1
|
Shi X, Zhang X, Wang L, Ge Y, Chen G. Comparative study of Idesia polycarpa Maxim cake meal polysaccharides: Conventional versus innovative extraction methods and their impact on structural features, emulsifying, antiglycation, and hypoglycemic properties. Food Chem 2025; 471:142745. [PMID: 39761606 DOI: 10.1016/j.foodchem.2024.142745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 02/12/2025]
Abstract
Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.05 %), increased uronic acid content (39.12 %), and a greater proportion of the rhamnogalacturonan I (RG-I) domain (42.88 %), along with improved homogeneity (Mw/Mn: 2.79) and enhanced functional properties, including improved thermal stability, emulsion ability, and emulsion stability. Compared to IPMPs extracted via conventional methods, emulsions stabilized with IPMP-UT exhibited superior performance across different pH levels and polysaccharide concentrations. At pH 6.0, IPMP-UT emulsion formed thicker interfacial layers and exhibited the strongest storage (G') and loss (G″) module. Bioactivity assays further revealed that IPMP-UT had the most potent in vitro inhibition of α-glucosidase and was the most effective at reducing the formation of fructosamine, α-dicarbonyl compounds, and advanced glycation end products (AGEs). All IPMPs inhibited α-glucosidase through a combined mechanism, primarily reducing fluorescence via static quenching, with IPMP-UT demonstrating the greatest binding affinity. Fluorescence and FT-IR spectroscopy confirmed that IPMPs induced structural rearrangements in the enzyme. In conclusion, the UTPP method emerged as the most promising and environmentally sustainable technique for producing pectic polysaccharides with optimal functional properties from IPM cake meal.
Collapse
Affiliation(s)
- Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
2
|
Zhang Z, Li XM, Guo Y, Wang H, Li Z, Lin H. Insight into the anti-allergic impacts of fucoidan from Gracilaria lemaneiformis in mitigating allergic reactions induced by shrimp tropomyosin via regulating Th1/Th2 cytokines and T cell subsets. Int J Biol Macromol 2025; 299:140228. [PMID: 39855495 DOI: 10.1016/j.ijbiomac.2025.140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Fucoidan is a natural sulfated polysaccharide with immunoregulatory function. In this work, the anti-allergic impacts of Gracilaria lemaneiformis fucoidan (GLF) in mitigating allergic reactions induced by shrimp tropomyosin were investigated. As the results, GLF performed significant hyaluronidase inhibition ability (IC50 = 0.272 mg/mL), alleviated the allergic reactions of RAW 264.7 macrophage cells via decreasing the secretion of TNF-α and NO by 58.75 % and 46.17 %, respectively, and mitigated the degranulation degree and secretion of IL-4, TNF-α and histamine as well as promoted IL-10 secretion in RBL-2H3 mast cells. In BALB/c mouse, after gavage of GLF, the mouse allergic symptoms got significantly alleviated, the secretion of IgE and IgG1 got reduced, IgG2a got promoted, the IL-4 secretion from mouse spleen lymphocytes (SLP) significantly declined, and IL-10 and IFN-γ secretion in SLP got improved, which indicated GLF performed significantly anti-allergic functions via transforming Th2 response into Th1 and Treg response. Moreover, the SLP cells treated by GLF had lower expression of GATA-3, higher T-bet and Foxp3 expression, which indicated GLF could mitigate allergic reactions via regulating T-bet, GATA3 and Foxp3 transcription factor expression of T cell subsets. Therefore, GLF could serve as anti-allergic substances for shrimp-induced allergy via regulating Th1/Th2 cytokines and T cell subsets.
Collapse
Affiliation(s)
- Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Yatao Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
3
|
Liang S, Guo Q, Li J, Zhao P, Ge C, Li S, Xiao Z. A Novel Polysaccharide Purified from Tricholoma matsutake: Structural Characterization and In Vitro Immunological Activity. Foods 2025; 14:1031. [PMID: 40232050 PMCID: PMC11941717 DOI: 10.3390/foods14061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tricholoma matsutake, as a rare wild edible mushroom, is popular due to its unique flavor and taste, as well as high nutritional and economic value. Investigating the relationship between the complex structure and in vitro immunological activity of TMP-2a, a novel polysaccharide isolated from T. matsutake, was the aim of this study. The results showed that TMP-2a consisted of six monosaccharides, fucose, glucosamine hydrochloride, galactose, glucose, mannose, and glucuronic acid, with molar ratios of 8.8:0.6:23.4:48.1:15.1:4.0 and a molecular weight of 27,749 Da. Furthermore, TMP-2a was mainly composed of →6)-β-Glcp-(1→ with →3)-β-D-Glcp-(1→ forming the main chain, with a small amount of →2,6)-α-D-Manp-(1→ and →6)-α-D-Galp-(1→ structural units attached, and the branched chain was mainly composed of β-Glcp-(1→ or a small amount of α-L-Fucp-(1→ as a telosaccharide attached at the O-6 position of →3,6)-β-D-Glcp-(1→. TMP-2a enhanced the proliferation and phagocytic activity of mouse macrophage RAW264.7, as well as the secretion of NO and cytokines (TNF-α, IL-6, IL-1β) to a considerable degree, maybe attributable to its glucan structure and the elevated presence of (1→3)-β-D-Glcp glycosidic bonds. This study establishes a basis for the structural identification and comprehensive investigation of the functional activities of T. matsutake polysaccharides while also offering a theoretical framework for the creation of T. matsutake-related food products.
Collapse
Affiliation(s)
- Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Ping Zhao
- Yunnan Agricultural University, Kunming 650201, China;
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
| | - Shijun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
4
|
Song H, Zhang Y, Huang Q, Wang F, Wang L, Xiong L, Shen X. Extraction optimization, purification, characterization, and hypolipidemic activities of polysaccharide from pumpkin. Int J Biol Macromol 2025; 307:141907. [PMID: 40081709 DOI: 10.1016/j.ijbiomac.2025.141907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Polysaccharides derived from pumpkin have garnered increasing interest due to their diverse biological activities. In this study, pumpkin polysaccharides were extracted using an ultrasound-assisted extraction method, optimized via response surface methodology. The optimal extraction conditions were identified as follows: a solid-liquid ratio of 1:60 (g/mL), an extraction time of 1.9 h, an extraction temperature of 62 °C, and an ultrasonic power of 286 W. Under these conditions, the total carbohydrate content in pumpkin polysaccharides reached 71.14 ± 1.53 %, closely aligning with the predicted value. Post extraction, the polysaccharides were purified using DEAE Sepharose Fast Flow and Sephadex G-100 columns, resulting in a pure fraction termed PPS3. Structural analysis revealed that PPS3, with a molecular mass of 5.96 × 104 Da, consisted of mannose, glucosamine hydrochloride, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose in a molar ratio of 0.005:0.004:0.041:0.013:0.545:0.004:0.241:0.147, respectively. The backbone primarily contained →4)-α-D-GalpA-6-OMe-(1→ residue with several branched chains. Functionally, PPS3 demonstrated potent in vitro hypolipidemic activities. These findings elucidated the structural characteristics of pumpkin polysaccharides and suggested their potential as natural hypolipidemic agents.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Yanhui Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qianqian Huang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
5
|
Liu D, He Y, Zhang X, Ye Z, Ye M. Characterization, physicochemical properties, antioxidant activity and hypolipidemic activities of a polysaccharides from Lachnum YM40. Fitoterapia 2025; 181:106390. [PMID: 39805506 DOI: 10.1016/j.fitote.2025.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
LEP-1a, a new polysaccharide fraction isolated and purified from Lachnum YM40, has a molecular weight of 24.29 kDa. LEP-1a's chemical composition investigation showed that mannose, galactose, and glucose made up the majority of its cosmetics. The methylation, nuclear magnetic resonance, and Fourier transform infrared investigations demonstrated that the (1 → 2)-β-D-Galp, (1 → 2,6)-α-D-Manp, glycosidic connections of LEP-1a were comprised of 1→)-α-D-Manp, (1 → 4)-α-D-Galp, (1 → 6)-α-D-Manp, (1 → 2)-β-D-Glcp, (1 → 4)-β-D-Glcp, (1 → 2)-α-D-Manp, and (1 → 3, 6)-β-D-Manp. LEP-1a has a linear microscopic morphology, as demonstrated by atomic force microscopy, scanning electron microscopy, and rheological property investigation. Moreover, the polysaccharide LEP-1a displayed bile acid- and cholesterol-binding capacities and inhibitory activity on lipase.
