1
|
Abdelhameed RE, Abdalla H, Abdel-Haleem M. Offsetting pb induced oxidative stress in Vicia faba plants by foliar spray of chitosan through adjustment of morpho-biochemical and molecular indices. BMC PLANT BIOLOGY 2024; 24:557. [PMID: 38877427 PMCID: PMC11177494 DOI: 10.1186/s12870-024-05227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Abdel-Haleem
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Fang J, Peng Y, Zheng L, He C, Peng S, Huang Y, Wang L, Liu H, Feng G. Chitosan-Se Engineered Nanomaterial Mitigates Salt Stress in Plants by Scavenging Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:176-188. [PMID: 38127834 DOI: 10.1021/acs.jafc.3c06185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Soil salinity seriously hinders the sustainable development of green agriculture. The emergence of engineered nanomaterials has revolutionized agricultural research, providing a new means to overcome the limitations associated with current abiotic stress management and achieve highly productive agriculture. Herein, we synthesized a brand-new engineered nanomaterial (Cs-Se NMs) through the Schiff base reaction of oxidized chitosan with selenocystamine hydrochloride to alleviate salt stress in plants. After the addition of 300 mg/L Cs-Se NMs, the activity of superoxide dismutase, catalase, and peroxidase in rice shoots increased to 3.19, 1.79, and 1.85 times those observed in the NaCl group, respectively. Meanwhile, the MDA levels decreased by 63.9%. Notably, Cs-Se NMs also raised the transcription of genes correlated with the oxidative stress response and MAPK signaling in the transcriptomic analysis. In addition, Cs-Se NMs augmented the abundance and variety of rhizobacteria and remodeled the microbial community structure. These results provide insights into applying engineered nanomaterials in sustainable agriculture.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chang He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixiang Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huipeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Ma J, Xie Y, Sun J, Zou P, Ma S, Yuan Y, Ahmad S, Yang X, Jing C, Li Y. Co-application of chitooligosaccharides and arbuscular mycorrhiza fungi reduced greenhouse gas fluxes in saline soil by improving the rhizosphere microecology of soybean. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118836. [PMID: 37634403 DOI: 10.1016/j.jenvman.2023.118836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Soil salinization can affect the ecological environment of soil and alter greenhouse gas (GHG) emissions. Chitooligosaccharides and Arbuscular mycorrhizal fungi (AMF) reduced the GHG fluxes of salinized soil, and this reduction was attributed to an alteration in the rhizosphere microecology, including changes in the activities of β-glucosidase, acid phosphatase, N-acetyl-β-D-glucosidase, and Leucine aminopeptidase. Additionally, certain bacteria species such as paracoccus, ensifer, microvirga, and paracyclodium were highly correlated with GHG emissions. Another interesting finding is that foliar spraying of chitooligosaccharides could transport to the soybean root system, and improve soybean tolerance to salt stress. This is achieved by enhancing the activities of antioxidant enzymes, and the changes in amino acid metabolism, lipid metabolism, and membrane transport. Importantly, the Co-application of chitooligosaccharides and Arbuscular mycorrhiza fungi was found to have a greater effect compared to their application alone.
Collapse
Affiliation(s)
- Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yi Xie
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Jiali Sun
- Baoshan Branch, Yunnan Tobacco Company, Baoshan, 678000, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
4
|
Duan S, Li Z, Khan Z, Yang C, Lu B, Shen H. Spraying phenolic acid-modifiedchitooligosaccharide derivatives improves anthocyanin accumulation in grape. Food Chem X 2023; 19:100770. [PMID: 37780329 PMCID: PMC10534123 DOI: 10.1016/j.fochx.2023.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023] Open
Abstract
Herein, four chitooligosaccharide derivatives (COS-RA, COS-FA, COS-VA, COS-GA) were prepared by laccase-catalyzed chitooligosaccharide modification with rosmarinic acid (RA), ferulic acid (FA), gallic acid (GA), and vanillic acid (VA), and structures were characterized. RA and FA resulted in higher amino-substitution in the chitooligosaccharides than GA and VA. COS-RA and COS-FA had greater DPPH scavenging rates than COS-GA and COS-VA. Compared with COS treatment, spraying 250 mg L-1 COS-RA or COS-VA 6 times (once per 7 days) increased soluble sugar and anthocyanin content by 18.6%-23.2% and 41.7%-46.7%, respectively, from the fruit expansion to harvest stage. COS-RA and COS-VA also enhanced gene expression related to anthocyanin synthesis (PAL, F3H, F3'5'H, DFR, and UFGT) and monomeric anthocyanin accumulation (Mal-3-O-glu, Petu-3-O-ace-glu, Del-3-O-glu). Therefore, chitooligosaccharide derivatives may improve grape fruit anthocyanin accumulation by regulating antioxidant systems, improving the photosynthetic rate and inducing gene expression related to anthocyanin synthesis.
Collapse
Affiliation(s)
- Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhiming Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chunmei Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Shi L, Zhang P, Xu J, Wu X, Pan X, He L, Dong F, Zheng Y. Systematic assessment of cyflumetofen toxicity in soil-earthworm (Eisenia fetida) microcosms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131300. [PMID: 37002996 DOI: 10.1016/j.jhazmat.2023.131300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Cyflumetofen was widely applied in agriculture with its excellent acaricidal effect. However, the impact of cyflumetofen on the soil non-target organism earthworm (Eisenia fetida) is unclear. This study aimed to elucidate the bioaccumulation of cyflumetofen in soil-earthworm systems and the ecotoxicity of earthworms. The highest concentration of cyflumetofen enriched by earthworms was found on the 7th day. Long-term exposure of earthworms to the cyflumetofen (10 mg/kg) could suppress protein content and increases Malondialdehyde content leading to severe peroxidation. Transcriptome sequencing analysis demonstrated that catalase and superoxide-dismutase activities were significantly activated while genes involved in related signaling pathways were significantly upregulated. In terms of detoxification metabolic pathways, high concentrations of cyflumetofen stimulated the number of Differentially-Expressed-Genes involved in the detoxification pathway of the metabolism of glutathione. Identification of three detoxification genes (LOC100376457, LOC114329378, and JGIBGZA-33J12) had synergistic detoxification. Additionally, cyflumetofen promoted disease-related signaling pathways leading to higher disease risk, affecting the transmembrane capacity and cell membrane composition, ultimately causing cytotoxicity. Superoxide-Dismutase in oxidative stress enzyme activity contributed more to detoxification. Carboxylesterase and glutathione-S-transferase activation play a major detoxification role in high-concentration treatment. Altogether, these results contribute to a better understanding of toxicity and defense mechanisms involved in long-term cyflumetofen exposure in earthworms.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- College of Plant Health and Medicine of Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
6
|
García-García AL, Matos AR, Feijão E, Cruz de Carvalho R, Boto A, Marques da Silva J, Jiménez-Arias D. The use of chitosan oligosaccharide to improve artemisinin yield in well-watered and drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1200898. [PMID: 37332721 PMCID: PMC10272596 DOI: 10.3389/fpls.2023.1200898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply. Furthermore, the cultivation of A. annua is being threatened by climate change. Specifically, drought stress is a major concern for plant development and productivity, but, on the other hand, moderate stress levels can elicit the production of secondary metabolites, with a putative synergistic interaction with elicitors such as chitosan oligosaccharides (COS). Therefore, the development of strategies to increase yield has prompted much interest. With this aim, the effects on artemisinin production under drought stress and treatment with COS, as well as physiological changes in A. annua plants are presented in this study. Methods Plants were separated into two groups, well-watered (WW) and drought-stressed (DS) plants, and in each group, four concentrations of COS were applied (0, 50,100 and 200 mg•L-1). Afterwards, water stress was imposed by withholding irrigation for 9 days. Results Therefore, when A. annua was well watered, COS did not improve plant growth, and the upregulation of antioxidant enzymes hindered the production of artemisinin. On the other hand, during drought stress, COS treatment did not alleviate the decline in growth at any concentration tested. However, higher doses improved the water status since leaf water potential (YL) improved by 50.64% and relative water content (RWC) by 33.84% compared to DS plants without COS treatment. Moreover, the combination of COS and drought stress caused damage to the plant's antioxidant enzyme defence, particularly APX and GR, and reduced the amount of phenols and flavonoids. This resulted in increased ROS production and enhanced artemisinin content by 34.40% in DS plants treated with 200 mg•L-1 COS, compared to control plants. Conclusion These findings underscore the critical role of ROS in artemisinin biosynthesis and suggest that COS treatment may boost artemisinin yield in crop production, even under drought conditions.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Alicia Boto
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Jorge Marques da Silva
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - David Jiménez-Arias
