1
|
Guo H, Luo H, Huang C, Zheng J, Liu F, Ou J, Ou S. High loading of anthocyanin on chitosan films by acrolein for sensitive monitoring of meat freshness. Food Chem 2025; 477:143468. [PMID: 40048935 DOI: 10.1016/j.foodchem.2025.143468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/27/2025]
Abstract
As a natural pigment, anthocyanins show different colours in a wide pH range and can be used to prepare pH-responsive smart packaging films. However, free anthocyanins have obvious disadvantages, including easy degradation under light and easy migration into foods. This study used acrolein (ACR), a highly reactive β-unsaturated aldehyde, to cross-link anthocyanin and chitosan (CS). This technique enabled loading of up to 26.18 mg/g of anthocyanin on CS, increasing the stability and preventing migration. Furthermore, acrolein substantially enhanced the mechanical strength of the film while reducing its swelling ability, water-vapour transmission and water contact angle. The film exhibited a broad range of colour shifts across pH levels ranging from 2 to 13. In ammonia simulation experiments, the film demonstrated exceptional sensitivity and quick response to volatile ammonia, exhibiting a 48.5 % colour change within 1 min. Pork freshness test also showed that when the total volatile basic nitrogen content is below 15 mg/100 g (indicating meat deterioration), the film undergoes a substantial colour change (SRGB > 40 %). Concurrently, the cross-linked anthocyanins improved the antioxidant and antibacterial activities of the membrane. Therefore, it can be concluded that the CSAP-2 film can detect pork freshness and has great application prospects in the field of smart meat packaging films.
Collapse
Affiliation(s)
- Hongyang Guo
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Haiying Luo
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
2
|
Lohrasbi Nejad S, Shekarchizadeh H. An agar hydrogel-CuNPs/N@CQDs dual-mode colorimetric/fluorescent indicator for non-destructive monitoring of banana ripening. Food Chem 2025; 473:143098. [PMID: 39884236 DOI: 10.1016/j.foodchem.2025.143098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
A colorimetric-fluorescence ripeness indicator, based on copper nanoparticles and carbon quantum dots doped with nitrogen (CuNPs/N@CQDS) immobilized in agar hydrogel (AGH-CuNPs/N@CQDs) for ethylene gas detection, was developed for detecting the ripening of bananas. Ethylene could reduce the fluorescence intensity of CuNPs/N@CQDs and cause a red shift of the LSPR peak. The prepared AGH-CuNPs/N@CQDs indicator had an irreversible response to ethylene with LOD and LOQ of 9.94 and 30.12 μM, respectively. The results of XPS and FTIR confirmed the formation of Cu-OH bonds. The color of the AGH-CuNPs/N@CQDs indicator changed from pale green to yellow and ultimately to brown during banana ripening. There was a strong correlation between the decrease in firmness of banana tissue, the increase in reducing sugars, and the change in the indicator's color. Therefore, the AGH-CuNPs/N@CQDs indicator is capable of simple, low-cost, high-accuracy, and naked-eye identification of the fruit's ripening in intelligent packaging.
Collapse
Affiliation(s)
- Sepideh Lohrasbi Nejad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
3
|
Fatehi F, Khalili Sadrabad E, Feilizadeh M, Derakhshan Z, Heidari Kochaki S, Hekmatimoghaddam S, Jebali A, Mohajeri FA. Designing the pH-sensitive indicator based on starch nanoparticle with bromocresol green for monitoring meat spoilage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1204-1212. [PMID: 39058403 DOI: 10.1080/09603123.2024.2383427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The starch nanoparticle, combined with bromocresol green (BCG), served as a pH-sensitive indicator to monitor meat quality throughout an 8-day refrigerated storage period. The meat samples were sealed in package which the pH-sensitive indicator attached to the interior part of packaging lid. The changes in meat quality were evaluated by total volatile base nitrogen (TVBN), pH, total viable count (TVC), sensory analysis, and color in interval of 0, 3, 5, 7, and 8-days storage at 4°C. Initial TVBN values were recorded at 19.6 mg/100 g, increased to 26.6 mg/100 g by the end of storage period. The pH value was significantly increased after 8 days storage at 4°C. The observed color variation in the indicator from yellow to blue was attributed to the concurrent increases in TVBN, TVC, and pH. The indicator color changes had significant correlation with analyzed chemical quality of stored meat. Therefore, the designed BCG pH-sensitive indicator could be effective in monitoring the meat spoilage during storage.
Collapse
Affiliation(s)
- Farzaneh Fatehi
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Khalili Sadrabad
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrzad Feilizadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Zahra Derakhshan
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Heidari Kochaki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Jebali
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Yazd, Iran
| | - Fateme Akrami Mohajeri
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Tibaldi C, Oliveira S, Dinelli G, Marotti I, Raymundo A. Nutritional features of organic peas (Pisum sativum L.) cultivated in different Italian environments and rheological profile of pea-enriched crackers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3606-3619. [PMID: 39907070 PMCID: PMC11990044 DOI: 10.1002/jsfa.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Legumes are a key component of the human diet and a primary source of plant-based protein. They have attracted global attention as potential plant-based meat alternatives due to their numerous health benefits, and they contribute to a more sustainable and healthy food system. Among pulses, peas (Pisum sativum L.) are considered a good source of proteins, fibers, starch, minerals, and vitamins. This study evaluated the effect of environmental conditions on nutritional profile of peas cultivated in an organic farming system, in different Italian environments (mountainous and hilly), during different cultivation years (2021 and 2022). Pea grain from peas cultivated under the various conditions was used to prepare pea-based crackers containing 6% pea flour. The appearance, physical properties (rheology and texture), and nutritional profile of the snacks were evaluated, and sensory analysis was conducted. RESULTS The nutritional and bioactive compounds were strongly related and the environment exerted a substantial impact on most of the nutritional components (proteins and carbohydrates), due to climatic conditions during the vegetative and reproductive stage of the crop. The incorporation of cultivated peas into wheat-based crackers improved their functional and nutritional quality while maintaining consumer acceptability, as demonstrated by sensory analysis. CONCLUSIONS The results confirmed that growing conditions significantly influence the nutritional composition of peas, enhancing their quality and that of the resulting crackers. This aligns with the increasing global demand for high-quality, sustainable food products. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Camilla Tibaldi
- Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Sónia Oliveira
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRAInstituto Superior de Agronomia, Universidade de LisboaLisbonPortugal
| | - Giovanni Dinelli
- Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Ilaria Marotti
- Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRAInstituto Superior de Agronomia, Universidade de LisboaLisbonPortugal
| |
Collapse
|
5
|
Zhong K, Liu S, Li Y, Tang L, Sun X, Li X, Li J. A triphenylamine-based aggregation-induced emission active fluorescent probe for fluorescent ink, fingerprint powder, and visual detection of salmon freshness. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3951-3961. [PMID: 39873134 DOI: 10.1002/jsfa.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized. RESULTS The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing. It was also prepared successfully for application as a fingerprint powder, facilitating the visual detection of invisible fingerprints on surfaces such as glass, plastic, tinfoil, metal, aluminum, and resin. The probe exhibited a clear fluorescence response to 12 volatile amines via an AIE-based 'on-off' mechanism in an EtOH/H2O (4/6, v/v) solution. The TBAC/bromocresol green (BCG) indicator label also enabled non-destructive and rapid assessment of salmon freshness through dual-channel colorimetric and fluorescence responses. CONCLUSION The versatility of TBAC makes it a promising material for various applications, including fluorescent materials, criminal detection, and food safety. This study provides a new basis for the multifunctional application of fluorescent probes. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Materials Engineering; Institute of Ocean, Bohai University, Jinzhou, China
| | - Shuang Liu
- College of Chemistry and Materials Engineering; Institute of Ocean, Bohai University, Jinzhou, China
| | - Yangyang Li
- College of Chemistry and Materials Engineering; Institute of Ocean, Bohai University, Jinzhou, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering; Institute of Ocean, Bohai University, Jinzhou, China
| | - Xiaofei Sun
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
6
|
Ahangari H, Ebrahimi A, Ehsani A, Amjadi S. Multipurpose packaging system based on intelligent carboxymethyl cellulose film and activated cellulose acetate electrospun nanofibers for seafoods. Int J Biol Macromol 2025; 298:140115. [PMID: 39837453 DOI: 10.1016/j.ijbiomac.2025.140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The objective of this research is to develop a natural macromolecules-based smart double-layer film using carboxymethyl cellulose (CMC) film containing pomegranate peel anthocyanins (PPA) and cellulose acetate nanofibers (CANFs) with Artemisia sieberi Besser essential oil-loaded nanostructured lipid carriers (ABNLCs). Based on the performance as a color indicator, and other studied properties, the CMC/PPA 8 % film was selected as the optimized film. The double-layer film was constructed by electrospinning the CANFs containing ABNLCs on the optimized CMC film. The average diameter of the CANFs was 332.87 ± 65.80 nm. Furthermore, the XRD patterns of CA/ABNLCs NFs showed many diffraction peaks that the sharp peaks at 2θ of 25° and 28°, indicating its crystalline structure. In addition, the Young's modulus and elongation at break point values of the CMC/PPA 8 % double-layered film were reached to 151.47 MPa and 11.39 %, respectively. The double-layer film showed good antibacterial activity with inhibition zones of 10 and 12 mm against E. coli and S. aureus pathogens, respectively. Moreover, the double-layer film demonstrated effective performance in detecting and controlling the freshness of shrimp and fish fillets.