Collapse
Affiliation(s)
- Dong Liu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anqing Vocational and Technical College, Anqing 246003, China
| | - Yaling He
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Xu M, Jiang Z, Ren J, Zhou S, Zhang X, Wu W, Li H, Li B, Wang J, Jiao L. De-starched Panax ginseng polysaccharide: Preparation, in vitro digestion, fermentation properties and the activating effect of the resultant products on RAW264.7 cells. Carbohydr Polym 2025; 351:123103. [PMID: 39779017 DOI: 10.1016/j.carbpol.2024.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Panax ginseng C. A. Meyer (ginseng) neutral polysaccharides have been proven to be an immune enhancer, but their digestion and fermentation characteristics are unclear. This study aimed to prepare a de-starched polysaccharide (DGPN) from ginseng and investigate its degradation rules and the changes in immune activity by using an in vitro digestion and fermentation model. Results showed that in digestion process, the molecular weight of DGPN decreased from 4.72 × 104 to 4.04 × 104 Da, reducing sugar (CR) content increased from 0.0539 ± 0.0037 to 0.0919 ± 0.0015 mg/mL. During the fecal fermentation process, a significant decrease in total carbohydrate content and molecular weight, a significant increase in CR and change in the proportion of monosaccharide composition can be observed, indicating that DGPN was mainly degraded during fermentation process. DGPN modulated the microbial composition via increasing the relative abundance of beneficial bacteria including Bacteroides, [Eubacterium]_nodatum_group, Ligilactobacillus, Enterococcus and reducing harmful bacteria such as Escherichia_Shigela. DGPN also promoted the production of short chain fatty acids. Cell experiments results showed that fermentation product DGPN-F48 activated RAW264.7 cells via TLR4/Myd88/NF-κB signaling pathway and the activity was significantly enhanced after fermentation process. This study confirmed DGPN is beneficial for enhancing gut health and has prebiotic potential.
Collapse
Affiliation(s)
- Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132000, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoyu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bo Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jing Wang
- The third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
7
|
Roobab U, Aadil RM, Kurup SS, Maqsood S. Comparative evaluation of ultrasound-assisted extraction with other green extraction methods for sustainable recycling and processing of date palm bioresources and by-products: A review of recent research. ULTRASONICS SONOCHEMISTRY 2025; 114:107252. [PMID: 39985822 PMCID: PMC11904522 DOI: 10.1016/j.ultsonch.2025.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The global food waste crisis has significantly contributed to climate change, water pollution, and land degradation. Date palm waste, including seeds, fronds, and fruit pulp residues, represents a valuable source of bioactive compounds with potential applications in food, pharmaceutical, and cosmetic industries. This study presents a comparative evaluation of ultrasound-assisted extraction and other novel extraction techniques, such as pressure-based extraction, pulsed electric fields, microwaves, and natural deep eutectic solvents, for recovering bioactive compounds from date palm waste. These methods were assessed for their efficiency and sustainability in extracting antioxidants and phenolic compounds, and other bioactives while minimizing the use of harmful solvents and high temperatures. Critical factors, such as extraction time, solvent type, temperature, and pressure were crucial indicators to achieve higher extraction efficiencies with lower environmental impacts compared to traditional methods. Additionally, combining these techniques may further optimize the extraction process. This study contributes to the development of sustainable strategies for valorizing date palm byproducts and promoting a circular economy in the food industry. By developing sustainable extraction methods that minimize environmental impacts, this research directly supports the United Nations' Sustainable Development Goals, particularly SDG 12 (Responsible Consumption and Production) and SDG 13 (Climate Action).
Collapse
Affiliation(s)
- Ume Roobab
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shyam Sreedhara Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
8
|
Lin Y, Zhang S, Huang Y, Yang S, Zhou A, Zhang W, Wu Z. Enhancing Rice Bran Soluble Dietary Fiber Yield Through Sequential Ultrasound-Xylanase Treatment. Foods 2025; 14:388. [PMID: 39941981 PMCID: PMC11817479 DOI: 10.3390/foods14030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
The main aim of this study was to enhance the content of soluble dietary fiber (SDF) derived from rice bran (RB) through various treatments, including physical methods (ultrasound and alternating magnetic field (AMF)) and enzymatic approaches (cellulase and xylanase), applied individually or in combination. The results revealed that AMF treatment was the most effective single modification technique for increasing SDF yield, followed by treatments with xylanase, cellulase, and ultrasound. Notably, among the combined approaches, the sequential ultrasound-xylanase treatment (U-X) demonstrated the highest potential for enhancing SDF yield. Further optimization experiments revealed that under the conditions of a xylanase addition of 4.3 mg/g sample, a material-to-liquid ratio of 50 mL/g, and an ultrasonic power of 72 W, the yield of U-X-SDF significantly increased from 1.03% to 18.4%. Compared to unmodified samples, the modified SDF groups exhibited marked enhancements in water holding capacity (42.5-86.4%) and water solubility (21.0-30.6%), while the unmodified SDF displayed superior oil holding capacity than the modified groups. In summary, the sequential ultrasound-xylanase treatment not only improves the SDF yield but also enhances the functional properties of RB-derived SDF, positioning it as a valuable health-promoting food additive with potential benefits for both laboratory and industrial food applications. The optimized treatment process can contribute to the development of new functional food ingredients from RB, thereby promoting health and wellness in consumers.
Collapse
Affiliation(s)
- Yanting Lin
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (Y.L.); (S.Z.); (Y.H.); (S.Y.); (W.Z.)
| | - Siling Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (Y.L.); (S.Z.); (Y.H.); (S.Y.); (W.Z.)
| | - Yifei Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (Y.L.); (S.Z.); (Y.H.); (S.Y.); (W.Z.)
| | - Shuyuan Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (Y.L.); (S.Z.); (Y.H.); (S.Y.); (W.Z.)
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China;
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (Y.L.); (S.Z.); (Y.H.); (S.Y.); (W.Z.)
- Intelligent Manufacturing Institute of HFUT, Hefei 230051, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (Y.L.); (S.Z.); (Y.H.); (S.Y.); (W.Z.)
- Intelligent Manufacturing Institute of HFUT, Hefei 230051, China
| |
Collapse
|
9
|
Zhang H, Fan X, Zhao W, Meng F, Lu F, Lu Z, Zhao H. Structure Characterization and Antioxidant Activity of a Novel Polysaccharide from Bacillus natto Fermented Millet Bran. Foods 2025; 14:278. [PMID: 39856943 PMCID: PMC11765371 DOI: 10.3390/foods14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
To improve the high-value application of millet bran, a water-soluble polysaccharide was extracted from fermented millet bran (FMBP) by using Bacillus natto fermentation. A neutral polysaccharide, FMBP-1, was separated and purified from FMBP using an anion exchange column. Its structure and antioxidant activity in vitro were characterized and determined. The molecular weight of FMBP-1 was 1.154 × 104 Da, and its molecular weight distribution was relatively uniform. The monosaccharide composition, FT-IR, methylation, and NMR results indicated that FMBP-1 was only composed of glucose and was an α-(1→4)-D-glucan that branched at O-6 with a terminal 1-linked α-D-Glcp as a side chain. In addition, the antioxidant assays indicated that FMBP-1 possessed certain capacities for scavenging free radicals and reducing power, and this was in a concentration-dependent manner. This research will provide fundamental data regarding the structure-activity relationship of millet bran polysaccharides and provide a theoretical foundation for the high-value utilization of millet bran within the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (X.F.); (W.Z.); (F.M.); (F.L.); (Z.L.)
