformation in water, observed by atomic force microscopy. CF exhibited higher antiangiogenesis than the desulfated one and strong antileukemia activities through inhibiting cell proliferation and inducing cell apoptosis via cell cycle arrest at G1 phase in vitro. This work provided important information that ester sulfate groups of polysaccharide played an important role in the enhancing of bioactivities of fucoidan, and put forward to a potential drug to treat acute myelocytic leukemia (AML) and tumors.
Collapse
Affiliation(s)
- Xueqin Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Liqin Cai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hailing Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Honglei Tu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Alboofetileh M, Rezaei M, Tabarsa M, Rittà M, Donalisio M, Mariatti F, You S, Lembo D, Cravotto G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int J Biol Macromol 2019; 124:131-137. [PMID: 30471396 DOI: 10.1016/j.ijbiomac.2018.11.201] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 11/26/2022]
Abstract
In the current study, fucoidans from brown alga Nizamuddinia zanardinii were isolated with conventional and non-conventional extraction procedures to evaluate the effects of recently introduced technologies on biochemical characteristics and saccharide composition of the extracts, along with their antibacterial, antiviral and cytotoxic properties. The results demonstrated that subcritical water extraction showed the highest fucoidans yield (13.15%), while the lowest yield was obtained using ultrasound extraction method (3.6%). The polysaccharide chains consisted of fucose, galactose, glucose, mannose and xylose, whose molar percentages differed according to the extraction method used. The weight mean average molecular weight of fucoidans varied between 444 and 1184 kDa. The FT-IR spectroscopy confirmed the presence of sulfate esters by bending vibration of COS and stretching vibration of SO peaks at 818 and 1250 cm-1, respectively. Antibacterial assays showed that microwave- and subcritical water-extracted fucoidans inhibited the growth of E.coli and that enzyme-ultrasound, ultrasound-microwave and subcritical water extracted fucoidans exhibited inhibitory effects against P. aeruginosa at 2 mg/mL. Antiviral studies revealed that all the extracted fucoidans exerted strong antiviral activity against HSV-2 infection, with EC50 values in the 0.027-0.123 μg/mL range; indeed the viscozyme-extracted macromolecules displayed the best selectivity index.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Francesco Mariatti
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|
12
|
Kardeby C, Fälker K, Haining EJ, Criel M, Lindkvist M, Barroso R, Påhlsson P, Ljungberg LU, Tengdelius M, Rainger GE, Watson S, Eble JA, Hoylaerts MF, Emsley J, Konradsson P, Watson SP, Sun Y, Grenegård M. Synthetic glycopolymers and natural fucoidans cause human platelet aggregation via PEAR1 and GPIbα. Blood Adv 2019; 3:275-287. [PMID: 30700416 PMCID: PMC6373755 DOI: 10.1182/bloodadvances.2018024950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Fucoidans are sulfated fucose-based polysaccharides that activate platelets and have pro- and anticoagulant effects; thus, they may have therapeutic value. In the present study, we show that 2 synthetic sulfated α-l-fucoside-pendant glycopolymers (with average monomeric units of 13 and 329) and natural fucoidans activate human platelets through a Src- and phosphatidylinositol 3-kinase (PI3K)-dependent and Syk-independent signaling cascade downstream of the platelet endothelial aggregation receptor 1 (PEAR1). Synthetic glycopolymers and natural fucoidan stimulate marked phosphorylation of PEAR1 and Akt, but not Syk. Platelet aggregation and Akt phosphorylation induced by natural fucoidan and synthetic glycopolymers are blocked by a monoclonal antibody to PEAR1. Direct binding of sulfated glycopolymers to epidermal like growth factor (EGF)-like repeat 13 of PEAR1 was shown by avidity-based extracellular protein interaction screen technology. In contrast, synthetic glycopolymers and natural fucoidans activate mouse platelets through a Src- and Syk-dependent pathway regulated by C-type lectin-like receptor 2 (CLEC-2) with only a minor role for PEAR1. Mouse platelets lacking the extracellular domain of GPIbα and human platelets treated with GPIbα-blocking antibodies display a reduced aggregation response to synthetic glycopolymers. We found that synthetic sulfated glycopolymers bind directly to GPIbα, substantiating that GPIbα facilitates the interaction of synthetic glycopolymers with CLEC-2 or PEAR1. Our results establish PEAR1 as the major signaling receptor for natural fucose-based polysaccharides and synthetic glycopolymers in human, but not in mouse, platelets. Sulfated α-l-fucoside-pendant glycopolymers are unique tools for further investigation of the physiological role of PEAR1 in platelets and beyond.
