1
|
Zhang Y, Ji X, Chang K, Yin H, Zhao M, Zhao L. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Gut Microbes 2025; 17:2442051. [PMID: 39694919 DOI: 10.1080/19490976.2024.2442051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of Candida albicans, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of Candida albicans were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated in vivo to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased Candida albicans abundance. Moreover, Candida albicans promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited Candida albicans growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced ZO-1 and Occludin mRNA expression, reduced Candida albicans abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced Candida albicans abundance to alleviate islet inflammation.
Collapse
Affiliation(s)
- Yayu Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao Yin
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
2
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2025; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
3
|
Ding YY, Lan J, Wang Y, Pan Y, Song T, Liu S, Gu Z, Ge Y. Structure characterization of Grifola frondosa polysaccharide and its effect on insulin resistance in HFD-fed mice. NPJ Sci Food 2025; 9:3. [PMID: 39774946 PMCID: PMC11707143 DOI: 10.1038/s41538-024-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Polysaccharide extracted from Grifola frondosa (GFP) was selected in this study. After preliminary separation, four factions were collected, named GFP-F1, GFP-F2, GFP-F3 and GFP-F4. GPF-F2 was further separated into two fractions, namely GFP-N1 and GFP-N2. The molecular weight of GFP-N1 and GFP-N2 was 3.323×103 kDa and 10.8 kDa, respectively. GFP-N1 was composed of glucose and galactose and 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP-N2 was composed of glucose, galactose and mannose and 1 → 2, 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP could significantly relieve the insulin resistance induced by HFD. GFP significantly alleviated gut microbiota disturbance caused by HFD and increased the production of short-chain fatty acids, and further reduced the expression of LPS/TLR4 inflammatory pathway. GFP significantly reduced the oxidative stress induced by HFD, increased the expression of the Nrf2/ARE signaling pathway. These results indicated that GFP could be developed as a potential ingredient for the management of insulin resistance.
Collapse
Affiliation(s)
- Yin-Yi Ding
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jinchi Lan
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxin Wang
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxiang Pan
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Tianyuan Song
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co. Ltd, Lishui, 323800, China
| | - Zhenyu Gu
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yujun Ge
- Central blood station of Jiaxing, Jiaxing, 314000, China
| |
Collapse
|
4
|
Jo E, Gajanayaka ND, Bandara MS, Marasinghe SD, Park GH, Lee SJ, Oh C, Lee Y. Odd-Numbered Agaro-Oligosaccharides Produced by α-Neoagaro-Oligosaccharide Hydrolase Exert Antioxidant Activity in Human Dermal Fibroblasts. Mar Drugs 2024; 22:495. [PMID: 39590775 PMCID: PMC11595537 DOI: 10.3390/md22110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5 (Gaa117) was purified and characterized using an E. coli expression system to produce OAOSs and determine their bioactivity. Recombinant Gaa117 (rGaa117) showed maximum activity at pH 6.0 and 35 °C. rGaa117 retained >80% of its initial activity after 120 min at 30 °C. The activity was enhanced in the presence of Mn2+. Km, Vmax, and Kcat/Km values of the enzyme were 22.64 mM, 246.3 U/mg, and 15 s-1/mM, respectively. rGaa117 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose, producing OAOSs that commonly contained l-AHG. Neoagarobiose and neoagarotetraose mixtures, designated NAO24, and mixtures of l-AHG and agarotriose, designated AO13, were obtained using recombinant rGaa16B (β-agarase) and rGaa117, respectively, and their antioxidant activities were compared. AO13 showed higher hydrogen peroxide-scavenging activity than NAO24 in human dermal fibroblasts in vitro because of structural differences: AOSs have d-galactose at the non-reducing end, whereas NAOSs have l-AHG. In conclusion, OAOSs exhibited high ROS-scavenging activity in H2O2-induced human dermal fibroblasts. They may be applicable in cosmetics and pharmaceuticals for prevention of skin aging.
Collapse
Affiliation(s)
- Eunyoung Jo
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
| | - Navindu Dinara Gajanayaka
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Minthari Sakethanika Bandara
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Svini Dileepa Marasinghe
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gun-Hoo Park
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Su-Jin Lee
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
| |
Collapse
|
5
|
Liu W, Zhang Y, Zheng M, Ye Y, Shi M, Wang X, Cao L, Wang L. Polysaccharides in Medicinal and Food Homologous Plants regulate intestinal flora to improve type 2 diabetes: Systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156027. [PMID: 39270592 DOI: 10.1016/j.phymed.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Medicinal and food homologous plants (MFHPs) which can improve Type 2 Diabetes Mellitus (T2DM) draw significant attention among the public due to their low toxicity and more safety. Polysaccharides, one of the various active components of MFHPs, are recognized as effective modulators of the intestinal flora. By altering the composition of intestinal flora and affecting their metabolic products, polysaccharides can improve T2DM, making them a central focus of anti-diabetic research. PURPOSE The purpose of this study is to systematically review the mechanism by which polysaccharides from MFHPs (MFHPPs) regulate the composition of intestinal flora and its metabolic products to improve T2DM. METHODS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducts a comprehensive search on the PubMed, Web of Science and Embase databases. All experimental articles published up to March 4, 2024, are included in the search. RESULTS Among the 5733 articles reviewed, 29 were selected, covering 22 different MFHPs. MFHPPs can improve T2DM, particularly in lowering blood glucose levels, with consistent results. MFHPPs can regulate the diversity of intestinal flora in T2DM animal models, primarily affecting four phyla: decreasing Firmicutes and Proteobacteria while increasing Bacteroidetes and Actinobacteriota. At the genus level, the improvement of T2DM by MFHPPs is associated with the modulation of 12 key genera: Allobaculum, Akkermansia, Bifidobacterium, Lactobacillus, Helicobacter, Halomonas, Olsenella, Oscillospira, Shigella, Escherichia-Shigella, Romboutsia and Bacteroides. At the molecular level, MFHPPs primarily act by modulating the intestinal flora to increase short-chain fatty acid levels, promote the secretion of glucagon-like peptide-1, influence the IGF1/PI3K/AKT signaling pathway, or the PI3K/AKT/GSK-3β pathway, to lower blood glucose levels. They may also improve T2DM by working in glucose metabolism through the "microbiota-gut-organ" axis. MFHPPs can also alleviate T2DM by mitigating inflammation and oxidative stress: MFHPPs regulate intestinal flora to reduce lipopolysaccharide "leakage" and enhance intestinal mucosal permeability to tackle the inflammation associated with T2DM; MFHPPs enhance the expression of oxidative stress-related enzymes to alleviate oxidative stress and improve T2DM. Lastly, from a metabolic pathway perspective, MFHPPs are primarily involved in the metabolism of amino acids and their derivatives, carbohydrate metabolism and glutathione metabolism. CONCLUSION MFHPPs can improve T2DM by enhancing the composition of intestinal flora, regulating its metabolic products to promote insulin secretion, inhibiting glucagon-like peptide secretion, facilitating glycogen synthesis, reducing inflammation levels and alleviating oxidative stress. Furthermore, MFHPPs demonstrate potential protective effects on critical organs such as the pancreas, liver, kidneys and heart. Therefore, MFHPPs demonstrate significant clinical potential. However, most studies can only indicate the potential of MFHPPs intervention in improving T2DM through the intestinal flora. The causality between MFHPPs regulating the intestinal flora and T2DM requires further investigation.