| |
Collapse
|
10
|
Hu W, Yu A, Wang Z, Meng Y, Kuang H, Wang M. Genus Paeonia polysaccharides: A review on their extractions, purifications, structural characteristics, biological activities, structure-activity relationships and applications. Int J Biol Macromol 2024; 282:137089. [PMID: 39486721 DOI: 10.1016/j.ijbiomac.2024.137089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The Paeonia genus, the most distinctive representative of the Paeoniaceae family, holds significant edible and medicinal value. Its plants are rich in chemical constituents, including polysaccharides, phenols, terpenes, and flavonoids. Among these, Paeonia polysaccharide (PPS) is a key bioactive component, exhibiting diverse biological activities such as anti-cancer, anti-depressant, anti-oxidant, anti-inflammatory, anti-bacterial, immunomodulatory activities and therapeutical effect of diabetic kidney disease. Additionally, PPS possess favorable physicochemical properties including low toxicity and high biocompatibility. Recent studies increasingly demonstrate that PPS can enhance the sensory quality of food products during processing, and confer specific functional benefits through targeted biological activities indicating substantial potential for application in the food industry. The biological activity, emulsifying capacity, and film-forming properties of PPS also render them promising additives in cosmetic formulations, suggesting opportunities for further development. Despite their potential, challenges remain, particularly in optimizing extraction and purification techniques to improve PPS yield and preserve bioactivity. Therefore, a comprehensive review of the latest research advancements and future prospects is essential to deepen the understanding and facilitate the development of PPS.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Yonghai Meng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
11
|
Yang Y, Ren P, Sun Y, Li J, Zhou X, Zhang H, He C, Dai H, Guan L. Structure elucidation and molecular mechanism of an immunomodulatory polysaccharide from Nostoc commune. Int J Biol Macromol 2024; 283:137435. [PMID: 39537070 DOI: 10.1016/j.ijbiomac.2024.137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Nostoc commune Vaucher, a terrestrial and benthic blue-green alga, widely used in food and medicine worldwide. N. commune Polysaccharides (NCVP) have excellent biological activities, especially immunomodulatory, hypoglycemic and anti-tumor activities. However, the mechanism and structure-activity relationship of NCVP has been less studied. In this study, based on methylation and NMR results, a novel polysaccharide NCVP2 with 135 kDa, containing→4)-α-D-Galp-(1→, → 4)-β-D-Glcp-(1→, and →4)-α-D-Xylp-(1→ residues as the backbon, was sequentially purified from N.commune by DEAE-52 and Sephadex G-100 column. NCVP2 (50 μg/mL) exhibited the strong in vitro immunomodulatory activity by promoting the generation of nitric oxide (NO) and reactive oxygen species (ROS). A total of 2048 differentially expressed genes (DEGs) were identified by RNA-seq, including 1019 down-regulated genes and 1065 up-regulated genes. These DEGs were mainly enriched in the immune-related biological processes, involving in Mitogen-activated protein kinase (MAPK) and Toll-like receptor (TLR) signaling pathways by GO and KEGG enrichment analysis. Furthermore, Western blot results proved NCVP2 could recognize TLR2 and TLR4/MD2, and regulate TLR7/IRF7, MAPK and PI3K/AKT signaling pathways. In summary, a novel polysaccharide NCVP2 from N.commune was proposed to exhibit significant immunomodulatory effects with multiple-paths and targets, and has great potential in the development of healthy foods such as immunomodulators.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ying Sun
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junyi Li
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xinjun Zhou
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huining Dai
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
12
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
14
|
Li Y, Li X, Yuan Q, Zhao J, Wu W, Gui Y, Wang H, Wang L, Luo Y, Zhou G, Zhang J, He Y, Yuan C. Polysaccharides from Balanophora harlandii Hook: Isolation, characterization, and anti-inflammation activities. J Pharm Biomed Anal 2024; 246:116252. [PMID: 38788622 DOI: 10.1016/j.jpba.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Balanophora harlandii Hook (B. harlandii), a folk medicine, has been traditionally employed to treat traumatic bleeding, gastroenteritis, icteric hepatitis, hemorrhoids, and other conditions. In this work, polysaccharides with anti-inflammatory effects were extracted from B. harlandii and purified. The extraction conditions were optimized, and the properties of one purified neutral fraction, denoted as BHPs-W-S3, were analyzed. BHPs-W-S3 has a molecular weight of 14.1 kDa, and its three main monosaccharides are glucose, galactose, and xylose, with a molar ratio of 6.4:1.7:1.1. Its main chain consists of →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, →3,6)-β-D-Galp-(1→, and it has branch chains at the O-4 and/or O-3 positions. In addition, in vitro experiments showed that the polysaccharides from B. harlandi can decrease the phosphorylation level of p65 and IκBα in LPS-induced RAW264.7 cells to reduce the expression of the pro-inflammatory genes such as TNF-α, IL-6, and IL-1β.
Collapse
Affiliation(s)
- Yuanyang Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Xueqing Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Jiale Zhao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Wei Wu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yibei Gui
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hailin Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Lijun Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yiyang Luo
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang 443002, China
| | - Yumin He
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China.
| | - Chengfu Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
15
|
Yu J, Cao Y, He F, Xiang F, Wang S, Ke W, Wu W. Polysaccharides from Artemisia argyi leaves: Environmentally friendly ultrasound-assisted extraction and antifatigue activities. ULTRASONICS SONOCHEMISTRY 2024; 107:106932. [PMID: 38824698 PMCID: PMC11170280 DOI: 10.1016/j.ultsonch.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Artemisia argyi leaf polysaccharide (AALPs) were prepared through ultrasound-assisted extraction (UAE), and their antifatigue activities were evaluated. Extraction was optimized using response surface methodology (RSM), which yielded the following optimal UAE conditions: ultrasonication power of 300 W, extraction temperature of 51 °C, liquid:solid ratio of 20 mL/g, and ultrasonication time of 47 mins. The above optimal conditions resulted in the maximum extraction rate of 10.49 %. Compared with hot water extraction (HWE), UAE supported higher yields and total sugar, uronic acid, and sulfate contents of AALPs. Meanwhile, AALP prepared through UAE (AALP-U) exhibited higher stability due to its smaller particle size and higher absolute value of zeta potential than AALP prepared through HWE (AALP-H). In addition, AALP-U demonstrated stronger antioxidant activity than AALP-H. In forced swimming tests on mice, AALP-U could significantly prolong swimming time with a dose-dependent effect, increase liver and muscle glycogen levels, and improve other biochemical indices, thus showing great potential for application in functional food.
Collapse
Affiliation(s)
- Jiahui Yu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Ying Cao
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Fu Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Shuzhen Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Wenbing Ke
- Department of Infectious Diseases, Huangshi Hospital of Traditional Chinese Medicine, Huangshi 435000, China.
| | - Wei Wu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China.
| |
Collapse
|
16
|
Huang F, Fan Y, Liu X, Chen Y, Huang Y, Meng Y, Liang Y. Structural characterization and innate immunomodulatory effect of glucomannan from Bletilla striata. Int J Biol Macromol 2024; 273:133206. [PMID: 38885853 DOI: 10.1016/j.ijbiomac.2024.133206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The crude polysaccharide of Bletilla striata in this study was extracted by water extraction and alcohol precipitation and further purified by gel column to yield the purified component Bletilla striata polysaccharide (BSP). Its structure and innate immune regulation activity were studied. BSP mainly comprises mannose and glucose, with a monosaccharide molar ratio of 2.9:1 and a weight-average molecular weight of 28,365 Da. It is a new low-molecular-weight water-soluble neutral glucomannan. BSP contains a → 6)-β-Manp-(1→, →4)-β-Glcp-(1→, →4)-β-Manp-(1 → and →3)-α-Manp-(1 → linear main chain, containing β-Glcp-(1 → and β-Manp-(1 → two branched chain fragments were connected to the Man residue at position 4. BSP can enhance the anti-infection ability of Caenorhabditis elegans against Pseudomonas aeruginosa, significantly improve the phagocytic ability of RAW264.7 macrophages, stimulate the secretion of NO and TNF-α, and have good innate immune regulation activity. These findings guide the use of Bletilla striata polysaccharides with immunomodulatory action.