Collapse
Affiliation(s)
- Hossein Ahangari
- Department of Food Science and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Alireza Ebrahimi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran.
| |
Collapse
|
7
|
Ronte A, Chalitangkoon J, Sintoppun T, Niemhom N, Manapradit N, Munpiriyakul P, Foster EJ, Monvisade P. Advanced chitosan hybrid dye labels for dynamic monitoring of shrimp and milk freshness. Int J Biol Macromol 2025; 302:140652. [PMID: 39909265 DOI: 10.1016/j.ijbiomac.2025.140652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
This study presents the development of intelligent screen-printed labels for real-time food freshness monitoring. Using chitosan grafted with rosolic acid (RA) and immobilized on montmorillonite (MMT) through cationic exchange, a hybrid dye was synthesized and applied in screen-printing inks. The hybrid structure was characterized by XRD, TGA, and UV-vis, confirming improved thermal stability and maintained halochromic properties. SEM analysis showed consistent ink deposition on filter paper, while water contact angle (WCA) measurements demonstrated enhanced surface hydrophobicity due to the MMT. The labels exhibited clear pH-sensitive color transitions from yellow to purplish red (pH 2.0-12.0) and rapid ammonia sensitivity, with ΔE values exceeding 45.0 within 10 min. The labels also demonstrated excellent reversibility, storage stability, leaching resistance, and cytocompatibility. Practical tests on shrimp and milk confirmed the labels' ability to accurately monitor freshness through visible color changes. These findings highlight the potential of hybrid labels as effective, scalable freshness indicators for intelligent food packaging.
Collapse
Affiliation(s)
- Arnat Ronte
- Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Jongjit Chalitangkoon
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tanaporn Sintoppun
- Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Nantawan Niemhom
- Scientific Instruments Center, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nuttaporn Manapradit
- Scientific Instruments Center, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Pimpaporn Munpiriyakul
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - E Johan Foster
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Pathavuth Monvisade
- Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
8
|
Bao Z, Liu J, Bi Y, Zhao G. Smart Bacterial Cellulose-Methylacrylated Chitosan Composite Hydrogel: Multifunctional Characterization for Real-Time pH Monitoring. Polymers (Basel) 2025; 17:914. [PMID: 40219304 PMCID: PMC11991319 DOI: 10.3390/polym17070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
pH is a critical parameter that influences biochemical and environmental processes. Real-time and accurate pH detection is essential for monitoring health and the environment. Herein, a bacterial cellulose and methylacrylated chitosan (BC-MACS) composite hydrogel was prepared to achieve rapid pH detection. The integration of MACS reduced the crystallinity of pristine BC, with no adverse effects on thermal stability. SEM images validated the fibrous nature of the BC-MACS composite, indicating that MACS was successfully infiltrated into the pores of BC. By incorporating MACS into the BC matrix, the exceptional biocompatibility of BC was maintained, while simultaneously augmenting its mechanical properties. Due to the excellent swelling ability of MACS, the fabricated BC-MACS hydrogel exhibited superior swelling behavior compared to the BC hydrogel, which facilitated the absorption of the solution under test. A BC-MACS pH sensor was fabricated by introducing the pH indicator solution, and the color variation across the pH range (2-12) demonstrated a clear response to pH changes. Therefore, the BC-MACS pH sensor holds potential for use as a visual indicator in a diverse range of applications, especially for health and environmental monitoring.
Collapse
Affiliation(s)
- Zixian Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
| | - Jiezheng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yujia Bi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
| |
Collapse
|
9
|
Sun Y, Wu S, Jiao Z, Liu D, Li X, Shang T, Tian Z. Preparation and characterization of active packaging film containing chitosan/gelatin/brassica crude extract. Sci Rep 2025; 15:6729. [PMID: 40000666 PMCID: PMC11862006 DOI: 10.1038/s41598-025-90638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Chitosan (CS), gelatin (GE), and brassica (BR) were utilized as the primary components to develop an active packaging film with outstanding properties. Active film-forming solutions were prepared using the solution casting method to produce these films. The resulting active films were characterized through various techniques, including X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, and light transmittance (T%), opacity, water solubility (WS), water vapour transmittance rate (WVTR), oxygen permeability (OP), mechanical properties, and antioxidant and antimicrobial properties. Orthogonal test results indicated that the optimal preparation ratio for the composite film was achieved with 2.5 g CS, 3.5 g GE, 6 g glycerol (GL) dissolved in distilled water. Under these conditions, the active packaging film exhibited excellent mechanical properties. In summary, the chitosan/gelatin/brassica crude extract-based active packaging film developed in this study presents a promising option for practical applications.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Shifang Wu
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| | - Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| | - Dafeng Liu
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Xueru Li
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Tiancui Shang
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China.
| | - Zhu Tian
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China.
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China.
| |
Collapse
|
10
|
Yi F, Hou F, Zhan S, Song L, Chen X, Han X, Zhang R, Wang X, Liu Z. Highly sensitive smart chitosan/zein film cross-linked with Fe 2+ chelated red radish anthocyanins nanoparticles for mushroom freshness monitoring. Food Res Int 2025; 201:115572. [PMID: 39849720 DOI: 10.1016/j.foodres.2024.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Fe2+-loaded red radish anthocyanin (RRA) and zein composite nanoparticles (FZNPs) were firstly prepared to enhance the color and stability of RRA. The addition of Fe2+ caused anthocyanin to form color chelates, enhancing its pH color sensitivity. The prepared FZNPs showed good stability and anthocyanin retention during long-term storage. The obtained FZNPs are further loaded onto chitosan/zein (C/Z) film, resulting in a highly sensitive smart film capable of detecting changes in pH. When these FZNPs were incorporated into C/Z films, the mechanical properties of the films were improved (12.1 to 16.1 MPa) and the swelling degree of the films was reduced (422 % to 67 %). The addition of FZNPs also enhanced the hydrophobicity and thermal stability of smart films. The smart film showed visible color changes in response to pH variations and acetic acid gas. As the mushroom deteriorated, the color change of smart films provided a clear indicator of quality loss. Smartphone-based color identification and a WeChat mini program were further successfully utilized for rapid freshness analysis. This system provided a rapid, reliable method for evaluating food quality, with potential applications in food monitoring and supply chain management.