Collapse
Affiliation(s)
- Wanting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yikai Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yixiao Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mujia Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou, Zhejiang, 311231, China.
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
6
|
Liu S, Hou H, Yang M, Zhang H, Sun C, Wei L, Xu S, Guo W. Hypoglycemic effect of orally administered resistant dextrins prepared with different acids on type 2 diabetes mice induced by high-fat diet and streptozotocin. Int J Biol Macromol 2024; 277:134085. [PMID: 39126981 DOI: 10.1016/j.ijbiomac.2024.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
A comparative study was performed to investigate the physicochemical properties and protective effects of hydrochloric acid-resistant dextrin (H-RD), citric acid-resistant dextrin (C-RD) and tartaric acid-resistant dextrin (T-RD) on the metabolic disorders and intestinal microbiota for type 2 diabetes mellitus (T2DM) mice. T-RD had the minimum molecular weight, with the highest short chain (DP 6-12) proportion and resistant starch content. After 4-week intervention with the three resistant dextrins, the body weight and fasting blood glucose of T2DM mice were improved significantly, accompanied by the reduction of serum indexes (TG, TC, LDL-C, ALT, AST, CRE, BUN, FINS, and GSP), but the serum HDL-C and liver glycogen levels increased. Among the three RDs intervention groups, T-RD showed the most significant improvement, followed by C-RD and finally H-RD. The 16 s rDNA results indicated that oral administration of resistant dextrins favored the proliferation of specific gut microbiota, including Faecalibaculum, Parabacteroides and Dubosiella, and reduced the ratio of Firmicutes/Bacteroidota, which is beneficial for reducing insulin resistance. Herein, the findings supported that the resistant dextrins exhibited a remission effect on T2DM, providing a basis for the development of functional food adjuvants for T2DM treatment.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meng Yang
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chunrui Sun
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Lili Wei
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Song Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weili Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
7
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
8
|
Samudra AG, Nugroho AE, Murwanti R. Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:597-617. [PMID: 38354976 DOI: 10.1016/j.pharma.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Indonesia is the largest archipelagic country in the world, with 70% of its territory covered by oceans that are rich in various types of biological resources. Indonesia's biodiversity has made it possible to develop natural medicine. Marine algae have enormous potential, but the types of marine algae used still need to be more varied. Research on the pharmacology of marine macroalgae has been conducted in Indonesia, but studies on such topic related to diabetes mellitus (DM) still need to be completed. This study provides a comprehensive dataset of pharmacological anti-diabetic potential of marine macroalgae used for managing DM and reports on preclinical trials that provide pharmacological evidence. Data on the Indonesian marine macroalgae used to lower blood glucose were obtained from online sources. The bioactive chemicals of marine macroalgae have been found efficient at blocking several diabetes enzymes in in-vivo and in-vitro studies, and such chemicals have anti-inflammatory, anti-obesity, antioxidant, and other therapeutic benefits. The Google Scholar was used to search for the pharmacological literature with the keywords marine AND macroalgae AND diabetes AND Indonesia. Pharmacological research on the anti-diabetic activity of marine macroalgae has been carried out on five major Indonesian islands, including Sumatra, Kalimantan, Java, Sulawesi, and Papua, which encompassed 12 provinces: Southwest Papua, South Sulawesi, West Kalimantan, Riau Archipelago, Banten, West Java, North Sulawesi, East Java, Yogyakarta, Maluku, Jakarta, and Bengkulu. Articles on preclinical tests (in vitro and in vivo) were also used for the phytochemical problem section. The results briefly describe which class of algae has been widely used in Indonesia as an anti-diabetic. The findings of this research can be utilized to help find DM treatment drugs based on natural resources from marine macroalgae.
Collapse
Affiliation(s)
- Agung Giri Samudra
- Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Bengkulu University, 38371 Bengkulu, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia.
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| |
Collapse
|
9
|
Wang Q, Wang Y, Wang Y, Zhang Q, Mi J, Ma Q, Li T, Huang S. Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice. Food Funct 2024; 15:3380-3394. [PMID: 38498054 DOI: 10.1039/d3fo04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.
Collapse
Affiliation(s)
- Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 21001, Liaoning, China
| | - Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
10
|
Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. Int J Biol Macromol 2024; 265:131007. [PMID: 38508566 DOI: 10.1016/j.ijbiomac.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.