Collapse
Affiliation(s)
- Fang Huang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yibin Fan
- Health Management Center, Department of Dermatology, Zhejiang provincial people's hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Xinxin Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Youming Huang
- Health Management Center, Department of Dermatology, Zhejiang provincial people's hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Yanmei Meng
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
17
|
Huang R, Li H, Huang X, Zhou Y, Liu Z, Liu C, Li Q. Extracellular matrix-mimetic immunomodulatory fibrous scaffold based on a peony stamens polysaccharide for accelerated wound healing. Int J Biol Macromol 2024; 264:130573. [PMID: 38447846 DOI: 10.1016/j.ijbiomac.2024.130573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Re-establishment of the extracellular matrix (ECM) in wound tissue is critical for activating endogenous tissue repair. In this study, we designed an ECM-like scaffold material using plant polysaccharides and assessed its efficacy through in vitro and in vivo experiments. The scaffold accelerates wound healing by regulating inflammatory responses and accelerating tissue regeneration. Briefly, we isolated two polysaccharides of varying molecular weights from peony stamens. One of the polysaccharides exhibits potent immunomodulatory and tissue regeneration activities. We further prepared electrospinning materials containing this polysaccharide. In vitro investigations have demonstrated the polysaccharide's ability to modulate immune responses by targeting TLR receptors. In vivo experiments utilizing a scaffold composed of this polysaccharide showed accelerated healing of full-thickness skin wounds in mice, promoting rapid tissue regeneration. In conclusion, our study shows that this scaffold can mobilize the endogenous regenerative capacity of tissues to accelerate repair by mimicking the characteristics of ECM. The overall study has implications for the design of new, effective, and safer tissue regeneration strategies.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiqin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Xiaoli Huang
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya Zhou
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Congming Liu
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
Liu R, Yan Z, Chu FX, Chen HQ. Comparative study on chain conformations, physicochemical and rheological properties of three acidic polysaccharides from Opuntia dillenii Haw. fruits. Int J Biol Macromol 2024; 262:130027. [PMID: 38340941 DOI: 10.1016/j.ijbiomac.2024.130027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
In this study, three acidic polysaccharides (OFPP-1, OFPP-2 and OFPP-3) were isolated from the pulps of Opuntia dillenii Haw. fruits, and their chain conformations, physicochemical and rheological properties were investigated. The molecular weight and conformational parameters (Mw, Mn, Mz, Rg and Rh) of OFPPs in 0.1 M NaNO3 solution were detected by HPSEC-MALLS-RI. In addition, based on the parameters ρ and v, it was concluded that these three polysaccharide chains exhibited sphere-like conformation in 0.1 M NaNO3 solution, which was consistent with AFM and TEM observations. Furthermore, the Congo Red experiment showed that OFPP-2 had a triple-helix structure, which may be conducive to its biological activity. This study also found that OFPPs were semi-crystalline structures with high thermal and pH stability. The rheological analyses indicated that the apparent viscosity of OFPPs solutions exhibited concentration-, temperature-, and pH-dependence, and the viscoelasticity of them was affected by molecular characteristics and concentration. The results of this study are helpful to elucidate the structure-activity relationship of OFPPs. Moreover, this study can provide theoretical reference for the application of OFPPs as bioactive ingredients or functional materials in the food, pharmaceutical and cosmetic industries and the development and utilization of the O. dillenii Haw. fruits resource.
Collapse
Affiliation(s)
- Rui Liu
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Zheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Fang-Xin Chu
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
19
|
Wang Q, Hu H, Xiong L, Jin X, Zhu T, Sun X, Zhang Z, Liu H. Structural characterization and prebiotic activity of Bletilla striata polysaccharide prepared by one-step fermentation with Bacillus Licheniformis BJ2022. Int J Biol Macromol 2024; 258:128822. [PMID: 38114007 DOI: 10.1016/j.ijbiomac.2023.128822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Bletilla striata polysaccharide (BP) is one of the main active ingredients in Orchidaceae plant Bletilla striata. BP has a high molecular weight, high viscosity, and complex diffusion, which is not conducive to the absorption and utilization of the human body. For the first time, we produced fermented Bletilla striata polysaccharide (FBP) with a low polymerization degree using Bacillus licheniformis BJ2022 one-step fermentation. FBP was a neutral polysaccharide with the molecular weight of 6790 Da. It was composed of glucose and mannose at a molar ratio of 1:2.7. The glycosidic bonds of FBP were composed of β-1,4-linked mannose, β-1,4-linked glucose and β-1,6-linked mannose according to methylation and NMR analysis. Compared with BP, FBP has a lower viscosity and higher solubility. The scanning electron microscopy results showed that the surface of FBP was porous and honeycomb-like. The rheology properties of FBP solution were close to non-Newtonian fluid. Using in vitro fermentation, we proved that FBP could regulate human gut microbiota and significantly increase the content of Bifidobacterium and Bacteroides. Our results suggested that Bacillus licheniformis fermentation significantly improved the physical and prebiotic properties of FBP. This study provides a new strategy for developing and utilizing Bletilla striata resources in China.
Collapse
Affiliation(s)
- Qiqi Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Lei Xiong
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xuexia Jin
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Tianxiang Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xiongjie Sun
- School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Zhigang Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
20
|
Wan P, Liu H, Ding M, Zhang K, Shang Z, Wang Y, Ma Y. Physicochemical characterization, digestion profile and gut microbiota regulation activity of intracellular polysaccharides from Chlorella zofingiensis. Int J Biol Macromol 2023; 253:126881. [PMID: 37709223 DOI: 10.1016/j.ijbiomac.2023.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
A number of studies have shown that the polysaccharides from microalgae exhibit diverse biological activities, however, little is known about their digestibility and impact on human gut microbiota. In this study, a simulating digestion and fermentation system were established to investigate the digestibility and fermentation of intracellular polysaccharides from Chlorella zofingiensis (CZIP-S3). The results indicated that CZIP-S3 is a macromolecular polysaccharide composed of mannose, glucose, galactose and rhamnose, consisting of a main chain and two branched repeating units. CZIP-S3 could not be digested in the upper gastrointestinal tract. However, CZIP-S3 could be metabolized into smaller molecules by the gut microbiota. The pH values continuously decrease during fermentation, whereas, the amount of short-chain fatty acids steadily increase. Furthermore, CZIP-S3 could modulate the composition of gut microbiota, via lowering the ratio of Firmicutes/Bacteroidetes and increasing the relative abundance of Bacteroides, Bifidobacterium and Akkermansia. The data suggested that CZIP-S3 could potentially be used as an ingredient for functional foods or prebiotics to improve human health by promoting the relative abundances of beneficial bacteria.
Collapse
Affiliation(s)
- Peng Wan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China.
| | - Han Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Mengyan Ding
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Kailu Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Zhen Shang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yuanli Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| |
Collapse
|
21
|
Tang Y, Miao Y, Tan M, Ma Q, Liu C, Yang M, Su Y, Li Q. Ultrasound assisted wall-breaking extraction and primary structures, bioactivities, rheological properties of novel Exidia yadongensis polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 101:106643. [PMID: 37922721 PMCID: PMC10641719 DOI: 10.1016/j.ultsonch.2023.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
New natural multifunctional polysaccharide and its innovatory extraction technology may be urgently needed for food industries. Our aims were to establish new extraction method and investigate the primary structures, bioactivities and rheological properties of novel E. yadongensis polysaccharide (EYP). Ultrasound assisted mechanical wall-breaking extraction (MAUE) was successfully established for the EYP extraction from a new E. yadongensis. Based on the MAUE with RSM, the polysaccharide yield of 17.92 ± 0.56 % with the optimal parameters of five extraction factors were obtained, and current MAUE was characterized by its high yield, low extraction temperature and short ultrasound time. After the isolation and purification, the EYP as a protein-bound polysaccharide was obtained. FT-IR and NMR analysis showed that the main backbone of the EYP comprised of (1 → 4)-β-D-glucopyranosyl and (1 → 6)-ɑ-D-mannopyranosyl groups; EYP exhibited significant antioxidant, antibacterial, antitumor, antidiabetic activities, and good viscoelastic properties in low pH solutions (P < 0.05). The EYP may be used as a natural functional and cohesive agent in food industries.