Collapse
Affiliation(s)
- Caroline Kardeby
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Knut Fälker
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarten Criel
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Madelene Lindkvist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ruben Barroso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Peter Påhlsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, and
| | - Liza U Ljungberg
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany; and
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jonas Emsley
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
- Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Peter Konradsson
- Division of Organic Chemistry, Linköping University, Linköping, Sweden
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Magnus Grenegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Alboofetileh M, Rezaei M, Tabarsa M, You S. Ultrasound‐assisted extraction of sulfated polysaccharide from
Nizamuddinia zanardinii
: Process optimization, structural characterization, and biological properties. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12979] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mehdi Alboofetileh
- Department of Seafood Processing, Faculty of Marine SciencesTarbiat Modares University Noor Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine SciencesTarbiat Modares University Noor Iran
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine SciencesTarbiat Modares University Noor Iran
| | - SangGuan You
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon Republic of Korea
| |
Collapse
|
14
|
Peng Y, Wang Y, Wang Q, Luo X, He Y, Song Y. Hypolipidemic effects of sulfated fucoidan from Kjellmaniella crassifolia through modulating the cholesterol and aliphatic metabolic pathways. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Tengdelius M, Kardeby C, Fälker K, Griffith M, Påhlsson P, Konradsson P, Grenegård M. Fucoidan-Mimetic Glycopolymers as Tools for Studying Molecular and Cellular Responses in Human Blood Platelets. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/15/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Mattias Tengdelius
- Division of Organic Chemistry; Department of Physics; Biology and Chemistry (IFM); Linköping University; SE-581 83 Linköping Sweden
| | - Caroline Kardeby
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| | - Knut Fälker
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| | - May Griffith
- Division of Cell Biology; Department of Clinical and Experimental Medicine (IKE); Linköping University; SE-581 83 Linköping Sweden
| | - Peter Påhlsson
- Division of Cell Biology; Department of Clinical and Experimental Medicine (IKE); Linköping University; SE-581 83 Linköping Sweden
| | - Peter Konradsson
- Division of Organic Chemistry; Department of Physics; Biology and Chemistry (IFM); Linköping University; SE-581 83 Linköping Sweden
| | - Magnus Grenegård
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| |
Collapse
|
16
|
Gazor R, Pasdaran Lashgari A, Almasi S, Ghasemi S. Effect of Brown Algae Cystoseira trinodis Methanolic Extract on Renal Tissue. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
17
|
Gracher AHP, Santana AG, Cipriani TR, Iacomini M. A procoagulant chemically sulfated mannan. Carbohydr Polym 2016; 136:177-86. [DOI: 10.1016/j.carbpol.2015.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
18
|
Abstract
Tissue factor pathway inhibitor (TFPI) dampens the initiation of blood coagulation by inhibiting two potent procoagulant complexes, tissue factor-factor VIIa (TF-FVIIa) and early forms of prothrombinase. TFPI isoforms, TFPIα and TFPIβ, result from alternative splicing of mRNA, producing distinct C-terminal ends of the two proteins. Both isoforms inhibit TF-FVIIa, but only TFPIα can inhibit early forms of prothrombinase by binding of its positively charged C-terminus with high affinity to the acidic B-domain exosite of FVa, which is generated upon activation by FXa. TFPIα and TFPIβ are produced in cultured human endothelial cells, while platelets contain only TFPIα. Knowledge of the anticoagulant mechanisms and tissue expression patterns of TFPIα and TFPIβ have improved our understanding of the phenotypes observed in different mouse models of TFPI deficiency, the east Texas bleeding disorder, and the development of pharmaceutical agents that block TFPI function to treat hemophilia.
Collapse
Affiliation(s)
- S A Maroney
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - A E Mast
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|