Collapse
Affiliation(s)
- Yi Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xueying Guo
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chunxiao Huang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| |
Collapse
|
11
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Xu W, Zhang S, Yang Y, Zhan J, Zang C, Yu H, Wu C. Therapeutic potential of dietary nutrients and medicinal foods against metabolic disorders: Targeting Akkermansia muciniphila. FOOD FRONTIERS 2024; 5:329-349. [DOI: 10.1002/fft2.341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAs one of the most attractive next‐generation probiotics, mucin‐degrading Akkermansia muciniphila has emerged as an essential and integral factor in maintaining human health and affecting pathological outcomes. Its abundance is inversely associated with various metabolic diseases (e.g., obesity and type 2 diabetes), cardiovascular diseases, and intestinal inflammation. Supplementing A. muciniphila to restore the gut microbiota ecosystem is a promising approach for treating metabolic disorders. However, the direct utilization of this probiotic is limited by technological and regulatory hurdles, such as the in vitro bulk culture of A. muciniphila and the need for expensive animal‐derived materials. Therefore, enrichment of A. muciniphila using nutraceutical supplements is a feasible strategy. Dietary supplements, especially medicinal herbs, offer a vast and valuable resource as potential prebiotics for promoting the growth of A. muciniphila in the gut, ensuring reliable safety and efficacy. In this study, we first systemically reviewed the dietary substances and medicinal foods known to promote A. muciniphila from over 100 literature sources, aiming to establish a candidate basis for future exploration of prebiotics targeting A. muciniphila. Furthermore, we summarized and discussed the major regulatory factors and mechanisms responsible for the beneficial effect of A. muciniphila on metabolic disorders, hoping to open up exciting directions for in‐depth research on the pharmacological mechanism of A. muciniphila and pave the way for its clinical therapeutics.
Collapse
Affiliation(s)
- Wenyi Xu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Beijing QuantiHealth Technology Co., Ltd. Beijing China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanan Yang
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiaguo Zhan
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Chenchen Zang
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Huifang Yu
- Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Chongming Wu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
13
|
Zhu La ALT, Li D, Cheng Z, Wen Q, Hu D, Jin X, Liu D, Feng Y, Guo Y, Cheng G, Hu Y. Enzymatically prepared neoagarooligosaccharides improve gut health and function through promoting the production of spermidine by Faecalibacterium in chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169057. [PMID: 38056640 DOI: 10.1016/j.scitotenv.2023.169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial β-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial β-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.
Collapse
Affiliation(s)
- A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Cheng
- Huzhou Inspection & Quarantine Comprehensive Technology Center, Zhejiang 313000, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Chen X, Zhao H, Meng F, Zhou L, Lu Z, Lu Y. Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Chen Y, Wen Y, Zhu Y, Chen Z, Mu W, Zhao C. Synthesis of bioactive oligosaccharides and their potential health benefits. Crit Rev Food Sci Nutr 2023; 64:10319-10331. [PMID: 37341126 DOI: 10.1080/10408398.2023.2222805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Oligosaccharides, a low polymerization degree of carbohydrate, possess various physiological activities, such as anti-diabetes, anti-obesity, anti-aging, anti-viral, and gut microbiota regulation, having a widely used in food and medical fields. However, due to the limited natural oligosaccharides, many un-natural oligosaccharides from complex polysaccharides are being studied for amplifying the available pool of oligosaccharides. More recently, various oligosaccharides were developed by using several artificial strategies, such as chemical degradation, enzyme catalysis, and biosynthesis, then they can be applied in various sectors. Moreover, it has gradually become a trend to use biosynthesis to realize the synthesis of oligosaccharides with clear structure. Emerging research has found that un-natural oligosaccharides exert more comprehensive effects against various human diseases through multiple mechanisms. However, these oligosaccharides from various routes have not been critical reviewed and summarized. Therefore, the purpose of this review is to present the various routes of oligosaccharides preparations and healthy effects, with a focus on diabetes, obesity, aging, virus, and gut microbiota. Additionally, the application of multi-omics for these natural and un-natural oligosaccharides has also been discussed. Especially, the multi-omics are needed to apply in various disease models to find out various biomarkers to respond to the dynamic change process of oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Li Y, Li Z, Chen B, Hou Y, Wen Y, Gan L, Jin J, Li C, Wu P, Li D, Chen WH, Wu R. Ultrasonic assisted extraction, characterization and gut microbiota-dependent anti-obesity effect of polysaccharide from Pericarpium Citri Reticulatae 'Chachiensis'. ULTRASONICS SONOCHEMISTRY 2023; 95:106383. [PMID: 37004413 PMCID: PMC10457594 DOI: 10.1016/j.ultsonch.2023.106383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Pericarpium Citri Reticulatae 'Chachiensis' (PCRC), the premium aged pericarps of Pericarpium Citri Reticulatae, is widely used in traditional Chinese medicines with a diversity of promising bioactivity. Herein we report the extraction, characterization and underlying mechanism of anti-metabolic syndrome of an arabinan-rich polysaccharide from PCRC (PCRCP). This polysaccharide was obtained in a 7.0% yield by using ultrasound-assisted extraction under the optimized conditions of 30 mL/g liquid-to-solid ratio, 250 W ultrasound power for 20 min at 90 °C with pH 4.5. The PCRCP with an average molecular weight of 122.0 kDa, is mainly composed of D-galacturonic acid, arabinose and galactose, which may link via 1,4-linked Gal(p)-UA, 1,4-linked Ara(f) and 1,4-linked Gal(p). Supplementation with PCRCP not only effectively alleviated the weight gain, adiposity and hyperglycemia, but also regulated the key metabolic pathways involved in the de novo synthesis and β-oxidation of fatty acid in high-fat diet (HFD)-fed mice. Furthermore, PCRCP treatment caused a significant normalization in the intestinal barrier and composition of gut microbiota in mice fed by HFD. Notably, PCRCP selectively enriched Lactobacillus johnsonii at the family-genus-species levels, a known commensal bacterium, the level of which was decreased in mice fed by HFD. The depletion of microbiome induced by antibiotics, significantly compromised the effects of anti-metabolic syndrome of PCRCP in mice fed by HFD, demonstrating that the protective phenotype of PCRCP against anti-obesity is dependent on gut microbiota. PCRCP is exploitable as a potential prebiotic for the intervention of obesity and its complications.