- ISOPlexis—Center for Sustainable Agriculture and Food Technology, Madeira University, Funchal, Portugal
| |
Collapse
|
7
|
Mukarram M, Khan MMA, Kurjak D, Corpas FJ. Chitosan oligomers (COS) trigger a coordinated biochemical response of lemongrass (Cymbopogon flexuosus) plants to palliate salinity-induced oxidative stress. Sci Rep 2023; 13:8636. [PMID: 37244976 DOI: 10.1038/s41598-023-35931-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
Plant susceptibility to salt depends on several factors from its genetic makeup to modifiable physiological and biochemical status. We used lemongrass (Cymbopogon flexuosus) plants as a relevant medicinal and aromatic cash crop to assess the potential benefits of chitosan oligomers (COS) on plant growth and essential oil productivity during salinity stress (160 and 240 mM NaCl). Five foliar sprays of 120 mg L-1 of COS were applied weekly. Several aspects of photosynthesis, gas exchange, cellular defence, and essential oil productivity of lemongrass were traced. The obtained data indicated that 120 mg L-1 COS alleviated photosynthetic constraints and raised the enzymatic antioxidant defence including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities that minimised salt-induced oxidative damage. Further, stomatal conductance (gs) and photosynthetic CO2 assimilation (A) were improved to support overall plant development. The same treatment increased geraniol dehydrogenase (GeDH) activity and lemongrass essential oil production. COS-induced salt resilience suggests that COS could become a useful biotechnological tool in reclaiming saline soil for improved crop productivity, especially when such soil is unfit for leading food crops. Considering its additional economic value in the essential oil industry, we propose COS-treated lemongrass as an excellent alternative crop for saline lands.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
8
|
Sheikhalipour M, Mohammadi SA, Esmaielpour B, Spanos A, Mahmoudi R, Mahdavinia GR, Milani MH, Kahnamoei A, Nouraein M, Antoniou C, Kulak M, Gohari G, Fotopoulos V. Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salt stress by inducing multiple defence pathways in bitter melon plants. Int J Biol Macromol 2023; 242:124923. [PMID: 37211072 DOI: 10.1016/j.ijbiomac.2023.124923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Advances in the nanotechnology fields provided crucial applications in plant sciences, contributing to the plant performance and health under stress and stress-free conditions. Amid the applications, selenium (Se), chitosan and their conjugated forms as nanoparticles (Se-CS NPs) have been revealed to have potential of alleviating the harmful effects of the stress on several crops and subsequently enhancing the growth and productivity. The present study was addressed to assay the potential effects of Se-CS NPs in reversing or buffering the harmful effects of salt stress on growth, photosynthesis, nutrient concentration, antioxidant system and defence transcript levels in bitter melon )Momordica charantia(. In addition, some secondary metabolite-related genes were explicitly examined. In this regard, the transcriptional levels of WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, SOAR1, MAP30, α-MMC, polypeptide-P and PAL were quantified. Our results demonstrated that Se-CS NPs increased growth parameters, photosynthesis parameters (SPAD, Fv/Fm, Y(II)), antioxidant enzymatic activity (POD, SOD, CAT) and nutrient homeostasis (Na+/K+, Ca2+, and Cl-) and induced the expression of genes in bitter melon plants under salt stress (p ≤ 0.05). Therefore, applying Se-CS NPs might be a simple and effective way of improving crop plants' overall health and yield under salt stress conditions.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardabili, Ardabil, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Center for Cell Pathology, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardabili, Ardabil, Iran
| | - Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | | | - Amir Kahnamoei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mojtaba Nouraein
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Türkiye
| | - Gholamreza Gohari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus; Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| |
Collapse
|
9
|
Vivodová Z, Hačkuličová D, Bačovčinová M, Šípošová K, Labancová E, Kollárová K. Galactoglucomannan oligosaccharides alleviate cadmium toxicity by improving physiological processes in maize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114777. [PMID: 36931090 DOI: 10.1016/j.ecoenv.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Phosphate fertilisers and past mining activity are significant source of cadmium (Cd) pollution; thus, the concentration of Cd in agricultural soils has been substantially rising. Various substances have been tested for their potential to alleviate the toxicity of Cd and stimulate the accumulation of Cd in plant organs. This study brought new insight of the impact of galactoglucomannan oligosaccharides (GGMOs) on the maize plants grown under/in Cd stress. The application of GGMOs reduced concentration of Cd in the maize leaves and thus GGMOs increased their growth (by 24%), concentration of photosynthetic pigments (up to 39.4%), effective quantum yield of photosystem II (up to 29.6%), and net photosynthetic rate (up to 19.6%). The concentrations of stress markers increased in the Cd and Cd + GGMOs treatment; however, significantly lower concentration was detected in the Cd + GGMOs treatment (malondialdehyde by 21.7%, hydrogen peroxide by 13%). The concentration of auxin increased almost by two-fold in the Cd + GGMOs treatment compared to the Cd treatment. The recovered auxin level and enhanced nutrient uptake are proposed mechanisms of GGMOs' action during stress. GGMOs are molecules with biostimulant potential that could support vitality of maize plants in Cd stress.
Collapse
Affiliation(s)
- Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Michaela Bačovčinová
- Department of Botany, Institute of Biology and Ecology, Šafárik University, Mánesova 23, 040 01 Košice, Slovakia
| | - Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
10
|
Tan C, Li N, Wang Y, Yu X, Yang L, Cao R, Ye X. Integrated Physiological and Transcriptomic Analyses Revealed Improved Cold Tolerance in Cucumber (Cucumis sativus L.) by Exogenous Chitosan Oligosaccharide. Int J Mol Sci 2023; 24:ijms24076202. [PMID: 37047175 PMCID: PMC10094205 DOI: 10.3390/ijms24076202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cucumber (Cucumis sativus L.), sensitive to cold stress, is one of the most economically important vegetables. Here, we systematically investigated the roles of exogenous glycine betaine, chitosan, and chitosan oligosaccharide in alleviating cold stress in cucumber seedlings. The results showed that 50 mg·L−1 chitosan oligosaccharide had the best activity. It effectively increases plant growth, chlorophyll content, photosynthetic capacity, osmotic regulatory substance content, and antioxidant enzyme activities while reducing relative electrical conductivity and malondialdehyde levels in cucumber seedlings under cold stress. To reveal the protective effects of chitosan oligosaccharide in cold stress, cucumber seedlings pretreated with 50 mg·L−1 chitosan oligosaccharide were sampled after 0, 3, 12, and 24 h of cold stress for transcriptome analysis, with distilled water as a control. The numbers of differentially expressed genes in the four comparison groups were 656, 1274, 1122, and 957, respectively. GO functional annotation suggested that these genes were mainly involved in “voltage-gated calcium channel activity”, “carbohydrate metabolic process”, “jasmonic acid biosynthetic”, and “auxin response” biological processes. KEGG enrichment analysis indicated that these genes performed important functions in “phenylpropanoid biosynthesis”, “MAPK signaling pathway—plant”, “phenylalanine metabolism”, and “plant hormone signal transduction.” These findings provide a theoretical basis for the use of COS to alleviate the damage caused by cold stress in plant growth and development.
Collapse
|
11
|
Liaqat F, Akgün İH, Khazi MI, Eltem R. Characterization of different chitosanases of Bacillus strains and their application in chitooligosaccharides production. J Basic Microbiol 2023; 63:404-416. [PMID: 35849112 DOI: 10.1002/jobm.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022]
Abstract
Chitosanases are potential candidates for chitooligosaccharides (COS) production-based industries, therefore, the discovery of chitosanases having commercial potential will remain a priority worldwide. This study aims to characterize different chitosanases of Bacillus strains for COS production. Six different indigenous Bacillus strains (B. cereus EGE-B-6.1m, B. cereus EGE-B-2.5m, B. cereus EGE-B-5.5m, B. cereus EGE-B-10.4i, B. thuringiensis EGE-B-3.5m, and B. mojavensis EGE-B-5.2i) were used to purify and characterize chitosanases. All purified chitosanases have a similar molecular weight (37 kDa) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, other characteristics such as optimum temperature and pH, kinetic parameters (Km and Vmax ), temperature, and pH stabilities were dissimilar among the strains of different Bacillus species and within the same species. Furthermore, chitosanases of all strains were able to successfully hydrolyze chitosan to COS and oligomers of the degree of polymerization 2-6 were detected with chitobiose and chitotriose as major hydrolysis products. The relative yields of COS were in a range of 19%-31% and chitosanase of B. thuringiensis EGE-B-3.5m turned out to be the best enzyme in terms of its characteristics and COS production potential with maximum relative yield (31%). Results revealed that Bacillus chitosanases could be used directly for efficient bioconversion of chitosan into COS and will be valuable for large-scale production of biologically active COS.