Collapse
Affiliation(s)
- Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Xiuxiu Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China.
| |
Collapse
|
11
|
Ke F, Yang M, Ji W, Liu D. Functional pH-sensitive film based on pectin and whey protein for grape preservation and shrimp freshness monitoring. Food Chem 2025; 463:141092. [PMID: 39255696 DOI: 10.1016/j.foodchem.2024.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wei Ji
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Li Y, Yang X, Zou Y, Zhang H, Zhou Y, Zhu Q, Liu Y, Wang Z. Effects of different white nanomaterials on pH response ability and physicochemical performance of anthocyanin-loaded carboxymethyl cellulose-polyvinyl alcohol films. Food Chem X 2025; 25:102137. [PMID: 39844963 PMCID: PMC11750485 DOI: 10.1016/j.fochx.2024.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films. The results revealed that some nanomaterials showed capability in improving the polymer molecular interactions and enhancement in mechanical properties, barrier ability, and antioxidant activity. However, nanomaterials containing Zn was not suitable for anthocyanin-loaded film modification, because it could destroy the pH responsiveness of anthocyanin. The nano Al2O3 could increase the sensitivity of anthocyanin-loaded film in pH-response, which achieved the highest performance score during pork storage. This investigation will provide theoretical support for the development of more optimized pH-responsive anthocyanin-loaded films in the future.
Collapse
Affiliation(s)
- Yuqian Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xue Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yunfei Zou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Huixuan Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zhengcong Wang
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
13
|
Zhu X, Li Y, Tang W, Cui Y, Zhu K, Zeng B, Wang J, Wang X. Wool powder assisted colorimetric sensing yarn with high sensitivity for NH 3 monitoring. Biosens Bioelectron 2025; 267:116833. [PMID: 39383703 DOI: 10.1016/j.bios.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Colorimetric sensors have applications in gas monitoring due to their simple and quick detection through visible color changes. However, it remains challenging to prepare colorimetric sensors with high sensitivity. Herein, this work fabricated a biomass-based colorimetric sensing yarn with high sensitivity using anthocyanins as the colorimetric dye and wool powder as an effective ammonia (NH3) adsorbent. The sensitivity of the prepared yarns was evaluated for detection limit and response time. Surprisingly, the addition of 3% wool powder greatly improved the sensitivity of the prepared yarns, with a reduction of both detection limit and responsive time from 100 ppm to 20 ppm, and 2 min to 20 s, respectively when exposed in 150 ppm NH3. The prepared yarns also showed good selectivity and reusability. An example of the practical use of colorimetric yarns was presented. This work provides a facile strategy for fabricating wearable devices for toxic gas monitoring with visual output.
Collapse
Affiliation(s)
- Xixi Zhu
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China; The Hong Kong Polytechnic University, School of Fashion and Textiles, Research Center of Textiles for Future Fashion, 999077, Hong Kong, China
| | - Yuying Li
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China
| | - Wenyang Tang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan, 430200, China
| | - Yongming Cui
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan, 430200, China
| | - Beini Zeng
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China.
| | - Jinfeng Wang
- Wuhan Textile University, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan, 430200, China.
| | - Xungai Wang
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Research Center of Textiles for Future Fashion, 999077, Hong Kong, China
| |
Collapse
|
14
|
Ameri M, Ajji A, Kessler S. Enhancing seafood freshness monitoring: Integrating color change of a food-safe on-package colorimetric sensor with mathematical models, microbiological, and chemical analyses. Curr Res Food Sci 2024; 9:100934. [PMID: 39717074 PMCID: PMC11663992 DOI: 10.1016/j.crfs.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The study assessed a developed food-safe on-package label as a real-time spoilage indicator for fish fillets. This colorimetric sensor is sensitive to Total Volatile Base Nitrogen (TVB-N) levels, providing a correct indication of fish freshness and spoilage. This study evaluates and predicts the shelf-life and effectiveness of an on-package colorimetric indicator. The sensor, using black rice (BC) dye with polyvinyl alcohol (PVOH), polyethylene glycol (PEG), and citric acid (CA) as binders and crosslinking agents, is applied to PET films. The food-safe pH indicator, prepared via lab-scale flexography printing, is durable in humid environments, making it suitable for practical packaging scenarios. The sensor visibly monitored fish spoilage at 4 °C for 9 days. Quality assessment included tracking ΔRGB (total color difference), chemical (TVB-N, pH), and microbiological analyses. Results indicate that the fish samples are fresh up to 4 days of storage at 4 °C; the total viable count (TVC), Pseudomonas growth, TVB-N contents and pH reached: 5.2 (log CFU/ml), 4.31(log CFU/ml), 26.22 (mg N/100 gr sample) and 7.48, respectively. Integrating colorimetric sensor data with mathematical modeling can predict spoilage trends over time. Integrated system offers a smart approach to accurately predicting shelf-life, aiding in optimizing storage conditions, minimizing food waste, and delivering fresh, high-quality fish products to consumers.
Collapse
Affiliation(s)
- Maryam Ameri
- Chemical Engineering Department, Polytechnique Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Abdellah Ajji
- Chemical Engineering Department, Polytechnique Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Samuel Kessler
- Active/Intelligent Packaging, ProAmpac, Cincinnati, OH, 45246, United States
| |
Collapse
|
15
|
Zhang X, Liu W, Li C. Preparation of polyvinyl alcohol/carboxymethyl cellulose sodium/chitosan paper-based antimicrobial indicator cards using mixed anthocyanin with stability-colorimetric sensitivity: Monitoring freshness of carp. Int J Biol Macromol 2024; 282:137329. [PMID: 39522902 DOI: 10.1016/j.ijbiomac.2024.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, an anthocyanin solution with both high stability and sensitivity was successfully prepared through a blending method, and the optimal ratio was determined. Ultraviolet-visible spectroscopy analysis demonstrated that an increase in the proportion of black bean peel anthocyanins resulted in a deeper color and a more pronounced color change effect. Moreover, the stability of the blended anthocyanins was markedly enhanced with an increase in the proportion of purple cabbage anthocyanins, resulting in a slower decomposition rate under light, temperature, oxidation, and varying pH conditions. The blended anthocyanins, employed as a pH indicator, were utilized to prepare an antibacterial indicator card. It was observed that the mechanical properties of the coated paper remained unaltered by the ratio of the mixed pigments. The mixed pigments enhanced the stability of the antibacterial indicator card with respect to environmental fluctuations while facilitating more rapid and sensitive color transitions in the presence of ammonia and under disparate pH conditions. The application of indicator cards with five different anthocyanin ratios to fish resulted in a shelf life extension of 1-2 days compared to the control group and enabled real-time monitoring of fish freshness. A comprehensive evaluation demonstrated that the optimal indicator performance was attained when the mass ratio of black bean peel anthocyanins to purple cabbage anthocyanins was 1:1.
Collapse
Affiliation(s)
- Xu Zhang
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Wenjing Liu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
16
|
Lohrasbi Nejad S, Shekarchizadeh H. Visual tracking of real-time freshness of fish using an agar hydrogel colorimetric indicator containing CuNPs/NCQDs. Carbohydr Polym 2024; 343:122477. [PMID: 39174100 DOI: 10.1016/j.carbpol.2024.122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
A simple, selective, and affordable dual fluorescence-colorimetric indicator for hydrogen sulfide was developed based on a complex of copper nanoparticles and N-doped carbon quantum dots (CuNPs/NCQDs). Real-time and visual freshness tracking of fish was done using a colorimetric indicator by incorporating CuNPs/NCQDs into agar hydrogel (AH-CuNPs/NCQDs). The fluorescence response of the CuNPs/NCQDs solution is quenched upon exposure to H2S. The field-emission scanning electron microscopy image of the AH-CuNPs/NCQDs film revealed a unified structure. The prepared indicator exhibited a good and irreversible response to H2S, with a LOD of 91.36 and a LOQ of 276.86 μM, based on the localized surface plasmon resonance (LSPR) mechanism. The X-ray photoelectron spectrometer and Fourier transform infrared spectrometer results confirmed the formation of a CuS bond in the colorimetric indicator exposed to fish spoilage. The prepared indicator demonstrated good stability and remained unaffected by pH or other volatile compounds. Notably, there was a strong correlation between ΔΕ and fish freshness parameters (pH, TV-BN, and TVC). Light green, pale yellow, and dark yellow colors, respectively, indicated freshness, semi-freshness, and spoilage of fish during storage in the refrigerator. Overall, the prepared indicator can be effectively used for detecting spoilage in meat products as a highly sensitive freshness indicator.