Collapse
Affiliation(s)
- Yapeng Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Zi Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co. Ltd., Jiangmen 529100, PR China
| | - Yajun Hou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Yilin Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Jinwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Chen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
17
|
Tian B, Liu R, Xu T, Cai M, Mao R, Huang L, Yang K, Zeng X, Peilong S. Modulating effects of Hericium erinaceus polysaccharides on the immune response by regulating gut microbiota in cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3050-3064. [PMID: 36546454 DOI: 10.1002/jsfa.12404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The gut microbiota (GM) is recognized as a significant contributor to the immune system. In the present study, the effects of Hericium erinaceus polysaccharides (HEP) on immunoregulation and GM in cyclophosphamide (CTX)-treated mice were investigated to elucidate the attenuate of immunosuppression by modulating GM. RESULTS The results revealed that HEP significantly improved the body weight and immune organ index in immunodeficient mice (P < 0.05). They significantly increased operational taxonomic units (OTUs) (P < 0.05), adjusted the α and β diversity of the GM, and the bacterial community structure was more similar to that of control group. Taxonomic composition analysis found that HEP increased the abundance of Alistipse, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, uncultured_bacterium_f_Lachnospiracea, uncultured_bacterium_f_Ruminococcaceae and Ruminococcaceae_UCG-014, and decreased Lactobacillus, Bacteroides, and Alloprevotella, suggesting that HEP can improve the GM structure and inhibit CTX-induced GM dysregulation. Moreover, HEP increased short-chain fatty acid (SCFA)-producing bacteria, recovered SCFA levels, alleviated immunosuppression caused by CTX, enhanced the serum immune cytokine factors, and upregulated TLR4/NF-κB pathway key proteins (TLR4, NF-κB p65) at mRNA and protein levels. CONCLUSION Hericium erinaceus polysaccharides effectively regulated GM and enhancement of intestinal immune function, so they have the potential to be developed as functional ingredients or foods to modulate immune responses. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Renjian Liu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. LTD, Quzhou, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
18
|
Zhu CH, Li YX, Xu YC, Wang NN, Yan QJ, Jiang ZQ. Tamarind Xyloglucan Oligosaccharides Attenuate Metabolic Disorders via the Gut-Liver Axis in Mice with High-Fat-Diet-Induced Obesity. Foods 2023; 12:foods12071382. [PMID: 37048202 PMCID: PMC10093524 DOI: 10.3390/foods12071382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Functional oligosaccharides exert obesity-reducing effects by acting at various pathological sites responsible for the development of obesity. In this study, tamarind xyloglucan oligosaccharides (TXOS) were used to attenuate metabolic disorders via the gut-liver axis in mice with high-fat-diet (HFD)-induced obesity, as determined through LC/MS-MS and 16S rRNA sequencing technology. A TXOS dose equivalent to 0.39 g/kg/day in humans restored the gut microbiota in obese mice, which was in part supported by the key microflora, particularly Bifidobacterium pseudolongum. Moreover, TXOS reduced the abundance of opportunistic pathogen species, such as Klebsiella variicola and Romboutsia ilealis. The bodyweight and weight gain of TXOS-treated (4.8 g/kg per day) mice began to decrease at the 14th week, decreasing by 12.8% and 23.3%, respectively. Sixteen fatty acids were identified as potential biomarkers in the liver, and B. pseudolongum and caprylic acid were found to tightly regulate each other. This was associated with reduced inflammation in the liver, circulation, and adipose tissue and protection from metabolic disorders. The findings of this study indicate that TXOS can significantly increase the gut microbiota diversity of obese mice and restore the HFD-induced dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Chun-Hua Zhu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yun-Cong Xu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan-Nan Wang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
19
|
Tang Z, Shao T, Gao L, Yuan P, Ren Z, Tian L, Liu W, Liu C, Xu X, Zhou X, Han J, Wang G. Structural elucidation and hypoglycemic effect of an inulin-type fructan extracted from Stevia rebaudiana roots. Food Funct 2023; 14:2518-2529. [PMID: 36820831 DOI: 10.1039/d2fo03687h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Diabetes mellitus (DM) is a common chronic medical condition characterized by hyperglycemia resulting from abnormal insulin functionality, of which type 2 DM (T2DM) is the predominant form. An inulin-type fructan, denoted as SRRP, was obtained from Stevia rebaudiana roots via hot-water extraction and alcoholic precipitation, which was subsequently purified by column chromatography. The extracted SRRP sample had a molecular weight of 5.4 × 103 Da. Structural analyses indicated that SRRP was composed of 2,1-linked-β-D-fructofuranosyl and α-D-glucopyranosyl residues in a ratio of approximately 29 : 1. In vivo assays revealed that SRRP significantly reduced fasting blood glucose levels, improved insulin resistance, decreased oxidative stress, and regulated lipid metabolism in T2DM mouse models. In addition, SRRP altered the diversity of the gut microbiota and its metabolites in T2DM mice; it increased probiotic bacteria and the concentration of short-chain fatty acids and decreased harmful bacteria. The findings demonstrate the potential of SRRP in the treatment of T2DM.