Collapse
Affiliation(s)
- Ying Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Min Tan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China
| | - Qinqin Ma
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Chengyi Liu
- PanZhiHua City Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Mei Yang
- PanZhiHua City Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
22
|
Raza H, Ameer K, Ren X, Liu Y, Kang L, Liang Q, Guo T, Ma H, Wang M. Synergistic impact of heat-ultrasound treatment on the properties and digestibility of Sagittaria sagittifolia L. starch-phenolic acid complexes. Int J Biol Macromol 2023:125457. [PMID: 37331532 DOI: 10.1016/j.ijbiomac.2023.125457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The current research investigated the multi-scale structural interactions between arrowhead starch (AS) and phenolic acids, such as ferulic acid (FA) and gallic acid (GA) to identify the mechanism of anti-digestion effects of starch. AS suspensions containing 10 % (w/w) GA or FA were subjected to physical mixing (PM) followed by heat treatment at 70 °C for 20 min (HT) and a synergistic heat-ultrasound treatment (HUT) for 20 min using a dual-frequency 20/40 KHz system. The synergistic HUT significantly (p < 0.05) increased the dispersion of phenolic acids in the amylose cavity, with GA showing a higher complexation index than FA. XRD analysis showed a typical V-type pattern for GA, indicating the formation of an inclusion complex, while peak intensities decreased for FA following HT and HUT. FTIR revealed sharper peaks possibly of amide bands in the ASGA-HUT sample compared to that of ASFA-HUT. Additionally, the emergence of cracks, fissures, and ruptures was more pronounced in the HUT-treated GA and FA complexes. Raman spectroscopy provided further insight into the structural attributes and compositional changes within the sample matrix. The synergistic application of HUT led to increased particle size in the form of complex aggregates, ultimately improving the digestion resistance of the starch-phenolic acid complexes.
Collapse
Affiliation(s)
- Husnain Raza
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Xiaofeng Ren
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Yuxuan Liu
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Lixin Kang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tao Guo
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Haile Ma
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
23
|
Chen Y, Song L, Chen P, Liu H, Zhang X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods 2023; 12:2335. [PMID: 37372546 DOI: 10.3390/foods12122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to isolate polysaccharides from Penthorum chinense Pursh and evaluate their rheological characteristics, physicochemical properties, and antioxidant activity. The optimal conditions for the maximal extraction yield of Penthorum chinense Pursh polysaccharides (4.05 ± 0.12%) were determined by employing a single-factor test and response surface methodology which included an extraction time of 3 h, a liquid-solid ratio of 20 mL/g, and three separate extraction times. The rheological experiments showcased that the P. chinense polysaccharides exhibited typical shear-thinning behavior, with their apparent viscosity being influenced by various parameters such as concentration, pH, temperature, salt content, and freeze-thaw. The purified polysaccharides (PCP-100), having an average molecular weight of 1.46 × 106 Da, mainly consisted of glucose (18.99%), arabinose (22.87%), galactose (26.72%), and galacturonic acid (21.89%). Furthermore, the PCP-100 exhibited high thermal stability and displayed an irregular sheet-like morphology. Its superior reducing power and free radical scavenging ability implied its significant antioxidant activity in vitro. Collectively, these findings provide important insights for the future application of P. chinense polysaccharides in the food industry.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
24
|
Leng X, Li J, Miao W, Liu Y, Haider MS, Song M, Fang J, Li Q. Comparison of physicochemical characteristics, antioxidant and immunomodulatory activities of polysaccharides from wine grapes. Int J Biol Macromol 2023; 239:124164. [PMID: 37011744 DOI: 10.1016/j.ijbiomac.2023.124164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
In this study, an efficient ultrasonic-assisted extraction method was used for the extraction and optimization of four wine grape polysaccharides. A three-level, three-factor Box Behnken Design combined with the response surface approach was used to optimize the extraction conditions. Their physicochemical properties, molecular structure, antioxidant activity, immunomodulatory activity and hepatoprotective effects were examined and compared. These findings suggest that the four wine grape polysaccharides share similar basic structural features and monosaccharide composition. Furthermore, four wine grape polysaccharides exhibited antioxidant and immunomodulatory activities in a concentration-dependent manner. Moldova (MD) polysaccharide displayed better antioxidant activity and immunomodulatory ability. Furthermore, MD polysaccharide has a significant therapeutic effect on CCl4-induced rat liver injury by improving the antioxidant defense system and inhibiting oxidative stress, indicating that MD has a hepatoprotective effect. Taken together, the MD wine grape polysaccharide may have potential applications in prevention of liver disease in the functional food and pharmaceutical industries.
Collapse
|
25
|
Wang Y, Han J, Yue Y, Wu Y, Zhang W, Xia W, Wu M. Purification, structure identification and immune activity of a neutral polysaccharide from Cynanchum Auriculatum. Int J Biol Macromol 2023; 237:124142. [PMID: 36972816 DOI: 10.1016/j.ijbiomac.2023.124142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
The crude polysaccharides CAPS and CAP of Cynanchum Auriculatum, which were prepared by degrading starch by single-enzymatic method (α-amylase) and double-enzymatic method (α-amylase and glucoamylase) respectively, were compared. CAP had good water solubility and higher non-starch polysaccharide content. A homogeneous neutral polysaccharide CAPW, with the degree of acetylation about 17 %, was obtained from CAP by anion exchange column chromatography. Its detailed structure was identified by various methods. CAPW, with the weight average molecular weight of 8.4 kDa, was composed of mannose, glucose, galactose, xylose, and arabinose in a molar ratio of 1.27:1.00:0.25:0.10:1.16. The backbone included β-1,4-Manp, β-1,4,6-Manp, β-1,4-Glcp and β-1,4,6-Glcp residues, with branches at the O-6 position of β-1,4,6-Manp and β-1,4,6-Glcp residues, consisting of α-T-Araf, α-1,5-Araf, α-1,2,5-Araf, α-1,3,5-Araf, T-Xylp,1,4-Xylp, β-T-Manp and β-T-Galp residues. In vitro immunological experiments suggested that CAP-W improved the phagocytic ability of macrophages, stimulated the release of NO, TNF-α and IL-6 from RAW264.7 cells, promoted the expression of NF-κB and caused nuclear translocation of NF-κB p65.
Collapse
|
26
|
Zhang Y, Liu Y, Ni G, Xu J, Tian Y, Liu X, Gao J, Gao Q, Shen Y, Yan Z. Sulfated modification, basic characterization, antioxidant and anticoagulant potentials of polysaccharide from Sagittaria trifolia. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
27
|
The characteristics of polysaccharide from Gracilaria chouae and its application in food packaging with carboxymethyl cellulose and lysozyme. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Rheological characterization of the exopolysaccharide produced by Alteromonas macleodii Mo 169. Int J Biol Macromol 2023; 227:619-629. [PMID: 36539173 DOI: 10.1016/j.ijbiomac.2022.12.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Rheology modifiers are essential additives in numerous products in a variety of industries. Due to environmental awareness, consumer-oriented industries are interested in novel natural rheological agents that can replace synthetic chemicals. In this study, the chemical composition and rheological properties of a novel exopolysaccharide (EPS) produced by Alteromonas macleodii Mo 169 were investigated. It was mainly composed of uronic acids (50 mol%) and total carbohydrates were 17 % sulfated. The EPS viscosity increased with concentration, and a non-Newtonian shear thinning behavior was found for concentrations above 0.1 wt%. The elastic and viscous moduli indicated a weak gel-like structure above 0.4 wt%. It maintained its shear thinning behavior and viscoelastic properties in the presence of NaCl and CaCl2 for pH range 5-7 and temperatures up to 55 °C. Though the apparent viscosity decreased at pH 3 and 9 and temperatures above 65 °C, the shear thinning behavior was retained. The viscous and viscoelastic properties were recovered after heating (95 °C) and cooling (0 °C), indicating a good thermal stability and recoverability. After high shear force, the solution recovered original rheological properties within few seconds, demonstrating self-healing properties.