Collapse
Affiliation(s)
- Fakhra Liaqat
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkiye
| | - İsmail Hakki Akgün
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkiye
| | - Mahammed Ilyas Khazi
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkiye
| | - Rengin Eltem
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkiye
| |
Collapse
|
12
|
Physiological, Transcriptomic Investigation on the Tea Plant Growth and Yield Motivation by Chitosan Oligosaccharides. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitosan oligosaccharides (COS) has been abundantly studied for its application on regulating plant growth of many horticultural and agricultural crops. We presented here the effect of COS on tea plant growth and yield by physiological and transcriptomic checking. The results showed that COS treatment can enhance the antioxidant activity of superoxide dismutase (SOD) and peroxidase (POD) and increase the content of chlorophyll and soluble sugar in tea plants. The field trail results show that COS treatment can increase tea buds’ density by 13.81–23.16%, the weight of 100 buds by 15.94–18.15%, and the yield by 14.22–21.08%. Transcriptome analysis found 5409 COS-responsive differentially expressed genes (DEGs), including 3149 up-regulated and 2260 down-regulated genes, and concluded the possible metabolism pathway that responsible for COS promoting tea plant growth. Our results provided fundamental information for better understanding the molecular mechanisms for COS’s acting on tea plant growth and yield promotion and offer academic support for its practical application in tea plant.
Collapse
|
13
|
Li J, Han A, Zhang L, Meng Y, Xu L, Ma F, Liu R. Chitosan oligosaccharide alleviates the growth inhibition caused by physcion and synergistically enhances resilience in maize seedlings. Sci Rep 2022; 12:162. [PMID: 34997123 PMCID: PMC8742106 DOI: 10.1038/s41598-021-04153-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
The use of biopesticides has gradually become essential to ensure food security and sustainable agricultural production. Nevertheless, the use of single biopesticides is frequently suboptimal in agricultural production given the diversity of biotic and abiotic stresses. The present study investigated the effects of two biopesticides, physcion and chitosan-oligosaccharide (COS), alone and in combination, on growth regulation and antioxidant potential of maize seedlings by seed coating. As suggested from the results, physcion significantly inhibited the growth of the shoots of maize seedlings due to the elevated respiration rate. However, COS significantly reduced the growth inhibition induced by physcion in maize seedlings by lowering the respiration rate and increasing the content of photosynthetic pigments and root vigor, which accounted for lower consumption of photosynthesis products, a higher photosynthetic rate and a greater nutrient absorption rate. Thus, an improved growth was identified. As indicated from the in-depth research, the application of physcion and COS combination is more effective in down-regulated the malondialdehyde (MDA) content by facilitating the activities of the antioxidative enzymes (i.e., superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (G-POD)). Such results indicated that the combined use of physcion and COS neither affected the normal growth of maize seedlings, but also synergistically improved the antioxidant potential of the maize plants, resulting in plants with high stress resistance. Thus, the combined use of physcion and COS by seed coating in maize production has great potential to ensure yield and sustainable production of maize.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Lei Zhang
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Yang Meng
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Feixiang Ma
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China. .,Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| |
Collapse
|
14
|
Pal K, Rakshit S, Mondal KC, Halder SK. Microbial decomposition of crustacean shell for production of bioactive metabolites and study of its fertilizing potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58915-58928. [PMID: 33660173 DOI: 10.1007/s11356-021-13109-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Crustacean shell waste disposal is considered as biggest problem in seafood processing centers. Incineration and landfilling are the commonest ways of disposal of the waste which causes environmental pollution. Microbial bio-conversion is one of the promising approaches to minimize the wastes by utilizing the same for deriving different value added metabolites. In this perspective, chitinase- and protease-producing bacterial strains were isolated from shrimp culture pond, and the potent isolate was subsequently identified as Alcaligenes faecalis SK10. Fermentative optimization of the production of chitinase (85.42 U/ml), protease (58.57 U/ml), and their catalytic products, viz., N-acetylamino sugar (84 μg/ml) and free amino acids (112 μg/ml), were carried out by utilizing shrimp and crab shell powder as principal substrate. The fermented hydrolysate (FH) was subsequently applied to evaluate its potential to be a candidate fertilizer for the growth of leguminous plant Pisum sativum and Cicer arietinum, and the results were compared with chitin, chitosan, and commercial biofertilizer amended group. The results revealed that FH have paramount potential to improve plants morpho-physiological parameters like stem and root length, chlorophyll, cellular RNA, protein content, and soil physico-chemical parameters like total nitrogen, magnesium, calcium, phosphorus, and potassium significantly (p < 0.05). Moreover, the application of FH also selectively encouraged the growth of free-living nitrogen-fixing bacteria, Rhizobium, phosphate-solubilizing bacteria in the soil by 4.82- and 5.27-, 5.57- and 4.71, and 7.64- and 6.92-fold, respectively, in the rhizosphere of P. sativum and C. arietinum, which collectively is a good sign for an ideal biofertilizer. Co-supplementation of FH with commercial PGPR-biofertilizer significantly influenced the morpho-physiological attributes of plant and physico-chemical and microbial attributes of soil. The study validated proficient and sustainable utilization of fermented hydrolysate of waste crustacean shell as biofertilizer.
Collapse
Affiliation(s)
- Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Subham Rakshit
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721 102, India.
| |
Collapse
|
15
|
Cao R, Yu H, Long H, Zhang H, Hao C, Shi L, Du Y, Jiao S, Guo A, Ma L, Wang Z. Low Deacetylation Degree Chitosan Oligosaccharide Protects against IL-1β Induced Inflammation and Enhances Autophagy Activity in Human Chondrocytes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:517-531. [PMID: 34704529 DOI: 10.1080/09205063.2021.1996962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, which can lead to joint pain, stiffness, deformity and dysfunction, that seriously affects the quality of life in patients. At present, the treatments of OA mainly include early pharmacological treatment and late joint replacement. However, current pharmacological treatment has limited efficacy and undesired side effects.Chitosan oligosaccharide (COS) is a kind of nontoxic and biodegradable oligo-saccharide, which is composed of 2-20 glucosamine or N-acetylglucosamine linked by β-1,4 glycosidic bond. Studies have shown that COS has significant biological properties like antimicrobial, anti-inflammatory, antioxidant, and anti-tumor, as well as immunoregulation ability. However, the effects of COS on OA have not been clarified. In this study, we explored the protective effects of COS with different degrees of deacetylation on chondrocytes stimulated by interleukin 1β (IL-1β) in vitro.The results showed that IL-1β inhibited cell proliferation and promoted cell apoptosis. Besides that, IL-1β increased the expression of the major chondro-degrading genes MMP13 and ADAMTS-5, while decreased the expression of COL2A and ACAN. COS with different degrees of deacetylation (HDACOS, MDACOS, LDACOS) had different effects on IL-1β induced inflammation. LDACOS had the most obvious anti-inflammatory effects to inhibit the expression of MMP13 and ADAMTS-5 while promoted the expression of COL2A and ACAN. In addition, we found that the expression of autophagy-related gene Beclin-1 was up-regulated, and the ratio of LC3-II/LC3-I was increased in the LDACOS group. Furthermore, transmission electron microscopy (TEM) analysis showed that the number of intracellular autophagosomes increased significantly with the treatment of LDACOS. Based on our research, we suggested that LDACOS could inhibit chondrocytes inflammation and promote cell autophagy, and might be a protective drug for the treatment of OA.
Collapse
Affiliation(s)
- Ruiqi Cao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haomiao Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huibin Long
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongrui Zhang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chao Hao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lifeng Ma
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhuo Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Exogenous Application of Chitosan Alleviate Salinity Stress in Lettuce (Lactuca sativa L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soil salinity is one of the major factors that affect plant growth and decrease agricultural productivity worldwide. Chitosan (CTS) has been shown to promote plant growth and increase the abiotic stress tolerance of plants. However, it still remains unknown whether the application of exogenous CTS can mitigate the deleterious effects of salt stress on lettuce plants. Therefore, the current study investigated the effect of foliar application of exogenous CTS to lettuce plants grown under 100 mM NaCl saline conditions. The results showed that exogenous CTS increased the lettuce total leaf area, shoot fresh weight, and shoot and root dry weight, increased leaf chlorophyll a, proline, and soluble sugar contents, enhanced peroxidase and catalase activities, and alleviated membrane lipid peroxidation, in comparison with untreated plants, in response to salt stress. Furthermore, the application of exogenous CTS increased the accumulation of K+ in lettuce but showed no significant effect on the K+/Na+ ratio, as compared with that of plants treated with NaCl alone. These results suggested that exogenous CTS might mitigate the adverse effects of salt stress on plant growth and biomass by modulating the intracellular ion concentration, controlling osmotic adjustment, and increasing antioxidant enzymatic activity in lettuce leaves.