Collapse
Affiliation(s)
- Zhiyan Tang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Taili Shao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lan Gao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Pingchuan Yuan
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Zhengrui Ren
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Lei Tian
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Wei Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Chunyan Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Xiuxian Xu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Xuan Zhou
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Jun Han
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Guodong Wang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| |
Collapse
|
20
|
Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 230:123241. [PMID: 36641024 DOI: 10.1016/j.ijbiomac.2023.123241] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
Collapse
|
21
|
Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Ding YY, Fang Y, Pan Y, Lan J, Xu T, Zhang W, Mao H, Gu Z, Chen X, Shen Q. Orally administered octacosanol improves liver insulin resistance in high-fat diet-fed mice through the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway. Food Funct 2023; 14:769-786. [PMID: 36594412 DOI: 10.1039/d2fo02463b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-Octacosanol (Octa) is reported to possess many physiological properties. However, its relative mechanism has not been illustrated yet. Herein, we aimed to investigate the effect of Octa on insulin resistance in mice fed with a high fat diet (HFD) and used an in vitro simulated gastrointestinal tract to analyze its digestive behavior. The effects of Octa on the gut microbiota were verified by in vitro fermentation using the mouse fecal microbiota. As a result, the Octa monomer was digested into shortened saturated and unsaturated fatty acids (C10-C24) in the simulated gastrointestinal tract. Octa improved the fasting blood glucose (FBG), insulin resistance (IR), plasma lipids, and inflammatory response in HFD-fed mice in a dose-dependent manner. This study also suggested that a high-dose of Octa effectively decreased the levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the plasma of HFD-fed mice. Octa improved the oxidative stress induced by a HFD and increased the expression of the Nrf2/ARE signaling pathway. Importantly, Octa reshaped gut microbiota through decreasing Firmicutes content and increasing Bacteroidota and Verrucomicrobiota contents at the phylum level, and the changes of intestinal flora structure caused by Octa were significantly correlated with the changes of inflammatory biomarkers. In conclusion, the effects of Octa on insulin resistance might be attributed to the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.
Collapse
Affiliation(s)
- Yin-Yi Ding
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yumeng Fang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yuxiang Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Jinchi Lan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Tao Xu
- Huzhou Shengtao Biotechnology LLC, Huzhou, 313000, China
| | - Wanyue Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Huijuan Mao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang, 311106, China.
| | - Zhenyu Gu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xi Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qing Shen
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China, 310018
| |
Collapse
|
23
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients 2022; 14:5222. [PMID: 36558381 PMCID: PMC9786127 DOI: 10.3390/nu14245222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder characterized by insulin deficiency and insulin resistance. Recently, it has become a significant threat to public health. Polygonatum sibiricum saponin (PSS) has potential hypoglycemic effects, but its specific mechanism needs further study. In this study, PSS significantly decreased the level of blood glucose, water intake, and the organ index in diabetic mice. Meanwhile, PSS effectively reduced the content of total triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood, and increased the content of high-density lipoprotein cholesterol (HDL-C). This suggests that PSS could reduce the content of blood lipids and initially improve the damage of hepatocytes. We found that PSS alleviated hepatic insulin resistance, repaired islet beta cells, and enabled insulin to play its biological role normally. It also improved oral glucose tolerance and abated serum lipopolysaccharide (LPS) and glycosylated hemoglobin (HbA1c) levels in T2DM mice. Furthermore, studies have found that PSS increased the content of phosphorylated protein kinase B (AKT), thereby promoting the effect of glucose transporter 4 (GLUT-4), and activating glycogen synthase kinase 3beta (GSK-3β) and glycogen synthase (GS) proteins to promote hepatic glycogen synthesis. Finally, we found that PSS could promote the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, reduce the growth of harmful bacteria such as Enterococcus and Enterobacter, and preliminarily improve the composition of important bacteria in the intestine. These studies indicate that PSS has an excellent hypoglycemic effect, which provides a potential new treatment for T2DM and guidance for more in-depth research.
Collapse
Affiliation(s)
- Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingjie Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
24
|
Xanthan gum oligosaccharides ameliorate glucose metabolism and related gut microbiota dysbiosis in type 2 diabetic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Jiang C, Zhang T, Xu Y, Mao X. Characterization of a GH50 β-Agarase: A Biotechnological Tool for Preparing Oligosaccharides from Agarose and Porphyran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9931-9940. [PMID: 35866448 DOI: 10.1021/acs.jafc.2c02107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Agarase is of vital significance for functional agaro-oligosaccharides production from algal dived agarose. Especially, the exolytic agarases have the advantage of obtaining agaro-oligosaccharides with a specific degree of polymerization. Herein, we cloned and expressed a novel glycoside hydrolase (GH) 50 family β-agarase OUC-PgJC50 from Photobacterium gaetbulicola. The degradation pattern analysis indicated that OUC-PgJC50 not only showed an exolytic activity with main products of neoagarotetraose from hydrolyzing agarose but also show a hydrolytic activity to transform neoagarotetraose into neoagarobiose. This is the first time that the discovery of a neoagarotetraose-producing exolytic GH50 β-agarase possesses the activity to transform neoagarotetraose into neoagarobiose, which provided new insight into the recognition of the degradation mode of agarases. Molecular docking and sequence alignment analysis further revealed the His654 residue in OUC-PgJC50 may play a vital role in forming a strong force with l-AHG residue at -4 subsite that helps to produce neoagarotetraose from catalyzing agarose. Moreover, the catalytic ability of OUC-PgJC50 toward another agar polysaccharide porphyran was also described that could hydrolyze porphyran into sulfated oligosaccharides, in which the LA6S-d-Gal was the main products. This study is of vital significance for developing the application range of GH50 β-agarases.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tianyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuxian Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
26
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
27
|
Qi B, Ren D, Li T, Niu P, Zhang X, Yang X, Xiao J. Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8274-8287. [PMID: 35767631 DOI: 10.1021/acs.jafc.2c02400] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
28
|
Hu Z, Zhou J, Han L, Li X, Li C, Wu T, Liu J, Zhao W, Kang J, Chen X. Acyclovir alleviates insulin resistance via activating PKM1 in diabetic mice. Life Sci 2022; 304:120725. [PMID: 35751919 DOI: 10.1016/j.lfs.2022.120725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
AIMS Diabetes mellitus (DM) is a major global health threat characterized by insulin resistance. A new tactic to ameliorate insulin resistance, thereby reversing the exacerbation of DM, is urgently needed. The work is aiming to provide a new strategy for DM treatment as well as to identify new targets. MAIN METHODS C57BL/6 N mice were raised with high-fat diet (HFD) and infused with streptozotocin (STZ) to induce diabetes. The blood glucose, serum insulin, blood lipid and oxidative stress were detected. In vitro insulin resistance model experiment has been made to examine the molecular mechanisms underlying anti-diabetic effect of potential active chemicals in human hepatocellular carcinoma cells (HepG2). KEY FINDINGS Acyclovir, an antiviral nucleotide analog, alleviates insulin resistance by reducing blood lipids as well as oxidative stress and elevating insulin sensitivity on diabetic mice, which is in accord with results in the insulin resistance model of HepG2 cells. Mechanically, acyclovir stimulates pyruvate kinase M1 (PKM1) directly to activate adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Sirtuin1 (SIRT1) signaling pathway, thus improving insulin resistance. SIGNIFICANCE The present study supports that acyclovir should be translated to remedy DM, and PKM1 might be a valuable target to develop new medicines.