Collapse
Affiliation(s)
- Sepideh Lohrasbi Nejad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
17
|
Das PP, Prathapan R, Ng KW. Advances in biomaterials based food packaging systems: Current status and the way forward. BIOMATERIALS ADVANCES 2024; 164:213988. [PMID: 39116599 DOI: 10.1016/j.bioadv.2024.213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.
Collapse
Affiliation(s)
- Partha Pratim Das
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ragesh Prathapan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
18
|
Forghani S, Almasi H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem 2024; 457:140072. [PMID: 38905838 DOI: 10.1016/j.foodchem.2024.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The aim of research was to fabricate a novel indicator by using κ-carrageenan and quince seed mucilage (QSM) hydrogels and red cabbage anthocyanin. The porosity of the hydrogel was controlled using different ratios of κ-carrageenan(C):QSM(Q) (C90:Q10, C70:Q30, and C50:Q50). The hardness of hydrogels decreased from 28.6 ± 0.3 N for C90Q10 to 11.0 ± 1.0 N for C50Q50 sample. However, according to field emission scanning electron microscopy (FE-SEM) analysis, the C50R50 sample had the best morphology with smooth surface and uniform interconnected porous network. Hydrogen bonding interactions among anthocyanins, QSM, and κ-carrageenan were confirmed by Fourier transforms infrared (FT-IR) spectroscopy. The indicator showed a color variation from red to yellow over the pH range of 2-12. Also, the indicator exhibited high sensitivity to ammonia vapors (SRGB = 115%) and good color stability. The C50QRA indicator was used for monitoring rainbow trout fillet spoilage and revealed a visually-detectable color change from red to green upon detecting total volatile basic nitrogen (TVB-N) content produced throughout storage at 4 °C. Generally, the halochromic hydrogel developed in this research can be suggested as a more sensitive and accurate freshness indicator than conventional indicator solid supports.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
19
|
Remedio LN, Parada Quinayá C. Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions. Polymers (Basel) 2024; 16:2886. [PMID: 39458714 PMCID: PMC11511127 DOI: 10.3390/polym16202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024] Open
Abstract
With the aim of meeting the growing demand for safe food, intelligent packaging has emerged, which monitors the conditions of the food and informs the consumer about its quality directly at the time of purchase. Among intelligent packaging options, colorimetric indicator films, which change color in response to changes in the food, such as the release of volatile compounds, have been widely studied. Among them, pH indicator films composed of dyes sensitive to small variations in the pH value of the food surface have received greater attention in recent years. Anthocyanins, which are natural pigments, have stood out as one of the most commonly used sources of dyes in the production of these indicator films. In this context, the present review aims to present an updated overview of research employing anthocyanins in indicator films, including their stability under different storage conditions, the influence of different polymers used in their production, and alternative techniques for maintaining stability.
Collapse
Affiliation(s)
- Leandro Neodini Remedio
- Faculty of Animal Science and Food Engineering, University of São Paulo USP, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia UTEC, Jr. Medrano Silva 165, Lima 15063, Peru;
| | - Carolina Parada Quinayá
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia UTEC, Jr. Medrano Silva 165, Lima 15063, Peru;
| |
Collapse
|
20
|
Amjadi S, Almasi H, Gholizadeh S, Hamishehkar H. Double layer packaging based on active black chickpea protein isolate electrospun nanofibers and intelligent salep film containing black chickpea peel anthocyanins for seafood products. Int J Biol Macromol 2024; 278:134897. [PMID: 39168199 DOI: 10.1016/j.ijbiomac.2024.134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
In this study, a double-layer active and intelligent packaging system was developed based on two main natural macromolecules i.e. protein and carbohydrate with green perspective. Firstly, the salep-based films containing different concentrations (0-8 % w/w) of the inclusion complex of β-cyclodextrin/black chickpea anthocyanins (βCD/BCPA) were produced. The salep film containing 8 % of βCD/BCPA complex was specified as the optimized film sample based on its performance as a color indicator. The electrospinning of black chickpea protein isolate nanofibers (BCPI NFs) containing citral nanoliposomes (NLPs) was done on the optimized salep film. The cross-sectional field emission scanning electron microscopy approved the creation of double-layer structure of the developed film. The study of chemical and crystalline structure, as well as the thermal properties of the film exhibited the physical attachment of BCPI electrospun NFs on salep film. The effectiveness of the developed system was studied in detection of spoilage and increasing the shelf life of seafood products, including shrimp and fish fillet. The performance of the intelligent layer in detection of freshness/spoilage was acceptable for both seafood products. In addition, the active layer of the film controlled the changes of pH, total volatile basic nitrogen, oxidation, and microbial load in samples during storage time.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| | - Sara Gholizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Cao Y, Song Y, Fan X, Ma L, Feng T, Zeng J, Xue C, Xu J. A smartphone-assisted sensing hydrogels based on UCNPs@SiO 2-phenol red nanoprobes for detecting the pH of aquatic products. Food Chem 2024; 451:139428. [PMID: 38678665 DOI: 10.1016/j.foodchem.2024.139428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
For some aquatic products, pH has been considered a useful index to reflect the changes in materials during the loss of freshness. Based on the inner filter effect (IFE) between deprotonated phenol red (PR) and upconversion nanoparticles (UCNPs), UCNPs coated with PR-doped SiO2 shell were embedded in agarose hydrogel to develop a smartphone-assisted method for pH sensing. With the enhancement of pH response using a phase transfer agent (i.e., tetra butyl ammonium hydroxide, TBAH), the proposed senor realized the colorimetric and fluorescence detection of pH in the range of pH 6.6-8 and pH 6-8, respectively. The sensor also showed satisfied reversibility when switched between pH 6 and 8 for at least 5 cycles. Moreover, this sensor displayed great sensitivity, stability, and portability in analyzing actual fish, shrimp, and shellfish samples, providing a new sight for evaluating the freshness of aquatic products.
Collapse
Affiliation(s)
- Yunrui Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China
| | - Lei Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China.
| | - Tingyu Feng
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, No. 106, Xiangyang Road, Qingdao, Shandong Province 266109, PR China
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China; Qingdao Marine Science and Technology Center, Qingdao 266235, PR China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
22
|
Matinfar G, Ye H, Bashiry M, Hashami Z, Yang T. Electrospinning-based sensing technologies: Opportunities for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13415. [PMID: 39267152 DOI: 10.1111/1541-4337.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024]
Abstract
The article explores the science and practice of electrospinning, tracing its history and examining the factors that influence fiber morphology, including the solution composition, processing conditions, and environmental conditions. It offers a thorough examination of electrospinning fundamentals geared toward generating an appropriate platform for creating tailored nanofibers for sensing applications in the food industry. These nanofibers play a critical role in food analysis, sensing, and traceability, and we highlight their effectiveness in identifying pesticide residues, food components, antibiotics, heavy metals, and foodborne pathogens as well as in monitoring the freshness and spoilage of food. The use of electrospinning technology is poised to make sensing platforms more accessible, affordable, and widespread, thereby significantly contributing to the improvement of food quality and safety monitoring practices.
Collapse
Affiliation(s)
- Golshan Matinfar
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Haoxin Ye
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Moein Bashiry
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tianxi Yang
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Lim HJ, Tang SY, Chan KW, Manickam S, Yu LJ, Tan KW. A starch/gelatin-based Halochromic film with black currant anthocyanin and Nanocellulose-stabilized cinnamon essential oil Pickering emulsion: Towards real-time Salmon freshness assessment. Int J Biol Macromol 2024; 274:133329. [PMID: 38908640 DOI: 10.1016/j.ijbiomac.2024.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Neoterically, food packaging systems designed solely for prolonging shelf life or monitoring freshness could not fulfil the dynamic demands of consumers. In this current investigation, using the solvent casting method, a versatile halochromic indicator was created by integrating black currant anthocyanin and cinnamon essential oil-loaded Pickering emulsion into a starch/gelatin matrix. The resulting indicator film underwent scrutiny for its structural, pH-sensitive, antioxidant, and antimicrobial attributes. Unexpectedly, the amalgamation of anthocyanin and essential oil led to decreased antioxidant activity, dropping from 73.23 ± 2.17 to 28.87 ± 2.50 mg Trolox equivalent/g sample. Additionally, no discernible antimicrobial properties were detected in the composite film sample against both Staphylococcus aureus and Escherichia coli. Fourier transform infrared analyses unveiled robust intermolecular interactions among the film-forming components, providing insights into the observed antagonistic effect. The indicator film displayed distinctive colour changes corresponding to the fresh (greyish-brown), onset of decomposition (khaki), and spoiled (dark green) stages of the stored fish sample. This highlights its promising potential for providing real-time indications of food spoilage. These findings are important for the efficient design of composite films incorporating anthocyanins and essential oils. They serve as a guide towards their potential use as multifunctional packaging materials in the food industry.