Collapse
|
17
|
He F, Liu Q, Jing M, Wan J, Huo C, Zong W, Tang J, Liu R. Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): A combined molecular and cellular study. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126302. [PMID: 34118541 DOI: 10.1016/j.jhazmat.2021.126302] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Phenanthrene (PHE) is an important organic compound, which is widespread in the soil environment and exhibits potential threats to soil organisms. Toxic effects of PHE to earthworms have been extensively studied, but toxic mechanisms on PHE-induced cytotoxicity and oxidative stress at the molecular and cellular levels have not been reported yet. Therefore, we explored the cytotoxicity and oxidative stress caused by PHE in earthworm coelomocytes and the interaction mechanism between PHE and the major antioxidant enzymes SOD/CAT. It was shown that high-dose PHE exposure induced the intracellular reactive oxygen species (ROS) generation, mediated lipid peroxidation, reduced total antioxidant capacity (T-AOC) in coelomocytes, and triggered oxidative stress, thus resulted in a strong cytotoxicity at higher concentrations (0.6-1.0 mg/L). The intracellular SOD/CAT activity in cells after PHE exposure were congruent with that in molecular levels, which the activity of SOD enhanced and CAT inhibited. Spectroscopic studies showed the SOD/CAT protein skeleton and secondary structure, as well as the micro-environment of aromatic amino acids were changed after PHE binding. Molecular docking indicated PHE preferentially docked to the surface of SOD. However, the key residues Tyr 357, His 74, and Asn 147 for activity were in the binding pocket, indicating PHE more likely to dock to the active center of CAT. In addition, H-bonding and hydrophobic force were the primary driving force in the binding interaction between PHE and SOD/CAT. This study indicates that PHE can induce cytotoxicity and oxidative damage to coelomocytes and unearthes the potential effects of PHE on earthworms.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qiang Liu
- Solid Waste and Hazardous Chemicals Pollution Prevention and Control Center of Shandong Province, 145# Jingshi West Road, Jinan 250117, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
18
|
Nutritional Improvement of Bean Sprouts by Using Chitooligosaccharide as an Elicitor in Germination of Soybean (Glycine max L.). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soybean sprouts are among the healthiest foods consumed in most Asian countries. Their nutritional content, especially bioactive compounds, may change according to the conditions of germination. The purpose of this study was to test the effect of chitooligosaccharide with different molecular weight and dosage on nutritional quality and enzymatic and antioxidant activities of soybean sprouts. The chitooligosaccharide elicitor strongly stimulated the accumulation of vitamin C, total phenolics, and total flavonoid. The stimulation effect was correlated with the molecular weight and concentration of chitooligosaccharide. With treatment of 0.01% of 1 kDa chitooligosaccharide, the nine phenolic constituents and six isoflavone compounds were significantly increased. The antioxidant capacity (DPPH radical and hydroxyl radical scavenging activity) and antioxidase activities (catalase and peroxidase) of soybean sprouts were also enhanced after treatment with chitooligosaccharide. The degree of chitooligosaccharide-induced elicitor activity increased as the molecular weight of chitooligosaccharide decreased. These results suggest that soaking soybean seeds in a solution of chitooligosaccharide, especially in 0.01% of 1 kDa chitooligosaccharide, may effectively improve the nutritional value and physiological function of soybean sprouts.
Collapse
|
19
|
Dantas JMDM, Araújo NKD, Silva NSD, Torres-Rêgo M, Furtado AA, Assis CFD, Araújo RM, Teixeira JA, Ferreira LDS, Fernandes-Pedrosa MDF, Dos Santos ES. Purification of chitosanases produced by Bacillus toyonensis CCT 7899 and functional oligosaccharides production. Prep Biochem Biotechnol 2021; 52:443-451. [PMID: 34370621 DOI: 10.1080/10826068.2021.1961273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chitooligosaccharides (COS) have a great potential to be used by pharmaceutical industry due to their many biological activities. The use of enzymes to produce them is very advantageous, however it still faces many challenges, such as discovering new strains capable to produce enzymes that are able to generate bioactive oligosaccharides. In the present study a purification protein protocol was performed to purify chitosanases produced by Bacillus toyonensis CCT 7899 for further chitosan hydrolysis. The produced chitooligosaccharides were characterized by mass spectroscopy (MS) and their antiedematogenic effect was investigated through carrageenan-induced paw edema model. The animals were treated previously to inflammation by intragastric route with COS at 30, 300 and 600 mg/kg. The purification protocol showed a good performance for the chitosanases purification using 0.20 M NaCl solution to elute it, with a 9.54-fold purification factor. The treatment with COS promoted a decrease of paw edema at all evaluated times and the AUC0-4h, proving that COS produced showed activity in acute inflammation like commercial anti-inflammatory Dexamethasone (corticosteroid). Therefore, the strategy used to purification was successfully applied and it was possible to generate bioactive oligosaccharides with potential pharmacological use.
Collapse
Affiliation(s)
| | | | | | - Manoela Torres-Rêgo
- Department of Phamarcy, Federal University of Rio Grande do Norte, Natal, Brazil.,Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Everaldo Silvino Dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
20
|
Faizan M, Rajput VD, Al-Khuraif AA, Arshad M, Minkina T, Sushkova S, Yu F. Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. BIOLOGY 2021; 10:biology10070666. [PMID: 34356521 PMCID: PMC8301443 DOI: 10.3390/biology10070666] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary The experiment conducted on Solanum lycopersicum provided an insight about Cd uptake, and the way a Solanum lycopersicum changes its physiological, biochemical and morphological responses when CTS-NPs are administered against Cd. As an effective important polymer, CTS-NPs enhanced the plant biomass, SPAD index, photosynthetic rate, and protein content in the Solanum lycopersicum plants grown in Cd stress, as a study herein. Addition of CTS-NPs reduced Cd accumulation by increasing the nutrient uptake. Furthermore, CTS-NPs treatment enhances tolerance to Cd stress through hampering ROS production accompanied by H2O2 activity, through reducing the peroxidation of lipids by minimizing MDA content, and through improving enzymatic (CAT, POX, SOD), non-enzymatic (GSH and AsA), and osmoprotectants (proline) antioxidant contents that are considered as a first line of defense to protect plants from stress. Abstract Cadmium (Cd) stress is increasing at a high pace and is polluting the agricultural land. As a result, it affects animals and the human population via entering into the food chain. The aim of this work is to evaluate the possibility of amelioration of Cd stress through chitosan nanoparticles (CTS-NPs). After 15 days of sowing (DAS), Solanum lycopersicum seedlings were transplanted into maintained pots (20 in number). Cadmium (0.8 mM) was providing in the soil as CdCl2·2.5H2O at the time of transplanting; however, CTS-NPs (100 µg/mL) were given through foliar spray at 25 DAS. Data procured from the present experiment suggests that Cd toxicity considerably reduces the plant morphology, chlorophyll fluorescence, in addition to photosynthetic efficiency, antioxidant enzyme activity and protein content. However, foliar application of CTS-NPs was effective in increasing the shoot dry weight (38%), net photosynthetic rate (45%) and SPAD index (40%), while a decrease in malondialdehyde (24%) and hydrogen peroxide (20%) was observed at the 30 DAS stage as compared to control plants. On behalf of the current results, it is demonstrated that foliar treatment of CTS-NPs might be an efficient approach to ameliorate the toxic effects of Cd.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| | - Abdulaziz Abdullah Al-Khuraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (M.A.)
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (M.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| |
Collapse
|
21
|
Quitadamo F, De Simone V, Beleggia R, Trono D. Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:1365. [PMID: 34371568 PMCID: PMC8309458 DOI: 10.3390/plants10071365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. To achieve these goals, durum wheat seedlings were treated with CTS at different molecular weight, low (L-CTS, 50-190 kDa), medium (M-CTS, 190-310 kDa) and high (H-CTS, 310-375 kDa). The results obtained show that exposure to 200 mM NaCl reduced the shoot and the root dried biomass by 38% and 59%, respectively. The growth impairment induced by salinity was strongly correlated with an increase in the superoxide anion production (5-fold), hydrogen peroxide content (2-fold) and malondialdehyde (MDA) content (4-fold). Seedlings responded to the oxidative stress triggered by salinity with an increase in the total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activity (TAA) by 67%, 51% and 32%, respectively. A salt-induced increase in the activity of the antioxidant enzymes superoxide dismutase and catalase (CAT) of 89% and 86%, respectively, was also observed. Treatment of salt-stressed seedlings with exogenous CTS significantly promoted seedling growth, with the strongest effects observed for L-CTS and M-CTS, which increased the shoot biomass of stressed seedlings by 32% and 44%, respectively, whereas the root dried biomass increased by 87% and 64%, respectively. L-CTS and M-CTS treatments also decreased the superoxide anion production (57% and 59%, respectively), the hydrogen peroxide content (35% and 38%, respectively) and the MDA content (48% and 56%, respectively) and increased the TPC (23% and 14%, respectively), the TFC (19% and 10%, respectively), the TAA (up to 10% and 7%, respectively) and the CAT activity (29% and 20%, respectively). Overall, our findings indicate that CTS exerts its protective role against the oxidative damages induced by salinity by enhancing the antioxidant defense system. L-CTS and M-CTS were the most effective in alleviating the adverse effect of NaCl, thus demonstrating that the CTS action is strictly related to its molecular weight.