Collapse
|
29
|
Extraction, purification and structural characterization of polysaccharides from Apocynum venetum L. roots with anti-inflammatory activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Liu D, Wang SY, Wang GN, Zheng LH, Sun Y, Liu L, Bao YL. Structural characterization and immunoregulatory activity of a neutral polysaccharide from the roots of Apocynum venetum L. Int J Biol Macromol 2022; 222:90-100. [PMID: 36165870 DOI: 10.1016/j.ijbiomac.2022.09.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
The structural characteristics and immunoregulatory activities of neutral heteropolysaccharide (AVRP-N) separated from the roots of Apocynum venetum L. were extensively investigated. The results showed that the weight average molecular mass (Mw) of AVRP-N was 6.430 × 103 Da. Moreover, the backbone is composed of natural acetylated (1 → 4)-β-D-Man and (1 → 5)-α-L-Ara domains. The mannan is composed of →4)-β-D-Manp-(1→, →4)-β-D-Glcp-(1→, and the terminal group α-D-Galp-(1→ attached to →4,6)-β-D-Manp-(1→ at O-6. Araban is composed of →5)-α-L-Araf-(1→; the terminal group α-L-Araf-(1→attached to→2,3,5)-α-L-Araf-(1→ at O-2, O-3 and →3,5)-α-L-Araf-(1→ at O-3. In addition, the senior structure shows that AVRP-N has a triple-helix conformation. Furthermore, AVRP-N exhibited immunomodulatory effects, which could significantly regulate the proliferation of mouse splenic lymphocytes by enhancing the secretion of the cytokines (IFN-γ, IL-2, IL-4, and IL-10). Our results provide new structural and immunoregulatory information for natural polysaccharides derived from Apocynum venetum L.
Collapse
Affiliation(s)
- Dan Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Shu-Yue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Guan-Nan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Li-Hua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
31
|
Zhang G, Liu C, Zhang R. A novel acidic polysaccharide from blackened jujube: Structural features and antitumor activity in vitro. Front Nutr 2022; 9:1001334. [PMID: 36185697 PMCID: PMC9521368 DOI: 10.3389/fnut.2022.1001334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is one of the most common cancers, with increasing trends in incidence and mortality. A novel acidic polysaccharide (BJP-2) obtained from blackened jujube was extracted by hot water followed by chromatographic purification employing DEAE-cellulose 52 and Sephadex G-100 column. And then BJP-2 was identified by SEC-MALLS-RI, GC-MS, methylation and NMR for the following characteristics: molecular weight of 6.42 × 104 Da, monosaccharide composition of glucuronic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), xylose (Xyl), glucuronic acid (GlcA), glucose (Glc), fucose (Fuc) and mannose (Man) with the percentage of 39.78, 31.93, 16.86, 6.43, 1.86, 1.28, 1.02, 0.61, and 0.23%, as well as the main chain of → 5)-α-L-Araf (1 → 4)-β-D-Gal(1 → , T-α-L-Araf (1 → 4)-β-D-Gal(1 → , and → 4)-α-L-6MeGalAp(1 → . The effect of BJP-2 on the apoptosis of HepG2 cells and its anti-tumor mechanism were further explored. The analysis by MTT and flow cytometry showed that BJP-2 suppressed cell proliferation by inducing apoptosis in a concentration-dependent manner. Cell scratching and Transwell revealed that BJP-2 was able to block the invasion and metastasis of tumor cells. Western blot results demonstrated that BJP-2 exhibited antitumor activity through a mitochondria-dependent pathway, as evidenced by overexpression of Bax, Cleaved Caspase-3/Caspase-3 and Cleaved Caspase-9/Caspase-9 and downregulation of Bcl-2. Therefore, BJP-2 has broad research prospects as a tumor preventive or therapeutic agent.
Collapse
|
32
|
Liu C, Wang F, Zhang R. An Acidic Polysaccharide with Anti-Inflammatory Effects from Blackened Jujube: Conformation and Rheological Properties. Foods 2022; 11:foods11162488. [PMID: 36010488 PMCID: PMC9407416 DOI: 10.3390/foods11162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
An acidic polysaccharide fraction (BJP-4) was isolated from blackened jujube, and its advanced structures and anti-inflammatory activity were investigated. X-ray diffraction showed that BJP-4 exhibits both crystalline and amorphous portions. Atomic force microscopy data suggested that it contains a large number of spherical lumps. Circular dichroism and Congo red experiments revealed that it has no triple-helix conformation. In steady shear flow results, the BJP-4 solution was a pseudoplastic non-Newtonian fluid with acid-base stability. BJP-4 (20 mg/mL) showed liquid-like properties (G″ > G′), while it performed weak gel-like behavior at a high concentration (40 mg/mL) (G′ > G″). The anti-inflammatory effects of BJP-4 were further evaluated through in vitro experiments. BJP-4 could down-regulate the over-secretion of inflammatory factors (NO, IL-6, IL-1β, TNF-α, iNOS and COX-2) in RAW264.7 cells due to LPS stimulation. Moreover, it demonstrated that BJP-4 restrained the NF-κB signal pathway by regulating TLR4 expression, reducing IκBα phosphorylation level and NF-κB p65 nuclear translocation. In summary, this present study contributes to the application of blackened jujube polysaccharides in the foods and medicine field.
Collapse
|
33
|
AlYammahi J, Hai A, Krishnamoorthy R, Arumugham T, Hasan SW, Banat F. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. ULTRASONICS SONOCHEMISTRY 2022; 88:106107. [PMID: 35926278 PMCID: PMC9356216 DOI: 10.1016/j.ultsonch.2022.106107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Guo L, Kong N, Zhang X, Ma H. Multimode ultrasonic extraction of polysaccharides from maca (Lepidium meyenii): Optimization, purification, and in vitro immunoregulatory activity. ULTRASONICS SONOCHEMISTRY 2022; 88:106062. [PMID: 35751935 PMCID: PMC9240871 DOI: 10.1016/j.ultsonch.2022.106062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 05/09/2023]
Abstract
This study evaluates the effect of multimodal ultrasound on the extraction efficiency and immunoregulatory activity of polysaccharides from Lepidium meyenii Walp. (LMP). The separation and purification of maca polysaccharides were investigated by the DEAE-52 cellulose column, and the monosaccharide compositions were identified by HPGPC. Their immune activity was analyzed by the secretion of cytokines (TNF-α and IL-6) from RAW 264.7 macrophage. The results showed that the optimal extraction conditions were energy aggregation alternation dual-frequency ultrasound (EADU) with frequency combinations of 20/35, extraction time of 15 min, material/water ratio of 1:10 g/mL, ultrasonic power intensity of 150 W/L, intermittent time ratio of 4 s/3 s, and extraction temperature of 50 ℃. The extraction rates of purified polysaccharides (US3) increased by 44.90%. The LMP extracted by EADU contained arabinose, galactose, and glucose in the molar ratios of 2.9:2.72:5.05. In addition, US3 promoted the release of TNF-α and IL-6 from RAW 264.7 better than RS3 (purified polysaccharides extracted by hot water), which indicated that US3 exerted remarkable immune activity. It could be an excellent functional additive in food or medicine.
Collapse
Affiliation(s)
- Lina Guo
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Na Kong
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xinyan Zhang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
35
|
Xue H, Xu J, Zhang J, Wei Y, Cai X, Tan J. Modeling, optimization, purification, and characterization of polysaccharides from Lilium lancifolium Thunb. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Tian J, Tang C, Wang X, Zhang X, Xiao L, Li W. Supramolecular structure features and immunomodulatory effects of exopolysaccharide from Paecilomyces cicadae TJJ1213 in RAW264.7 cells through NF-κB/MAPK signaling pathways. Int J Biol Macromol 2022; 207:464-474. [PMID: 35278511 DOI: 10.1016/j.ijbiomac.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
This study investigated the supramolecular structure features and immunomodulatory effects of two exopolysaccharide fractions (EPS1 and EPS2) from Paecilomyces cicada TJJ1213 in vitro. AFM images revealed that EPS1 and EPS2 displayed different morphological features at different concentrations. Congo red and XRD assay further proved that EPS1 and EPS2 mainly exhibited amorphous structure with random coil conformation in solution. Furthermore, the immunomodulatory effect of EPSs was investigated on RAW264.7 cells. Results showed that EPS1 and EPS2 could enhance the phagocytic activity and induce the NO production and could also significantly up-regulate the mRNA expression of iNOS, TNF-α, IL-6, IL-1β, IFN-γ and IL-4. Western blot assay analysis demonstrated that EPSs increased protein expression of TLR4 and the nuclear translocation of NF-κB p50/p65. Additionally, the phosphorylation levels of MAPKs proteins (p38, ERK and JNK) were also remarkably increased. Thus, EPSs could active TLR4-NF-κB/MAPKs signaling pathways to exert the immunomodulatory effect on macrophages.