Collapse
Affiliation(s)
- Hong Jun Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Lih Jiun Yu
- Faculty of Engineering, Technology, and Built Environment, UCSI University Kuala Lumpur, Campus, No. 1, Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras 56000, Kuala Lumpur, Malaysia
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
24
|
Wu X, Yan X, Zhang J, Wu X, Zhang Q, Zhang B. Intelligent films based on dual-modified starch and microencapsulated Aronia melanocarpa anthocyanins: Functionality, stability and application. Int J Biol Macromol 2024; 275:134076. [PMID: 39053820 DOI: 10.1016/j.ijbiomac.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
This study aims to enhance the physical properties and color stability of anthocyanin-based intelligent starch films. Three dual-modified starches, namely crosslinked-oxidized starch (COS), acetylated distarch phosphate (ADSP), and hydroxypropyl distarch phosphate (HDSP), were utilized as film matrices. Aronia melanocarpa anthocyanins were incorporated through three different pre-treatments (free, spray-drying microencapsulation, and freeze-drying microencapsulation) to assess the prepared films' functionality, stability, and applicability. The results indicate that the ADSP film exhibited an approximately two-fold increase in elongation at break (EAB) compared to native starch film. Specifically, the ADSP film's water contact angle (WCA) reached 90°, demonstrating excellent flexibility and hydrophobicity. Scanning electron microscopy (SEM) revealed stronger interactions between anthocyanins and the film matrix after microencapsulation. Furthermore, after 30 days of exposure to 37 °C heat and light radiation, the freeze-dried anthocyanin-based intelligent film (FDA film) exhibited minimal fading, displaying the highest stability among the tested films. Notably, during beef freshness monitoring, the intelligent films underwent significant color changes as the beef deteriorated. In conclusion, the developed FDA film, with its outstanding stability and responsive pH characteristics, holds immense potential as a novel packaging material for food applications.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Bingqian Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| |
Collapse
|
25
|
Holliday EG, Zhang B. Machine learning-enabled colorimetric sensors for foodborne pathogen detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:179-213. [PMID: 39103213 DOI: 10.1016/bs.afnr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In the past decade, there have been various advancements to colorimetric sensors to improve their potential applications in food and agriculture. One application of growing interest is sensing foodborne pathogens. There are unique considerations for sensing in the food industry, including food sample destruction, specificity amidst a complex food matrix, and high sensitivity requirements. Incorporating novel technology, such as nanotechnology, microfluidics, and smartphone app development, into colorimetric sensing methodology can enhance sensor performance. Nonetheless, there remain challenges to integrating sensors with existing food safety infrastructure. Recently, increasingly advanced machine learning techniques have been employed to facilitate nondestructive, multiplex detection for feasible assimilation of sensors into the food industry. With its ability to analyze and make predictions from highly complex data, machine learning holds potential for advanced yet practical colorimetric sensing of foodborne pathogens. This article summarizes recent developments and hurdles of machine learning-enabled colorimetric foodborne pathogen sensing. These advancements underscore the potential of interdisciplinary, cutting-edge technology in providing safer and more efficient food systems.
Collapse
Affiliation(s)
- Emma G Holliday
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
26
|
Yu M, Chen S, Yu X. Reusable, Green, Portable Ionogels Based on Terpyridine-Imidazole Salt for Visual Monitoring of Pork Spoilage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11713-11722. [PMID: 38775965 DOI: 10.1021/acs.langmuir.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ionogels have emerged as a promising approach because they combine the advantageous properties of ionic liquids and gels. Herein, a novel gelator bearing terpyridine and imidazolium salt units was designed and synthesized, which assembled into ionogels in three ionic liquids by a heating-cooling procedure. The properties of ionogels were characterized by FT-IR, UV-vis spectroscopy, POM, XRD, and rheology, and resonance light scattering and opacity measurements were conducted to investigate the gelation kinetics. Furthermore, the ionogels incorporating pH-sensitive dyes (BTB and MR) were exploited as colorimetric sensor to monitor total volatile basic nitrogen (TVB-N) of meat at -4 °C, which can easily and reliably estimate the quality of meat by naked eye recognition, and the results demonstrated a positive correlation between the color variation and TVB-N levels. Notably, the hydrophobic ionogel indicators are more suitable for potential application at high humidity thanks to their antiswelling advantage, which could prevent the inaccurate information produced by hydrogel indicators. In addition, the ionogels could be reused up to three times as colorimetric indicators, suggesting potential applications and competitiveness. Our research sheds new light on the novel application of ionogels in the food industry.
Collapse
Affiliation(s)
- Mingqi Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Shaorui Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
27
|
Chiu I, Yang T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2300065. [PMID: 38948319 PMCID: PMC11210745 DOI: 10.1002/ansa.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024]
Abstract
Increasing concerns about global food safety and security demands innovative solutions, particularly in food packaging technologies. This review paper investigates the advanced integration of natural colourimetric sensors with biopolymer-based packaging materials, with a focus on developments over the past 5 years. These sensors change colour in response to environmental stimuli such as oxygen, temperature, pH and relative humidity, intuitively indicating food freshness and safety. The paper emphasizes the recent advancements in using natural colourants, such as alizarin, anthocyanins, betacyanins, chlorophyll, curcumin and shikonin. When combined with either natural or synthetic biopolymers, these colourants contribute to a sustainable and eco-friendly approach to food packaging. Such technological advances could notably decrease the incidence of foodborne illnesses by signaling potential spoilage or contamination, while also addressing food wastage by providing clear indications of edibility. Although challenges remain in sensor longevity and widespread adoption, the prospects for biopolymer-based food packaging with embedded natural colourimetric sensors are promising.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| |
Collapse
|
28
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
29
|
Bao Y, Wang M, Si X, Li D, Gui H, Jiang Q, Li J, Yang S, Yang Y, Li Z, Li B. Customized development of 3D printed anthocyanin-phycocyanin polychromatic oral film via chondroitin sulfate homeostasis: A platform based on starch and κ-carrageenan. Carbohydr Polym 2024; 330:121817. [PMID: 38368099 DOI: 10.1016/j.carbpol.2024.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The development of oral film with diverse colors and customized nutrition is in line with the innovation of emerging food. In this study, polychromatic system was formed by regulating the ratio of phycocyanin (PC) to blueberry anthocyanin (BA). Further, chondroitin sulfate (CS) was utilized to achieve color-enhanced and homeostatic effects on PC-BA, and κ-carrageenan (KC) - starch complex was exploited as printing ink to construct oral film system. The color-enhanced effect of CS is mainly related to the complexation of sulfate groups, and the film-forming substrates are combined mainly through hydrogen bonding. In addition, the proportion of KC modulated the gel structure of printing ink, and affected 3D printability and physical properties of oral film. OF II (1.5 % KC content) had a uniform and dense network structure, with the most stable color and the highest BA retention (70.33 %) after 8 d of light exposure. Importantly, OF II had an excellent slow-release effect, and BA release rate was as high as 92.52 %. The optimized components can form polychromatic oral film with controllable color and structure, and provide new insights for the creation of sensory personalized and nutritionally customized food.