Collapse
Affiliation(s)
| | | | | | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e, Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (F.Q.); (V.D.S.); (R.B.)
| |
Collapse
|
22
|
Liu J, Gai L, Zong H. Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:115-121. [PMID: 33984623 DOI: 10.1016/j.plaphy.2021.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Excessive cadmium (Cd) causes toxic effects on crops. The effects of chitosan (CTS) with different molecular weight (MW) (5 kDa, 3 kDa, and 1 kDa) on the growth and biochemical parameters, as well as Cd concentrations in Cd-treated wheat plants were examined in a pot experiment. The results demonstrated that foliar spraying with CTS significantly improve the wheat growth, reduce malondialdehyde content and reactive oxygen species accumulation in leaves and decrease Cd concentrations in roots and shoots of wheat seedling under Cd stress. The alleviation of Cd toxicity by CTS is probably related with the activity of antioxidant enzymes, osmotic adjustment matter and root morphology. The application of CTS enhanced the activities of superoxide dismutase, peroxidase, and catalase in Cd-stressed wheat seedling leaves by 6.6%-13.1%, 17.2%-33.0%, and 19.6%-25.5%, respectively. Besides, exogenously applied CTS also increased the soluble protein and soluble sugar contents by 17.6%-33.8% and 30.1%-36.1% in the leaves of wheat under Cd stress. Furthermore, CTS with a molecular weight of 1 kDa was the most effective in mitigating Cd toxicity in wheat seedlings, which indicates that the activity of CTS is dependent on its molecular weight. It can be concluded that the use of foliar spraying, especially with 1 kDa CTS, could have potential in reducing the damage of Cd stress.
Collapse
Affiliation(s)
- Jun Liu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lingyun Gai
- Big Data and Network Management Center, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Haiying Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
23
|
Kocięcka J, Liberacki D. The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. PLANTS 2021; 10:plants10061160. [PMID: 34200489 PMCID: PMC8229082 DOI: 10.3390/plants10061160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
This review presents the main findings from measurements carried out on cereals using chitosan, its derivatives, and nanoparticles. Research into the use of chitosan in agriculture is growing in popularity. Since 2000, 188 original scientific articles indexed in Web of Science, Scopus, and Google Scholar databases have been published on this topic. These have focused mainly on wheat (34.3%), maize (26.3%), and rice (24.2%). It was shown that research on other cereals such as millets and sorghum is scarce and should be expanded to better understand the impact of chitosan use. This review demonstrates that this chitosan is highly effective against the most dangerous diseases and pathogens for cereals. Furthermore, it also contributes to improving yield and chlorophyll content, as well as some plant growth parameters. Additionally, it induces excellent resistance to drought, salt, and low temperature stress and reduces their negative impact on cereals. However, further studies are needed to demonstrate the full field efficacy of chitosan.
Collapse
|
24
|
Chen T, Cheng G, Jiao S, Ren L, Zhao C, Wei J, Han J, Pei M, Du Y, Li JJ. Expression and Biochemical Characterization of a Novel Marine Chitosanase from Streptomyces niveus Suitable for Preparation of Chitobiose. Mar Drugs 2021; 19:300. [PMID: 34073769 PMCID: PMC8225178 DOI: 10.3390/md19060300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
It is known that bioactivities of chitooligosaccharide (COS) are closely related to the degree of polymerization (DP); therefore, it is essential to prepare COS with controllable DP, such as chitobiose showing high antioxidant and antihyperlipidemia activities. In this study, BLAST, sequence alignment and phylogenetic analysis of characterized glycoside hydrolase (GH) 46 endo-chitosanases revealed that a chitosanase Sn1-CSN from Streptomyces niveus was different from others. Sn1-CSN was overexpressed in E. coli, purified and characterized in detail. It showed the highest activity at pH 6.0 and exhibited superior stability between pH 4.0 and pH 11.0. Sn1-CSN displayed the highest activity at 50 °C and was fairly stable at ≤45 °C. Its apparent kinetic parameters against chitosan (DDA: degree of deacetylation, >94%) were determined, with Km and kcat values of 1.8 mg/mL and 88.3 s-1, respectively. Cu2+ enhanced the activity of Sn1-CSN by 54.2%, whereas Fe3+ inhibited activity by 15.1%. Hydrolysis products of chitosan (DDA > 94%) by Sn1-CSN were mainly composed of chitobiose (87.3%), whereas partially acetylated chitosan with DDA 69% was mainly converted into partially acetylated COS with DP 2-13. This endo-chitosanase has great potential to be used for the preparation of chitobiose and partially acetylated COS with different DPs.
Collapse
Affiliation(s)
- Tong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Gong Cheng
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Siming Jiao
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Lishi Ren
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Jinhua Wei
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Juntian Han
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (G.C.); (S.J.); (L.R.); (J.W.); (J.H.)
| |
Collapse
|
25
|
Zuo S, Li F, Gu X, Wei Z, Qiao L, Du C, Chi Y, Liu R, Wang P. Effects of low molecular weight polysaccharides from Ulva prolifera on the tolerance of Triticum aestivum to osmotic stress. Int J Biol Macromol 2021; 183:12-22. [PMID: 33892040 DOI: 10.1016/j.ijbiomac.2021.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Polysaccharides derived from seaweeds can be used as biostimulants to enhance plant resistance to different stressors. In this study, we investigated the effects of applying low molecular weight polysaccharides (LPU) derived from Ulva prolifera with 14.2 kDa on the responses of wheat (Triticum aestivum) to osmotic stress. The results showed that osmotic stress simulated using polyethylene glycol inhibited seedling growth, whereas we observed increases in the fresh weights and shoot lengths of seedlings treated with polysaccharide for 120 h. Furthermore, we observed enhanced activities of antioxidant enzymes, and significant reductions in malondialdehyde content of 23.13%, 19.82%, and 20.04% in response treatment for 120 h with 0.01%, 0.03%, and 0.05% LPU, respectively, relative to those in the group treated with polyethylene glycol alone. In all treatments, expression of the P5CS gene was upregulated to promote proline accumulation. Moreover, after 120 h, exogenously applied LPU induced the expression of stress-related genes, including SnRK2, Wabi5, Wrab18, and Wdhn13. Collectively, these findings indicate that LPU might have the effect of regulating the abscisic acid-dependent pathway in wheat, thereby increasing seedling antioxidant capacity and growth. Application of LPU may accordingly represent an effective approach for enhancing the resistance to osmotic stress in wheat.
Collapse
Affiliation(s)
- Siqi Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment Beijing, Beijing, China
| | - Feiyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu Gu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment Beijing, Beijing, China
| | - Zhengpeng Wei
- Rongcheng Taixiang Food Co., Ltd., Rongcheng, Shandong, China
| | - Leke Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongzhou Chi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment Beijing, Beijing, China.
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
26
|
Impact of Foliar Application of Chitosan Dissolved in Different Organic Acids on Isozymes, Protein Patterns and Physio-Biochemical Characteristics of Tomato Grown under Salinity Stress. PLANTS 2021; 10:plants10020388. [PMID: 33670511 PMCID: PMC7922210 DOI: 10.3390/plants10020388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
In this study, the anti-stress capabilities of the foliar application of chitosan, dissolved in four different organic acids (acetic acid, ascorbic acid, citric acid and malic acid) have been investigated on tomato (Solanum lycopersicum L.) plants under salinity stress (100 mM NaCl). Morphological traits, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, minerals, antioxidant enzymes activity, isozymes and protein patterns were tested for potential tolerance of tomato plants growing under salinity stress. Salinity stress was caused a reduction in growth parameters, photosynthetic pigments, soluble sugars, soluble proteins and potassium (K+) content. However, the contents of proline, ascorbic acid, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2), sodium (Na+) and antioxidant enzyme activity were increased in tomato plants grown under saline conditions. Chitosan treatments in any of the non-stressed plants showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of salinity on tomato plants have also been reduced by lowering MDA, H2O2 and Na+ levels. Chitosan treatments in either non-stressed or stressed plants showed different responses in number and density of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) isozymes. NaCl stress led to the diminishing of protein bands with different molecular weights, while they were produced again in response to chitosan foliar application. These responses were varied according to the type of solvent acid. It could be suggested that foliar application of chitosan, especially that dissolved in ascorbic or citric acid, could be commercially used for the stimulation of tomato plants grown under salinity stress.