Collapse
Affiliation(s)
- Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
37
|
Yang Z, Liu Z, Xu J, Zhu J, Pu Y, Bao Y. Study on the physicochemical properties and immunomodulatory anti-tumor effect of the Pholiota adiposa polysaccharide. Food Funct 2022; 13:5153-5165. [PMID: 35420612 DOI: 10.1039/d1fo03628a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, the extraction, purification, physical and chemical properties, and biological activity of the Pholiota adiposa (PAP) polysaccharide were investigated. One fraction (PAP-1a) of Pholiota adiposa polysaccharides was isolated using DEAE Sepharose™ Fast Flow and Sephacryl™ S-300 High-Resolution columns. The HPLGPC results revealed that the molecular weight of PAP-1a was 16.453 kDa. PAP-1a was composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose and their molar % was 33.41, 0.53, 1.33, 0.07, 0.27, 5.28, 38.31, 0.83, 18.04 and 2.23, respectively. PAP-1a could activate macrophages to secrete NO and cytokines such as TNF-a, IL-6, and IL-12p70. When hepatocellular carcinoma cells (HCCs) and macrophages were co-cultured, it was observed that PAP-1a inhibited the growth of Hep-G2, Hep-3B, and Huh7 via immunoregulation. It triggered cell apoptosis by blocking the cell cycle in the G0/G1 stage. Furthermore, PAP-1a had no direct cytotoxicity against the hepatocyte cell line L02 and macrophages RAW264.7.
Collapse
Affiliation(s)
- Zhongwei Yang
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Third Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Xu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Junmo Zhu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
38
|
Structural characterization and biological activities of a new polysaccharide isolated from Morchella Sextelata. Glycoconj J 2022; 39:369-380. [PMID: 35416638 DOI: 10.1007/s10719-022-10058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022]
Abstract
Morchella is the famous medicinal fungi in the ascomycetes. In this study, a new water-soluble polysaccharide (MSP-3-1) with an average molecular weight of 2.35 × 107 Da was extracted and purified from fruiting bodies of cultivated M. Sextelata. The structural characterization and biological activities of purified polysaccharide was further investigated. The results indicated that MSP-3-1 was mainly a α-glucan, mainly consisting of mannose (Man), glucose (Glc) and galactose (Gal) in a ratio of 5.10: 91.39: 3.51. Its surface morphology exhibited irregular lamellar structures with small voids. And the particle size analysis showed that MSP-3-1 was the homogeneous nanoparticle in water solution. Furthermore, the antioxidant activity analysis showed that MSP-3-1 possessed certain scavenging activity against hydroxyl radicals, DPPH radicals and ABTS radicals in a dose-dependent manner. Immunological tests suggested that MSP-3-1 could significantly promote the proliferation, phagocytosis and nitric oxide (NO) production of macrophage RAW264.7. Thus, our results will provide a theoretical basis for the development and utilization of Morchella Sextelata polysaccharides as an immunmodulatory component in functional foods.
Collapse
|
39
|
Study on the characterization of polysaccharide from Tuber sinense and its desensitization effect to β-lactoglobulin in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
Wang Y, Wang C, Xue H, Jin Y, Yang M, Leng F. Comparative analysis of three kinds of extraction kinetic models of crude polysaccharides from Codonopsis pilosula and evaluate the characteristics of crude polysaccharides. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-17. [PMID: 35342681 PMCID: PMC8933859 DOI: 10.1007/s13399-022-02518-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, the second-order model, Fick's second law of diffusion, and the Peleg model were used to evaluate the extraction kinetic model of polysaccharide (CPP) from Codonopsis pilosula. The characteristic functional groups, surface structure, and physical and chemical properties of CPP were analyzed by multi-spectroscopic and microscopic techniques. The results showed that the extraction process agreed well with the second-order model, Fick's second diffusion law, and Peleg model. Rheological tests showed that CPP exhibited different viscosity changes under different conditions (Solution viscosity was inversely proportional to temperature, time, etc.; proportional to polysaccharide concentration, Na+ content, etc.). CPP was composed of molecular aggregates composed of small particles, with more pore structure and basically completely decomposed at 130 °C. The hypoglycemic study showed that CPP had a strong inhibitory effect on α-glycosidase than α-amylase. The morphology and subsequent structural features, anti-diabetic potential, and rheological properties of CPP were revealed to provide a theoretical basis for the development of pharmaceutical preparations or health food and functional food for the treatment of diabetes. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02518-w.
Collapse
Affiliation(s)
- Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Chenliang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Hongyan Xue
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Yongming Jin
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| |
Collapse
|
41
|
Feng Y, Qiu Y, Duan Y, He Y, Xiang H, Sun W, Zhang H, Ma H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int 2022; 153:110913. [DOI: 10.1016/j.foodres.2021.110913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
|
42
|
Tan J, Cui P, Ge S, Cai X, Li Q, Xue H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. ULTRASONICS SONOCHEMISTRY 2022; 84:105966. [PMID: 35247682 PMCID: PMC8897718 DOI: 10.1016/j.ultsonch.2022.105966] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 05/24/2023]
Abstract
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV-vis, fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources.
Collapse
Affiliation(s)
- Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengshan Cui
- College of Quality and Technical Supervision, Hebei University, No. 2666 Qiyi East Road, Lianchi District, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
43
|
Zhang NN, Ma H, Zhang ZF, Zhang WN, Chen L, Pan WJ, Wu QX, Lu YM, Chen Y. Characterization and immunomodulatory effect of an alkali-extracted galactomannan from Morchella esculenta. Carbohydr Polym 2022; 278:118960. [PMID: 34973775 DOI: 10.1016/j.carbpol.2021.118960] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/18/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
In our continuous exploration for bioactive polysaccharides, a novel polysaccharide FMP-2 was isolated and purified from the fruiting bodies of Morchella esculenta by alkali-assisted extraction. FMP-2 had an average molecular weight of 1.09 × 106 Da and contained mannose, glucuronic acid, glucose, galactose, and arabinose in a molar ratio of 4.10:0.22:1.00:5.75:0.44. The backbone of FMP-2 mainly consisted of 1,2-α-D-Galp, 1,6-α-D-Galp, and 1,4-α-D-Manp, with branches of 1,4,6-α-D-Manp and 1,2,6-α-D-Galp. FMP-2 can stimulate phagocytosis and promote the secretion of NO, ROS, and cytokines like IL-6, IL-1β, and TNF-α in RAW264.7 cells ranging from 25 to 400 μg/mL. FMP-2 had great repairing effect on the immune injury of zebrafish induced by chloramphenicol. The phagocytosis ability of zebrafish macrophages and the proliferation of neutrophils can be greatly enhanced by polysaccharide FMP-2 with concentrations from 50 to 200 μg/mL. These findings suggest that FMP-2 might be used as a potential immunomodulator in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - He Ma
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Zhong-Fei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Wen-Juan Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, PR China.