Collapse
Affiliation(s)
- Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji, Zhejiang 311800, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
30
|
Wang Y, Wang Y, Mushtaq RT, Wei Q. Advancements in Soft Robotics: A Comprehensive Review on Actuation Methods, Materials, and Applications. Polymers (Basel) 2024; 16:1087. [PMID: 38675005 PMCID: PMC11054840 DOI: 10.3390/polym16081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The flexibility and adaptability of soft robots enable them to perform various tasks in changing environments, such as flower picking, fruit harvesting, in vivo targeted treatment, and information feedback. However, these fulfilled functions are discrepant, based on the varied working environments, driving methods, and materials. To further understand the working principle and research emphasis of soft robots, this paper summarized the current research status of soft robots from the aspects of actuating methods (e.g., humidity, temperature, PH, electricity, pressure, magnetic field, light, biological, and hybrid drive), materials (like hydrogels, shape-memory materials, and other flexible materials) and application areas (camouflage, medical devices, electrical equipment, and grippers, etc.). Finally, we provided some opinions on the technical difficulties and challenges of soft robots to comprehensively comprehend soft robots, lucubrate their applications, and improve the quality of our lives.
Collapse
Affiliation(s)
- Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (R.T.M.); (Q.W.)
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (R.T.M.); (Q.W.)
| | | | | |
Collapse
|
31
|
Zeng Q, Wang Y, Javeed A, Chen F, Li J, Guan Y, Chen B, Han B. Preparation and properties of polyvinyl alcohol/chitosan-based hydrogel with dual pH/NH 3 sensor for naked-eye monitoring of seafood freshness. Int J Biol Macromol 2024; 263:130440. [PMID: 38417763 DOI: 10.1016/j.ijbiomac.2024.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
To address the issue of food spoilage causing health and economic loss, we developed a pH/NH3 dual sensitive hydrogel based on polyvinyl alcohol/chitosan (PVA/CS) containing chitosan-phenol red (CP). The CP was synthesized via Mannich reaction and immobilized it in PVA/CS hydrogel through freezing/thawing method to prepare the final PVA/CS/CP hydrogel. The synthesis of CP was confirmed by 1H NMR, FT-IR, XRD, UV-vis, and XPS. The characteristics of hydrogel were evaluated by FT-IR, XRD, SEM, mechanical properties, thermal stability, leaching, and color stability tests. The PVA/CS/CP hydrogel showed distinctly different color at various pH and NH3 vapor levels (yellow to purple). The hydrogel exhibited obvious color changes (ΔE = 46.95) in response to shrimp spoilage, stored at 4 °C. It showed positive and strong correlation between the ΔE values of the indicator hydrogel and total volatile basic nitrogen (TVB-N) as (R2 = 0.9573) and with pH as (R2 = 0.8686), respectively. These results clearly show that the PVA/CS/CP hydrogel could be applied for naked-eye real-time monitoring of seafood freshness in intelligent packaging.
Collapse
Affiliation(s)
- Qiuyu Zeng
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yifan Wang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ansar Javeed
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fengyun Chen
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiaxing Li
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yating Guan
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Baiyu Chen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
32
|
Ahmed M, Bose I, Nousheen, Roy S. Development of Intelligent Indicators Based on Cellulose and Prunus domestica Extracted Anthocyanins for Monitoring the Freshness of Packaged Chicken. Int J Biomater 2024; 2024:7949258. [PMID: 38577240 PMCID: PMC10994710 DOI: 10.1155/2024/7949258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Meat is a widely consumed food globally; however, variations in storage conditions along its supply chain can pose a potential food safety risk for consumers. Addressing this concern, we have developed freshness indicators designed to monitor the condition of packaged chicken. In this study, anthocyanins were infused with cellulose paper measuring 2 × 2 cm, and subsequent analysis focused on examining color changes concerning deteriorating chicken stored at 30°C for 48 h, with varying sample sizes being considered. The rise in total volatile nitrogen (TVB-N) compounds from an initial value of 3.64 ± 0.39 mg/100 g to 28.17 ± 1.46 mg/100 g acted as the stimulus for the color change in the indicator, simultaneously influencing the pH from the initial 7.03 ± 0.16 to 8.12 ± 0.39. The microbial load (aerobic plate count) of the chicken samples was also significantly increased. This collective shift in various parameters strongly suggests the occurrence of spoilage in chicken meat. The pH indicators exhibited a dark pink to red color for fresh chicken. As the chicken meat turned towards spoilage, the indicators changed to a dark blue and then a pale green color. FTIR spectroscopy results confirmed the presence of cellulose and anthocyanins. The FTIR analysis also validated the immobilization of plum anthocyanins within the cellulose paper and assessed their stability after 8 months of storage. Notably, the indicators demonstrated rapid sensitivity, showing a 20.5% response within one minute of ammonia exposure, which further increased to 29.5% after 3 min of exposure. The total color difference (ΔE) steadily rose in all the examined samples and also under various storage conditions. Overall, the indicators developed in this study exhibited a highly pronounced color transition, capable of distinguishing between fresh and spoiled chicken samples depending on the extent of spoilage and the specific day of observation.
Collapse
Affiliation(s)
- Mustafa Ahmed
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Nousheen
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
33
|
Liu W, Chen J, Ye H, Su C, Wu Z, Huang L, Zhou L, Wei X, Pang J, Wu S. Multifunctional Sensors Made with Conductive Microframework and Biomass Hydrogel for Detecting Packaging Pressure and Food Freshness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10785-10794. [PMID: 38357872 DOI: 10.1021/acsami.3c19392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Food packaging detection devices have attracted attention to optimize storage situations and reduce food spoilage. However, low-cost and highly sensitive multifunctional sensors for detecting both food freshness and packaging pressure are still lacking. In this study, a multifunctional sensor was developed consisting of a MXene coated alcohol-soluble polyurethane fiber network (MXene/APU) and composite biohydrogel films made of konjac glucomannan, chitosan, and blueberry anthocyanin (KCB). Based on the pressure sensitivity of MXene/APU and the color changes of KCB in response to pH values, the sensor can detect internal package bulging, external squeezing, and food deterioration. The pressure sensor shows a sensitivity of 1.16 kPa-1, a response time of 200 ms, a wide strain range of 1092%, and stability over multiple loops. The pressure sensor could detect human motion and identify surface morphologies. The excellent sensor performance was attributed to the porous structure and large specific surface area of microfiber networks, conductivity of MXene nanosheets, and protective effect of KCB films coated on the conductive membrane. Besides, the microfluidic blow-spinning method used to prepare microfiber networks showed the advantages of low energy consumption and high production efficiency. Based on the color changes of blueberry anthocyanin loaded in KCB films in response to pH, the sensor realized sensitive spoilage detection of food containing protein. This study provides a new multifunctional food packaging sensing device and a greater understanding of the optimization and application of related devices.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Ye
- Fuzhou International Travel Healthcare Center, Fuzhou Customs, Fuzhou 350001, China
| | - Che Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Huang
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Wei
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| |
Collapse
|
34
|
Ke F, Liu D, Qin J, Yang M. Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation. Foods 2024; 13:736. [PMID: 38472849 DOI: 10.3390/foods13050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
An antioxidative and pH-sensitive multifunctional film, incorporating anthocyanin-rich purple sweet potato extract (PPE) was fabricated from polyvinyl alcohol (PVA) and sodium alginate (SA)/sodium carboxymethyl cellulose (CMC-Na). The film was composed of 6:4 PVA:SA/CMC-Na (mass ratio, SA:CMC-Na at 1:1) with added PPE, and changed color with changes in pH, and also had useful UV-blocking, antioxidant, mechanical, and water vapor barrier properties, which enable its use as a food coating film. In addition, the incorporation of 300 mg PPE increased the biodegradability of the film in soil from 52.47 ± 1.12% to 64.29 ± 1.75% at 17 days. The pH sensitivity of the film enabled its successful use for the evaluation of pork freshness. Cherries coated with the film had an extended shelf life from 3-4 to 7-9 days, during storage at 25 °C. Consequently, the multifunctional film can be applied to packaging for real-time pH/freshness monitoring and for effectively preserving the freshness of meat and fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
35
|
Yang S, Ding Q, Li Y, Han W. Bacterial cellulose/gelatin-based pH-responsive functional film for food freshness monitoring. Int J Biol Macromol 2024; 259:129203. [PMID: 38184031 DOI: 10.1016/j.ijbiomac.2024.129203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Food safety is related to public health and environmental safety. Therefore, it is necessary to develop accurate and effective detection methods to assess food quality and safety. In this study, a pH-responsive functional film (BC/GA/FITC/PCA) was generated for the real-time and visual monitoring of shrimp freshness. Bacterial cellulose /Gelatin (BC/GA) was used as a film-forming matrix, and fluorescein isothiocyanate (FITC) and red cabbage (PCA) were used as the response signals. The addition of FITC and PCA increased the shading capacity (< 30 %) and antioxidant properties (22.8 %) of the films. WCA (82.73 ± 0.95°), WVP (1.48 × 10-11 g·cm/cm2·s·Pa) and OTR (2.42 × 10-15 cm3·cm/cm2·s·Pa) indicated that the film possessed water resistance and oxygen barrier properties. When exposed to daylight, the film underwent a color transition from purple to green as the ammonia concentration increased. In addition, the blue-green fluorescence of the films gradually increased and the detection limit was low (170 ppb). In particular, the change in film color caused by shrimp spoilage corresponded to the TVBN value. This study work provides a new strategy for controlling and monitoring food safety and has a wide range of applications in the fields of food-active packaging and smart packaging.