Collapse
Affiliation(s)
- Zhuozhou Hu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Zhou
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Liang Han
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangxiang Li
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Chun Li
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Tongyu Wu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyang Zhao
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Kang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou 730000, PR China.
| |
Collapse
|
29
|
Efficiency Assessment of Bacterial Cellulose on Lowering Lipid Levels In Vitro and Improving Lipid Metabolism In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113495. [PMID: 35684437 PMCID: PMC9182494 DOI: 10.3390/molecules27113495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/30/2023]
Abstract
Bacterial cellulose (BC) is well known as a high-performance dietary fiber. This study investigates the adsorption capacity of BC for cholesterol, sodium cholate, unsaturated oil, and heavy metal ions in vitro. Further, a hyperlipidemia mouse model was constructed to investigate the effects of BC on lipid metabolism, antioxidant levels, and intestinal microflora. The results showed that the maximum adsorption capacities of BC for cholesterol, sodium cholate, Pb2+ and Cr6+ were 11.910, 16.149, 238.337, 1.525 and 1.809 mg/g, respectively. Additionally, BC reduced the blood lipid levels, regulated the peroxide levels, and ameliorated the liver injury in hyperlipidemia mice. Analysis of the intestinal flora revealed that BC improved the bacterial community of intestinal microflora in hyperlipidemia mice. It was found that the abundance of Bacteroidetes was increased, while the abundance of Firmicutes and Proteobacteria was decreased at the phylum level. In addition, increased abundance of Lactobacillus and decreased abundance of Lachnospiraceae and Prevotellaceae were obtained at the genus level. These changes were supposed to be beneficial to the activities of intestinal microflora. To conclude, the findings prove the role of BC in improving lipid metabolism in hyperlipidemia mice and provide a theoretical basis for the utilization of BC in functional food.
Collapse
|
30
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
31
|
Xiao Q, Zhong Y, Kang Z, Huang J, Fang W, Wei S, Long J, Li S, Zhao H, Liu D. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother Res 2022; 36:1708-1723. [PMID: 35234309 PMCID: PMC9310646 DOI: 10.1002/ptr.7404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is one of the most common complications in patients with ulcerative colitis (UC). Curcumin has a wide range of bioactive and pharmacological properties and is commonly used as an adjunct to the treatment of UC and DM. However, the role of curcumin in UC complicated by DM has not been elucidated. Therefore, this study was conducted to construct a model of UC complicating diabetes by inducing UC in DB mice (spontaneously diabetic) with dextran sodium sulfate. In this study, curcumin (100 mg/kg/day) significantly improved the symptoms of diabetes complicated by UC, with a lower insulin level, heavier weight, longer and lighter colons, fewer mucosal ulcers and less inflammatory cell infiltration. Moreover, compared to untreated DB mice with colitis, curcumin-treated mice showed weaker Th17 responses and stronger Treg responses. In addition, curcumin regulated the diversity and relative abundance of intestinal microbiota in mice with UC complicated by DM at the phylum, class, order, family and genus levels. Collectively, curcumin effectively alleviated colitis in mice with type 2 diabetes mellitus by restoring the homeostasis of Th17/Treg and improving the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Qiu‐Ping Xiao
- Laboratory Animal Research Center for Science and TechnologyJiangxi University of Traditional Chinese MedicineNanchangChina
- Research and Development DepartmentJiangzhong Pharmaceutical Co., LtdNanchangChina
| | - You‐Bao Zhong
- Laboratory Animal Research Center for Science and TechnologyJiangxi University of Traditional Chinese MedicineNanchangChina
- Key Laboratory of Animal Model of TCM Syndromes of DepressionJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Zeng‐Ping Kang
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Jia‐Qi Huang
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Wei‐Yan Fang
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Si‐Yi Wei
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Jian Long
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Shan‐Shan Li
- Laboratory Animal Research Center for Science and TechnologyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Hai‐Mei Zhao
- Department of PostgraduateJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Duan‐Yong Liu
- Formula‐Pattern Research CenterJiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
32
|
Zhang Y, Xu Y, Zhang L, Chen Y, Wu T, Liu R, Sui W, Zhu Q, Zhang M. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res Int 2022; 153:110945. [DOI: 10.1016/j.foodres.2022.110945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
33
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
34
|
Zhang X, Gu J, Zhao C, Hu Y, Zhang B, Wang J, Lv H, Ji X, Wang S. Sweeteners Maintain Epithelial Barrier Function Through the miR-15b/RECK/MMP-9 Axis, Remodel Microbial Homeostasis, and Attenuate Dextran Sodium Sulfate-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:171-183. [PMID: 34962394 DOI: 10.1021/acs.jafc.1c06788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-nutritive sweeteners are the most widely used food additives designed to provide sweetness and reduce caloric intake. Studies have confirmed a link between sweeteners and colitis, yet supporting scientific data remain exiguous and controversial. In this study, three common sweeteners (Saccharin sodium, Stevioside, and Sucralose) in acceptable daily intake dosage were added to water in order to determine their effects on dextran sodium sulfate-induced colitis in mice. Our results show that the three sweeteners meliorate colitis to varying degrees─Saccharin exerts the most pronounced effect, followed by Stevioside and Sucralose. Intake of sweeteners alleviates colitis symptoms, alters gut microbiota, reshapes the TH17/Treg balance, protects the intestinal barrier, and reduces inflammation. Most significantly, sweeteners can enhance the abundance of Mucispirillum and Alistipes, which are conducive to colitis recovery, and upregulate the expression of E-cadherin through the miR-15b/RECK/MMP-9 axis to improve intestinal barrier integrity. Moreover, by inhibiting the MMP-9/AKT/NF-κB pathway, inflammation is relieved, as reflected in the restoration of the Th17/Treg balance. Our results link the consumption of sweeteners to the remission of colitis, which provides new scientific evidence for the safe use of sweeteners.