Collapse
|
27
|
Wang Y, Qin Z, Fan L, Zhao L. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members. Int J Biol Macromol 2020; 165:2038-2048. [PMID: 33080262 DOI: 10.1016/j.ijbiomac.2020.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
Chitooligosaccharides (COS) is a kind of functional carbohydrates with great application potential as its various biological functions in food, cosmetics, and pharmaceutical fields. Exploring the relationship between structure and function of chitosanase is essential for the controllable preparation of chitooligosaccharides with the specific degree of polymerization (DP). GsCsn46A is a cold-adapted glycosyl hydrolase (GH) family 46 chitosanase with application potential for the controllable preparation of chitooligosaccharides. Here, we present two complex structures with substrate chitopentaose and chitotetraose of GsCsn46A, respectively. The overall structure of GsCsn46A contains nine α-helices and two β-strands that folds into two globular domains with the substrate between them. The unique binding positions of both chitopentaose and chitotetraose revealed two novel sugar residues in the negatively-numbered subsites of GH family 46 chitosanases. The structure-function analysis of GsCsn46A uncovers the substrate binding and catalysis mechanism of GH family 46 chitosanases. Structural basis mutagenesis in GsCsn46A indicated that altering interactions near +3 subsite would help produce hydrolysis products with higher DP. Specifically, the mutant N21W of GsCsn46A nearly eliminated the ability of hydrolyzing chitotetraose after long-time degradation.
Collapse
Affiliation(s)
- Yani Wang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
28
|
Li K, Xing R, Liu S, Li P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12203-12211. [PMID: 33095004 DOI: 10.1021/acs.jafc.0c05316] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chitin and chitosan are natural polysaccharides with huge application potential in agriculture, such as promoting plant growth, eliciting plant resistance against biotic and abiotic stress, and activating symbiotic signaling between plants and beneficial microorganisms. Chitin and chitosan offer a sustainable alternative for future crop production. The bioactivities of chitin and chitosan closely depend on their structural factors, including molecular size, degree of acetylation, and pattern of acetylation. It is of great significance to identify the key fragments in chitin and chitosan chains that are responsible for these agricultural bioactivities. Herein, we review the recent progress in the structure-function relationship of chitin and chitosan in the field of agriculture application. The preparation of chitin and chitosan fragments and their action mode for plant protection and growth are also discussed.
Collapse
Affiliation(s)
- Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
29
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
30
|
Jia X, Rajib MR, Yin H. Recognition Pattern, Functional Mechanism and Application of Chitin and Chitosan Oligosaccharides in Sustainable Agriculture. Curr Pharm Des 2020; 26:3508-3521. [DOI: 10.2174/1381612826666200617165915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Background:
Application of chitin attracts much attention in the past decades as the second abundant
polysaccharides in the world after cellulose. Chitin oligosaccharides (CTOS) and its deacetylated derivative chitosan
oligosaccharides (COS) were shown great potentiality in agriculture by enhancing plant resistance to abiotic
or biotic stresses, promoting plant growth and yield, improving fruits quality and storage, etc. Those applications
have already served huge economic and social benefits for many years. However, the recognition mode and functional
mechanism of CTOS and COS on plants have gradually revealed just in recent years.
Objective:
Recognition pattern and functional mechanism of CTOS and COS in plant together with application
status of COS in agricultural production will be well described in this review. By which we wish to promote
further development and application of CTOS and COS–related products in the field.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mijanur R. Rajib
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Xu T, Qi M, Liu H, Cao D, Xu C, Wang L, Qi B. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 2020; 10:29. [PMID: 32036475 PMCID: PMC7007918 DOI: 10.1186/s13568-020-0963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801, which had been screened out in our previous work. The results of fermentation revealed that CS1801 can convert the chitin derived from crab shells, colloidal chitin and N-acetylglucosamine to chitooligosaccharide. Additional genome-wide analysis of CS1801 was also performed to explore the genomic basis for chitin degradation. The results showed that CS1801 possesses a chromosome with 5,611,479 bp (73% GC) and a plasmid with 1,388,284 bp (73% GC). The CS1801 genome consists of 7584 protein-coding genes, 90 tRNA and 21 rRNA operons. In addition, the results of genomic CAZyme analysis indicated that CS1801 comprises 103 glycoside hydrolase family genes, which could regulate the glycoside hydrolases that contribute to chitin degradation. The whole-genome information of CS1801 could highlight the mechanism underlying the chitin degradation activity of CS1801, strongly indicating that CS1801 is characterized by a substantial number of genes encoding chitinases and the complete metabolic pathway of chitin, conferring CS1801 with promising potential applicability in chitooligosaccharide production.
Collapse
|
32
|
Ahmed KBM, Khan MMA, Jahan A, Siddiqui H, Uddin M. Gamma rays induced acquisition of structural modification in chitosan boosts photosynthetic machinery, enzymatic activities and essential oil production in citronella grass (Cymbopogon winterianus Jowitt). Int J Biol Macromol 2020; 145:372-389. [DOI: 10.1016/j.ijbiomac.2019.12.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/30/2023]
|
33
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
34
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Liu J, Hou H, Zhao L, Sun Z, Lu Y, Li H. Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:321-328. [PMID: 31299567 DOI: 10.1016/j.scitotenv.2019.06.332] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd)-contaminated paddy soil has become a global agricultural safety issue. The application of foliage dressing with mineral elements to alleviate Cd toxicity in rice might offer a cost-effective and practical strategy for safe food production. In this study, a pot experiment was conducted to optimize foliar composition and dosage. Field experiments in two consecutive rice seasons were performed to investigate the effectiveness and mechanisms of foliage dressing. Foliar spray of S, P, and a mixture of both were effective to reduce the Cd concentration in rice grain. The maximum decrease by leaf-grain translocation was achieved at 84%, and the maximum decrease of bio-concentration was 69% in the stem. The reduction of Cd concentration in rice decreased the direct damage to the photosynthetic system, and then increased the rice growth. Foliage dressing relieved the oxidative stress of Cd to rice by decreasing the MDA content, and increasing antioxidant enzyme activities. Foliar spray with S likely reduced Cd accumulation in rice by minimizing the production of reactive oxygen species, improving the activities of enzymatic and non-enzymatic antioxidant defense systems, and manipulating glutathione synthesis. The detoxification of foliar spray with P was originated from the decrease of Cd translocation and maintaining photosynthetic machinery. These results indicated that foliage dressing with S and P has great potential for the remediation of vast agricultural fields.
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yifu Lu
- Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province, Jiyuan, Henan 459000, China
| | - Hua Li
- School of Environmental Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
36
|
Effects of Gellan Oligosaccharide and NaCl Stress on Growth, Photosynthetic Pigments, Mineral Composition, Antioxidant Capacity and Antimicrobial Activity in Red Perilla. Molecules 2019; 24:molecules24213925. [PMID: 31671710 PMCID: PMC6864638 DOI: 10.3390/molecules24213925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022] Open
Abstract
The growing market demand for plant raw materials with improved biological value promotes the extensive search for new elicitors and biostimulants. Gellan gum derivatives may enhance plant growth and development, but have never been used under stress conditions. Perilla (Perilla frutescens, Lamiaceae) is a source of valuable bioproducts for the pharmaceutical, cosmetic, and food industries. However, there is not much information on the use of biostimulators in perilla cultivation. In this work we investigated the effects of oligo-gellan and salt (100 mM NaCl) on the yield and quality of red perilla (P. frutescens var. crispa f. purpurea) leaves. Plants grown under stress showed inhibited growth, smaller biomass, their leaves contained less nitrogen, phosphorus, potassium, total polyphenol and total anthocyanins, and accumulated considerably more sodium than control plants. Treatment with oligo-gellan under non-saline conditions stimulated plant growth and the fresh weight content of the above-ground parts, enhanced the accumulation of nitrogen, potassium, magnesium and total polyphenols, and increased antioxidant activity as assessed by DPPH and ABTS assays. Oligo-gellan applied under saline conditions clearly alleviated the stress effects by limiting the loss of biomass, macronutrients, and total polyphenols. Additionally, plants pretreated with oligo-gellan and then exposed to 100 mM NaCl accumulated less sodium, produced greater amounts of photosynthetic pigments, and had greater antioxidant activity than NaCl-stressed plants. Irrespective of the experimental treatment, 50% extract effectively inhibited growth of Escherichia coli and Staphylococcus aureus. Both microorganisms were the least affected by 25% extract obtained from plants untreated with either NaCl or oligo-gellan. In conclusion, oligo-gellan promoted plant growth and enhanced the quality of red perilla leaves and efficiently alleviated the negative effects of salt stress.