Collapse
Affiliation(s)
- Shuo Yang
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qijun Ding
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - You Li
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjia Han
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
36
|
Elhadef K, Chaari M, Akermi S, Ben Hlima H, Ennouri M, Abdelkafi S, Agriopoulou S, Ali DS, Boulekbache-Makhlouf L, Mellouli L, Smaoui S. pH-sensitive films based on carboxymethyl cellulose/date pits anthocyanins: A convenient colorimetric indicator for beef meat freshness tracking. FOOD BIOSCI 2024; 57:103508. [DOI: 10.1016/j.fbio.2023.103508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
37
|
Gumus T, Kaynarca GB, Kamer DDA. Optimization of an edible film formulation by incorporating carrageenan and red wine lees into fish gelatin film matrix. Int J Biol Macromol 2024; 258:128854. [PMID: 38123042 DOI: 10.1016/j.ijbiomac.2023.128854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.
Collapse
Affiliation(s)
- Tuncay Gumus
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | | |
Collapse
|
38
|
Zhang C, Qu L, Liu H, Cai D, Yuan Y, Wang S. pH-responsive color-indicating film of pea protein isolate cross-linked with dialdehyde carboxylated cellulose nanofibers for pork freshness monitoring. Int J Biol Macromol 2024; 257:128671. [PMID: 38070796 DOI: 10.1016/j.ijbiomac.2023.128671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The limited mechanical performance and responsiveness of protein-based smart packaging materials have hindered their development. To address these issues, this study prepared a pH-responsive smart film by introducing dialdehyde carboxylated cellulose nanofibers (DCCNFs) as the cross-linking agent capable of covalently reacting with proteins, and bilberry extract (BE) as a pH-responsive indicator into pea protein isolate (PPI) matrix. The results demonstrated that adding DCCNF and BE enhanced the PPI film's thermal stability, density, and UV barrier properties. Tensile tests revealed significant improvements in both tensile strength and elongation at the break for the resulting film. Furthermore, films containing DCCNF and BE exhibited lower moisture content, swelling ratio, water vapor permeability, and relative oxygen transmission compared to PPI films. Notably, the anthocyanins in BE endowed the film with visual color changes corresponding to different pH values. This feature enabled the film to monitor pork freshness; a transition from acidic to alkaline in pork samples was accompanied by a color change from brown to brownish green in the film as storage time increased. Overall, these findings highlight that this developed film possesses excellent physicochemical properties and sensitive pH response capabilities, making it a promising candidate for future smart packaging applications.
Collapse
Affiliation(s)
- Chi Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Luping Qu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Huan Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Danni Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
39
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
40
|
Raghuvanshi S, Khan H, Saroha V, Sharma H, Gupta HS, Kadam A, Dutt D. Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging- A review. Int J Biol Macromol 2023; 253:127420. [PMID: 37852398 DOI: 10.1016/j.ijbiomac.2023.127420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
In food packaging, biopolymer films are biodegradable films made from biomacromolecule-based natural materials, while biocomposite films are hybrids of two or more materials, with at least one being biodegradable. Bionanocomposites are different than the earlier ones, as they consist of various nanofillers (both natural and inorganic) in combination with biomacromolecule-based biodegradable materials to make good compostable bionanocomposites. In this regard, a new type of material known as bionanocomposite has been recently introduced to improve the properties and performance of biocomposite films. Bionanocomposites are primarily developed for active packaging, but their use in intelligent packaging is also noteworthy. For example, bionanocomposites developed using a hybrid of anthocyanin and carbon dots as intelligent materials have shown their high pH-sensing properties. The natural nanofillers (like nanocellulose, nanochitosan, nanoliposome, cellulose nanocrystals, cellulose nanofibers, etc.) are being employed to promote the sustainability, degradability and safety of bionanocomposites. Overall, this article comprehensively reviews the latest innovations in bionanocomposite films for intelligent food packaging over the past five years. In addition to packaging aspects, the role of nanofillers, the importance of life cycle assessment (LCA) and risk assessment, associated challenges, and future perspectives of bionanocomposite intelligent films are also discussed.
Collapse
Affiliation(s)
- Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Hina Khan
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Harish Sharma
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Hariome Sharan Gupta
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Ashish Kadam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
41
|
Zhou X, Fu S, Li J, Yi Y, Hu Y, Lu J, Yang C, Miao J, Xu Y. Smartphone-based pH responsive 3-channel colorimetric biosensor for non-enzymatic multi-antibiotic residues. Food Chem 2023; 429:136953. [PMID: 37499511 DOI: 10.1016/j.foodchem.2023.136953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic residues in animal-derived food pose a risk to food safety and human health. Here, a smartphone-based pH-responsive 3-channel colorimetric biosensor is constructed for rapid detection of non-enzymatic multi-antibiotic residues in milk. In this system, a magnetic separation and enrichment approach is designed to specifically capture different antibiotic residues in complex environment. Indicators loaded on polydopamine-silver nanoparticles with excellently pH responsive visualization properties are utilized to ensure the high sensitivity of detection system. Moreover, smartphones are introduced to fulfill the demand for portable and on-site inspection of practical applications. It achieves simultaneous detection of oxytetracycline, kanamycin and streptomycin in the linear range of 1-105 pg/mL with detection limits of 0.085, 0.168, and 0.307 pg/mL, respectively. The practicality of the reported multi-antibiotic residues detection system is successfully demonstrated and evaluated challenging milk samples. Therefore, this system demonstrates the wide applications in multi-antibiotic residue analysis and food safety guarantee.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyuan Fu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahua Li
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhan Yi
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaqi Hu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Lu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Yang
- Xidian University Hangzhou Institute of Technology, Hangzhou 311231, China
| | - Jinfeng Miao
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanyuan Xu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
43
|
Kossyvaki D, Bustreo M, Contardi M, Athanassiou A, Fragouli D. Functional Polymeric Membranes with Antioxidant Properties for the Colorimetric Detection of Amines. SENSORS (BASEL, SWITZERLAND) 2023; 23:9288. [PMID: 38005674 PMCID: PMC10675507 DOI: 10.3390/s23229288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Herein, the ability of highly porous colorimetric indicators to sense volatile and biogenic amine vapors in real time is presented. Curcumin-loaded polycaprolactone porous fiber mats are exposed to various concentrations of off-flavor compounds such as the volatile amine trimethylamine, and the biogenic amines cadaverine, putrescine, spermidine, and histamine, in order to investigate their colorimetric response. CIELAB color space analysis demonstrates that the porous fiber mats can detect the amine vapors, showing a distinct color change in the presence of down to 2.1 ppm of trimethylamine and ca. 11.0 ppm of biogenic amines, surpassing the limit of visual perception in just a few seconds. Moreover, the color changes are reversible either spontaneously, in the case of the volatile amines, or in an assisted way, through interactions with an acidic environment, in the case of the biogenic amines, enabling the use of the same indicator several times. Finally, yet importantly, the strong antioxidant activity of the curcumin-loaded fibers is successfully demonstrated through DPPH● and ABTS● radical scavenging assays. Through such a detailed study, we prove that the developed porous mats can be successfully established as a reusable smart system in applications where the rapid detection of alkaline vapors and/or the antioxidant activity are essential, such as food packaging, biomedicine, and environmental protection.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (D.K.); (M.C.); (A.A.)