Collapse
Affiliation(s)
- Xuejiao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jiaxin Gu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Congying Zhao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Ji X, Zhu L, Chang K, Zhang R, Chen Y, Yin H, Jin J, Zhao L. Chitooligosaccahrides: Digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro. Carbohydr Polym 2022; 275:118716. [PMID: 34742440 DOI: 10.1016/j.carbpol.2021.118716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023]
Abstract
Consumption of chitooligosaccharides (COS) prevents intestinal microecological disorder. The mechanisms for the effects of different COS on the gut microbiota are currently unclear. This study examined the impact of COS with different degrees of polymerization (DPs) on the gut microbial community and metabolic profile. COS significantly promoted the growth of Bacteroidetes, and inhibited that of Proteobacteria, which were significantly correlated with DPs. COS3 and COS2 enriched the butyrate production in microbial communities composed of Clostridium and Parabacteroides. Microbial communities enriched by DPs 4-6 COS displayed increased diversity in differential metabolite function. Several biomarkers were distinguished significantly, including unsaturated fatty acids, bile acids, indoles and amines, which are mainly related to processes such as fatty acid synthesis and decomposition, bile acid modification, and tryptophan metabolism. The results display the relationship among COS structure-gut microbes-metabolomics, providing a new perspective for COS as a functional food to improve intestinal health.
Collapse
Affiliation(s)
- Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liangliang Zhu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Zhang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Yijia Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Chang-Zheng Hospital, Shanghai 200003, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
36
|
Hao J, Zhang Y, Wu T, Liu R, Sui W, Zhu J, Fang S, Geng J, Zhang M. Antidiabetic Effects of Bifidobacterium longum subsp. longum BL21 through Regulating Gut Microbiota Structure in Type 2 Diabetic Mice. Food Funct 2022; 13:9947-9958. [DOI: 10.1039/d2fo01109c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifidobacterium longum subsp. longum BL21 (BL21) possess hypoglycemic activity, but its anti-diabetic mechanism has rarely been illustrated. In the present work, the effect of BL21 on type 2 diabetes mellitus...
Collapse
|
37
|
Ke S, Yu Y, Xu Q, Zhang B, Wang S, Jin W, Wei B, Wang H. Composition-Activity Relationships of Polysaccharides from Saccharina japonica in Regulating Gut Microbiota in Short-Term High-Fat Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11121-11130. [PMID: 34498470 DOI: 10.1021/acs.jafc.1c04490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Saccharina japonica polysaccharide could modulate gut microbiota composition; however, the composition-activity relationship remains unclear, thus restricting its application. In the current study, we investigated the impact of eight different S. japonica polysaccharide fractions on the gut microbiota after day 2 and day 14 treatments on high-fat diet (HFD) feeding mice. The results showed that a 2 day HFD dramatically altered gut microbiota composition, and the additional 12 day HFD further strengthened the gut microbiota dysbiosis in the HFD group. LjA-1 and LjA-3 could partially alleviate the dysbiosis of gut microbiota composition and significantly alter gut microbiota function. Multiple linear regression analysis revealed that the sulfate content and the molecular weight distributions were the main factors affecting the dominant gut bacterial genera. Our findings reveal that gut microbiota homeostasis could be disordered by HFD at day 2 and provide insights into the quantitative composition-activity relationships of polysaccharides in regulating gut microbiota.
Collapse
Affiliation(s)
- Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoli Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bo Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, California 90024, United States
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
38
|
Wu T, Zhang Y, Li W, Zhao Y, Long H, Muhindo EM, Liu R, Sui W, Li Q, Zhang M. Lactobacillus rhamnosus LRa05 Ameliorate Hyperglycemia through a Regulating Glucagon-Mediated Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8797-8806. [PMID: 34340304 DOI: 10.1021/acs.jafc.1c02925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we aimed to explore the antidiabetic effects of Lactobacillus rhamnosus LRa05 on glucose metabolism and gut microbiota in type 2 diabetes mellitus (T2DM) mice. Our data indicated that the fasting blood glucose levels were reduced by 53.5% after treatment with LRa05 at a dose of 109 CFU·day-1. Meanwhile, LRa05 attenuated insulin resistance, relieved hepatic oxidative stress, and alleviated metabolic lipopolysaccharide-related inflammation in T2DM mice. LRa05 promoted the expression of glucose transporter 2, while it inhibited the expression of glucagon receptor, glucose-6-phosphatase, cellular adenosine-3'-5'-cyclic monophosphate-dependent protein kinase, and phosphoenolpyruvate carboxykinase in diabetic mice. Meanwhile, LRa05 reshaped gut microbiota, resulting in increased short-chain fatty acid bacteria (Alloprevotella and Bacteroides) and decreased proinflammatory bacteria (Odoribacter and Mucispirillum). Thus, LRa05 may be used as a functional food supplement for modulating the disorder glucose metabolism and gut microbiota in T2DM.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongli Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hairong Long
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | | | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Li
- Tianjin Agricultural University, Tianjin 300384, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
39
|
Zhang Y, Wu T, Li W, Zhao Y, Long H, Liu R, Sui W, Zhang M. Lactobacillus casei LC89 exerts antidiabetic effects through regulating hepatic glucagon response and gut microbiota in type 2 diabetic mice. Food Funct 2021; 12:8288-8299. [PMID: 34308462 DOI: 10.1039/d1fo00882j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous study suggests that Lactobacillus casei exhibits antihyperglycemic activity, however, the molecular mechanism of this has yet to be elucidated. Here, the anti-diabetic effects and underlying mechanisms of Lactobacillus casei LC89 are investigated in type 2 diabetes mellitus (T2DM) mice, which was induced by a high-fat diet (HFD) with streptozotocin (100 mg per kg BW). The results show that LC89 at a dose of 109 CFU day-1 decreases fasting blood glucose (FBG) and insulin levels by 35.12% and 28.37%, respectively, compared to the diabetes control (DC) group. Moreover, LC89 treatment improved the insulin resistance index (HOMA-IR), serum lipid profiles and inflammation cytokines. The real-time polymerase chain reaction indicated that LC89 markedly downregulates the mRNA expression of hepatic glucagon (GCG), glucagon receptor (GCGR), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Meanwhile, LC89 significantly decreases the abundance of Odoribacter, but increases the Alloprevotella, Bacteroides, Parabacteroides and Ruminococcus content. Therefore, LC89 plays a positive role in alleviating T2DM by regulating gut microbiota and glucagon signal pathway-related genes, and it may be a beneficial dietary supplement to regulate glucose metabolism in T2DM.