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, PR China.
| |
Collapse
|
44
|
Wang C, Zhang Y, Xue H, Yang M, Leng F, Wang Y. Extraction kinetic model of polysaccharide from Codonopsis pilosula and the application of polysaccharide in wound healing. Biomed Mater 2022; 17. [PMID: 35090145 DOI: 10.1088/1748-605x/ac5008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
The crude polysaccharide (CPNP) of Codonopsis pilosula was obtained by hot-water extraction technology. The extraction kinetic model established according to Fick's first law of diffusion and related parameters of polysaccharide was studied. CPNP microcapsules were prepared by blending with sodium alginate, Ca2+ ions and crude CPNP. The quality control (Drug loading rate, embedding rate and release rate, etc) of CPNP microcapsules were analyzed by pharmacopeas standards. The structure feature of CPNP microcapsules also were determined with various methods. The wound healing ability of CPNP microcapsules loading with different concentration of CPNP was evaluated using the rat wound model. The activity of various enzymes and the expression levels of pro-inflammatory factors in the model skin tissue also were determined by enzyme linked immunosorbent assay (ELISA). Hematoxylin-eosin staining (HE), Masson, immunohistochemistry were used to investigate the external application effect of CPNP microcapsules on skin wound repair. The extraction kinetics of CPNP was established with the linear correlation coefficient (R2) of 0.83-0.93, implied that the extraction process was fitted well with the Fick's first law of diffusion. The CPNP has good compatibility with sodium alginate and Ca2+ ions by SEM and TEM observation, and the particle size of CPNP microcapsules was 21.25±2.84 μm with the good degradation rate, loading rate (61.59%) and encapsulation rate (55.99%), maximum swelling rate (397.380 ±25.321%). Compared with control group, the redness, and swelling, bleeding, infection, and exudate of the damaged skin decreased significantly after CPNP microcapsules treatment, and the CPNP microcapsules groups exhibited good wound healing function with less inflammatory cell infiltration. The pathological structure showed that in the CPNP microcapsules group, more newborn capillaries, complete skin structure, and relatively tight and orderly arrangement of collagen fibers were observed in the skin of rats. CPNP microcapsules could effectively inhibit the high expression of pro-inflammatory factors in damaged skin, and significantly increase the contents of related enzymes (GSH-Px, T-AOC, LPO) and collagen fibers. The relative expression levels of genes (VEGF and miRNA21) in the CPNP microcapsules group were higher than those in the model group and the negative group. The above results suggested that the CPNP microcapsules could controlled-release the CPNP to the wound surface, and then played a better role in antibacterial, anti-inflammatory and skin wound repair.
Collapse
Affiliation(s)
- Chenliang Wang
- Lanzhou University of Technology, , Lanzhou, Gansu, 730050, CHINA
| | - Yuchun Zhang
- Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, Lanzhou, 730050, CHINA
| | - Hongyan Xue
- Lanzhou University of Technology, School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, Gansu Province, P. R. China, Lanzhou, Gansu, 730050, CHINA
| | - Mingjun Yang
- Lanzhou University of Technology, , Lanzhou, 730050, CHINA
| | - Feifan Leng
- Lanzhou University of Technology, , Lanzhou, Gansu, 730050, CHINA
| | - Yonggang Wang
- Lanzhou University of Technology, , Lanzhou, 730050, CHINA
| |
Collapse
|
45
|
Li F, Liu K, Liu K. Chemical characterization of a new sulfated polysaccharide from Gracilaria chouae and its activation effects on RAW264.7 macrophages. J Zhejiang Univ Sci B 2022; 23:84-88. [PMID: 35029090 DOI: 10.1631/jzus.b2100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to characterize the chemical composition of a new sulfated polysaccharide from the red alga Gracilaria chouae and evaluate its activation effects on RAW264.7 macrophages. It showed that the obtained G. chouae polysaccharide (GCP-3A) was a sulfated acidic polysaccharide with a molecular weight of 11.87 kDa. GCP-3A was composed of xylose, galactose, glucose, and mannose with a molar ratio of 3.00:29.28:0.63:0.45, and it contained α,β-glycosidic linkages. Scanning electron microscopy (SEM) and a Congo red test showed that it was a heterogeneous polysaccharide with irregular interwoven sheets and rods, and did not have a triple-helix conformation. Furthermore, GCP-3A significantly promoted the proliferation of RAW264.7 macrophages and the secretion of nitric oxide (NO) in tests of 3-(4,5-dimethylthiahiazo-2-yl)-2,5-diphenytetrazoliumromide(MTT) and NO.
Collapse
Affiliation(s)
- Feifei Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China. .,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| | - Kewu Liu
- Heilongjiang Forest By-product and Speciality Institute, Mudanjiang 157011, China
| |
Collapse
|
46
|
Qiao Y, Ye Y, Cai T, Liu Y, Han L. Antioxidant activity and rheological properties of the polysaccharides isolated from
Ribes stenocarpum
maxim with different extraction methods. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yangbo Qiao
- College of Agriculture and Animal Husbandry Qinghai University Xining China
| | - Ying Ye
- College of Agriculture and Animal Husbandry Qinghai University Xining China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University Xining China
| | - Tingxiu Cai
- College of Agriculture and Animal Husbandry Qinghai University Xining China
| | - Yaoyao Liu
- College of Agriculture and Animal Husbandry Qinghai University Xining China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry Qinghai University Xining China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University Xining China
| |
Collapse
|
47
|
Raza H, Ameer K, Ma H, Liang Q, Ren X. Structural and physicochemical characterization of modified starch from arrowhead tuber (Sagittaria sagittifolia L.) using tri-frequency power ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 80:105826. [PMID: 34800838 PMCID: PMC8605420 DOI: 10.1016/j.ultsonch.2021.105826] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 05/08/2023]
Abstract
Sagittaria sagittifolia L. is a well-known plant, belongs to the Alismataceae family. Sonication can improve the functional properties of starch; hence, the aim of this study was to develop ultrasonically modified arrowhead starch (UMAS) using a sophisticated and eco-friendly tri-frequency power ultrasound (20/40/60 kHz) method at 300, 600, and 900 W for 15 and 30 min. Significant (p < 0.05) increases in swelling power, solubility, and water and oil holding capacities were achieved. FTIR spectroscopy corroborated the ordered, amorphous, and hydrated crystals of the sonicated samples. Increases in sonication frequency and power led to significant (p < 0.05) increases in onset gelatinization temperatures. Scanning electron microscopic analysis of sonicated samples showed superficial cracks and roughness on starch granules appeared in a sonication power-dependent manner compared with that of untreated sample. Overall, the ultrasonically-treated samples showed improved physicochemical properties, which could be useful for industrial applications.
Collapse
Affiliation(s)
- Husnain Raza
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Haile Ma
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China.
| | - Xiaofeng Ren
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
48
|
Hadidi M, Jafarzadeh S, Ibarz A. Modified mung bean protein: Optimization of microwave-assisted phosphorylation and its functional and structural characterizations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Zhang X, Liu Z, Zhong C, Pu Y, Yang Z, Bao Y. Structure characteristics and immunomodulatory activities of a polysaccharide RGRP-1b from radix ginseng Rubra. Int J Biol Macromol 2021; 189:980-992. [PMID: 34478797 DOI: 10.1016/j.ijbiomac.2021.08.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023]
Abstract
The present study was undertaken to explore the structure characteristics, immune regulation, and anti-cancer abilities of polysaccharides in radix ginseng Rubra (RGR). For this purpose, RGR polysaccharides (RGRP) were purified through DEAE and S-300 chromatography. Monosaccharide composition, methylation, and GC-MS analyses, as well as field emission scanning electron microscope (FESEM), atomic force microscope (AFM), Fourier-transformed infrared resonance (FT-IR), and nuclear magnetic resonance (NMR) spectra, were used to establish the structure of RGRP-1b. Our results revealed that RGRP-1a and RGRP-1b possess different molecular weights (21.3 kDa and 10.2 kDa, respectively). RGRP-1a was found to be composed of glucose, while RGRP-1b was composed of glucose, galactose, and arabinose. The main chain structure of RGRP-1b was composed of 1,4-α-Glcp, with a 1,4,6-α-Glcp branch unit. Its side chains were branched at the O-4 position of 1,4,6-α-Glcp, namely 1)-β-Galp-(4 → 1)-α-Araf-(5 → α-Araf and 1)-β-Galp-(6 → α-Glcp. The changes in the nitric oxide (NO) levels and cytotoxicity revealed that macrophages probably get activated by RGRP-1b. The expressions of IL-6, IL-12, and TNF-α were found to be upregulated after treatment with RGRP-1b. RGRP-1b thus possesses the potential to arrest the growth of Huh7 through immunoregulation. Our cumulative findings indicate that RGRP-1b obtained from radix ginseng Rubra can function as a strong immune modulator.
Collapse
Affiliation(s)
- Xuyu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zijing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Cheng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhongwei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
50
|
Yu G, Zhang Q, Wang Y, Yang Q, Yu H, Li H, Chen J, Fu L. Sulfated polysaccharides from red seaweed Gelidium amansii: Structural characteristics, anti-oxidant and anti-glycation properties, and development of bioactive films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|