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Matteo Bustreo
- Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (D.K.); (M.C.); (A.A.)
| | - Athanassia Athanassiou
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (D.K.); (M.C.); (A.A.)
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (D.K.); (M.C.); (A.A.)
| |
Collapse
|
44
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
45
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
46
|
Zhang J, Liu S, Xie C, Wang C, Zhong Y, Fan K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: a review. Crit Rev Food Sci Nutr 2023; 64:12800-12819. [PMID: 37702748 DOI: 10.1080/10408398.2023.2257327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
As a new type of packaging method, natural pigment-based pH-sensitive indicator film packaging can be used to intelligently monitor food freshness, provide consumers with intuitive food freshness information, and own the advantages of small size, low cost and intuitive accuracy. Based on the introduction of the principle of natural pigment in pH-sensitive indicator film intelligent packaging, this paper reviews the types of natural pigment indicators (such as anthocyanins, curcumin) and film-forming matrix materials, and systematically discusses the research progress of their application in freshness monitoring in various foods, and points out the limitations of this intelligent packaging in practical applications. In order to provide natural pigment in the application and promotion of pH-sensitive indicator film packaging for monitoring food freshness, further research and development works are required to overcome the current limitations. The needs for further research and developments are outlined.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shengmao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chenxue Xie
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chengyang Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhong
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
47
|
Mohammadalinejhad S, Kurek M, Jensen IJ, Lerfall J. The potential of anthocyanin-loaded alginate hydrogel beads for intelligent packaging applications: Stability and sensitivity to volatile amines. Curr Res Food Sci 2023; 7:100560. [PMID: 37589019 PMCID: PMC10425905 DOI: 10.1016/j.crfs.2023.100560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
pH indicators have emerged as promising tools for real-time monitoring of product freshness and quality in intelligent food packaging applications. However, ensuring the stability of these indicators is critical for practical use. This study aims to evaluate the stability of anthocyanins-loaded alginate hydrogel beads of varying sizes at different temperatures under accelerated light conditions and relative humidity (RH) levels of 53% and 97% during 21 days of storage. Moreover, their sensitivity to the principal spoilage volatiles of muscle food products such as ammonia (NH3), dimethylamine (DMA) and trimethylamine (TMA) was investigated. The half-life of cyanidin-3-glucoside in small hydrogel beads was roughly twice as long as that of the larger beads under accelerated light exposure at 4 °C and they were less likely to undergo noticeable color changes over time. Both sizes of hydrogel beads stored at 97% RH and 4 °C showed color stability over the 21-day period with minimal color variation (|ΔE| ≤ 3). The UV-vis spectra of the purple corn extract exhibited changes across pH 2 to 12, as evidenced by the visible color variations, ranging from pink to green. The limit of detection (LOD) for NH3 was 25 ppm for small beads and 15 ppm for large ones. Both types of beads exhibited similar LOD for DMA and TMA, around 48 ppm. This research showed that alginate hydrogel beads containing anthocyanins from purple corn are a viable option for developing intelligent packaging of muscle foods. Furthermore, the use of hydrogel beads of different sizes can be customized to specific muscle foods based on the primary spoilage compound generated during spoilage.
Collapse
Affiliation(s)
- Samira Mohammadalinejhad
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Marcin Kurek
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Ida-Johanne Jensen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
48
|
Li R, Zhuang D, Feng H, Wang S, Zhu J. Novel “all-in-one” multifunctional gelatin-based film for beef freshness maintaining and monitoring. Food Chem 2023; 418:136003. [PMID: 36996647 DOI: 10.1016/j.foodchem.2023.136003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
In this study, a novel multifunctional food packaging was developed by incorporating alizarin (AL) and oregano essential oil Pickering emulsion (OEOP) into a gelatin film matrix. The incorporation of OEOP and alizarin improved the UV-vis resistance property of the film, blocking almost all UV-vis light (decreasing 71.80% to 0.06% at 400 nm). The elongation-at-break (EBA) was 4.02 times of that of gelatin film, indicating the improved mechanical properties of the films. This film showed a significant color change from yellow to purple in the pH range of 3-11 and a considerable sensitivity to ammonia vapor within 4 min, which was attributed to the deprotonation of the alizarin molecule. The film's antioxidant and dynamic antimicrobial capacity was significantly improved owing to the sustained release effect of OEOP. Furthermore, the multifunctional film effectively slowed down the beef spoilage rate and provided real-time visual monitoring of freshness through color changes. Additionally, the color change of the beef quality was linked to the RGB values of the film through a smartphone APP. Overall, this work broadens the possibilities of applications in the food packaging industry for multifunctional food packaging film with preservation and monitoring functions.
Collapse
|
49
|
Woszczak L, Khachatryan K, Krystyjan M, Witczak T, Witczak M, Gałkowska D, Makarewicz M, Khachatryan G. Physicochemical and Functional Properties and Storage Stability of Chitosan-Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts. Int J Mol Sci 2023; 24:12218. [PMID: 37569594 PMCID: PMC10418456 DOI: 10.3390/ijms241512218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The dynamic development of the food industry and the growing interest of consumers in innovative solutions that increase the comfort and quality of life push the industry towards seeking pioneering solutions in the field of food packaging. Intelligent and active packaging, which affects the quality and durability of food products and allows one to determine their freshness, is still a modern concept. The aim of our study was to obtain two types of films based on chitosan and starch with micellar nanostructures containing extracts from turmeric rhizomes and hibiscus flowers. The presence of spherical nanostructures was confirmed using a scanning electron microscope. The structural and optical properties of the obtained composites were characterised by Fourier-transform infrared (FTIR), UltraViolet-Visible (UV-VIS), and photoluminescence (PL) spectroscopy. Scanning electron microscopy (SEM) analysis confirmed the presence of spherical micellar structures with a size of about 800 nm in the obtained biocomposites. The presence of nano-/microstructures containing extracts affected the mechanical properties of the composites: it weakened the strength of the films and improved their elongation at break (EAB). Films with nano-/microparticles were characterised by a higher water content compared to the control sample and lower solubility, and they showed stronger hydrophilic properties. Preliminary storage tests showed that the obtained biocomposites are sensitive to changes occurring during the storage of products such as cheese or fish. In addition, it was found that the film with the addition of turmeric extract inhibited the growth of microorganisms during storage. The results suggest that the obtained bionanocomposites can be used as active and/or intelligent materials.
Collapse
Affiliation(s)
- Liliana Woszczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Teresa Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (T.W.); (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (T.W.); (M.W.)
| | - Dorota Gałkowska
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Małgorzata Makarewicz
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
50
|
Mohseni‐Shahri FS, Moeinpour F. Development of a pH-sensing indicator for shrimp freshness monitoring: Curcumin and anthocyanin-loaded gelatin films. Food Sci Nutr 2023; 11:3898-3910. [PMID: 37457176 PMCID: PMC10345677 DOI: 10.1002/fsn3.3375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
An intelligent pH-sensing indicator containing Roselle (Hibiseus sabdariffa L.) (RS) anthocyanin and curcumin (CR) was developed and characterized as on-package indicator tags to check the freshness of shrimp during the storage at 4°C. FE-SEM and FT-IR analysis showed that RS and CR were successfully immobilized in the gelatin-glycerol film-forming substrate. The addition of various natural dyes increased the thickness and antioxidant action of the colorimetric film. To assess the response to changes in the pH, the colorimetric film was immersed in different buffers. Based on volatile amines secreted by shrimp, a test application of a colorimetric film containing natural dyes at a ratio of CR:RS = 1:4 (v/v) was conducted in shrimp at 4°C. The total volatile basic nitrogen (TVB-N) and the pH of shrimp were monitored during refrigerated storage for 10 days, and the color changes of the indicator were recorded simultaneously. The results indicated that the designed colorimetric film could produce various colors, which are thought to be indicative of the freshness and spoilage of packaged shrimp. Therefore, the target film can be utilized as a promising smart packaging material for monitoring the freshness of shrimp and aquatic products in real time.
Collapse
Affiliation(s)
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran
| |
Collapse
|