Collapse
|
37
|
Jiang Y, Yu L, Hu Y, Zhu Z, Zhuang C, Zhao Y, Zhong Y. Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. Int J Biol Macromol 2019; 139:1232-1238. [DOI: 10.1016/j.ijbiomac.2019.08.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
|
38
|
Turk H. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:415-422. [PMID: 31229926 DOI: 10.1016/j.plaphy.2019.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 05/18/2023]
Abstract
This study aimed to investigate the possible alleviating effect of chitosan on salt-induced growth retardation and oxidative stress and to elucidate whether this effect is linked to activation of mitochondrial respiration on the basis of alternative respiration in maize seedlings. Salt stress significantly reduced root length and plant height in comparison to the control, whereas foliar application of chitosan ameliorated the adverse effect of salinity to a certain degree. Moreover, chitosan resulted in plant growth promotion as compared to unstressed seedlings. The separate applications of chitosan and salt had a stimulatory effect on the activities of antioxidant enzymes; however, combined application of chitosan and salt were more effective than that of chitosan or salt alone. Similarly, mitochondrial total respiration rate (Vt) and alternative respiration capacity (Valt) were increased by separate applications of chitosan and salt; however, the combination of chitosan and salt gave the highest values for these parameters. The highest values of Valt/Vt was recorded at seedlings treated with salt plus chitosan. Similarly, cytochrome respiration capacity was also increased by chitosan in both stress-free and stressed conditions. In addition, AOX1, encoding alternative oxidase, was significantly upregulated by chitosan and/or salt. The maximum transcript level was recorded at seedlings treated with salt plus chitosan. Chitosan also significantly decreased superoxide anion and hydrogen peroxide contents and lipid peroxidation level under normal and the stressed conditions. These results suggest that the mitigating effect of chitosan on salt stress is linked to activation of alternative respiration at biochemical and molecular level.
Collapse
Affiliation(s)
- Hulya Turk
- East Anatolian High Technology Application and Research Center, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
39
|
Li K, Green AR, Dinges MM, Larive CK. 1H NMR characterization of chitin tetrasaccharide in binary H 2O:DMSO solution: Evidence for anomeric end-effect propagation. Int J Biol Macromol 2019; 129:744-749. [PMID: 30771389 DOI: 10.1016/j.ijbiomac.2019.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 02/11/2019] [Indexed: 11/29/2022]
Abstract
Chitin oligosaccharides, composed of homogeneous β(1 → 4)-linked N-acetyl-D-glucosamine (GlcNAc) sequences, is a well-known elicitor of plant immune defense, and also occur as structural elements of chitosan and nodulation (Nod) factor. Detailed microstructure characterization is required for understanding the function mode of these bioactive molecules. Herein, experimental conditions for detection and elucidation of the 1H NMR resonances of amide groups in chitin oligosaccharides are presented. The binary mixture of 70% H2O: 30% DMSO‑d6 was found to be the optimal solvent for amide proton measurements in homogeneous GlcNAc sequences, facilitating differentiation of the local chemical microenvironments of all four amide groups of the chitin tetrasaccharide. Experimental evidence that anomeric end-effect triggers amide proton resonance differentiation at the adjacent residue has potential to provide important insights into the solution structure of chitin and other amino sugars containing GlcNAc sequences.
Collapse
Affiliation(s)
- Kecheng Li
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Andrew R Green
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States
| | - Meredith M Dinges
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States
| | - Cynthia K Larive
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
40
|
Torğut G, Beker Akbulut G. Effect of the novel biodegradable copolymer and soil salinity on the growth of corn plant. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gülben Torğut
- Department of Chemistry and Chemical Processes; Tunceli Vocational School; Munzur University; Tunceli Turkey
| | - Gülcin Beker Akbulut
- Department of Organic Agriculture; Tunceli Vocational School; Munzur University; Tunceli Turkey
| |
Collapse
|
41
|
Chitosan-PVA and Copper Nanoparticles Improve Growth and Overexpress the SOD and JA Genes in Tomato Plants under Salt Stress. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090175] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Saline stress severely affects the growth and productivity of plants. The activation of hormonal signaling cascades and reactive oxygen species (ROS) in response to salt stress are important for cellular detoxification. Jasmonic acid (JA) and the enzyme SOD (superoxide dismutase), are well recognized markers of salt stress in plants. In this study, the application of chitosan-polyvinyl alcohol hydrogels (Cs-PVA) and copper nanoparticles (Cu NPs) on the growth and expression of defense genes in tomato plants under salt stress was evaluated. Our results demonstrate that Cs-PVA and Cs-PVA + Cu NPs enhance plant growth and also promote the expression of JA and SOD genes in tomato (Solanum lycopersicum L.), under salt stress. We propose that Cs-PVA and Cs-PVA + Cu NPs mitigate saline stress through the regulation of oxidative and ionic stress.
Collapse
|
42
|
Asgari-Targhi G, Iranbakhsh A, Ardebili ZO. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:393-402. [PMID: 29677682 DOI: 10.1016/j.plaphy.2018.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 05/24/2023]
Abstract
Concerning environmental issues of metal based-nanomaterials and increasing demand for nano-based products; various strategies have been employed to find eco-friendly natural nano-compounds, among which nano-polymer chitosan is mostly considered. Herein, the various aspects of the way in which bulk or nano-chitosan may modify growth, morphogenesis, micropropagation, and physiology of Capsicum annuum L. were considered. Culture medium was manipulated with different concentrations of bulk chitosan or synthesized chitosan/tripolyphosphate (TPP) nano-particle. The supplementations of culture media led to changes in morphology (especially, the root architecture) and differentiation. Toxic doses of bulk (100 mgL-1) or nano-chitosan (5, 10, and 20 mgL-1) dramatically provoked cessation of plant growth and development. Plant growth and biomass accumulations were increased along with the suitable levels of bulk or nano-chitosan. Peroxidase and catalase activities in a dose and organ-dependent manners were significantly modified by the supplements. Phenylalanine ammonia lyase was induced by the mentioned supplements. Also, the contents of soluble phenols, proline, and alkaloid were found to be significantly increased by the elicitors, over the control. The nano-chitosan of 1 mgL-1 was found to be the most effective elicitor to trigger organogenesis via micropropagation. The huge differences between triggering and toxic concentrations of the supplements would be due to the physicochemical modifications of nano-polymeric. Furthermore, the results highlight the potential benefits (hormone-like activity) and phytotoxic impacts of nano-chitosan/TPP for in vitro manipulations. This is the first report on both the favorable and adverse effects of nano-chitosan/TPP, representing requirements for further investigation on such formulations for future applications.
Collapse
Affiliation(s)
- Ghasem Asgari-Targhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
43
|
Zhang X, Li K, Xing R, Liu S, Chen X, Yang H, Li P. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3810-3822. [PMID: 29584426 DOI: 10.1021/acs.jafc.7b06081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- University of Chinese Academy of Sciences, Beijing 100049 , China
| | - Kecheng Li
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Ronge Xing
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Song Liu
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Xiaolin Chen
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Haoyue Yang
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Pengcheng Li
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
44
|
Zou P, Lu X, Jing C, Yuan Y, Lu Y, Zhang C, Meng L, Zhao H, Li Y. Low-Molecular-Weightt Polysaccharides From Pyropia yezoensis Enhance Tolerance of Wheat Seedlings ( Triticum aestivum L.) to Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:427. [PMID: 29719543 PMCID: PMC5913351 DOI: 10.3389/fpls.2018.00427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/20/2018] [Indexed: 05/29/2023]
Abstract
Soil salinity is one of the major issues worldwide that affects plant growth and reduces agricultural productivity. Seaweed polysaccharides have been shown to promote crop growth and improve the resistance of plant to abiotic stresses. Pyropia yezoensis is a commercially important edible red alga in Southeast Asia. However, there is little research on the application of polysaccharides from P. yezoensis in agriculture. The molecular weight (MW) of polysaccharides influences their properties. Therefore, in this study, four representative polysaccharides from P. yezoensis (PP) with different MWs (MW: 3.2, 10.5, 29.0, and 48.8 kDa) were prepared by microwave-assisted acid hydrolysis. The relationship between the degradation of polysaccharides from P. yezoensis (DPP) and their effects on plant salt tolerance was investigated. The results showed that exogenous PP and DPPs increased wheat seedling shoot and root lengths, and fresh and dry weights, alleviated membrane lipid peroxidation, increased the chlorophyll content and enhanced antioxidant activities. The expression level examination analysis of several Na+/K+ transporter genes suggested that DPPs could protect plants from the damage of salt stress by coordinating the efflux and compartmentation of Na+. The results demonstrated that polysaccharides could regulate antioxidant enzyme activities and modulate intracellular ion concentration, thereby to protect plants from salt stress damage. Furthermore, there was a significant correlation between the tolerance of wheat seedlings to salt stress and MW of polysaccharides. The results suggested that the lower-MW samples (DPP1, 3.2 kDa) most effectively protect wheat seedlings against salt stress.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xueli Lu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yi Lu
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lei Meng
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, China
| | - Hongtao Zhao
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
45
|
Salachna P, Grzeszczuk M, Meller E, Soból M. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress. Molecules 2018; 23:E812. [PMID: 29614824 PMCID: PMC6017372 DOI: 10.3390/molecules23040812] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/02/2022] Open
Abstract
Biopolymers have become increasingly popular as biostimulators of plant growth. One of them, oligo-alginate, is a molecule that regulates plant biological processes and may be used in horticultural practice as a plant growth regulator. Biostimulators are mainly used to improve plant tolerance to abiotic stresses, including salinity. The aim of the study was to assess the effects of salinity and oligo-alginate of various molecular masses on the growth and physiological activity of Eucomis autumnalis. The species is an ornamental and medicinal plant that has been used for a long time in the traditional medicine of South Africa. The bulbs of E. autumnalis were coated using depolymerized sodium alginate of molecular mass 32,000; 42,000, and 64,000 g mol-1. All of these oligo-alginates fractions stimulated plant growth, and the effect was the strongest for the fraction of 32,000 g mol-1. This fraction was then selected for the second stage of the study, when plants were exposed to salt stress evoked by the presence of 100 mM NaCl. We found that the oligo-alginate coating mitigated the negative effects of salinity. Plants treated with the oligomer and watered with NaCl showed smaller reduction in the weight of the above-ground parts and bulbs, pigment content and antioxidant activity as compared with those not treated with the oligo-alginate. The study demonstrated for the first time that low molecular mass oligo-alginate may be used as plant biostimulator that limits negative effects of salinity in E. autumnalis.