Collapse
Affiliation(s)
- Yongli Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wen Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yunjiao Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hairong Long
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. and Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. and Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
40
|
Jiang C, Cheng D, Liu Z, Sun J, Mao X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res Int 2021; 145:110408. [PMID: 34112411 DOI: 10.1016/j.foodres.2021.110408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Agaro-oligosaccharides originating from red algae have attracted increasing attention in both basic theoretical research and applied fields due to their excellent bioactivities, which indicates the wide prospects of agaro-oligosaccharides for application in the food, pharmaceutical and cosmetic industries. Thus, a considerable number of studies regarding functional agaro-oligosaccharides preparation as well as the bioactivities exploration have been carried out. Based on these studies, this review first introduced different methods that have been used in agar extraction from red algae, and further provided research progress on arylsulfatase. Then, different methods used for agaro-oligosaccharides production were summarized. Moreover, the abundant bioactivities of agaro-oligosaccharides were described in detail. Finally, this review has discussed current research problems and further provided critical aspects, which may be helpful for revealing the structure-function relationship of agaro-oligosaccharide.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
41
|
Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr 2021; 62:7703-7717. [PMID: 33939558 DOI: 10.1080/10408398.2021.1916736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
42
|
Bocanegra A, Macho-González A, Garcimartín A, Benedí J, Sánchez-Muniz FJ. Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus. Int J Mol Sci 2021; 22:3816. [PMID: 33917044 PMCID: PMC8067684 DOI: 10.3390/ijms22083816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is a major systemic disease which involves impaired pancreatic function and currently affects half a billion people worldwide. Diet is considered the cornerstone to reduce incidence and prevalence of this disease. Algae contains fiber, polyphenols, ω-3 PUFAs, and bioactive molecules with potential antidiabetic activity. This review delves into the applications of algae and their components in T2DM, as well as to ascertain the mechanism involved (e.g., glucose absorption, lipids metabolism, antioxidant properties, etc.). PubMed, and Google Scholar databases were used. Papers in which whole alga, algal extracts, or their isolated compounds were studied in in vitro conditions, T2DM experimental models, and humans were selected and discussed. This review also focuses on meat matrices or protein concentrate-based products in which different types of alga were included, aimed to modulate carbohydrate digestion and absorption, blood glucose, gastrointestinal neurohormones secretion, glycosylation products, and insulin resistance. As microbiota dysbiosis in T2DM and metabolic alterations in different organs are related, the review also delves on the effects of several bioactive algal compounds on the colon/microbiota-liver-pancreas-brain axis. As the responses to therapeutic diets vary dramatically among individuals due to genetic components, it seems a priority to identify major gene polymorphisms affecting potential positive effects of algal compounds on T2DM treatment.
Collapse
Affiliation(s)
- Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (J.B.)
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
43
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
44
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
45
|
Shan X, Wang X, Jiang H, Cai C, Hao J, Yu G. Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na +/Glucose Cotransporter 1 Activity. Mar Drugs 2020; 18:E485. [PMID: 32971911 PMCID: PMC7551602 DOI: 10.3390/md18090485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that fucoidan with a type II structure inhibited postprandial hyperglycemia by suppressing glucose uptake, but the mechanism remains elusive. Here, we aimed to assess whether the effect of glucose absorption inhibition was related to the basic structure of fucoidans and preliminarily clarified the underlying mechanism. Fucoidans with type II structure and type I structure were prepared from Ascophyllumnodosum (AnF) or Laminariajaponica (LjF) and Kjellmaniellacrassifolia (KcF), respectively. The effects of various fucoidans on suppressing postprandial hyperglycemia were investigated using in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model), and in vivo (oral glucose tolerance test, OGTT) assays. The results showed that only AnF with a type II structure, but not LjF or KcF with type I structure, could inhibit the glucose transport in the Caco-2 monolayer and everted gut sac models. A similar result was seen in the OGTT of Kunming mice and leptin receptor-deficient (db/db) mice, where only AnF could effectively inhibit glucose transport into the bloodstream. Furthermore, AnF (400 mg/kg/d) treatment decreased the fasting blood glucose, HbA1c, and fasting insulin levels, while increasing the serum glucagon-like peptide-1 (GLP-1) level in obese leptin receptor-deficient (db/db) mice. Furthermore, surface plasmon resonance (SPR) analysis revealed the specific binding of AnF to Na+/glucose cotransporter 1 (SGLT1), which indicated the effect of AnF on postprandial hyperglycemia could be due to its suppression on SGLT1 activity. Taken together, this study suggests that AnF with a type II structure can be a promising candidate for hyperglycemia treatment.
Collapse
Affiliation(s)
- Xindi Shan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|