Collapse
Affiliation(s)
- Piotr Salachna
- Department of Horticulture, West Pomeranian University of Technology, 3 Papieża Pawła VI Str., 71-459 Szczecin, Poland.
| | - Monika Grzeszczuk
- Department of Horticulture, West Pomeranian University of Technology, 3 Papieża Pawła VI Str., 71-459 Szczecin, Poland.
| | - Edward Meller
- Department of Soil Science, Grassland Management and Environmental Chemistry, West Pomeranian University of Technology, Słowackiego 17 Str., 71-434 Szczecin, Poland.
| | - Marcin Soból
- Center of Bioimmobilisation and Innovative Packaging Materials, West Pomeranian University of Technology, 35 Janickiego Str., 71-270 Szczecin, Poland.
| |
Collapse
|
46
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
47
|
Kollárová K, Kamenická V, Vatehová Z, Lišková D. Impact of galactoglucomannan oligosaccharides and Cd stress on maize root growth parameters, morphology, and structure. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:59-66. [PMID: 29407550 DOI: 10.1016/j.jplph.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 05/13/2023]
Abstract
Biologically active oligosaccharides, including galactoglucomannan oligosaccharides (GGMOs), affect plant growth and development. The impact of GGMOs is dependent on their concentration, and the plant species and plant parts affected. The aim of this article is to ascertain the effects of GGMOs, GGMOs + Cd2+, on growth parameters, morphology, and the structure of maize (Zea mays L.) roots. We undertook this research because, in monocots, the effect of these oligosaccharides is so far unknown. In our study, GGMOs stimulated primary root elongation, induction and elongation of lateral roots, and biomass production. Their effect was dependent on the concentration used. Simultaneously, GGMOs moderated the negative effect of Cd2+ on root elongation growth. Besides, GGMOs affected the primary root structure, proven in the earlier development of xylem and Casparian bands, but not of suberin lamellae (compared to the control). The presence of Cd2+ shifted the apoplasmic barriers closer to the root apex in comparison to samples treated with GGMOs + Cd2+. GGMOs do not inhibit Cd uptake into the root directly, but they moderate its effect, and therefore their influence at the structural and metabolic level seems possible. Their positive impact on plant vitality, even in contaminated conditions, strongly indicates their potential application in remediation technologies.
Collapse
Affiliation(s)
- Karin Kollárová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Viktória Kamenická
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-2, 842 15, Bratislava, Slovakia
| | - Zuzana Vatehová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Desana Lišková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
48
|
Exopolysaccharide Gellan Gum and Derived Oligo-Gellan Enhance Growth and Antimicrobial Activity in Eucomis Plants. Polymers (Basel) 2018; 10:polym10030242. [PMID: 30966277 PMCID: PMC6414989 DOI: 10.3390/polym10030242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
One of the visible trends in the cultivation of plants, particularly of medicinal ones, is the increasing interest of researchers in polysaccharides and their derivatives that show biostimulatory properties and are also safe to use. In the current study, we evaluated the effects of gellan gum and its depolymerized form oligo-gellan, on growth and antimicrobial activity of two ornamental species Eucomis bicolor and Eucomis comosa used in natural medicine. The biopolymers were applied in the form of bulb coating prepared by using polyelectrolyte complexes. In both species investigated, gellan gum and oligo-gellan enhanced the fresh weight of leaves and bulbs, the performance of the photosynthetic apparatus, and the leaf content of basic macronutrients. In comparison with the control, the plants treated with oligo-gellan accumulated more biomass, were first to flower, and had the highest leaf content of potassium. The extracts from the bulbs treated with gellan gum and oligo-gellan showed higher effectiveness in reducing the count of Bacillus atrophaeus, Escherichia coli, and Staphylococcus aureus than those from the bulbs not treated with the polysaccharides. The research described here largely expands our current knowledge on the effects of gellan gum derivatives and has a huge practical potential in agriculture production.
Collapse
|
49
|
Salachna P, Grzeszczuk M, Soból M. Effects of Chitooligosaccharide Coating Combined with Selected Ionic Polymers on the Stimulation of Ornithogalum saundersiae Growth. Molecules 2017; 22:molecules22111903. [PMID: 29113062 PMCID: PMC6150323 DOI: 10.3390/molecules22111903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/01/2023] Open
Abstract
Recently, agricultural and horticultural sectors have shown an increased interest in the use of biopolymers and their derivatives as growth biostimulators. So far, coating is a little known method of applying the biostimulators. Our three-year study investigated coating the bulbs of Ornithogalum saundersiae with chitooligosaccharide (COS), sodium alginate, carrageenan, gellan gum and xanthan gum. The coating method was based on the formation of polyelectrolyte complexes. The COS with 48,000 g mol−1 molecular weight was contained by means of controlled free-radical degradation. Biopolymer coatings stimulated plant growth and flowering, total chlorophyll content, total polyphenol content and the levels of nitrogen, phosphorus, potassium and boron. The plants grown from the bulbs coated with COS + gellan gum exhibited the most vigorous growth, were first to flower, showed the highest antioxidant activity (DPPH), and the greatest content of pigments, polyphenols, l-ascorbic acid, potassium, phosphorus, zinc and manganese. These results suggest COS formulated with gellan gum shows promise as a potential biostimulator of plant growth.
Collapse
Affiliation(s)
- Piotr Salachna
- Department of Horticulture, West Pomeranian University of Technology, 3 Papieża Pawła VI Str., 71-434 Szczecin, Poland.
| | - Monika Grzeszczuk
- Department of Horticulture, West Pomeranian University of Technology, 3 Papieża Pawła VI Str., 71-434 Szczecin, Poland.
| | - Marcin Soból
- Center of Bioimmobilisation and Innovative Packaging Materials, West Pomeranian University of Technology, 35 Janickiego Str., 71-270 Szczecin, Poland.
| |
Collapse
|
50
|
Ramzani PMA, Coyne MS, Anjum S, Khan WUD, Iqbal M. In situ immobilization of Cd by organic amendments and their effect on antioxidant enzyme defense mechanism in mung bean (Vigna radiata L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:561-570. [PMID: 28783510 DOI: 10.1016/j.plaphy.2017.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
In situ immobilization of Cd is desirable due to the damaging effects of ex situ remediation techniques on soil. In this greenhouse study, the role of biochar (BC), chitosan (CH), and green waste (GW) was studied for in-situ Cd immobilization and alleviating Cd toxicity in mung bean seedlings. Amendments were applied at rates of 0.5% and 1% (w/w). The minimum mean value of Cd, in root, shoot, and soil (DTPA-Cd) (12.2, 4.7, and 0.7 mg kg-1, respectively), occurred in the Cd + 1% CH treatment compared to all Cd amended treatments. Shoot dry weight (21%) increased significantly in Cd + 1% BC amended soil compared to the control. Reactive oxygen species were affected significantly, with the lowest increased value of hydrogen peroxide (4%) in the Cd + 1% CH treatment while the minimum increase in the value of superoxide (O2•-) occurred in the Cd + 1% BC soil compared to the control. Malondialdehyde (20%) increased lowest with Cd + 1% CH treatment. Protein, ascorbate (AsA) contents, and catalase (CAT) activity increased the most (3, 2, and 15%, respectively) in the Cd + 1% BC treatment while dehydroascorbate reductase (DHAR) and superoxide dismutase (SOD) activity increased the most (9 and 234%, respectively) in the Cd + 1% CH soil compared to the control. Glutathione reductase (GR), ascorbate peroxidase (APX), and glutathione peroxidase (GPX), activity were reduced the most in the Cd + 1.0% BC treatment while dehydroascorbate (DHA) and glutathione S-transferase (GST) activity decreased the most in the Cd + 1% CH soil. Overall, in situ immobilization by amendments improved growth and antioxidant defense mechanisms of mung bean seedlings and was reflected by tolerance to Cd-toxicity.
Collapse
Affiliation(s)
| | - Mark S Coyne
- Department of Plant and Soil Sciences, University of Kentucky, KY 40546-0091, USA
| | - Shazia Anjum
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Center, Government College University, Lahore 54000, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000 Pakistan
| |
Collapse
|